
NAR-Former V2: Rethinking Transformer for
Universal Neural Network Representation Learning

Yun Yi1,3,† Haokui Zhang2,3,∗ Rong Xiao3 Nannan Wang1,∗ Xiaoyu Wang3
1Xidian University 2Northwestern Polytechnical University 3Intellifusion

yuny220@163.com hkzhang1991@mail.nwpu.edu.cn
xiao.rong@intellif.com nnwang@xidian.edu.cn fanghuaxue@gmail.com

Abstract

As more deep learning models are being applied in real-world applications, there
is a growing need for modeling and learning the representations of neural net-
works themselves. An effective representation can be used to predict target at-
tributes of networks without the need for actual training and deployment proce-
dures, facilitating efficient network design and deployment. Recently, inspired
by the success of Transformer, some Transformer-based representation learning
frameworks have been proposed and achieved promising performance in handling
cell-structured models. However, graph neural network (GNN) based approaches
still dominate the field of learning representation for the entire network. In this
paper, we revisit the Transformer and compare it with GNN to analyze their
different architectural characteristics. We then propose a modified Transformer-
based universal neural network representation learning model NAR-Former V2.
It can learn efficient representations from both cell-structured networks and en-
tire networks. Specifically, we first take the network as a graph and design
a straightforward tokenizer to encode the network into a sequence. Then, we
incorporate the inductive representation learning capability of GNN into Trans-
former, enabling Transformer to generalize better when encountering unseen ar-
chitecture. Additionally, we introduce a series of simple yet effective modifica-
tions to enhance the ability of the Transformer in learning representation from
graph structures. In encoding entire networks and then predicting the latency, our
proposed method surpasses the GNN-based method NNLP by a significant mar-
gin on the NNLQP dataset. Furthermore, regarding accuracy prediction on the
cell-structured NASBench101 and NASBench201 datasets, our method achieves
highly comparable performance to other state-of-the-art methods. The code is
available at https://github.com/yuny220/NAR-Former-V2.

1 Introduction

With the maturity of deep learning technology, an increasing number of deep neural network mod-
els of various sizes and structures are being proposed and implemented in academic research and
industrial applications. In this process, the rapid deployment of networks and the design of new net-
works that meet task requirements are significant. To address this issue, researchers propose using
machine learning models to solve the deployment and design problems of the models themselves.
One popular strategy is encoding the input neural network and utilizing the resulting neural network
representation to predict a specific target attribute directly without actually executing the evaluation
program. In recent years, we have witnessed success in accelerating model deployment and design

†This work was done while Yun Yi was an intern at Intellifusion.
∗Corresponding authors.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/yuny220/NAR-Former-V2


processes with the help of neural network representations [47, 21, 3, 46, 26, 44, 12]. Taking the
advantages of latency predictors [47, 21, 17, 55, 12, 2], significant time cost and expertise efforts
can be saved by not having to carry out the time-consuming process of compilation, deployment,
inference, and latency evaluation when engineers choose networks for application. Through the use
of accuracy predictors [47, 26, 46, 4, 12, 44, 20], researchers can avoid the resource-intensive pro-
cess of network training and instead perform a forward inference process to evaluate the accuracy of
a multitude of networks. This measure dramatically reduces the time cost associated with network
design.

Although the vanilla Transformer is designed for natural language processing, Transformer archi-
tecture has found widespread adoption across diverse fields owing to its strengths in global mod-
eling and parallelizable computation [24, 22, 23, 14, 41, 8]. Very recently, several researchers
have attempted to learn appropriate representations for neural networks via Transformer [47, 26].
These methods have indeed achieved leading performance on relevant tasks. Nevertheless, they are
mainly designed for encoding the architecture of cells (basic micro units of repeatable neural net-
works) in cell-structured networks. As shown in the latency prediction experiment in NAR-Former
(Transformer-based neural architecture representation learning framework) [47], poor generalization
performance occurs when the depth of the input architecture reaches hundreds of layers. In the de-
velopment process of neural network representation learning, Graph neural network (GNN) [16, 35]
is also a promising technique for learning neural network representations [21, 37, 19, 43, 12]. They
model the input neural architecture as a directed acyclic graph (DAG) and operate on the graph-
structured data, which comprises the node information matrix and adjacency matrix. Recently, the
NNLP [21] introduced a dedicated latency prediction model based on GNNs, which is capable of en-
coding the complete neural network having hundreds of layers and achieves a cutting-edge advance.

In fact, both cell-structured architectures and complete neural networks are widely used in various
applications. Cell-structured models offer good scalability, allowing for easy scaling by adding or
removing cells. This adaptability makes them suitable for addressing problems of different com-
plexities and data sizes, while also facilitating incremental model development and deployment.
Complete neural networks provide better flexibility in connectivity and can achieve higher accuracy
in certain cases. Furthermore, in some cases, such as in latency estimation, encoding the complete
network is necessary. To handle various network architectures in different tasks, both GNN-based
and Transformer-based models are necessary. However, this issue of utilizing multiple architectures
can introduce constraints that may not be conducive to practical applications. For instance, when
a designed network requires specific attributes, having similar model structures and high-accuracy
predictions for different attributes can reduce code redundancy and improve work efficiency.

In this paper, we build upon the research conducted in NAR-Former [47] and present a novel frame-
work called NAR-Former V2 for universal neural network representation learning. Our framework
can handle cell-structured networks as well as learn representations for the entire network. To ac-
complish this, we incorporate graph-specific properties into the vanilla Transformer and introduce
a graph-aided attention-based Transformer block. This approach combines the strengths of both
Transformer and graph neural networks (GNNs). Extensive experiments are conducted to evaluate
our proposed framework. Results show that:(1) our method can be applied to predict different at-
tributes, can outperform the state-of-the-art method in latency prediction on the NNLQP dataset [21],
and can achieve promising results in accuracy prediction on the NAS-Bench-101 and NAS-Bench-
201 datasets [48, 10]; (2) our method has good scalability, which is capable of encoding network
having only a few operations or complete neural networks that have hundreds of operations.

2 Related work

2.1 Representation and attribute prediction of neural networks

Neural network representation learning is the base for evaluating the attributes of different networks
via machine learning models. Early methods [7, 20] construct representation models for learning
neural network representation based on LSTM and MLP. Peephole [7] inputs the embedding of each
layer to LSTM to predict accuracy, which neglects the topological structure and is limited to han-
dling only sequential architectures. Later, in order to better capture the structural information of the
network, an accuracy predictor [44] uses a binary path encoding with a length equal to the number
of possible paths from input to output given in terms of operations, where the element at the corre-

2



sponding position of the path presenting in the input network is set to 1. When the neural network is
regarded as a directed acyclic graph, the adjacency matrix describes the connection between nodes,
so it is naturally used to encode the topological structure of the neural network. NAS-Bench-101
[48] proposed to encode the given neural network as a concatenated vector of a flat adjacency matrix
and a list of node labels. Many other methods [21, 17, 3, 12, 43, 19] realize accuracy and latency pre-
diction by directly inputting the original two-dimensional adjacency matrix together with the node
information matrix to GNN, which can realize the explicit encoding of the input network topology.
There also are some works exploring other ways of obtaining representations of neural networks,
such as by mimicking actual data processing [31] or message exchange [50] of neural networks,
and by deriving a number of persistent topology measures for DNNs [5]. Recently, other methods
have focused on enhancing the original GNN [4] or introducing transformers [26, 47] to obtain more
meaningful neural network representations.

2.2 Transformer

Transformer [41] is a self-attention-based neural network architecture that has revolutionized natu-
ral language processing [28, 8, 33] and has been adopted in many other fields [54, 24, 22, 23, 47,
26, 11, 14]. Because of its excellent modeling capability and wide range of applications, there is
a growing interest in the direction of further enhancing its performance [53, 1, 39, 6], improving
computing efficiency [23, 40, 34], combining with other backbone networks [15, 18, 38, 29, 13],
and even taking inspiration from it to optimize other types of network structures, such as ConvNets
[45, 51, 25, 9, 52]. Transformer has recently been successfully introduced into neural network rep-
resentation learning [26, 47]. TNASP [26] inputs the sum of the operation type embedding matrix
and Laplacian matrix into the standard Transformer. NAR-Former [47], on the other hand, encodes
each operation and connection information of this operation into a token and inputs all tokens into
a proposed multi-stage fusion transformer. Excellent attribute prediction results have been achieved
on cell-based datasets by using these methods. However, the strong long-range modeling ability of
the self-attention mechanism may also result in subtle local variation affecting the representation
of all tokens. Due to the potential impact of this feature on the generalization ability, although
NAR-Former [47] has made attempts to encode complete neural networks, the results are still unsat-
isfactory.

2.3 Graph neural network

GNNs are designed to handle graph-structured data, which is a fundamental representation for many
real-world problems such as social network analysis and recommendation systems [49, 32]. Given
that neural networks can be viewed as graphs, GNN-based models have emerged as a prominent and
widely adopted approach for neural network representation learning [21, 17, 3, 12, 43, 19]. GNNs
show generalization ability through a simple mechanism of aggregating information from neighbors.
For instance, the recently proposed GNN-based model [21] can obtain representations of neural
networks with hundreds of layers and achieves new state-of-the-art results in latency prediction,
even if the input network structure has not been seen during training. Nevertheless, the simple
structural characteristics of GNNs, which contribute to their strong generalization ability, also lead
to the need for further improvement in the performance of methods based on original GNN in cellular
structure and complete neural network representation learning. Therefore, it is a promising approach
for neural network representation learning to combine the Transformer and GNN to leverage the
strengths of both models.

3 Method

Our final framework diagram for realizing neural architecture representation learning and attribute
prediction is shown in Fig. 1, consisting of three main phases: neural network encoding, backbone-
based representation learning, and attribute predicting using prediction heads. We will introduce the
motivation and details of the backbone network design in Sec. 3.1 and Sec. 3.2, and the details of
the entire model in Sec. 3.3.

3



Tokenizer Predicting 
Head...

predicted attribute

operation information
network representation 

position information

cell / DNN N

Neural Network Encoding Representation Learning Attributes Predcting

GraphAttn-based 
Transformer 

Block
x K

Figure 1: Overview of attribute prediction model.

3.1 Motivation

As mentioned in the Sec. 1, Transformer-based models have demonstrated remarkable performance
in encoding and learning representations of neural networks when the input is in the form of cells.
However, when dealing with complete deep neural networks (DNNs) consisting of hundreds of lay-
ers, or when the depth of the input data is unseen during training, they may sometimes exhibit poorer
performance compared to GNN-based methods. Additionally, as highlighted in [21], real-world ap-
plications often show significant differences in the topologies and depths between training and test
samples. Consequently, representation learning models must possess strong generalization abilities
for handling unseen data. In this regard, GNN-based models appear to achieve better performance.

This observation has prompted us to reconsider the two types of inputs, namely cells and complete
DNNs, as well as the two representation learning models, the Transformer and GNN. Through a
detailed comparative analysis of the structures of the Transformer and GNN, we speculate that the
insufficient generalization capability of Transformer-based methods may be attributed to its struc-
ture and computation characteristics. As we know, the self-attention structure in transformers is
a crucial design that allows for the effective extraction of global features in a data-driven manner.
However, this structure becomes a double-edged sword when learning network representations. For
input neural networks with depths of hundreds of layers, the Transformer’s impressive capability to
capture global information can sometimes lead to excessive sensitivity. This stems from the fact that
the Transformer models interactions between all tokens using its self-attention mechanism, treating
the entire sequence as a fully connected graph. This dense attention mechanism can give rise to a
particular issue: even a subtle variation, such as reducing the kernel size in a layer from 5×5 to 3×3,
can affect the representation of all other layers, ultimately leading to significant differences in the
final representation. As a result of this issue, the trained model may be biased toward fitting the train-
ing data. Consequently, when the model is employed for inferring architectures outside the training
data distribution, it yields inferior results and demonstrates poorer generalization performance. The
corresponding experiments are presented in Sec. 4.4.

3.2 Transformer grafted with GNN

Fig. 2 shows the vanilla transformer block, GNN block, and our proposed graph-aided attention
Transformer block. As shown in Fig.1 (a), the vanilla Transformer block has two major parts:

Ĥ l = SelfAttn(LN(H l−1)) +H l−1, (1)

H l = FFN(LN(Ĥ l)) + Ĥ l, (2)

where H l is the feature for the layer l. Ĥ l is an intermediate result. SelfAttn, FFN, and LN refer to
self-attention, feed-forward network, and layer normalization, respectively. GNN block just has one
major part, where the representation is updated following:

Ĥ l = GraphAggre(H l−1, A) +W l
rH

l−1, (3)

H l = L2(Ĥ
l), (4)

where GraphAggre(H l−1, A) = W l
a(Norm(A)H l−1). A ∈ RN×N is the adjacency matrix, and

L2 denotes the l2-normalization function. W with different superscripts and subscripts represents
different learnable transformation matrices.

4



Linear Linear Linear

Softmax

FFN

Add 

Linear

Add 

LayerNorm

LayerNorm

Self- 
Attention

Hl-1 Hl-1

Add&L2Norm

Linear

Linear

Norm

A

Graph 
Aggregation

Hl

Matrix multiplication

Element-wise multiplication

Linear

GFFN

Add&L2Norm

Linear

Add 

TAEhance

Linear

A

LayerNorm

Graph-aided 
Attention

Hl-1

Norm

(a) (b) (c)

Hl Hl

Figure 2: Diagrams of three modules. (a) The vanilla Transformer block [42]. (b) The GNN layer
with mean aggregator [16]. (c) The proposed graph-aided attention Transformer block.
Comparing formulas (3) and (4) with formulas (1) and (2), we can observe two major differences
between the Transformer block and GNN block:

• The Transformer utilizes self-attention to fuse information from a global perspective, while
the GNN uses graph aggregation to fuse neighbor information based on the adjacency ma-
trix.

• The Transformer block includes an additional FFN (Feed-Forward Network) component,
which enhances information interaction between channels.

The advantage of self-attention lies in its data-driven structure, allowing for flexible adjustment of
information fusion weights based on the input data. On the other hand, the advantage of GNN is that
graph aggregation focuses on the topological structure. These two advantages are not contradictory
to each other. Consequently, we have naturally come up with an idea to combine the strengths of
self-attention and graph aggregation. This approach inherits the flexibility of self-attention while
benefiting from the good generalization capability of graph aggregation.

To implement this idea, we consider the neural network encoded as a graph, with the operations
or layers in the network treated as nodes. Assuming the graph has N nodes, the transformer layer
we have designed for universal neural network representation learning (Fig. 2 (c)) is calculated as
follows:

H̃ l = TAEnhance(H l−1, D), (5)

Ĥ l = L2(GraphAttn(H̃ l, A) +W l
rH̃

l), (6)

H l = GFFN(LN(Ĥ l)) + Ĥ l, (7)

where D ∈ RN×1 is a vector that records the number of nodes directly connected to each node.
The Graph-aided Attention (GraphAttn) module is responsible for performing attention calculations
using the properties of the graph structure to adjust global self-attention. The Type-aware Enhance-
ment module (TAEnhance) is utilized to further enhance the representation. We introduce a Grouped
Feed-Forward Network (GFFN) by introducing group linear transformation into the original FFN.
In the following sections, we will provide a detailed introduction to each component.

Graph-aided attention In the proposed graph-aided attention, we employ the adjacency matrix
to govern the attention calculation range. Moreover, the adjacency matrix characterizes the inter-
layer connection relationships within the neural network, enabling the model to acquire topology
knowledge. Hence, we define this module as the Graph-aided Attention module:

5



X l = Sigmoid(W l
qH̃

l + blq), (8)

Sl = (X lX lT /
√
d)⊙A, (9)

Zl = W l
a(Norm(Sl)H̃ l) + bla. (10)

The Norm(·) means that for each node, the attention weights between it and other nodes are trans-
formed to (0, 1) by dividing it by the sum. The character b with different superscripts and subscripts
represents different learnable biases. The d refers to the feature dimension of X l. Note that simply
using the adjacency matrix to control the attention map in self-attention is insufficient. To make this
approach work, we have discarded the original softmax operation in self-attention and replaced it
with a linear attention mechanism. This is because the softmax operation tends to focus excessively
on the current node while neglecting neighboring nodes. Consequently, we have inserted a sigmoid
activation function before the linear attention to ensure that all values in the attention map are posi-
tive. For further comparisons with the original self-attention, please refer to the supplementary.

Type-Aware enhancement module The connection between a layer and other layers is related to
the type of that layer. Therefore, the number of connected layers in each layer can be used to assist
the model in learning the type of layer. By fully utilizing the internal characteristics of this graph-
structured data, it is beneficial to improve the learned representations. The enhanced representation
is obtained by:

TAEnhance(H l−1, D) = Sigmoid(W l
dD + bld)⊙H l−1. (11)

3.3 Universal representation learning for neural network

In this subsection, we will present the construction of a comprehensive framework for neural network
encoding and representation learning based on the proposed enhanced Transformer block. We will
also explain how this framework can be utilized to predict network attributes. The overall system, as
depicted in Fig. 1, is composed of three consecutive stages: neural network encoding, representation
learning, and attribute prediction.

Neural network encoding We have taken inspiration from the tokenizer used in NAR-Former [47]
and made certain modifications to encode the input neural network. For a given network consisting
of N layers or operations, whether it is a cell architecture or a complete DNN, we represent it as a
sequence feature comprising vectors corresponding to each layer: T = (t1, t2, · · · , tN ) ∈ RN×C .
In NAR-Former, for each vector of the current node, it encapsulates information of operation, self-
position, and the position of its source nodes: ti = (topi , tselfi , tsouri ) ∈ RC .

Following the encoding scheme proposed in NAR-Former [47], we use the position encoding for-
mula [41, 30] to transform the single real-valued numbers (e.g. operation labels and node position
indices) of relevant information into a higher-dimensional space. We denote this mapping scheme
as fPE(·).
For the operation encoding topi , there are slight differences in the specific encoding content for input
networks of different scales. If the input is in the form of a cell architecture [48, 10], there are usually
no more than ten different options for each architecture operation. In this case, we directly assign
category labels to all candidate operations, and then use the function fPE(·) to encode the label of
the operation to obtain topi . However, when a complete DNN is used as input [21], more abundant
operational information can be extracted and encoded. In this case, we first use one-hot vectors,
which ensure the same distance between different categories, to encode the type of operation (e.g.
convolution, batch normalization, ReLU, concatenation). Then use the function fPE(·) to encode
the properties (e.g. kernel size, number of groups) of the operation, which is then concatenated
with the one-hot type vector as topi . NAR-Former [47] uses the concatenation of tselfi and tsouri to
encode information flow. Since our improved transformer can obtain the topology information of the
network with the help of the adjacency matrix, these two parts of the encoding are not necessarily
needed in our method. Details about the encoding in the different experiments are provided in our
released code and supplementary material.

6



Representation learning The model for learning neural network representations HK is con-
structed by stacking multiple instances of our proposed enhanced Transformer blocks. These im-
provements, specifically tailored for neural network data, allow the model to learn representations
that are more meaningful and exhibit enhanced generalization capabilities.

Attributes predicting Taking the representation HK as input, the target attribute can be predicted
by using the predicting head:

ŷ = −logsigmoid(FC(ReLU(FC(ReLU(FC(HK))))). (12)

Currently, among the various attributes of the network, accuracy and latency are the two main types
of predicted objects. Because they have extremely high acquisition costs and are the primary mani-
festation of network performance and efficiency.

For latency prediction, due to the strong correlation between batch size, memory access, parameter
quantity, and FLOPs with network latency, the encoding corresponding to these characteristics and
the representation HK are input into the predicting head together. To train the whole latency pre-
diction model, the mean square error (MSE) function is adopted to measure the difference between
predicted results and the ground truths.

For accuracy prediction, in addition to the MSE loss function, architecture consistency loss
(AC_loss) and sequence ranking related loss (SR_loss) proposed by NAR-Former [47] are also used.
Following NAR-Former, we employed a hierarchical fusion strategy in accuracy prediction exper-
iments. We use a simplified approach, which computes the weighted sum of the outputs of each
transformer layer with adaptive weights.

4 Experiments

In this section, we conduct experiments on NNLQP [21], NAS-Bench-101 [48], and NAS-Bench-
201 [10] to evaluate the performance of our NAR-Former V2. A series of ablation experiments were
performed to corroborate the effectiveness of our design details. More experiments and more details
about implementation will be provided in the supplementary materials.

4.1 Implementation details

Model details For latency experiments, the number of GraphAttn-based Transformer blocks is
set to 2, which is the same as the baseline [21]. As for accuracy predicting, we fix the number of
Transformer blocks to 6 to align with the standard Transformer used in the baseline [47].

Training details All experiments were trained using the Adam optimizer. We used a linear learn-
ing rate decay strategy with a warm-up, in which the learning rate uniformly increased to 0.001
(latency prediction) or 0.0001 (accuracy prediction) during the first 10% of the training steps and
then gradually decayed to 0. The batch size was fixed at 16. Our models are trained on a machine
with a GeForce RTX 3090 GPU. To avoid randomness, each model was trained 12 times and the
two experiments with the best and worst indicators were discarded.

4.2 Latency prediction

We conduct latency prediction on the recently released NNLQP dataset [21], which comprises 20000
complete deep learning networks and their corresponding latencies on the target hardware. This
dataset has 10 different types of networks (referring to the first column of Tab. 1), with 2000 net-
works per type. Following NNLP [21], we use Mean Absolute Percentage Error (MAPE) and Error
Bound Accuracy (Acc(δ)) to measure the deviations between latency predictions and ground truths.
The lower the MAPE, the higher the prediction accuracy, while the opposite is true for Acc(δ).

Here, we considered two different scenarios. In the first scenario, the training and testing sets are
from the same distribution. We constructed the training set with the first 1800 samples from each of
the ten network types, and the remaining 2000 networks were used as the testing set. The detailed
results are shown in Tab. 1. When testing with all test samples, the average MAPE of our method is
0.4% lower than that of NNLP [21], and the average Acc(10%) is 1.16% higher than that of NNLP.

7



Table 1: Latency prediction on NNLQP [21]. Training and test sets have the same distribution.

Test Model
MAPE↓ Acc(10%)↑

NAR- NNLP [21] Ours NAR- NNLP [21] Ours
Former [47] avg / best avg / best Former [47] avg / best avg / best

All 22.37% 3.47% / 3.44% 3.07% / 3.00% 35.00% 95.25% / 95.50% 96.41% / 96.30%
AlexNet 26.25% 6.37% / 6.21% 6.18% / 5.97% 27.00% 81.75% / 84.50% 81.90% / 84.00%
EfficientNet 13.91% 3.04% / 2.82% 2.34% / 2.22% 45.50% 98.00% / 97.00% 98.50% / 100.0%
GoogleNet 16.00% 4.18% / 4.12% 3.63% / 3.46% 39.00% 93.70% / 93.50% 95.95% / 95.50%
MnasNet 15.76% 2.60% / 2.46% 1.80% / 1.70% 33.00% 97.70% / 98.50% 99.70% / 100.0%
MobileNetV2 15.19% 2.47% / 2.37% 1.83% / 1.72% 39.00% 99.30% / 99.50% 99.90% / 100.0%
MobileNetV3 16.88% 3.50% / 3.43% 3.12% / 2.98% 36.00% 95.35% / 96.00% 96.75% / 98.00%
NasBench201 43.53% 1.46% / 1.31% 1.82% / 1.18% 55.50% 100.0% / 100.0% 100.0% / 100.0%
SqueezeNet 24.33% 4.03% / 3.97% 3.54% / 3.34% 23.00% 93.25% / 93.00% 95.95% / 96.50%
VGG 23.64% 3.73% / 3.63% 3.51% / 3.29% 26.50% 95.25% / 96.50% 95.85% / 96.00%
ResNet 28.18% 3.34% / 3.25% 3.11% / 2.89% 25.50% 98.40% / 98.50% 98.55% / 99.00%

Table 2: Latency prediction on NNLQP [21]. “Test Model = AlexNet” means that only AlexNet
models are used for testing, and the data from the other 9 model families are used for training. The
best results refer to the lowest MAPE and corresponding ACC (10%) in 10 independent experiments.
∗: obtained based on the released code without using its fine-tuning step.

Metric Test Model FLOPs FLOPs nn-Meter TPU BRP- NAR- NNLP [21] Ours
+MAC [55] [17] NAS [12] Former [47]∗ (avg / best) (avg / best)

MAPE↓

AlexNet 44.65% 15.45% 7.20% 10.55% 31.68% 46.28% 10.64% / 9.71% 24.28% / 18.29%
EfficientNet 58.36% 53.96% 18.93% 16.74% 51.97% 29.34% 21.46% / 18.72% 13.20% / 11.37%
GoogleNet 30.76% 32.54% 11.71% 8.10% 25.48% 24.71% 13.28% / 10.90% 6.61% / 6.15%
MnasNet 40.31% 35.96% 10.69% 11.61% 17.26% 26.70% 12.07% / 10.86% 7.16% / 5.93%
MobileNetV2 37.42% 35.27% 6.43% 12.68% 20.42% 25.74% 8.87% / 7.34% 6.73% / 5.65%
MobileNetV3 64.64% 57.13% 35.27% 9.97% 58.13% 33.99% 14.57% / 13.17% 9.06% / 8.72%
NasBench201 80.41% 33.52% 9.57% 58.94% 13.28% 105.71% 9.60% / 8.19% 9.21% / 7.89%
ResNet 21.18% 18.91% 15.58% 20.05% 15.84% 40.37% 7.54% / 7.12% 6.80% / 6.44%
SqueezeNet 29.89% 23.19% 18.69% 24.60% 42.55% 74.59% 9.84% / 9.52% 7.08% / 6.56%
VGG 69.34% 66.63% 19.47% 38.73% 30.95% 44.26% 7.60% / 7.17% 15.40% / 14.26%
Average 47.70% 37.26% 15.35% 21.20% 30.76% 45.17% 11.55% / 10.27% 10.55% / 9.13%

Acc(10%)↑

AlexNet 6.55% 40.50% 75.45% 57.10% 15.20% 7.60% 59.07% / 64.40% 24.65% / 28.60%
EfficientNet 0.05% 0.05% 23.40% 17.00% 0.10% 15.15% 25.37% / 28.80% 44.01% / 50.20%
GoogleNet 12.75% 9.80% 47.40% 69.00% 12.55% 24.35% 36.30% / 48.75% 80.10% / 83.35%
MnasNet 6.20% 9.80% 60.95% 44.65% 34.30% 20.90% 55.89% / 61.25% 73.46% / 81.60%
MobileNetV2 6.90% 8.05% 80.75% 33.95% 29.05% 20.70% 63.03% / 72.50% 78.45% / 83.80%
MobileNetV3 0.05% 0.05% 23.45% 64.25% 13.85% 16.05% 43.26% / 49.65% 68.43% / 70.50%
NasBench201 0.00% 10.55% 60.65% 2.50% 43.45% 0.00% 60.70% / 70.60% 63.13% / 71.70%
ResNet 26.50% 29.80% 39.45% 27.30% 39.80% 13.25% 72.88% / 76.40% 77.24% / 79.70%
SqueezeNet 16.10% 21.35% 36.20% 25.65% 11.85% 11.40% 58.69% / 60.40% 75.01% / 79.25%
VGG 4.80% 2.10% 26.50% 2.60% 13.20% 11.45% 71.04% / 73.75% 45.21% / 45.30%
Average 7.99% 13.20% 47.42% 34.40% 21.34% 14.09% 54.62% / 60.65% 62.70% / 67.40%

When tested on various types of network data separately, except for the NASBench201 family, our
method consistently outperforms NNLP. This indicates that our improved transformer, which utilizes
the structural characteristics of the graph, has learned more reasonable representations than the
original GNN. Comparison with NAR-Former’s results also proves that our NAR-Former V2 is
more effective than the original transformer-based model in learning representations of complete
DNNs.

The second scenario has more practical application significance, that is, the network type needed to
be inferred is not seen during the training process. There are ten sets of experiments in this part,
with each set taking one type of network as the test set, while all samples from the other nine types
of networks are used as the training set. As shown in Tab. 2, it can be seen that using only FLOPs
and memory access information to predict latency is not enough. Suffering from the gap between
the accumulation of kernel delays and the actual latency, kernel-based methods (TPU[17] and nn-
Meter[55]) perform worse than the GNN-based model NNLP that directly encodes and predicts
the entire network. Despite encoding the entire network directly, because of the sensitive nature
introduced by the global modeling computational properties of the transformer, it may result in the
transformer-based NAR-Former being less able to generalize to networks that have not been seen
at the training stage. Benefiting from considering the entire input network and grafting GNN into
the transformer, our method achieves the best MAPE and Acc(10%) on the average indicators of 10

8



experimental groups. Compared with the second-best method NNLP, the average Acc(10%) of our
method has a marked increase of 8.08%.

4.3 Accuracy prediction

4.3.1 Experiments on NAS-Bench-101 Table 3: Accuracy prediction on NAS-Bench-101
[48]. “SE” denotes the self-evolution strategy pro-
posed by TNASP [26].

Backbone Method

Training Samples
0.1% 0.1% 1%
(424) (424) (4236)

Test Samples
100 all all

CNN ReNAS [46] 0.634 0.657 0.816

LSTM NAO [27] 0.704 0.666 0.775
NAO+SE 0.732 0.680 0.787

GNN
NP [43] 0.710 0.679 0.769
NP + SE 0.713 0.684 0.773
CTNAS [3] 0.751 - -

Transformer
TNASP [26] 0.752 0.705 0.820
TNASP + SE 0.754 0.722 0.820
NAR-Former [47] 0.801 0.765 0.871
NAR-Former V2 0.802 0.773 0.861

NAS-Bench-101 [48] provides 423624 differ-
ent cell architectures and the accuracies of the
complete neural network constructed based on
each cell on different datasets. Following [26],
0.1% and 1% of the whole data are used as the
training set, and another 200 samples are used
for validation. We use Kendall’s Tau [36] to
evaluate the correlation between the predicted
sequence and the real sequence, and a higher
value indicates better results.

Kendall’s Tau is calculated on the whole dataset
or 100 testing samples. We report the average
results of our predictor in 10 repeated experi-
ments. Results are shown in Tab. 3. When only
424 samples were available for training, our method achieved the highest Kendall’s Tau. We achieve
0.773 when tested using the whole testing set, which is 0.8% and 8.9% higher than the transformer-
based model [47] and GNN-based model [43], respectively. This proves that the modifications we
made to the transformer based on inspiration from GNN are effective.

4.3.2 Experiments on NAS-Bench-201

Table 4: Accuracy prediction on NAS-Bench-201
[10]. “SE” denotes the self-evolution strategy pro-
posed by TNASP [26].

Backbone Model
Training Samples
(781) (1563)
5% 10%

LSTM NAO [27] 0.522 0.526
NAO + SE 0.529 0.528

GNN NP [43] 0.634 0.646
NP + SE 0.652 0.649

Transformer
TNASP [26] 0.689 0.724
TNASP + SE 0.690 0.726
NAR-Former [47] 0.849 0.901
NAR-Former V2 0.874 0.888

NAS-Bench-201 [10] is another cell-based
dataset, which contains 15625 cell-accuracy
pairs. Following [26], 5% and 10% of the
whole data is used as the training set and an-
other 200 samples are used for validation.

We use Kendall’s Tau [36] computed on the
whole dataset as the evaluation metric in this
part. The average results of our predictor of 10
runs are reported. Results are shown in Tab. 4.
The conclusion of this experiment is similar to
Sec. 4.3.1. When compared with the second-
best method, a substantial improvement (2.5%)
of Kendall’s Tau can be seen in the setting of
training with 781 samples. A more comprehensive comparison with the baseline [47] using addi-
tional metrics can be found in the supplementary materials.

Regarding the average Kendall’s Tau under different training settings, our method is on par with
NAR-Former with 0.812 on nas-bench-101 and slightly higher than NAR-former by 0.6% on NAS-
Bench-201. Therefore, compared to NAR-Former, NAR-Former V2 achieves comparable accuracy
prediction performance. In latency prediction experiments, our proposed model exhibits a clear
advantage over NNLP and outperforms NAR-Former by a significant margin. In summary, by incor-
porating the strengths of GNN, the universal representation learning framework NAR-Former V2
is significantly enhanced. NAR-Former V2 addresses the shortcomings of NAR-Former, which was
overly sensitive when handling complete network structures, while still retaining the outstanding
performance of NAR-Former when handling cell-structured networks.

4.4 Ablation studies

In this section, we conducted a series of ablation experiments on the NNLQP dataset to investigate
the impact of various modifications. The results from Rows (2) and (3) in Table 5 indicate that
for type encoding without numerical relationships, using one-hot vectors with equidistant proper-

9



Table 5: Ablation studies on NNLQP [21]. "PE" denotes position encoding.

Row Structure Op Op Graph- GFFN TA- MAPE↓ Acc(10%)↑ Acc(5%)↑Type Attributes Attn Enhance
1(Baseline) GNN One-hot Real Num - - - 3.48 95.26 77.80

2 GNN PE PE - - - 3.43(-0.05) 95.11(-0.15) 79.58(+1.78)
3 GNN One-hot PE - - - 3.33(-0.15) 95.57(+0.31) 80.19(+2.39)
4 Transformer One-hot PE ✓ - - 3.20(-0.28) 96.00(+0.74) 81.86(+4.06)
5 Transformer One-hot PE ✓ ✓ - 3.20(-0.28) 96.06(+0.80) 81.76(+3.96)
6 Transformer One-hot PE ✓ ✓ ✓ 3.07(-0.41) 96.41(+1.15) 82.71(+4.91)

ties across different categories is more suitable. Comparing Row (3) in Table 5 with Row (4), we
observe that introducing GNN characteristics into the Transformer improves the model’s ability to
learn effective representations and achieve more accurate predictions compared to using the original
GNN. When replacing the FFN with the GFFN module with eight groups (Row (5)), the number of
model parameters reduces to approximately one-eighth of that in Row (4), without a significant de-
crease in prediction accuracy. Compared to Row (5), Row (6) demonstrates an increase of 0.35% in
ACC(10%) and 0.95% in ACC(5%). This confirms the role of the type-aware enhancement module
in further refining and enhancing the rationality of the representations.

Table 6: The influence of using different atten-
tions. Test on EfficientNet family.

Attention MAPE↓ ACC(10%)↑
Global 16.88% 36.32%
Local 13.20% 44.01%

To verify our hypothesis regarding the gener-
alization ability of the network and the effec-
tiveness of the proposed graph-aided attention,
we conducted comparative experiments in sce-
narios where the training and testing data have
different distributions. The results of these ex-
periments are presented in Table 6. In order to perform the experiment on global attention, we
excluded the step of multiplying the adjacency matrix A in Equation 9, and instead replaced Sl

with X lX lT /
√
d. Results in Table 6 demonstrate that incorporating the adjacency matrix to restrict

the scope of attention calculation is indeed beneficial for latency prediction on unseen data. The
model utilizing graph-aided attention exhibited a significant improvement of 7.68% in ACC(10%)
compared to the model using global attention.

5 Conclusion

In this paper, we combine the strengths of Transformer and GNN to develop a universal neural
network representation learning model. This model is capable of effectively processing models of
varying scales, ranging from several layers to hundreds of layers. Our proposed model addresses
the limitations of previous Transformer-based methods, which exhibited excessive sensitivity when
dealing with complete network structures. However, it still maintains exceptional performance when
handling cell-structured networks. In future work, we will focus on optimizing the design of the
representation learning framework and applying it to a broader range of practical applications. Such
as using the proposed model to search for the best mixed precision model inference strategies.

Acknowledgement

This work was supported in part by the National Key Research and Development Program of China
under Grant 2018AAA0103202; in part by the National Natural Science Foundation of China un-
der Grants U22A2096 and 62036007; in part by the Technology Innovation Leading Program of
Shaanxi under Grant 2022QFY01-15; in part by Open Research Projects of Zhejiang Lab under
Grant 2021KG0AB01 and in part by the Fundamental Research Funds for the Central Universities
under Grant QTZX23042.

10



References
[1] Jie-Neng Chen, Shuyang Sun, Ju He, Philip HS Torr, Alan Yuille, and Song Bai. Transmix: Attend to mix

for vision transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12135–12144, 2022.

[2] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}: An automated {End-to-End} optimizing compiler
for deep learning. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), pages 578–594, 2018.

[3] Yaofo Chen, Yong Guo, Qi Chen, Minli Li, Wei Zeng, Yaowei Wang, and Mingkui Tan. Contrastive neural
architecture search with neural architecture comparators. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9502–9511, 2021.

[4] Ziye Chen, Yibing Zhan, Baosheng Yu, Mingming Gong, and Bo Du. Not all operations contribute
equally: Hierarchical operation-adaptive predictor for neural architecture search. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 10508–10517, 2021.

[5] Ciprian A Corneanu, Sergio Escalera, and Aleix M Martinez. Computing the testing error without a
testing set. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 2677–2685, 2020.

[6] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

[7] Boyang Deng, Junjie Yan, and Dahua Lin. Peephole: Predicting network performance before training.
arXiv preprint arXiv:1712.03351, 2017.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[9] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang Ding. Scaling up your kernels to 31x31:
Revisiting large kernel design in cnns. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 11963–11975, 2022.

[10] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. arXiv preprint arXiv:2001.00326, 2020.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[12] Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas Lane. Brp-
nas: Prediction-based nas using gcns. Advances in Neural Information Processing Systems, 33:10480–
10490, 2020.

[13] Stéphane dAscoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli, and Levent Sagun.
Convit: Improving vision transformers with soft convolutional inductive biases. In International Confer-
ence on Machine Learning, pages 2286–2296. PMLR, 2021.

[14] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang,
Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-augmented transformer for speech recog-
nition. arXiv preprint arXiv:2005.08100, 2020.

[15] Jianyuan Guo, Kai Han, Han Wu, Yehui Tang, Xinghao Chen, Yunhe Wang, and Chang Xu. Cmt: Con-
volutional neural networks meet vision transformers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12175–12185, 2022.

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Ad-
vances in neural information processing systems, 30, 2017.

[17] Sam Kaufman, Phitchaya Phothilimthana, Yanqi Zhou, Charith Mendis, Sudip Roy, Amit Sabne, and
Mike Burrows. A learned performance model for tensor processing units. Proceedings of Machine
Learning and Systems, 3:387–400, 2021.

[18] Jiashi Li, Xin Xia, Wei Li, Huixia Li, Xing Wang, Xuefeng Xiao, Rui Wang, Min Zheng, and Xin Pan.
Next-vit: Next generation vision transformer for efficient deployment in realistic industrial scenarios.
arXiv preprint arXiv:2207.05501, 2022.

11



[19] Wei Li, Shaogang Gong, and Xiatian Zhu. Neural graph embedding for neural architecture search. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 4707–4714, 2020.

[20] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceedings of the Euro-
pean conference on computer vision (ECCV), pages 19–34, 2018.

[21] Liang Liu, Mingzhu Shen, Ruihao Gong, Fengwei Yu, and Hailong Yang. Nnlqp: A multi-platform neural
network latency query and prediction system with an evolving database. In 51 International Conference
on Parallel Processing - ICPP, ICPP ’22. Association for Computing Machinery, 2022.

[22] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang,
Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 12009–12019, 2022.

[23] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 10012–10022, 2021.

[24] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin transformer.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 3202–
3211, 2022.

[25] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A
convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 11976–11986, 2022.

[26] Shun Lu, Jixiang Li, Jianchao Tan, Sen Yang, and Ji Liu. Tnasp: A transformer-based nas predictor with a
self-evolution framework. Advances in Neural Information Processing Systems, 34:15125–15137, 2021.

[27] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization. Ad-
vances in neural information processing systems, 31, 2018.

[28] Sachin Mehta, Marjan Ghazvininejad, Srinivasan Iyer, Luke Zettlemoyer, and Hannaneh Hajishirzi. De-
light: Deep and light-weight transformer. arXiv preprint arXiv:2008.00623, 2020.

[29] Sachin Mehta and Mohammad Rastegari. Mobilevit: light-weight, general-purpose, and mobile-friendly
vision transformer. arXiv preprint arXiv:2110.02178, 2021.

[30] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM,
65(1):99–106, 2021.

[31] Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and Huazhong Yang. A generic graph-based neural
architecture encoding scheme for predictor-based nas. In European Conference on Computer Vision,
pages 189–204. Springer, 2020.

[32] Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. Deepinf: Social influence
prediction with deep learning. In Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 2110–2119, 2018.

[33] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

[34] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit: Effi-
cient vision transformers with dynamic token sparsification. Advances in neural information processing
systems, 34:13937–13949, 2021.

[35] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

[36] Pranab Kumar Sen. Estimates of the regression coefficient based on kendall’s tau. Journal of the American
statistical association, 63(324):1379–1389, 1968.

[37] Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James Kwok, and Tong Zhang. Bridging the gap between
sample-based and one-shot neural architecture search with bonas. Advances in Neural Information Pro-
cessing Systems, 33:1808–1819, 2020.

12



[38] Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, and Ashish Vaswani. Bot-
tleneck transformers for visual recognition. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 16519–16529, 2021.

[39] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
deeper with image transformers. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 32–42, 2021.

[40] Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao
Li. Maxvit: Multi-axis vision transformer. In European conference on computer vision, pages 459–479.
Springer, 2022.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

[42] Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and Lidia S Chao. Learning
deep transformer models for machine translation. arXiv preprint arXiv:1906.01787, 2019.

[43] Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Bender, and Pieter-Jan Kindermans. Neural predictor
for neural architecture search. In European Conference on Computer Vision, pages 660–676. Springer,
2020.

[44] Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural archi-
tectures for neural architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 10293–10301, 2021.

[45] Ruihan Xu, Haokui Zhang, Wenze Hu, Shiliang Zhang, and Xiaoyu Wang. Parcnetv2: Oversized kernel
with enhanced attention. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 5752–5762, 2023.

[46] Yixing Xu, Yunhe Wang, Kai Han, Yehui Tang, Shangling Jui, Chunjing Xu, and Chang Xu. Renas:
Relativistic evaluation of neural architecture search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4411–4420, 2021.

[47] Yun Yi, Haokui Zhang, Wenze Hu, Nannan Wang, and Xiaoyu Wang. Nar-former: Neural architecture
representation learning towards holistic attributes prediction. arXiv preprint arXiv:2211.08024, 2022.

[48] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-bench-
101: Towards reproducible neural architecture search. In International Conference on Machine Learning,
pages 7105–7114. PMLR, 2019.

[49] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th
ACM SIGKDD international conference on knowledge discovery & data mining, pages 974–983, 2018.

[50] Jiaxuan You, Jure Leskovec, Kaiming He, and Saining Xie. Graph structure of neural networks. In
International Conference on Machine Learning, pages 10881–10891. PMLR, 2020.

[51] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and Shuicheng
Yan. Metaformer is actually what you need for vision. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 10819–10829, 2022.

[52] Haokui Zhang, Wenze Hu, and Xiaoyu Wang. Parc-net: Position aware circular convolution with merits
from convnets and transformer. In European Conference on Computer Vision, pages 613–630. Springer,
2022.

[53] Haokui Zhang, Wenze Hu, and Xiaoyu Wang. Fcaformer: Forward cross attention in hybrid vision
transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 6060–
6069, 2023.

[54] Haokui Zhang, Buzhou Tang, Wenze Hu, and Xiaoyu Wang. Connecting compression spaces with trans-
former for approximate nearest neighbor search. In European Conference on Computer Vision, pages
515–530. Springer, 2022.

[55] Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, Yuqing Yang, and Yunxin Liu. nn-
meter: towards accurate latency prediction of deep-learning model inference on diverse edge devices. In
Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services,
pages 81–93, 2021.

13


	Introduction
	Related work
	Representation and attribute prediction of neural networks
	Transformer
	Graph neural network

	Method
	Motivation
	Transformer grafted with GNN
	Universal representation learning for neural network

	Experiments
	Implementation details
	Latency prediction
	Accuracy prediction
	Experiments on NAS-Bench-101
	Experiments on NAS-Bench-201

	Ablation studies

	Conclusion

