
Supplementary Materials for NAR-Former V2:
Rethinking Transformer for Universal Neural

Network Representation Learning

Figure 1: Left: Raw attention scores. Right: Normalized attention scores processed by two different
normalization methods.

A More detailed comparison with original self-attention1

As introduced in the main text, linear graph-aided attention is defined as:2

X l = Sigmoid(W l
qH̃

l + blq), (1)

Sl = (X lX lT /
√
d)⊙A, (2)

Zl = W l
a(Norm(Sl)H̃ l) + bla. (3)

Compared with the self-attention in vanilla Transformer:3

Ql = W l
qH

l−1 + blq,K
l = W l

kH
l−1 + blk, V

l = W l
vH

l−1 + blv, (4)

Sl = Softmax(QlKlT /
√
d), (5)

Zl = W l
a(S

lV) + bla, (6)

in addition to the control of attention calculation range detailed in the main text, the main differences4

between the two attention schemes lie in:5

• the graph-aided attention doesn’t use the softmax function;6

• the graph-aided attention adopts sigmoid activation function.7

As shown in the Fig. 1, the softmax function helps the self-attention layer in directing its attention8

distribution, ensuring the emphasis on both local and global features during extraction. This charac-9

teristic is important for tasks in the visual field. However, for neural network encoding, the situation10

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Table 1: Performance of searched architectures using different NAS algorithms in DARTS [7] space
on CIFAR-10 [5]. † denotes using cutout [2] as data augmentation.

Model Parameters (M) Top1 Acc (%) No. of archs
VGG-19 [18] 20.0 95.10 -
DenseNet-BC [4] 25.6 96.54 -
Swin-S [9] 50 94.17 -
Nest-S [17] 38 96.97 -
Ransom search 3.2 96.71 -
NASNet-A† [19] 3.3 97.35 20000
AmoebaNet-A† [14] 3.2 96.66 27000
PNAS [6] 3.2 96.59 1160
NAONet [11] 28.6 97.02 1000
ENAS† [13] 4.6 97.11 -
DARTS† [7] 3.4 97.24 -
GATES† [12] 4.1 97.42 800
CTNAS† [1] 3.6 97.41 -
TNASP† [10] 3.7 97.48 1000
NAR-Former† [15] 3.8 97.52 100
NAR-Former V2† 3.5 97.54 100

Table 2: Average cost for one sample of NAS-Bench-101. The inference latency was measured on a
machine with GeForce RTX 3090 GPU. The batch size was set to 1.

Encode(ms) Infer(ms) Total(ms)
NAR-Former 2.4784 17.4864 19.9648
NAR-Former V2 2.3722 5.2276 7.5998

may be somewhat different. Due to the softmax, Eq. (5) focuses almost all attention on the current11

node while ignoring adjacent nodes, making it difficult to capture the topology of the neural net-12

work well. The Eq. (2) restricts attention to connected nodes by introducing the adjacency matrix.13

Considering that each neighboring node of the current node contributes to the representation of the14

network topology, we use linear attention to calculate attention and normalization without losing the15

information of neighboring nodes. The exponential function in the softmax function provides the16

nonlinear ability and guarantees the nonnegativity of elements. When softmax is replaced by linear17

normalization, we introduce the sigmoid activation function to achieve these two purposes.18

B More experiments19

B.1 Experiments on Darts20

One important application of accuracy prediction is network architecture search (NAS). Here, we21

follow the NAS experiment of NAR-Former and evaluate our proposed model in the DARTS search22

space. To ensure fairness, we follow the experimental details adopted in NAR-Former [15].23

Experimental results are listed in Table1. NAR-Former v2 retains the advantages of NAR-Former24

and also performs well in network architecture search. Thanks to its superior model performance,25

it only requires evaluating a small number of candidate networks to achieve excellent results in the26

search process. Based on NAR-Former v2, we obtained a model that has fewer parameters while27

having higher Top1 Accuracy compared with other predictor-based NAS methods.28

In addition, as shown in Table 2, NAR-Former v2 achieves faster inference speed compared to NAR-29

Former as it has a more concise architecture.30

B.2 Experiments on NNLQP31

In this part, we use Mean Absolute Percentage Error (MAPE) and Error Bound Accuracy (Acc(δ))32

to measure the deviations between latency predictions and ground truths [8].33

2

The MAPE is defined as:34

MAPE =
1

n

n∑
i=1

|yi − y′i|
yi

× 100%. (7)

MAPE is a non-negative number and the smaller value means the more precision prediction.35

The Acc(δ) can be calculated by:36

Acc(δ) =
1

n

n∑
i=1

cnt(
|yi − y′i|

yi
≤ δ)× 100%, (8)

where cnt(x) is a counting function, with a value of 1 when condition x is satisfied. The larger the37

Acc(δ), the better the prediction performance.38

B.3 Experiments on NAS-Bench-20139

For a more comprehensive comparison with baseline [15] in terms of accuracy prediction, we added40

the 10% error bound accuracy metric (ACC (10%)), which reflects the accuracy of predicting exact41

values, and the standard deviation indicator, which reflects the stability of the method, respectively.42

The results are shown in Tab. 3. The results of ACC (10%) show that our NAR-Former V2 outper-43

forms NAR-Former [15] in the prediction of exact values, in addition to the relative ordering, which44

also reflects that our method learns a more reasonable representation. Comparing the standard devi-45

ations of the two methods shows that our NAR-Former V2 is more stable than NAR-Former [15].46

Table 3: More metrics results for accuracy prediction on NAS-Bench-201 [3]

Kendall’s Tau ACC (10%)
Train/Test 424/all 1563/all 424/all 1563/all

NAR-Former [15] 0.8631±0.0080 0.8967±0.0029 96.77 99.32
NAR-Former V2 0.8735±0.0026 0.8875±0.0013 99.45 99.50

In this paper, we show the results of applying our method to predict accuracy and latency, two of the47

most frequently considered attributes in network design and deployment. Our approach can also be48

easily used to predict other attributes of neural networks, simply by changing labels and adjusting49

hyperparameters as needed. We use our NAR-Former V2 with the same hyperparameters as the50

experiments on the NASBench family to predict the testing loss. This experiment is conducted51

on NAS-Bench-201. 5% of the whole data is used as the training set and another 200 samples52

are used for validation. The results are shown in Tab. 4. Kendall’s Tau is 0.851, indicating that53

our model is capable of predicting the relative ordering of the testing loss for the entire dataset54

(15625 samples) with high correlation. The value of the other three metrics MAPE, ACC(10%), and55

ACC(5%) demonstrate the high accuracy of our method in predicting the actual values of the testing56

loss.57

C Implementation details58

C.1 Encoding details59

For accuracy prediction, the length of operation encoding and position encoding is both 64 and60

the total encoding length of each node is 128. For latency prediction, the length of operation type61

encoding is 32, and the length of encoding of each attribute (e.g. kernel size, number of groups, the62

height of tensor, the width of tensor, and so on) is 10. There are a total of 12 attributes for each63

node, including 8 parameters related to the model definition and 4 attributes that describe the shape64

of node output tensors. Therefore, in latency prediction, the length of a single node of the initial65

Table 4: Testing loss prediction on NAS-Bench-201 [3]

Metrics Kendall’s Tau↑ ACC(10%)↑ ACC(5%)↑ MAPE↓
NAR-Former V2 0.851 96.01 77.70 3.48

3

encoding is 152. The total encoding length of the four static attributes (batch size, memory access,66

parameter quantity, and FLOPs) is 40, which, together with the output of the transformer, is used for67

the final latency prediction.68

C.2 Model details69

The output dimension of each Transformer block is 512. The ratio of the hidden dimension to the70

input dimension in the grouped feed-forward networks of the Transformer block is fixed to 1:4.71

C.3 Training details72

C.3.1 Latency prediction on NNLQP73

We follow the NNLP[8] training setup to train each model for our latency prediction experiments.74

That is, the batch size is 16 and the number of epochs is 50.75

C.3.2 Accuracy prediction on NAS-Bench-10176

The NAS-Bench-101[16] repeated the training and evaluation of all architecture on CIFAR-10 for77

three times. There are accuracies after training with 4 different epochs: 4, 12, 36, and 108. The78

accuracies after training with 108 epochs are adopted in our experiments. We use the average valida-79

tion accuracy of each architecture as the training target and the average testing accuracy to evaluate80

the testing performance of the trained predictor.81

Following the NAR-Former [15], we use the information flow consistency augmentation. The82

weight of MSE loss, SR_loss, and AC_loss is 1, 0.1 and 0.5, respectively. We determined to train83

our predictor for 3000 epochs based on the convergence of the learning curve on the training set.84

C.3.3 Accuracy prediction on NAS-Bench-20185

The NAS-Bench-201[3] trained and evaluated each architecture on three datasets: CIFAR-10,86

CIFAR-100, and ImageNet-16-120. In our experiments, the accuracy of each architecture on CIFAR-87

10 is used. The validation accuracy and testing accuracy of each architecture are used for building88

training ground truth and testing ground truth, respectively.89

The setting of the loss function is similar to that of NAS-Bench-101. The predictor is trained for90

1000 epochs in this part.91

References92

[1] Yaofo Chen, Yong Guo, Qi Chen, Minli Li, Wei Zeng, Yaowei Wang, and Mingkui Tan. Contrastive neural93

architecture search with neural architecture comparators. In Proceedings of the IEEE/CVF Conference on94

Computer Vision and Pattern Recognition, pages 9502–9511, 2021.95

[2] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks with96

cutout. arXiv preprint arXiv:1708.04552, 2017.97

[3] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture98

search. arXiv preprint arXiv:2001.00326, 2020.99

[4] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected con-100

volutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,101

pages 4700–4708, 2017.102

[5] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.103

[6] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,104

Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceedings of the Euro-105

pean conference on computer vision (ECCV), pages 19–34, 2018.106

[7] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv107

preprint arXiv:1806.09055, 2018.108

4

[8] Liang Liu, Mingzhu Shen, Ruihao Gong, Fengwei Yu, and Hailong Yang. Nnlqp: A multi-platform neural109

network latency query and prediction system with an evolving database. In 51 International Conference110

on Parallel Processing - ICPP, ICPP ’22. Association for Computing Machinery, 2022.111

[9] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin112

transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF113

International Conference on Computer Vision, pages 10012–10022, 2021.114

[10] Shun Lu, Jixiang Li, Jianchao Tan, Sen Yang, and Ji Liu. Tnasp: A transformer-based nas predictor with a115

self-evolution framework. Advances in Neural Information Processing Systems, 34:15125–15137, 2021.116

[11] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization. Ad-117

vances in neural information processing systems, 31, 2018.118

[12] Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and Huazhong Yang. A generic graph-based neural119

architecture encoding scheme for predictor-based nas. In European Conference on Computer Vision,120

pages 189–204. Springer, 2020.121

[13] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search via122

parameters sharing. In International conference on machine learning, pages 4095–4104. PMLR, 2018.123

[14] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image classifier124

architecture search. In Proceedings of the aaai conference on artificial intelligence, volume 33, pages125

4780–4789, 2019.126

[15] Yun Yi, Haokui Zhang, Wenze Hu, Nannan Wang, and Xiaoyu Wang. Nar-former: Neural architecture127

representation learning towards holistic attributes prediction. arXiv preprint arXiv:2211.08024, 2022.128

[16] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-bench-129

101: Towards reproducible neural architecture search. In International Conference on Machine Learning,130

pages 7105–7114. PMLR, 2019.131

[17] Zizhao Zhang, Han Zhang, Long Zhao, Ting Chen, Sercan Ö Arik, and Tomas Pfister. Nested hierarchical132

transformer: Towards accurate, data-efficient and interpretable visual understanding. In Proceedings of133

the AAAI Conference on Artificial Intelligence, volume 36, pages 3417–3425, 2022.134

[18] Chen Zhu, Renkun Ni, Zheng Xu, Kezhi Kong, W Ronny Huang, and Tom Goldstein. Gradinit: Learning135

to initialize neural networks for stable and efficient training. Advances in Neural Information Processing136

Systems, 34:16410–16422, 2021.137

[19] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint138

arXiv:1611.01578, 2016.139

5

	More detailed comparison with original self-attention
	More experiments
	Experiments on Darts
	Experiments on NNLQP
	Experiments on NAS-Bench-201

	Implementation details
	Encoding details
	Model details
	Training details
	Latency prediction on NNLQP
	Accuracy prediction on NAS-Bench-101
	Accuracy prediction on NAS-Bench-201

