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Abstract

Denoising diffusion models have recently emerged as the predominant paradigm for
generative modelling on image domains. In addition, their extension to Riemannian
manifolds has facilitated a range of applications across the natural sciences. While
many of these problems stand to benefit from the ability to specify arbitrary, domain-
informed constraints, this setting is not covered by the existing (Riemannian)
diffusion model methodology. Recent work has attempted to address this issue
by constructing novel noising processes based on the reflected Brownian motion
and logarithmic barrier methods. However, the associated samplers are either
computationally burdensome or only apply to convex subsets of Euclidean space. In
this paper, we introduce an alternative, simple noising scheme based on Metropolis
sampling that affords substantial gains in computational efficiency and empirical
performance compared to the earlier samplers. Of independent interest, we prove
that this new process corresponds to a valid discretisation of the reflected Brownian
motion. We demonstrate the scalability and flexibility of our approach on a range
of problem settings with convex and non-convex constraints, including applications
from geospatial modelling, robotics and protein design.

1 Introduction

In recent years, denoising diffusion models (Sohl-Dickstein et al., 2015; Song et al., 2019; Song et al.,
2021; Ho et al., 2020) have emerged as a powerful paradigm for generative modelling, achieving
state-of-the-art performance across a range of domains. They work by progressively adding noise to
data following a Stochastic Differential Equation (SDE)—the forward noising process—until it is
close to the invariant distribution of the SDE. The generative model is then given by an approximation
of the associated time-reversed denoising process, which is also an SDE whose drift depends on the
gradient of the logarithmic densities of the forward process, referred to as the Stein score. Building on
the success of diffusion models for image generation tasks, De Bortoli et al. (2022) and Huang et al.
(2022) have recently extended this framework to a wide range of Riemannian manifolds, enabling
the specification of inherent structural properties of the modelled domain. This has broadened the
applicability of diffusion models to problems in the natural and engineering sciences, including the
conformational modelling of small molecules (Jing et al., 2022; Corso et al., 2022), proteins (Trippe
et al., 2022; Watson et al., 2022; Yim et al., 2023) and robotic platforms (Urain et al., 2022).

However, in many data-scarce or safety-critical settings, researchers may want to restrict the modelled
domain even further by specifying problem-informed constraints to make maximal use of limited
experimental data or prevent unwanted behaviour (Morris, 2002; Han et al., 2006; Thiele et al.,
2013; Lukens et al., 2020). As illustrated in Figure 1, such domain-informed constraints can be
naturally represented as a Riemannian manifold with boundary. Training diffusion models on such
constrained manifolds is thus an important problem that requires principled noising processes—and
corresponding discretisations—that stay within the constrained set.
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(a) R3 (b) S2 ⊂ R3 (c) M ⊂ S2 ⊂ R3

Figure 1: When operating in data-scarce settings, it may often be beneficial to specify as much prior
knowledge of the modelled domain as possible. Consider a distribution over a subsetM of the unit
sphere S2 ⊂ R3. While a Euclidean diffusion model can approximate the distribution in R3 (a),
directly modelling it on S2 can make learning significantly easier (b). Restricting the problem space
even further by only constructing a diffusion model onM can lead to even better performance (c).

Recent work by Fishman et al. (2023) has attempted to derive such processes and extend the
applicability of diffusion models to inequality-constrained manifolds by investigating the generative
modelling applications of classic sampling schemes based on log-barrier methods (Kannan et al.,
2009; Lee et al., 2017; Noble et al., 2022; Kook et al., 2022; Gatmiry et al., 2022; Lee et al., 2018)
and the reflected Brownian motion (Williams, 1987; Petit, 1997; Shkolnikov et al., 2013). While
empirically promising, the proposed algorithms can be computationally and numerically burdensome,
and require bespoke implementations for different manifolds and constraints. Concurrently, Lou et al.
(2023) have investigated the use of reflected diffusion models for image applications. They focus
on the high-dimensional hypercube, as this setting admits a theoretically grounded treatment of the
static thresholding method which is widely used in image models such as Saharia et al. (2022). More
recently, Liu et al. (2023) have investigated the use of log-barrier-based mirror maps to transform a
constrained domain into an unconstrained dual space for applications in image watermarking. While
both methods exhibit robust scaling properties and impressive results, they only consider convex
subsets of Euclidean space and do not extend to more general manifolds.

Here, we propose a new method for generative modelling on constrained manifolds based on a
Metropolis-based discretisation of the reflected Brownian motion. The Metropolised process’ chief
advantage is that it is lightweight: the only additional requirement over those outlined in De Bortoli
et al. (2022) that is needed to implement a constrained diffusion model is an efficient binary function
that indicates whether any given point is within the constrained set. This Metropolised approximation
of the reflected Brownian motion is substantially easier to implement, faster to compute and more
numerically stable than the previously considered sampling schemes. Our core theoretical contribution
is to show that this new discretisation converges to the reflected SDE by using the invariance principle
for SDEs with boundary (Stroock et al., 1971). To the best of our knowledge, this is the first time that
such a process has been investigated. We demonstrate that our method attains improved empirical
results on diverse manifolds with convex and non-convex constraints by applying it to a range of
problems from geospatial modelling, robotics and protein design.

2 Background

Riemannian manifolds. A Riemannian manifold is defined as a tuple (M, g) withM a smooth
manifold and g a metric defining an inner product on tangent spaces. In this work, we will use the
exponential map expx : TxM → M, as well as the extension of the gradient ∇, divergence div
and Laplace ∆ operators toM. All of these quantities can be defined in local coordinates in terms
of the metric. The extension of the Laplace operator toM is called the Laplace-Beltrami operator,
also denoted ∆ when there is no ambiguity. Using ∆, we can define a Brownian motion onM,
denoted (Bt)t≥0 and with density w.r.t. the volume form ofM denoted pt for any t > 0. We refer
to Appendix B for a more detailed exposition, to Lee (2013) for a thorough treatment of Riemannian
manifolds and to Hsu (2002) for details on stochastic analysis on manifolds. In the following, we
consider a constrained manifoldM defined by

M = {x ∈ N : fi(x) < 0, i ∈ I}, (1)
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Figure 2: Visual comparison of a discretisation of the unconstrained Brownian motion (blue) and two
discretisations of the reflected Brownian motion: one based on a reflection scheme (green) and the
other based on our Metropolis sampler (red). The Metropolised trajectory is very close to that of the
reflected one while being significantly easier to implement and cheaper to compute.

where (N , g) is a Riemannian manifold, I is an arbitrary finite indexing family and for any i ∈ I,
fi ∈ C(N ,R). Since I is finite and fi continuous for any i ∈ I ,M is an open set of N and inherits
its metric g. This captures simple Euclidean polytopes and complex constrained spaces like Figure 1.

Denoising diffusion models. Denoising diffusion models (Song et al., 2019; Ho et al., 2020;
Song et al., 2021) work as follows: let (Xt)t∈[0,T ] be a noising process that corrupts the original
data distribution p0. We assume that (Xt)t≥0 converges to N(0, σ2 Id), with σ > 0. Several such
processes exist, but in practice we consider the Ornstein-Uhlenbeck (OU) process, also referred to as
VP-SDE, which is defined by the following Stochastic Differential Equation (SDE)

dXt = − 1
2Xtdt+ σdBt, X0 ∼ p0. (2)

Under conditions on p0, for any T > 0, (Yt)t∈[0,T ] = (XT−t)t∈[0,T ] is also the (weak) solution to a
SDE (Anderson, 1982; Haussmann et al., 1986; Cattiaux et al., 2021)

dYt = { 12Yt + σ2∇ log pT−t(Yt)}dt+ σdBt, Y0 ∼ pT , (3)

where pt denotes the density of Xt. In practice, ∇ log pt is approximated with a score network
(t, x) 7→ sθ(t, x) trained by minimising either a denoising score matching (dsm) loss or an implicit
score matching (ism) loss (Vincent, 2011)

ℓ(θ) = Et∼U([0,T ]),(X0,Xt)[λt(
1
2∥sθ(t,Xt)∥2 + div(sθ)(t,Xt))], (4)

where λt > 0. For a flexible score network, the global minimiser θ⋆ = argminθL(θ) satisfies
sθ⋆(t, ·) = ∇ log pt. De Bortoli et al. (2022) and Huang et al. (2022) have extended denoising
diffusion models to the Riemannian setting. The time-reversal formula (3) remains the same, replacing
the Euclidean gradient with its Riemannian equivalent. The ism loss can still be computed in that
setting. However, the samplers used in the Riemannian setting differ from the classical Euler-
Maruyama discretisation used in the Euclidean framework. De Bortoli et al. (2022) use Geodesic
Random Walks (Jørgensen, 1975), which ensure that the samples remain on the manifold at every
step. In this paper, we propose a sampler with similar properties in the case of constrained manifolds.

Reflected SDE. We conclude this section by recalling the framework for studying reflected SDEs,
which is introduced via the notion of the Skorokhod problem. For simplicity, we focus on Euclidean
space Rd here, but note that reflected processes can be defined on arbitrary smooth manifolds N .
In the case of the Brownian motion, a solution to the Skorokhod problem is a process of the form
(B̄t,kt)t≥0. Locally, (B̄t)t≥0 can be seen as a regular Brownian motion (Bt)t≥0 while (kt)t≥0

forces (B̄t)t≥0 to remain inM. Under mild additional regularity conditions onM and (B̄t,kt)t≥0,
see Skorokhod (1961), (B̄t,kt)t≥0 is a solution to the Skorokhod problem if for any t ≥ 0

B̄t = B̄0 +Bt − kt ∈M, (5)

|k|t =
∫ t

0
1B̄s∈∂Md|k|s and kt =

∫ t

0
n(B̄s)d|k|s, where (|k|t)t≥0 is the total variation of (kt)t≥0

1.
Let us provide some intuition on this definition. When (B̄t)t≥0 hits the boundary ∂M, −kt pushes
the process back intoM along the inward normal −n(B̄t), according to kt =

∫ t

0
n(B̄s)d|k|s.

1In this case (kt)t≥0 is not regular enough, but if it were in the class C1, its total variation would be given
by

∫ t

0
|∂tkt|ds in the one-dimensional case.
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(a) Reflected Brownian motion (b) Metropolised approximation of Brownian motion

Figure 3: Evolution of the density of the reflected Brownian motion and its Metropolis sampling-
based approximation on the unit interval starting from a delta mass.

The condition |k|t =
∫ t

0
1B̄s∈∂Md|k|s is more technical and can be seen as imposing that kt remains

constant so long as (B̄t)t≥0 does not hit ∂M. We refer to Fishman et al. (2023) and Lou et al. (2023)
for a more thorough introduction of these concepts in the context of diffusion models.

3 Diffusion models for constrained manifolds via Metropolis sampling

In Section 3.1, we highlight the practical limitations of existing constrained diffusion models and
propose an alternative Metropolis sampling-based approach. In Section 3.2, we outline our proof that
this process corresponds to a valid discretisation of the reflected Brownian motion, justifying its use
in diffusion models. An overview of the samplers we cover in this section is presented in Table 1.

3.1 Practical limitations of existing constrained diffusion models

Barrier methods. In the barrier approach, a constrained manifold is transformed into an uncon-
strained space via a barrier metric. This metric is defined by∇2ϕ(x) with ϕ(x) =

∑
i∈I ϕi(d(x, fi))

where d(x, fi) is the minimum distance from the point x to the set defined by fi(x) = 0 and ϕi
is a monotonically decreasing function such that limz→0 ϕi(z) =∞ . Under additional regularity
assumptions, ϕ is called a barrier function (see Nesterov et al. (1994)). This definition ensures that
the barrier function induces a well-defined exponential map on the manifold, making the Riemannian
diffusion model frameworks of De Bortoli et al. (2022) and Huang et al. (2022) applicable. In the
log-barrier method of Fishman et al. (2023), evaluating ϕ requires computing d(x, ∂M) (and its
derivatives), which can be prohibitively expensive. Furthermore, since the exponential map under the
induced manifold is difficult to compute, it is approximated by projecting the exponential map on the
original manifold back onto the constraint set, incurring an additional bias. Liu et al. (2023) propose
a more tractable method by constructing a mirror map that transforms a constrained domain into an
unconstrained dual space, in which one can train a standard Euclidean diffusion model. However,
this approach is only applicable to convex subsets of Rd and does not extend to arbitrary Riemannian
manifolds. More generally, warping the geometry of the modelled domain can adversely impact the
interpolative performance of log-barrier-based diffusion models, as the space between data points
expands rapidly when approaching the boundary.

Reflected stochastic processes. Fishman et al. (2023) and Lou et al. (2023) introduce diffusion
models based on the reflected Brownian motion (RBM). In Fishman et al. (2023), the reflected
SDE is discretised by (i) considering a classical step of the Euler-Maruyama discretization (or the
Geodesic Random Walk in the Riemannian setting) and (ii) reflecting this step according to the
boundary defined by ∂M. To compute the reflection, one must check whether the step crosses the
boundary. If it does, the point of intersection needs to be calculated in order to reflect the ray and
continue the step in the reflected direction. This can require an arbitrarily large number of reflections
depending on the step size, the geodesic on the manifold, and the geometry of the bounded region
within the manifold. We refer to Appendix C for the pseudocode of the reflection step and additional
comments. An alternative approach to discretising a reflected SDE is to replace the reflection with
a projection (Słomiński, 1994). However, the projection requires the most expensive part of the
reflection algorithm: computing the intersection of the geodesic with the boundary. Lou et al. (2023)
propose a more tractable approach that exploits the product structure of the unit hypercube to afford
simulation-free sampling but does not extend to arbitrary Riemannian manifolds. Additionally,
specifying convex constraints in their framework requires a bijection onto the hypercube, distorting
the modelled geometry and incurring the same issues as outlined above.
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Table 1: Comparison of the advantages and disadvantages of the different constrained (Riemannian)
diffusion models covered in Section 3.1.

Both required for fast DSM loss

DIFFUSION MODEL
TRACTABLE

CONDITIONAL SCORE
SIMULATION-FREE

FORWARD SAMPLING
MODELLING

DOMAIN
PRESERVES

METRIC OF M

Reflected Diffusions
LOU ET AL. (2023) ✓ ✓ convex ⊂ Rd ✗

FISHMAN ET AL. (2023) ✗ O(d2) AnyM ✓

METROPOLIS (OURS) ✗ O(d) AnyM ✓

Barrier Diffusions
FISHMAN ET AL. (2023) ✗ ✗ convex ⊂ anyM ✗

LIU ET AL. (2023) ✓ ✓ convex ⊂ Rd ✗

Metropolis approximation. Existing approaches to constrained (Riemannian) diffusion mod-
els either only apply to convex subsets of Rd or require manifold- and constraint-specific
implementations that become computationally intractable as the complexity of the modelled
geometry increases. This limits their practicality even for relatively simple manifolds with
well-defined exponential maps and linear inequality constraints such as for example polytopes.

Algorithm 1 Metropolis approx. of RBM

Require: p ∈M, {fi}i∈I
Sample v ∼ N(0, Id) ∈ TpM
p′ ← expp(v)
if fi(p′) < 0 ∀ i then
p← p′

end if
return p

In the following, we introduce a method that aims to
solve both of these problems. The sampler we pro-
pose is similar to a classical Euler-Maruyama discreti-
sation of the Brownian motion, except that, whenever
a step would carry the Brownian motion out of the con-
strained region, we reject it (see Algorithm 1). This is
a Metropolised version of the usual discretisation and
is trivial to implement compared to the existing barrier,
reflection and projection methods. Hence, this method
enables the principled extension of diffusion models to
arbitrarily constrained manifolds at virtually no added
implementational complexity or computational expense.

3.2 Relating the Metropolis sampler to the reflected Brownian motion

In this section, we prove that the proposed Metropolis sampling-based process (Algorithm 1) corre-
sponds to a valid discretisation of the reflected process, justifying its use in diffusion models. Here
we focus on a concise presentation of the core concepts and the main results. A full proof can be
found in Appendix D. For simplicity, we restrict ourselves to the Euclidean setting. All of our results
require particular assumptions onM, which we discuss at the end of this section. We begin with a
definition of the Metropolis approximation of RBM.
Definition 1. For any γ > 0 and k ∈ N, letXγ

0 ∈M andXγ
k+1 = Xγ

k+
√
γZγ

k ifXγ
k+
√
γZγ

k ∈M
and Xγ

k otherwise. The sequence (Xγ
k )k∈N is called the Metropolis approximation of RBM.

For any γ > 0, we consider (Xγ
t )t≥0, the linear interpolation of (Xγ

k )k∈N such that for any k ∈ N,
Xγ

kγ = Xγ
k . The following result is the main theoretical contribution of our paper.

Theorem 2. Under assumptions onM, for any T ≥ 0, (Xγ
t )t∈[0,T ] weakly converges to the RBM

(B̄t)t∈[0,T ] as γ → 0.

The rest of the section is devoted to a high level presentation of the proof of Theorem 2. It is
theoretically impractical to work directly with the Metropolis approximation of RBM. Instead, we
introduce an auxiliary process, show this converges to the RBM, and finally prove that the convergence
of the auxiliary process implies the convergence of our Metropolis discretisation.

Definition 3. For any γ > 0 and k ∈ N, let X̂γ
0 = x ∈ M and X̂γ

k+1 = X̂γ
k +
√
γZγ

k with Zγ
k a

Gaussian random variable conditioned on X̂γ
k +
√
γZγ

k ∈M. The sequence (X̂γ
k )k∈N is called the

Rejection approximation of RBM.
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Algorithm 2 Rejection approx. of RBM

Require: p ∈M, {fi}i∈I
Sample v ∼ N(0, Id) ∈ TpM
p′ ← expp(v)
while fi(p′) ≥ 0 for any i do

Sample v ∼ Id(0, 1) ∈ TpM
p′ ← expp(v)

end while
return p′

We call this process Rejection approximation of RBM
since in practice, Zγ

k is sampled using rejection sam-
pling, see Algorithm 2. For any γ > 0, we also consider
(X̂γ

t )t≥0, the linear interpolation of (X̂γ
k )k∈N such that

for any k ∈ N, X̂γ
kγ = X̂γ

k . In Appendix D, we prove
the following result.

Theorem 4. Under assumptions onM, for any T ≥ 0,
(X̂γ

t )t∈[0,T ] weakly converges to the Reflected Brownian
Motion (B̄t)t∈[0,T ] as γ → 0.

Proof. Here we give some elements of the proof. Details and full derivations are postponed to
Appendix D. Our approach is based on the invariance principle of Stroock et al. (1971). More
precisely, we show that we can compute an equivalent ‘drift’ and ‘diffusion matrix’ for the discretised
process and that, as γ → 0, the drift converges to zero and the diffusion matrix converges to Id. In
the Euclidean setting, this result, accompanied by mild regularity and growth assumptions, ensures
that the discretization weakly converges to the original SDE. However, the case with boundary is
much more complicated, primarily because the approximate drift might explode near the boundary,
thus we need to verify exactly how the drift behaves as γ → 0 and as the process approaches the
boundary. We show that the normalised drift converges to the inward normal near the boundary.
This ensures that (a) in the interior ofM the drift converges to zero, i.e. locally in the interior ofM
the Brownian motion and the Reflected Brownian Motion coincide, (b) on the boundary, the drift
pushes the samples inside the manifold according to the inward normal, mimicking (kt)t≥0 in (5).
Finally, with results from Stroock et al. (1971) and Kang et al. (2017), we show the convergence to
the RBM.

Our next step is to show that the approximate drift and diffusion matrix of the Metropolised process
are upper and lower bounded by their counterparts in the rejection process. While the upper-bound is
easy to derive, the lower-bound requires the following result.

Proposition 5. Under assumptions onM, ∀ ε > 0, ∃ γ̄ > 0 such that for any γ ∈ (0, γ̄) and for any
x ∈M, γ ∈ (0, γ̄) and Z ∼ N(0, Id) we have P(x+

√
γZ ∈M) ≥ 1/2− ε, with Z ∼ N(0, Id).

Proposition 5 tells us that locally the boundary looks like a half-space when integrating w.r.t. a
Gaussian measure. A corollary is that, for γ > 0 small enough and for any k ∈ N, the probability that
Xγ

k+1 = Xγ
k is upper bounded uniformly w.r.t. Xγ

k ∈M. The proof of Proposition 5 uses Theorem 7
in Appendix D, whose proof relies on the concept of tubular neighborhoods (Lee et al., 2012).

Having established the lower and upper bound, we can conclude the proof by noting that the
approximate drift and the diffusion matrix in the rejection and Metropolis case coincide as γ → 0.
This is enough to apply the same results as before, giving the desired convergence.

Assumptions onM. Before concluding this section, we detail the assumptions we make onM. For
Theorem 2 to hold, we assume thatM = {x ∈ Rd : Φ(x) > 0} is bounded, with Φ ∈ C2(Rd,R)
concave. We have that ∂M = {x ∈ Rd : Φ(x) = 0}. In addition, we assume that for any x ∈ ∂M,
∥∇Φ(x)∥ = 1. These assumptions match those Stroock et al. (1971) use for their study of the
existence of solutions to the RBM. While it seems possible to relax the global existence of Φ to a
local one, the regularity assumption of the domain is key. This regularity is essential to establish
Proposition 5 and the associated geometrical result on tubular neighbourhoods. We also emphasize
that the smoothness of the domain is central in the results of Kang et al. (2017) on the equivalence of
two definitions of RBMs which we rely on.

4 Related work on approximations of reflected SDEs

Several schemes have been introduced to approximately sample from reflected Stochastic Differential
Equations. They can be interpreted as modifications of classical Euler-Maruyama schemes used to
discretise SDEs without boundary. One of the most common approaches is to use the Euler-Maruyama
discretisation and project the solution onto the boundary if it escapes from the domainM.
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Table 2: Log-likelihood (↑) of a held-out test set from a synthetic bimodal distribution over convex
subsets of Rd bounded by the hypercube [−1, 1]d and unit simplex ∆d. Means and standard deviations
are computed over 3 different runs. Average training time is provided in hours.

MANIFOLD DIMENSION
REFLECTED METROPOLIS

log-likelihood runtime log-likelihood runtime

[−1, 1]d
2 2.25±.01 8.95 2.32±.05 0.72
3 3.77±.13 8.97 4.15±.15 0.71

10 7.42±.77 10.1 10.80±.34 0.90

∆d
2 1.01±.01 9.17 1.06±.02 0.82
3 2.64±.01 9.43 3.23±.17 0.78

10 7.00±.13 10.5 7.81±.20 0.97
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Figure 4: Convergence time of the Reflected (green) and Metropolis (red) forward noising processes to
the uniform distribution on the hypercube [−1, 1]d and unit simplex ∆d. The lines indicate functions
fit with the PYSR symbolic regression package (Cranmer, 2023) and correspond to empirical runtime
complexities of O(d2) and O(d), respectively, matching the superimposed scaling law isocontours.

In this case, mean-square error rates of order almost 1/2 have been proven under various conditions
(Liu, 1995; Chitashvili et al., 1981; Pettersson, 1995; Słomiński, 1994). Concretely this means that
E[∥B̄t − Xt/n

n ∥2] = O(n−1+ε) with ε > 0 arbitrary small and where (Xγ
k )k∈N is the projection

scheme. The rate 1/2 is tight (Pacchiarotti et al., 1998). It is possible to use the Euler-Peano method
to get slight improvements for a mean-square error rate of order of 1/2, but this is impractical as
it assumes that one can solve a (simplified) Skorokhod problem, which is usually intractable. Liu
(1993) introduced a penalised method which pushes the solution away from the boundary and shows a
mean-square error of order 1/4, see also Pettersson (1997). Weak errors of order 1 have been obtained
in Bossy et al. (2004) and Gobet (2001) by introducing a reflection component in the discretisation
or using some local approximation of the domain to a half-space. We refer to Pilipenko (2014) for
an introduction to the discretisation of reflected SDEs. Closer to our work, Burdzy et al. (2008)
consider three different methods to approximate reflected Brownian motions on general domains (two
based on discrete methods and one based on killed diffusions). Only qualitative results are provided.
To the best of our knowledge, no previous work in the probability literature has investigated the
Metropolised scheme we propose. Our Metropolis scheme is also related to the ball walk (Applegate
et al., 1991), which replaces the Gaussian random variable with a uniform over the ball (or the Dikin
ellipsoid). Applegate et al. (1991) and Lovász et al. (2007) have studied the asymptotic convergence
rate of the ball walk, but, to the best of our knowledge, its limiting behaviour when the step size goes
to zero has not been investigated.
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(a) Data distribution. (b) Metropolis samples. (c) Reflected samples. (d) Uniform distribution.

Figure 5: A qualitative visual comparison of 106 samples from the data distribution, our Metropolis
diffusion model, a reflected diffusion model and the uniform distribution for the constrained configu-
rational modelling of robotic arms on S2++ × R2.

5 Experimental results

To demonstrate the practical utility and empirical performance of the proposed Metropolis diffusion
models, we conduct a comprehensive evaluation on a range of synthetic and real-world tasks.
In Section 5.1, we assess the scalability of our method by applying it to synthetic distributions
on hypercubes and simplices of increasing dimensionality. In Section 5.2, we extend the evaluation
to real-world tasks on manifolds with convex constraints by applying our method to the robotics
and protein design datasets presented in Fishman et al. (2023). In Section 5.3, we additionally
demonstrate that our method extends to constrained manifolds with highly non-convex boundaries—a
setting that is intractable with existing approaches.

As we found—in line with Fishman et al. (2023)—that log-barrier diffusion models perform strictly
worse than reflected approaches across all experimental settings, we focus on a more detailed
comparison with the latter here and postpone additional empirical results to Appendix F.1. These
include additional performance metrics and a comparison to an unconstrained Euclidean diffusion
model on the synthetic datasets presented in Section 5.1.

For all experiments, we use a simple 6-layer MLP with sine activations and a score rescaling function
to ensure that the score reaches zero at the boundary, scaling linearly into the interior of the constrained
set as in Liu et al. (2022) and Fishman et al. (2023). We set T = 1, β0 = 1× 10−3 and tune β1 to
ensure that the forward process reaches the invariant distribution with a linear β-schedule. We use a
learning rate of 2× 10−4 with a cosine learning rate schedule and an ism loss with a modified loss
weighting function of (1 + t), a batch size of 1024 and 8 repeats per batch. All models were trained
on a single NVIDIA GeForce GTX 1080 GPU. Additional details are provided in Appendix F.2.

All source code that is needed to reproduce the results presented below is made available under
https://github.com/oxcsml/score-sde/tree/metropolis, which requires a supporting package to handle
the different geometries that is available under https://github.com/oxcsml/geomstats/tree/polytope.

5.1 Synthetic distributions on simple polytopes

In this section, we investigate the scalability of the proposed Metropolis diffusion models by applying
them to synthetic bimodal distributions over the d-dimensional hypercube [−1, 1]d and unit simplex
∆d. A quantitative comparison of the log-likelihood of a held-out test set is presented in Table 2, while
a visual comparison is postponed to Appendix F.3. We find that our Metropolis models outperform
reflected approaches across all dimensions and constraint geometries by a substantial and statistically
significant margin while training in one tenth of the time. The degree of improvement seems to scale
with the dimensionality of the problem: the larger the dimension of the experiment, the larger the
gain in performance from using our proposed Metropolis scheme.

We observe a similar difference in the scaling properties of reflected and Metropolis models when
measuring the convergence times of the respective forward noising processes to the uniform distribu-
tion on hypercubes [−1, 1]d and simplices ∆d of increasing dimensionality. The results are presented
in Section 4 and show that the convergence time of the Metropolis process scales linearly in the
dimension, while the reflected process scales quadratically.
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(a) Data distribution. (b) Metropolis samples. (c) Reflected samples. (d) Uniform distribution.

Figure 6: A qualitative comparison of 105 samples from the data distribution, our Metropolis diffusion
model, a reflected diffusion model and the uniform distribution for the constrained conformational
modelling of cyclic peptide backbones. For visual clarity, the figures only show the constrained
planar projections encoded by P ⊂ R3.

5.2 Modelling proteins and robotic arms under convex constraints

In addition to illustrating our method’s scalability on high-dimensional synthetic tasks, we follow the
experimental setup from Fishman et al. (2023) to additionally demonstrate its practical utility and
favourable empirical performance on two real-world problems from robotics and protein design.

Constrained configurational modelling of robotic arms. The problem of modelling the configu-
rations and trajectories of a robotic arm can be formulated as learning a distribution over the locations
and manipulability ellipsoids of its joints, parameterised on Rd × Sd++, where Sd++ is the manifold
of symmetric positive-definite (SPD) d × d matrices (Yoshikawa, 1985; Jaquier et al., 2021). For
practical robotics applications, it may be desirable to restrict the maximal velocity with which a
robotic arm can move or the maximum force it can exert. This manifests in a trace constraint C > 0
on Sd++, resulting in a constrained manifold {M ∈ Sd++ :

∑d
i=1Mii < C}. Following Fishman

et al. (2023), we parametrise this constraint via the Cholesky decomposition (Lin, 2019) and use the
resulting setup to model the dataset presented in Jaquier et al. (2021).

Conformational modelling of protein backbones. Modelling the conformational ensembles
of proteins is a data-scarce problem with a range of important applications in biotechnology and
drug discovery (Lane, 2023). In many practical settings, it may often be unnecessary to model
the structural ensembles of an entire protein, as researchers are primarily interested in specific
functional sites that are embedded in a structurally conserved scaffold (Huang et al., 2016). Modelling
the conformational ensembles of such substructural elements requires positional constraints on
their endpoints to ensure that they can be accommodated by the remaining protein. Using the
parametrisation and dataset presented in Fishman et al. (2023), we formulate the problem of modelling
the backbone conformations of a cyclic peptide of length N = 6 as learning a distribution over the
product of a polytope P ⊂ R3 and the hypertorus T4.

Table 3: Log-likelihood (↑) of a held-out test set for the robotics and protein applications. Means and
standard deviations are computed over 3 different runs. Average training time is provided in hours.

DATASET DOMAIN
REFLECTED METROPOLIS

log-likelihood runtime log-likelihood runtime

Robotics S2++ × R2 8.39±.06 9.52 9.13±.03 1.36
Proteins P ⊂ R3 × T4 15.20±.06 24.80 15.33±.02 3.12

We quantify the empirical performance of different methods by evaluating the log-likelihood of
a held-out test set and present the resulting performance metrics in Table 3. Again, we find that
our Metropolis model outperforms the reflected approach by a statistically significant margin while
training 7-8 times as fast. Qualitative visual comparisons of samples from the true distribution, the
trained diffusion models and the uniform distribution are presented in Figures 5 and 6, with full
univariate marginal and pairwise bivariate correlation plots postponed to Appendices F.4 and F.5.
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(a) Data distribution. (b) Metropolis samples. (c) Uniform distribution.

Figure 7: Orthographic projection of 105 samples from (a) the data distribution, (b) our Metropolis
diffusion model, and (c) the uniform distribution, for geospatial data (wildfire incidence rates) within a
non-convex boundary (the continental United States). The projections are aligned with the geometric
centre of the boundary and zoomed in ten-fold for visual clarity.

5.3 Modelling geospatial data within non-convex country borders

Motivated by the strong empirical performance of our approach on tasks with challenging convex
constraints, we investigated its ability to model distributions whose support is restricted to manifolds
with highly non-convex boundaries—a setting that is intractable with existing approaches. To this
end, we derived a geospatial dataset based on wildfire incidence rates within the continental United
States (see Appendix E for full details) and trained a Metropolis diffusion model constrained by
the corresponding country borders on the sphere S2. A qualitative visual comparison of samples
from the true distribution, our model, and the uniform distribution is presented in Figures 7a to 7c
and a quantitative comparison to a Riemannian diffusion model on S2 (De Bortoli et al., 2022) is
given in Table 4. Both demonstrate that our approach is able to successfully capture challenging
multimodal and sparse distributions on constrained manifolds with highly non-convex boundaries.

Table 4: MMD (↓) of a held-out test set for the geospatial modelling dataset. Means and standard
deviations are computed over 3 different runs. Average training time is provided in hours.

MODEL DOMAIN MMD RUNTIME % IN BOUNDARY

Unconstrained S2 0.1567±0.013 0.81 63.3
Metropolis P ⊂ S2 0.1388±0.015 3.86 100.0

6 Conclusion

Accurately modelling distributions on constrained Riemannian manifolds is a challenging problem
with a range of impactful practical applications. In this work, we have proposed a mathematically
principled and computationally tractable extension of existing diffusion model methodology to this
setting. Based on a Metropolisation of random walks in Euclidean spaces and on Riemannian
manifolds, we have shown that our approach corresponds to a valid discretisation of the reflected
Brownian motion, justifying its use in diffusion models. To demonstrate the practical utility of our
method, we have performed an extensive empirical evaluation, showing that it outperforms existing
constrained diffusion models on a range of synthetic and real-world tasks defined on manifolds with
convex boundaries, including applications from robotics and protein design. Leveraging the flexibility
and simplicity of our method, we have also demonstrated that it extends beyond convex constraints
and is able to successfully model distributions on manifolds with highly non-convex boundaries.
While we found our method to perform well across the synthetic and real-world applications we
considered, we expect it to perform poorly on certain constraint geometries. For instance, the current
implementation relies on an isotropic noise distribution which could impede its performance on
exceedingly narrow constraint geometries, even with correspondingly small step sizes. In this context,
an important direction of future research would be to investigate whether we can instead sample from
more suitable distributions, e.g. a Dikin ellipsoid, while maintaining the simplicity and efficiency of
the Metropolis approach.
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Supplementary to:
Metropolis Sampling for Constrained Diffusion Models

A Overview

In Appendix B, we recall some basic concepts of Riemannian geometry which are key to defining
discretisations of the reflected Brownian motion. In Appendix C, we give some details on the
reflection step in reflected discretizations. In Appendix D, we prove the convergence of the rejection
and Metropolis discretizations to the true reflected Brownian Motion. The geospatial dataset with
non-convex constraints based on wildfire incidence rates in the continental United States is presented
Appendix E. All supplementary experimental details and empirical results are gathered in Appendix F.

B Manifold concepts

In the following, we aim to introduce key concepts that underpin diffusion models on Riemannian
manifolds, with a particular focus on notions relevant to the reflected Brownian motion that we build
on in Appendix C. For a more thorough treatment with reference to reflected diffusion models, we
refer to (Fishman et al., 2023). For a detailed presentation of smooth manifolds, see Lee (2013).

A Riemannian manifold is a tuple (M, g) withM a smooth manifold and g a metric that imbues the
manifold with a notion of distance and curvature and is defined as a smooth positive-definite inner
product on each of the tangent spaces of the manifold:

g(p) : TpM× TpM→ R.

The tangent space Tp of a point p on a manifold is an extension of the notion of tangent planes and
can be thought of as the space of derivatives of scalar functions on the manifold at that point.

To establish how different tangent spaces relate to one another, we need to additionally introduce
the concept of a connection. This is a map that takes two vector fields and produces a derivative of
the first with respect to the second, typically written as ∇(X,Y ) = ∇XY . While there are infinitely
many connections on any given manifold, the Levi-Cevita emerges as a natural choice if we impose
the following two conditions:

(i) X · (g(Y,Z)) = g(∇XY,Z) + g(Y,∇XZ),

(ii) [X,Y ] = ∇XY −∇YX ,

where [·, ·] is the Lie bracket. These conditions ensure that the connection is (i) metric-preserving and
(ii) torsion-free, with the latter guaranteeing a unique connection and integrability on the manifold.

Using the metric and Levi-Cevita connection, we can define a number of key concepts:

Geodesic. Geodesics extend the Euclidean notion of ‘straight lines’ to manifolds. They are defined
as the unique path γ : (0, 1)→M such that ∇γ′γ′ = 0 and are the shortest path between two points
on a manifold, in the sense that L(γ) =

∫ 1

0

√
g(γ(t))(γ′(t), γ(t))dt is minimal.

Exponential map. The exponential map on a manifold is given by the mapping between an element
v ∈ TpM of the tangent space at point p and the endpoint of the unique geodesic γ with γ(0) = p
and γ′(0) = v.

Intersection. The intersection along a geodesic is the first point at which the geodesic inter-
sects the boundary. We recall that the boundary is defined by f = 0. We can define this via
an optimisation problem: compute the minimum t > 0 such that we have that expg(x, tz) is
a root of f : f(expg(x, tz)) = 0. We will say that expg(x, tz) = intersectg(x, z; f) and that
t = arg intersectg(x, z; f).
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Parallel transport. We say that a vector fieldX is parallel to a curve γ : (0, 1)→M if∇γ′X = 0,
where γ′ : (0, 1)→ Tγ(t)M. For two points on the manifold p, q ∈M that are connected by a curve
γ, and an initial vector X0 ∈ TpM, there is a unique vector field X that is parallel to γ such that
X(p) = X0. This induces a map between the tangent spaces at p and q τγ : TpM→ TqM, which
is referred to as the parallel transport of tangent vectors between p and q and satisfies the condition
that for v,u ∈ TpM g(p)(v,u) = g(q)(τγ(v), τγ(u)).

Reflection. For an element v ∈ TpM in the tangent space of the manifold at point p and a constraint
characterised by its unit normal vector n ∈ TpM, the reflection of v in the tangent space is given by
v′ = v − 2g(v,n)n.

C Full Reflected Discretisation

Here, we reproduce the central algorithm for the full discretisation of the reflected Brownian motion
(Algorithm 4) derived for Euclidean models in (Lou et al., 2023) and for Reimannian models in
(Fishman et al., 2023). Its central component is the Reflected Step Algorithm (Algorithm 3), which
gives a generic computation for the reflection in any manifold. Due to the need to balance speed and
numerical instability issues around the boundary, an efficient practical implementation of the reflected
step is highly non-trivial, even for simple polytopes in Euclidean space. More complex geometries
and boundaries make this problem significantly worse: a constraint on the trace of SPD matrices
under the log-Cholesky metric of (Lin, 2019) requires solving complex non-convex optimisation
problems for each sample at each discretised sampling step in both the forward and reverse process.
This motivates our work in this paper.

These problems motivated the development of our Metropolis approximation, which significantly
simplifies the random walk. Instead of requiring the intersection, parallel transport and reflection,
we simply need to be able to evaluate the constraint functions fi. We highlight this simplicity in
Algorithm 5.

Algorithm 3 Reflected Step Algorithm. The algorithm operates by repeatedly taking geodesic steps
until one of the constraints is violated, or until the step is fully taken. Upon hitting the boundary, we
parallel-transport the tangent vector to the boundary and then reflect it against it. We then start a
new geodesic from this point in the new direction. The arg intersectt function computes the distance
one must travel along a geodesic in direction s until constraint fi is violated. For a discussion of
paralleltransport, expg and reflect see appendix B.

Require: x ∈M, v ∈ TxM, {fi}i∈I
ℓ← ∥v∥g
s← v/∥v∥g
while ℓ ≥ 0 do
di = arg intersectg(x, z; fi)
i← argmini di
α← min(di, ℓ)
x′ ← expg(x, αs)
s← paralleltransportg(x, s, x

′)
s← reflect(s, fi)
ℓ← ℓ− α
x← x′

end while
return x
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Algorithm 4 Reflected Random Walk. Discretisation of the SDE dXt = b(t,Xt)dt+ dBt − dkt.

Require: T,N,Xγ
0 , {fi}i∈I

γ = T/N
for k ∈ {0, . . . , N − 1} do
Zk+1 ∼ N(0, Id)
Xγ

k+1 = ReflectedStep[Xγ
k ,
√
γZk+1, {fi}i∈I ]

end for
return {Xγ

k }Nk=0

Algorithm 5 Metropolis Random Walk. Discretisation of the SDE dXt = b(t,Xt)dt+ dBt − dkt.

Require: T,N,Xγ
0 , {fi}i∈I

γ = T/N
for k ∈ {0, . . . , N − 1} do
Zk+1 ∼ N(0, Id)
X ′ ← expg

(
Xγ

k ,
√
γZk+1

)
if maxi∈I fi(X

′) ≤ 0 then
Xγ

k+1 = X ′

else
Xγ

k+1 = Xγ
k

end if
end for
return {Xγ

k }Nk=0
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D Convergence to the reflected process

In this note, we assume thatM = {x ∈ Rd : Φ(x) > 0} is compact, with Φ ∈ C2(Rd,R). We have
that ∂M = {x ∈ Rd : Φ(x) = 0}. In addition, we assume that for any x ∈ ∂M, ∥∇Φ(x)∥ = 1
and that Φ is concave. The closure ofM is denotedM. The assumption that Φ is concave is only
used in Theorem 7-(d) and can be dropped. We consider it for simplicity.

Let (X̂γ
k )k∈N given for any γ > 0 and k ∈ N by X̂γ

0 = x ∈ M and for X̂γ
k+1 = X̂γ

k +
√
γZγ

k

with Zγ
k a Gaussian random variable conditioned on X̂γ

k +
√
γZγ

k ∈M. In practice, Zγ
k is sampled

using rejection sampling. We define X̂γ : R+ → M given for any k ∈ N by X̂γ
kγ = X̂γ

k and for
any t ∈ [kγ, (k + 1)γ), X̂γ

t = X̂γ
k . Note that (Xt)t∈[0,T ] is a D([0, T ] ,M) valued random variable,

where D([0, T ] ,M) is the space of right-continuous with left-limit processes which take values in
M. We denote P̂γ the distribution of (X̂γ

t )t∈[0,T ] on D([0, T ] ,M).

Our goal is to show the following theorem.

Theorem 6. For any T ≥ 0, (X̂γ
t )t∈[0,T ] weakly converges to (Xt)t∈[0,T ] such that for any t ∈ [0, T ]

Xt = x+Bt − kt, |k|t =
∫ t

0
1Xs∈∂Md|k|s, kt =

∫ t

0
n(Xs)d|k|s. (6)

Proof. In order to prove the result, we prove that the distribution of the Markov chain seen as an
element of D([0, T ] ,M) converges to a solution of the Skorokhod problem (6). In particular, we first
show that the limiting distribution satisfies a submartingale problem following (Stroock et al., 1971,
Theorem 6.3). The transition from a solution of a submartingale problem to a weak solution of the
Skorokhod problem is given by (Kang et al., 2017, Theorem 1, Proposition 2.12) and (Ramanan, 2006,
Corollary 2.10). In order to apply (Stroock et al., 1971, Theorem 6.3), we define an intermediate
drift and diffusion matrix, see (55) and (51). To prove the theorem one needs to control the drift and
diffusion matrix insideM and show that it converges to 0 and Id respectively. The technical part of
the proof comes from the control of the drift coefficient near the boundary. In particular, we show
that if the intermediate drift is large then we are close to the boundary and the intermediate drift is
pointing inward. To investigate the local properties of the drift near the boundary we rely on the
notion of tubular neighborhood, see (Lee et al., 2012, Theorem 6.24).

Some key properties of the tubular neighborhood are stated in Appendix D.1. We then establish a few
technical lemmas about the tail probability of some distributions in Appendix D.2. Controls on the
diffusion matrix and lower bounds on the probability of belonging inM are given in Appendix D.3.
Properties of large drift terms are given in Appendix D.4. The convergence of the drift and diffusion
matrix on compact sets is given in Appendix D.5. The convergence of the boundary terms is
investigated in Appendix D.6. Finally, we conclude the proof in Appendix D.7.

D.1 Properties of the tubular neighborhood

Using the results of (Lee et al., 2012), we establish the existence of an open set ofM (for the induced
topology of Rd) satisfying several important properties.
Theorem 7. There exist U ⊂M open and C ≥ 1, r̄ > 0 such that for any γ ∈ (0, γ̄) with γ̄ = 1 the
following properties hold:

(a) For any x ∈ U, there exist a unique x̄ ∈ ∂M and ᾱ > 0 such that x = x̄+ ᾱ∇Φ(x̄).

(b) For any ᾱ ∈ [0, r̄] and x̄ ∈ ∂M such that x̄ + ᾱ∇Φ(x̄) ∈ M, let x = x̄ + ᾱ∇Φ(x̄) and
C(x, γ) such that x+

√
γz ∈ C(x, γ) if

−ᾱγ−1/2 ≤ α < r̄γ−1/2, ∥v∥2 ≤ (αγ1/2 + ᾱ)/(Cγ), (7)

with z = α∇Φ(x̄) + v, with v ⊥ ∇Φ(x̄). Then C(x, γ) ⊂M.

(c) V = {x̄+ α∇Φ(x̄) : x̄ ∈ ∂M, α ∈ [0, r̄)} is open inM.

(d) For any x ∈ U, x+
√
γz ∈M∩ C(x, γ)c then α ≥ r̄γ−1/2 or ∥v∥2 ≥ (αγ1/2 + ᾱ)/(Cγ)

and αγ1/2 + ᾱ ≥ 0, with z = α∇Φ(x̄) + v, with x̄ given in (a) and v ⊥ ∇Φ(x̄). .
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(e) There exists R > 0 such that {x ∈M : d(x, ∂M) ≤ 2R} ⊂ V.

Proof. Let γ ∈ (0, γ̄) with γ̄ = 1. First, note that for any x̄ ∈ ∂M, the normal space is given by
{α∇Φ(x̄) : α ∈ R}. Using this result and (Lee et al., 2012, Theorem 6.24) there exists r̃0 > 0
such that U0 = {x̄ + α∇Φ(x̄) : x̄ ∈ ∂M, α ∈ (−r̃0, r̃0)} ⊂ Rd is open2. We have that for any
α ∈ [−r0, 0) and x̄ ∈ ∂M

Φ(x̄+ α∇Φ(x̄)) = Φ(x̄) + α∥∇Φ(x̄)∥2 +
∫ 1

0
∇2Φ(x̄+ tα∇Φ(x̄))(α∇Φ(x̄))⊗2dt (8)

≤ α+ C̃0α
2 < 0, (9)

with r0 = min(r̃0, 1/(2C̃0)), where we have used that Φ(x̄) = 0, ∥∇Φ(x̄)∥ = 1 and defined
C̃0 = sup{∥∇2Φ(x̄ + α∇Φ(x̄))∥ : x̄ ∈ ∂M, α ∈ [−r̃0, r̃0]}. Reciprocally, we have for any
α ∈ [0, r0) and x̄ ∈ ∂M

Φ(x̄+ α∇Φ(x̄)) = Φ(x̄) + α∥∇Φ(x̄)∥2 +
∫ 1

0
∇2Φ(x̄+ tα∇Φ(x̄))(α∇Φ(x̄))⊗2dt ≥ α− C0α

2,
(10)

where we have used that Φ(x̄) = 0, ∥∇Φ(x̄)∥ = 1 and defined C0 = sup{∥∇2Φ(x̄+ α∇Φ(x̄))∥ :
x̄ ∈ ∂M, α ∈ [−r0, r0]}. Let r1 = min(r0, 1/(2C0)). Then, U1 = {x̄ + α∇Φ(x̄) : x̄ ∈
∂M, α ∈ (−r1, r1)} ⊂ Rd is open and

U1 ∩M = {x̄+ α∇Φ(x̄) : x̄ ∈ ∂M, α ∈ [0, r1)}. (11)

In what follows, we define U = U1 ∩M. Note that U is open for the induced topology and that
∂M⊂ U. In particular, ∂M is compact, Uc is closed and ∂M∩ Uc = ∅. Hence, there exists r > 0
such that d(∂M,Uc) ≥ 4r. Without loss of generality we can assume that r ≤ 1/2. We also have
{x ∈M : d(x, ∂M) ≤ 2r} ⊂ U. The proof of (a) follows from the definition of U0. In the rest of
the proof, we define

C1/2 = 2max(1, sup{∥∇2Φ(x̄+u)∥ : x̄ ∈ ∂M, ∥u∥2 ≤ r(r+1)}), r̄ = min(1/(2C1/2), r/2).
(12)

Let us prove (b). Consider x+
√
γz ∈ C(x, γ) with C(x, γ) given by (7) and x = x̄+ ᾱ∇Φ(x̄) and

z = α∇Φ(x̄) + v with v ⊥ ∇Φ(x̄). In particular, we recall that we have

−ᾱγ−1/2 ≤ α < r̄γ−1/2, ∥v∥2 ≤ (αγ1/2 + ᾱ)/(Cγ). (13)

This implies that
ᾱ+
√
γα ≤ 2r̄, γ∥v∥2 ≤ 2r̄/C. (14)

First, using that C ≥ 1, ∥∇Φ(x̄)∥ = 1, (14) and (12), we have

∥x+
√
γz − x̄∥2 = (ᾱ+

√
γα)2 + γ∥v∥2 ≤ r2 + r/C ≤ r(r + 1). (15)

Then, we have that

Φ(x+
√
γz) = Φ(x̄) + ᾱ+

√
γα+

∫ 1

0
∇2Φ(x̄+ t(x+

√
γz − x̄))(x+

√
γz − x̄)⊗2dt (16)

≥ ᾱ+
√
γα− (C1/2/2)((ᾱ+

√
γα)2 + γ∥v∥2), (17)

where we recall that

C1/2 = 2max(1, sup{∥∇2Φ(x̄+u)∥ : x̄ ∈ ∂M, ∥u∥2 ≤ r(r+1)}), r̄ = min(1/(2C1/2), r/2).
(18)

First, using that r ≤ 1/2 and (14), we have ᾱ+
√
γα ≤ 2r ≤ 1. Since, ∥v∥2 ≤ (ᾱ+

√
γα)/(Cγ)

and we have that ∥v∥2 < 1/(Cγ). Let P (X) = X − (C1/2/2)X2 − (C1/2/2)γ∥v∥2. We have that
P (x) ≥ 0 if and only if x ∈ [xmin, xmax] with

xmin = (1− (1− Cγ∥v∥2)1/2)/C1/2, xmax = (1 + (1− Cγ∥v∥2)1/2)/C1/2. (19)

Using that for any t ∈ (0, 1), (1− t)1/2 ≥ 1− t we have that

xmin ≤ γC∥v∥2/2, xmax ≥ 1/C1/2. (20)

2This is the tubular neighborhood theorem which is key to the rest of the proof.
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Since ∥v∥2 ≤ (
√
γα + ᾱ)/(γC), we have that ᾱ +

√
γα ≥ xmin. In addition, using that ᾱ +

√
γα ≤ 2r̄ ≤ 1/C1/2 ≤ xmax, we get that P (ᾱ +

√
γα) ≥ 0 and therefore x +

√
γz ∈ M since

Φ(x+
√
γz) ≥ 0. This concludes the proof of (b). Note that the condition α ≥ −γ−1/2ᾱ is implied

by the condition ∥v∥2 ≤ (
√
γα+ ᾱ)/(γC). Using that V ⊂ {x ∈M : d(x, ∂M) ≤ 2r} ⊂ U, (c)

is a direct consequence of (Lee et al., 2012, Theorem 6.24)]. Next, we prove (d). Let x +
√
γz ∈

M∩ C(x, γ)c. If α < −ᾱγ−1/2 then since Φ is concave, we have

Φ(x+
√
γz) = Φ(x̄) + ᾱ+

√
γα+

∫ 1

0
∇2Φ(x̄+ t(x+

√
γz − x̄))(x+

√
γz − x̄)⊗2dt < 0,

(21)

where we have used that Φ(x̄) = 0. This is absurd, hence either α ≥ r̄γ−1/2 or ∥v∥2 ≥ (αγ1/2 +
ᾱ)/(Cγ) and αγ1/2 + ᾱ ≥ 0, which concludes the proof. The proof of (e) is similar to the proof that
{x ∈M : d(x, ∂M) ≤ 2r} ⊂ U.

The main message of Theorem 7 is that using Theorem 7-(d), if we move in the direction of∇Φ(x̄)
(the inward normal) with magnitude α then we are allowed to move in the orthonormal direction with
magnitude α1/2. In the next paragraph, we discuss this fact in details and shows it is necessary for
the rest of our study.

The necessity of Theorem 7-(b). At first sight one can wonder if the statement of Theorem 7-
(b) could be simplify. In particular, it would be simpler to replace this statement with: for any
ᾱ ∈ [0, r̄] and x̄ ∈ ∂M such that x̄ + ᾱ∇Φ(x̄) ∈ M, let x = x̄ + ᾱ∇Φ(x̄) and C(x, γ) such that
x+
√
γz ∈ C(x, γ) if

−ᾱγ−1/2 ≤ α < r̄γ−1/2, ∥v∥2 ≤ (αγ1/2 + ᾱ)2/(Cγ), (22)

with z = α∇Φ(x̄)+ v, with v ⊥ ∇Φ(x̄). Then C(x, γ) ⊂M. Note that ∥v∥2 ≤ (αγ1/2 + ᾱ)/(Cγ)
is replaced by ∥v∥2 ≤ (αγ1/2 + ᾱ)2/(Cγ), see Figure 8 for an illustration. However, in that
case Theorem 7-(d) becomes: in addition, if x +

√
γz ∈ M ∩ C(x, γ)c then α ≥ rγ−1/2 or

∥v∥2 ≥ (αγ1/2 + ᾱ)2/(Cγ) and αγ1/2 + ᾱ ≥ 0.

In what follows, when controlling the properties of large drift, see the proof of Proposition 18 and the
proof of Proposition 21, we need to control quantities of the form P(x+√γZ ∈ C(x, γ)c∩M)/

√
γ3

Using the original Theorem 7-(d) it is possible to show that this quantity is bounded. However, if one
uses the updated version of Theorem 7-(d) then one needs to show that there exists M ≥ 0 and γ̄ > 0
such that for any γ ∈ (0, γ̄) (here we have assumed that ᾱ = 0, i.e. x ∈ ∂M for simplicity)∫ r/γ−1/2

0

∫
∇Φ(x̄)⊥

1∥v∥2≥α2φ(v)φ(α)dvdα ≤M√γ, (23)

which is absurd.

D.2 Technical lemmas

We start with a few technical lemmas which will allow us to control some Gaussian probabilities
outside of a compact set. We denote Ψ : R+ × N→ [0, 1] such that for any k ∈ N, Ψ(·, k) is the tail
probability of a χ-squared random variable with parameter k, i.e. for any k ∈ N and t ≥ 0 we have

Ψ(t, k) = P(∥Z∥2 ≥ t), (24)

with Z a Gaussian random variable in Rk with zero mean and identity covariance matrix. We will
make extensive use of the following lemma which is a direct consequence of (Laurent et al., 2000,
Section 4, Lemma 1).
Lemma 8. For any k ∈ N and t ∈ R+ with t ≥ 5k, Ψ(t, k) ≤ exp[−t/5].

Proof. Let k ∈ N. First, note that for any x ≥ k, we have that k + 2(kx)1/2 + 2x ≤ 5x. Combining
this result and (Laurent et al., 2000, Section 4, Lemma 1, Equation (4.3)), we have that for any x ≥ k

P(∥X∥2 ≥ 5x) ≤ exp[−x], (25)

with X a Rk-valued Gaussian random variable with zero mean and identity covariance matrix. This
concludes the proof upon letting t = 5x.

3The division by
√
γ comes from the definition of the intermediate drift (55).
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Figure 8: The grey shaded area representsM while the blue shaded area represents C(x, γ) for an
arbitrary value of γ and x = x̄ ∈ ∂M.

Let φ : Rp → R+ given for any u ∈ R by φ(u) = (2π)−p/2 exp[−∥u∥2/2]4, i.e. the density of a
real Gaussian random variable with zero mean and unit variance. While Lemma 9 appears technical,
it will be central to provide quantitative upper bounds on the rejection probability, see Lemma 12 for
instance.
Lemma 9. For any k ∈ N, α0 > 0, β0 ∈ (0, 1] and δ > 0 we have

ψ(δ) = sup{
∫ +∞
0

Ψ(α0t/δ, k)
β0φ(t− t0/δ)dt : t0 ≥ 0} ≤ C0δ, (26)

with C0 = 5(2π)−1/2(k + 1)/(α0β0).

Proof. Let k ∈ N, α0 > 0, β0 ∈ (0, 1] and δ > 0. Let tδ = 5kδ/α0. Note that if t ≥ tδ then,
α0t/δ ≥ 5k. In addition, we have∫ +∞
0

Ψ(α0t/δ, k)
β0φ(t− t0/δ)dt ≤ (2π)−1/2

∫ +∞
0

Ψ(α0t/δ, k)
β0dt (27)

≤ (2π)−1/2
∫ tδ
0

Ψ(α0t/δ, k)
β0dt+ (2π)−1/2

∫ +∞
tδ

Ψ(α0t/δ, k)
β0dt.

(28)

Using that for any w > 0,
∫ +∞
0

exp[−wt]dt ≤ (1/w), that for any u ≥ 0, Ψ(u, k) ≤ 1 and that if
u ≥ 5k, Ψ(u, k) ≤ exp[−u/5], we get for any t0 ≥ 0∫ +∞
0

Ψ(α0t/δ, k)φ(t− t0/δ) ≤ (2π)−1/2[5kδ/α0 + 5δ/(α0β0)] ≤ (5(2π)−1/2(k+ 1)/(α0β0))δ,
(29)

which concludes the proof.

Finally, we have the following lemma, which is similar to Lemma 8 but will be used to control
quantities related to the norm.
Lemma 10. For any k ∈ N, α0 > 0, β0 ∈ (0, 1] and δ > 0 we have

ψ(δ) =
∫ +∞
0

Ψ(α0t/δ, k)
β0tφ(t)dt ≤ C0δ

2, (30)

with C0 = 25(2π)−1(k2 + 1)/(α0β0)
2.

Proof. Let k ∈ N, α0 > 0, β0 ∈ (0, 1] and δ > 0. Let tδ = 5kδ/α0. Note that if t ≥ tδ then,
α0t/δ ≥ 5k. In addition, we have∫ +∞

0
Ψ(α0t/δ, k)

β0tφ(t)dt ≤ (2π)−1
∫ tδ
0

Ψ(α0t/δ, k)
β0tdt+ (2π)−1

∫ +∞
tδ

Ψ(α0t/δ, k)
β0tdt.

(31)

4In the rest of the supplementary, we never precise the dimension p ∈ N which can be deduced from the
variable.

7



In addition, using that if u ≥ 5k then Ψ(u, k) ≤ exp[−u/5], we get

(2π)−1
∫ +∞
tδ

Ψ(α0t/δ, k)
β0tdt ≤ (2π)−1

∫ +∞
0

exp[−α0β0t/(5δ)]tdt ≤ (2π)−125δ2/(α0β0)
2.

(32)

Finally, using that for any u ≥ 0, Ψ(u, k) ≤ 1, we have

(2π)−1
∫ tδ
0

Ψ(α0t/δ, k)
β0tdt ≤ (2π)−125k2δ2/α2

0, (33)
which concludes the proof.

D.3 Lower bound on the inside probability and control of moments of order two and higher

Lower bound on the inside probability. We begin with the following lemma which controls the
expectation of 1 + ∥Z∥ outside of C(x, γ). We recall that V is defined in Theorem 7-(c).
Lemma 11. Let γ̄ = 1. Let x ∈ V, Z ∈∼ N(0, Id) and γ ∈ (0, γ̄) then we have

max(E[1x+
√
γZ∈M∩C(x,γ)c ],E[⟨Z,∇Φ(x̄)⟩1x+

√
γZ∈M∩C(x,γ)c ]) ≤ ψ(γ), (34)

with ψ : R+ → R+ such that lim supt→0 ψ(t)/t
1/2 < +∞.

Proof. Let r̄ > 0 given by Theorem 7. First, we have that∫
R
∫
Rd−1(1 + |α|+ ∥v∥)1α≥r̄/γ1/2φ(α)φ(v)dαdv (35)

≤ d
∫
R(1 + |α|)1α≥r̄/γ1/2φ(α)dα ≤ d(Ψ(r̄2/γ, 1) + exp[−r̄2/(2γ)]). (36)

Second, using Lemma 9, we have that∫
R
∫
Rd−1 1∥v∥2≥(ᾱ+

√
γα)/(Cγ)1ᾱ+

√
γα≥0φ(α)φ(v)dαdv (37)

≤
∫
R 1ᾱ+

√
γα≥0Ψ((ᾱ+

√
γα)/(Cγ), d− 1)φ(α)dα (38)

≤
∫ +∞
0

Ψ(α/Cγ1/2, d− 1)φ(α− ᾱ/γ1/2)dα ≤ Ψ1(γ
1/2). (39)

Second, using Lemma 10, we have that∫
R
∫
Rd−1 α1∥v∥2≥(ᾱ+

√
γα)/(Cγ)1ᾱ+

√
γα≥0φ(α)φ(v)dαdv (40)

=
∫
R αΨ((ᾱ+

√
γα)/(Cγ), d− 1)1ᾱ+

√
γα≥0φ(α)dα (41)

≤
∫ +∞
0

Ψ(α/Cγ1/2, d− 1)αφ(α)dα ≤ Ψ2(γ
1/2). (42)

Note that we have lim supγ→0 Ψ2(γ
1/2) + Ψ1(γ

1/2) < +∞. We conclude upon combining (36),
(39) and (42) with Theorem 7-(d) and the fact that ∥Φ(x̄)∥ = 1.

The following lemma allow us to give a lower bound to the quantity E[1x+
√
γZ∈M] uniformly w.r.t

x ∈M.
Lemma 12. There exists γ̄ > 0 such that for any γ ∈ (0, γ̄) and for any x ∈ M, γ ∈ (0, γ̄) and
Z ∼ N(0, Id) we have

E[1x+
√
γZ∈M] ≥ 1/4 . (43)

Proof. Let γ ∈ (0, γ̄). If x ̸∈ V then B(x, 2R) ⊂ M using Theorem 7-(e) and therefore
E[1x+

√
γZ∈M] ≥ 1/4 for γ̄ > 0 small enough. Now, assume that x ∈ V. Using Lemma 11,

we have that E[1x+
√
γZ∈M∩C(x,γ)c ] ≤ ψ(γ). In addition, using Theorem 7-(b), we have that for any

γ > 0

E[1x+
√
γZ∈M] ≥ E[1x+

√
γZ∈C(x,γ)] (44)

≥
∫ rγ−1/2

−ᾱγ−1/2

∫
∇Φ(x̄)⊥

1∥v∥2≤(ᾱ+γ1/2α)/(Cγ)φ(α)φ(v)dαdv (45)

≥
∫ rγ−1/2

−ᾱγ−1/2(1−Ψ((ᾱ+ γ1/2α)/(Cγ), d− 1))φ(α)dα (46)

≥ (1/2)−Ψ(r2/γ, 1)−
∫ +∞
−ᾱγ−1/2 Ψ((ᾱ+ γ1/2α)/(Cγ), d− 1)φ(α)dα. (47)

Hence, using Lemma 8 and Lemma 9, there exists γ̄ > 0 such that for any γ ∈ (0, γ̄), Ψ(r2/γ, 1) +∫ +∞
0

Ψ(α/(Cγ1/2), d)φ(α− γ1/2ᾱ)dα ≤ 1/4, which concludes the proof.
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Note that the result of Lemma 12 can be improved to 1/2− ε for any ε > 0. In particular this result
tells us that for γ > 0 small enough,M looks like the hyperplane from the point of view of the
Gaussian with variance γ centered on ∂M.

Bound on moments of order two and higher. In what follows, we define for any γ > 0, ∆γ :
M→ R+ given for any x ∈M by

∆γ(x) = (1/γ)
∫
Rd 1x+

√
γz∈M∥

√
γz∥4φ(z)dz/

∫
Rd 1x+

√
γz∈Mφ(z)dz. (48)

Proposition 13. We have limγ→0 sup{∆γ(x) : x ∈M} = 0.

Proof. Let γ̄ > 0 given by Lemma 12. Let x ∈M and γ ∈ (0, γ̄). We have using Lemma 12∫
Rd 1x+

√
γz∈Mφ(z)dz ≥ 1/4. (49)

We also have that
(1/γ)

∫
Rd 1x+

√
γz∈M∥

√
γz∥4φ(z)dz ≤ 3γd2. (50)

Therefore, we get that for any γ ∈ (0, γ̄), ∆γ(x) ≤ 12γd2, which concludes the proof.

In what follows, we define for any γ > 0, Σ̂γ : M→ S+d (R) given for any x ∈M by

Σ̂γ(x) =
∫
Rd 1x+

√
γz∈Mz ⊗ zφ(z)dz/

∫
Rd 1x+

√
γz∈Mφ(z)dz. (51)

Proposition 14. There exists γ̄ > 0 such that for any x ∈M and γ ∈ (0, γ̄) we have

∥Σ̂γ(x)∥ ≤ 4d. (52)

Proof. Let x ∈M and γ̄ > 0 given by Lemma 12. For any γ ∈ (0, γ̄), we have using Lemma 12∫
Rd 1x+

√
γz∈Mφ(z)dz ≥ 1/4. (53)

We also have that ∫
Rd 1x+

√
γz∈M∥z∥2φ(z)dz ≤ d, (54)

which concludes the proof.

D.4 Properties of large drift terms

Finally, we define for any γ > 0, b̂γ : M→ Rd given for any x ∈M by

b̂γ(x) = γ−1/2
∫
Rd 1x+

√
γz∈Mzφ(z)dz/

∫
Rd 1x+

√
γz∈Mφ(z)dz. (55)

First, we show away from the boundary the drift b̂γ converges to zero.

Proposition 15. There exists γ̄ > 0 such that for any γ ∈ (0, γ̄), r > 0 and x ∈ M such that
d(x, ∂M) ≥ r we have ∥b̂γ(x)∥ ≤ 2dΨ(r/γ, d)1/2/γ1/2.

Proof. Let x ∈M and γ̄ > 0 given by Lemma 12. For any γ ∈ (0, γ̄) we have using Lemma 12∫
Rd 1x+

√
γz∈Mφ(z)dz ≥ 1/4. (56)

We also have that

∥
∫
Rd 1x+

√
γz∈Mzφ(z)dz∥ ≤ ∥

∫
Rd 1∥z∥≤r/γ1/2zφ(z)dz∥+

∫
Rd 1∥z∥≥r/γ1/2∥z∥φ(z)dz (57)

≤ 2
∫
Rd 1∥z∥≥r/γ1/2∥z∥φ(z)dz ≤ 2dΨ(r/γ, d)1/2/γ1/2, (58)

which concludes the proof.

We have the following corollary.
Corollary 16. There exists γ̄ > 0 such that for any δ > 0 there exists Mδ > 0 such that for any
γ ∈ (0, γ̄) and x ∈M, ∥b̂γ(x)∥ ≥Mδ , then Φ(x) ≤ δ.
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Proof. Let γ̄ > 0 given by Lemma 12. Let f : R+ → R+ given for any r > 0 by f(r) = sup{γ >
0 : Ψ(r/γ, 1)1/2/γ1/2}. We have that f is non-increasing and limr→0 f(r) = +∞. Let δ > 0
and Mδ = 2df(δ/C) with C = sup{∥∇Φ(x)∥ : x ∈ M}. Let γ ∈ (0, γ̄) and x ∈ M such that
∥b̂γ(x)∥ ≥ Mδ then using Proposition 15 we have that d(x, ∂M) ≤ δ/C. Let x̄ ∈ ∂M such that
∥x− x̄∥ = d(x, ∂M). We have

Φ(x) ≤ Φ(x̄) +
∫ 1

0
⟨∇Φ(x̄+ t(x− x̄)), x− x̄⟩dt ≤ δ, (59)

which concludes the proof.

For ease of notation, for any γ > 0, we define b̄γ = γ1/2b̂γ , the renormalized version of the drift.
First, we have the following result which will ensure that the drift projected on the normal component
does not vanish.

Lemma 17. There exists γ̄ > 0 such that for any γ ∈ (0, γ̄) and x ∈ V we have

⟨b̄γ(x),∇Φ(x̄)⟩ ≥ ∥b̄γ(x)∥ − ψ(γ), (60)

with ψ : R+ → R+ such that lim supγ→0 ψ(γ)/
√
γ < +∞.

Proof. Let x ∈M and γ̄ > 0 given by Lemma 12. For any γ ∈ (0, γ̄) we have using Lemma 12∫
Rd 1x+

√
γz∈Mφ(z)dz ≥ 1/4. (61)

In addition, we have∫
Rd 1x+

√
γz∈M⟨z,∇Φ(x̄)⟩φ(z)dz ≥

∫
Rd 1x+

√
γz∈C(x,γ)⟨z,∇Φ(x̄)⟩φ(z)dz (62)

−
∫
Rd 1x+

√
γz∈M∩C(x,γ)c⟨z,∇Φ(x̄)⟩φ(z). (63)

Using Lemma 11, we get that∫
Rd 1x+

√
γz∈M⟨z,∇Φ(x̄)⟩φ(z)dz ≥

∫
Rd 1x+

√
γz∈C(x,γ)⟨z,∇Φ(x̄)⟩φ(z)dz − ψ(γ). (64)

Let {ei}d−1
i=1 a basis of∇Φ(x̄)⊥. Using Theorem 7-(b), we have that for any i ∈ {1, . . . , d− 1}∫

Rd 1x+
√
γz∈C(x,γ)⟨z, ei⟩φ(z)dz=

∫ r/γ1/2

−ᾱ/γ1/2

∫
∇Φ(x̄)⊥

1∥v∥2≤(γ1/2α+ᾱ)/γ⟨v, ei⟩φ(v)φ(α)dvdα.
(65)

Hence, combining this result and the Cauchy-Schwarz inequality we have for any i ∈ {1, . . . , d− 1}

(
∫
Rd 1x+

√
γz∈C(x,γ)⟨z, ei⟩φ(z)dz)2 = (

∫ r/γ1/2

−ᾱ/γ1/2

∫
∇Φ(x̄)⊥

1∥v∥2≥(γ1/2α+ᾱ)/γ⟨v, ei⟩φ(v)φ(α)dvdα)2

(66)

≤
∫
∇Φ(x̄)⊥

⟨v, ei⟩2φ(v)dv(
∫ r/γ1/2

−ᾱ/γ1/2 Ψ((ᾱ+ αγ1/2)/γ, d− 1)1/2φ(α)dα)2 (67)

≤ (
∫ r/γ1/2

−ᾱ/γ1/2 Ψ((ᾱ+ αγ1/2)/γ, d− 1)1/2φ(α)dα)2. (68)

Hence, using Lemma 9, we get that∑d−1
i=1 (

∫
Rd 1x+

√
γz∈C(x,γ)⟨z, ei⟩φ(z)dz)2 ≤ (d− 1)ψ2(γ), (69)

with ψ given by Lemma 9 with β0 = 1/2. Therefore, we get that

(
∫
Rd 1x+

√
γz∈C(x,γ)⟨z,∇Φ(z̄)⟩φ(z)dz)2 (70)

= (
∫
Rd 1x+

√
γz∈Mφ(z)dz)2∥b̄γ(x)∥2 −

∑d−1
i=1 (

∫
Rd 1x+

√
γz∈C(x,γ)⟨z, ei⟩φ(z)dz)2 (71)

≥ (
∫
Rd 1x+

√
γz∈Mφ(z)dz)2∥b̄γ(x)∥2 − ψ(γ)2. (72)

We conclude the proof upon using that for any a, b ≥ 0, (a+ b)1/2 ≤ a1/2 + b1/2 and (61).

We are now ready to state the following lower bound on the drift.
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Proposition 18. There exist γ̄ > 0, M ≥ 0 and c > 0 such that for any x ∈ M and γ ∈ (0, γ̄) if
∥b̂γ(x)∥ ≥M then x ∈ V and

min(⟨b̂γ(x),∇Φ(x)⟩, ⟨b̂γ(x),∇Φ(x̄)⟩) ≥ c∥b̂γ(x)∥. (73)

Proof. Let γ̄ > 0 given by Lemma 12 and M0 = 4 sup{ψ(γ)/γ1/2 : γ ∈ (0, γ̄]}. In addition, let
c = 1/4. Using Proposition 15 and Theorem 7-(e), there exists M1 ≥ 0 such that for any any x ∈M,
if ∥b̂γ(x)∥ ≥ M1 then x ∈ V and x = x̄ + α∇Φ(x̄) with α ≤ 1/(4C) and C = sup{∥∇2Φ(x)∥ :

x ∈ M}. We denote M = max(M0,M1). Let γ ∈ (0, γ̄) and x ∈ M such that ∥b̂γ(x)∥ ≥ M .
Using Lemma 17, we have that

⟨b̂γ(x),∇Φ(x̄)⟩ ≥ ∥b̂γ(x)∥ − ψ(γ)/γ1/2. (74)

Using that ψ(γ)/γ1/2 ≤M/2 ≤ ∥b̂γ(x)∥/2, we have

⟨b̂γ(x),∇Φ(x̄)⟩ ≥ (1/2)∥b̂γ(x)∥. (75)

Since ∥x− x̄∥ ≤ α ≤ 1/(4C) we have ⟨b̂γ(x),∇Φ(x)⟩ ≥ (1/2−Cα)∥b̂γ(x)∥ ≥ ∥b̂γ(x)∥/4, which
concludes the proof.

D.5 Convergence on compact sets

In this section, we show the convergence of the drift and diffusion matrix on compact sets. We recall
thatM does not include its boundary ∂M.

Proposition 19. For any compact set K ⊂ M and ε > 0, there exists γ̄ > 0 such that for any
γ ∈ (0, γ̄) we have for any x ∈ K

∥b̂γ(x)∥ ≤ ε, ∥Σ̂γ(x)− Id ∥ ≤ ε. (76)

Proof. Let K ⊂M be a compact set and γ > 0. Since K ∩ ∂M = ∅, there exists r > 0 such that
for any x ∈ K, d(x, ∂M) > r. Therefore, we have that for any x ∈ K

∥b̂γ(x)∥ = γ−1/2∥
∫
x+

√
γz∈M zφ(z)dz∥/

∫
x+

√
γz∈M φ(z)dz. (77)

In addition, using the Cauchy-Schwarz inequality we have

∥
∫
x+

√
γz∈M zφ(z)dz∥ ≤ ∥

∫
Rd zφ(z)dz∥+

∫
Mc ∥z∥φ(z)dz (78)

≤
∫
Rd 1∥z∥≥r/γ1/2∥z∥φ(z)dz ≤

√
dΨ(r2/γ, d)1/2. (79)

Using Lemma 8 and Lemma 12, there exists γ̄0 > 0 such that for any γ ∈ (0, γ̄0) we have that for
any x ∈ K

∥b̂γ(x)∥ ≤ 4dΨ(r2/γ, 1)1/2/γ1/2 ≤ ε, (80)

which concludes the first part of the proof. Similarly, we have that for any x ∈ K

∥
∫
x+

√
γz∈M(z ⊗ z − Id)φ(z)dz∥ ≤ ∥

∫
Rd(z ⊗ z − Id)φ(z)dz∥+

∫
Mc ∥z∥φ(z)dz (81)

≤
∫
Rd 1∥z∥≥r/γ1/2∥z ⊗ z − Id ∥φ(z)dz (82)

≤
√
2(1 + 3d2)1/2Ψ(r2/γ, d)1/2. (83)

Using Lemma 8 and Lemma 12, there exists γ̄1 > 0 such that for any γ ∈ (0, γ̄1), we have that for
any x ∈ K

∥Σ̂γ(x)− Id ∥ ≤ 4
√
2(1 + 3d2)1/2Ψ(r2/γ, 1)1/2 ≤ ε, (84)

which concludes the proof upon letting γ̄ = min(γ̄0, γ̄1).
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D.6 Convergence on the boundary

Finally, we investigate the behavior at the boundary of the diffusion matrix and the drift. First, we
show that there is a lower bound to the diffusion matrix near the boundary. Second, we show that the
renormalized drift converges to the outward normal.
Proposition 20. There exist c > 0 and γ̄ > 0 such that for any γ ∈ (0, γ̄), u ∈ Rd and x ∈ V we
have

⟨u, Σ̂γ(x)u⟩ ≥ c∥u∥2. (85)

In particular, there exist r, ε > 0 such that for any γ ∈ (0, γ̄) and x ∈M with d(x, ∂M) ≤ r

⟨∇Φ(x), Σ̂γ(x)∇Φ(x)⟩ ≥ ε. (86)

Proof. First, we show (85). Let x ∈ V. We have for any u ∈ Rd

⟨u, Σ̂γ(x)u⟩ =
∫
Rd 1x+

√
γz∈M⟨z, u⟩2φ(z)dz/

∫
Rd 1x+

√
γz∈Mdz (87)

≥
∫
Rd 1x+

√
γz∈C(x,γ)⟨z, u⟩2φ(z)dz. (88)

For any u ∈ Rd, let αu = ⟨u,∇Φ(x̄)⟩. Using Theorem 7-(b) we have for any u ∈ Rd∫
Rd 1x+

√
γz∈C(x,γ)⟨z, u⟩2φ(z)dz (89)

=
∫ r/γ1/2

−ᾱ/γ1/2

∫
∇Φ(x̄)⊥

(⟨u, v⟩+ ααu)
2
1∥v∥2≤(αγ1/2+ᾱ)/γφ(v)φ(α)dvdα (90)

≥
∫ r/γ1/2

0

∫
∇Φ(x̄)⊥

(⟨u, v⟩2 + α2α2
u)1∥v∥2≤(αγ1/2+ᾱ)/γφ(v)φ(α)dvdα (91)

≥ α2
u

∫ r/γ1/2

0
α2φ(α)dα+

∫ r/γ1/2

−ᾱ/γ1/2

∫
∇Φ(x̄)⊥

⟨u, v⟩21∥v∥2≤(αγ1/2+ᾱ)/γφ(v)φ(α)dvdα.

(92)

Using Cauchy-Schwarz inequality, we have∫ r/γ1/2

0
α2φ(α)dα = (1/2)−

∫ +∞
r/γ1/2 α

2φ(α)dα ≥ (1/2)− 3Φ(r2/γ, 1)1/2. (93)

In addition, using the Cauchy-Schwarz inequality, we have that∫ r/γ1/2

−ᾱ/γ1/2

∫
∇Φ(x̄)⊥

⟨u, v⟩21∥v∥2≤(αγ1/2+ᾱ)/γφ(v)φ(α)dvdα (94)

=
∫
∇Φ(x̄)⊥

⟨u, v⟩2φ(v)dv
∫ r/γ1/2

−ᾱ/γ1/2 φ(α)dα (95)

−
∫ r/γ1/2

−ᾱ/γ1/2

∫
∇Φ(x̄)⊥

⟨u, v⟩21∥v∥2≥(αγ1/2+ᾱ)/γφ(v)φ(α)dvdα

(96)

≥ (∥u∥2 − α2
u)((1/2)− Φ(r2/γ, 1)) (97)

−
√
3(d− 1)∥u∥2

∫ +∞
0

Φ(α/γ1/2, d− 1)1/2φ(α− ᾱ/γ1/2)dα. (98)

Combining this result, (93), (92) and Lemma 9 there exists γ̄ > 0 such that for any γ ∈ (0, γ̄] and
u ∈ Rd ∫

Rd 1x+
√
γz∈C(x,γ)⟨z, u⟩2φ(z)dz ≥ (1/4)∥u∥2, (99)

which concludes the proof of (85). Finally, using Theorem 7-(e), we have that for any x ∈ M if
d(x, ∂M) ≤ R then x ∈ V. Let r = min(R, 1/(2C)) with C = sup{∥∇2Φ(x)∥ : x ∈ M}. We
have that for any x ∈M such that d(x, ∂M) ≤ r

∥∇Φ(x)∥ ≥ ∥∇Φ(x̄0)∥ − Cr ≥ 1/2, (100)

where x̄0 is such that ∥x − x̄0∥ ≤ r and x̄0 ∈ ∂M. Combining this result and (99) concludes the
proof upon letting ε = 1/16.

Finally, we investigate the behavior of the normalized drift near the boundary.

Proposition 21. For any x̄0 ∈ ∂M and ε > 0, there exist γ̄, r,M > 0 such that for any x ∈M and
γ ∈ (0, γ̄) with ∥x− x̄0∥ ≤ r and ∥b̂γ(x)∥ ≥M

∥b̂γ(x)/⟨b̂γ(x),∇Φ(x)⟩ − ∇Φ(x̄0)∥ ≤ ε. (101)
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Proof. Let γ̄ be given by Proposition 18. Let ψ given by Lemma 9 and M0 = sup{ψ(γ)/γ1/2 :
γ ∈ (0, γ̄)} < +∞. Let M = 16M0/(cε

1/2) with c given in Proposition 18. Let R > 0 given by
Theorem 7-(e) such that for any x ∈ M with d(x, ∂M) there exist x̄ ∈ ∂M and α ∈ [0, cε/(4C)]
such that x = x̄ + α∇Φ(x̄) with C = sup{∥∇2Φ(x)∥ : x ∈ M} and c given in Proposition 18.
Let r = min(r̄, cε/4, R) and x ∈ M with ∥x − x̄0∥ ≤ r. First, since d(x, ∂M) ≤ R, there exist
x̄ ∈ ∂M and α ∈ [0, ε/(4C)] such that x = x̄+α∇Φ(x̄). Therefore, we get that ∥x̄−x̄0∥ ≤ ε/(2C)
and therefore ∥∇Φ(x̄0)−∇Φ(x̄)∥ ≤ ε/2. In addition, we have that

∥b̂γ(x)/⟨b̂γ(x),∇Φ(x)⟩ − b̂γ(x)/⟨b̂γ(x),∇Φ(x̄)⟩∥ (102)

≤ ∥b̂γ(x)∥2∥∇Φ(x)−∇Φ(x̄)∥/(⟨b̂γ(x),∇Φ(x)⟩⟨b̂γ(x),∇Φ(x̄)⟩). (103)

Using Proposition 18, we get that

∥b̂γ(x)/⟨b̂γ(x),∇Φ(x)⟩ − b̂γ(x)/⟨b̂γ(x),∇Φ(x̄)⟩∥ ≤ ε/4. (104)

In what follows, we show that

∥b̂γ(x)/⟨b̂γ(x),∇Φ(x̄)⟩ − ∇Φ(x̄)∥2 ≤ ε/2. (105)

In particular, we show that for any u ∈ ∇Φ(x̄)⊥ with ∥u∥ = 1,

⟨b̂γ(x), u⟩2 ≤ (ε/16)⟨b̂γ(x),∇Φ(x̄)⟩2. (106)

Assuming (106), letting u = (b̂γ(x)−⟨b̂γ(x),∇Φ(x̄⟩))/(∥b̂γ(x)∥2−⟨b̂γ(x),∇Φ(x̄⟩2)1/2 and using
that b̂γ(x) = ⟨b̂γ(x), u⟩u+ ⟨b̂γ(x),∇Φ(x̄)⟩∇Φ(x̄) we have

∥b̂γ(x)/⟨b̂γ(x),∇Φ(x)⟩ − ∇Φ(x̄)∥ ≤ ∥b̂γ(x)/⟨b̂γ(x),∇Φ(x̄)⟩ − ∇Φ(x̄)∥ (107)

+ ∥b̂γ(x)/⟨b̂γ(x),∇Φ(x)⟩ − b̂γ(x)/⟨b̂γ(x),∇Φ(x̄)⟩∥
(108)

≤ |⟨b̂γ(x), u⟩/⟨b̂γ(x),∇Φ(x̄)⟩|+ ε/4 ≤ ε/2, (109)

which concludes the proof. Let u ∈ ∇Φ(x̄)⊥ with ∥u∥ = 1 and {ei}d−1
i=1 an orthonormal basis of

∇Φ(x̄)⊥. There exist {ai}d−1
i=1 such that

∑d−1
i=1 a

2
i = 1 and u =

∑d−1
i=1 aiei. Using Theorem 7-(b),

we have that for any i ∈ {1, . . . , d− 1}∫
Rd 1x+

√
γz∈C(x,γ)⟨z, ei⟩φ(z)dz=

∫ r/γ1/2

−ᾱ/γ1/2

∫
∇Φ(x̄)⊥

1∥v∥2≤(γ1/2α+ᾱ)/γ⟨v, ei⟩φ(v)φ(α)dvdα
(110)

=
∫ r/γ1/2

−ᾱ/γ1/2

∫
∇Φ(x̄)⊥

1∥v∥2≥(γ1/2α+ᾱ)/γ⟨v, ei⟩φ(v)φ(α)dvdα
(111)

Hence, combining this result and the Cauchy-Schwarz inequality we have for any i ∈ {1, . . . , d− 1}

(
∫
Rd 1x+

√
γz∈C(x,γ)⟨z, ei⟩φ(z)dz)2 = (

∫ r/γ1/2

−ᾱ/γ1/2

∫
∇Φ(x̄)⊥

1∥v∥2≥(γ1/2α+ᾱ)/γ⟨v, ei⟩φ(v)φ(α)dvdα)2

(112)

≤
∫
∇Φ(x̄)⊥

⟨v, ei⟩2φ(v)dv(
∫ r/γ1/2

−ᾱ/γ1/2 Ψ((ᾱ+ αγ1/2)/γ, d− 1)1/2φ(α)dα)2. (113)

Hence, we get that ∑d−1
i=1 a

2
i (
∫
Rd 1x+

√
γz∈C(x,γ)⟨z, ei⟩φ(z)dz)2 ≤ ∥u∥2ψ2(γ), (114)

with ψ given by Lemma 9. Recalling that ∥b̂γ(x)∥ ≥M we have

⟨b̂γ(x), u⟩2 ≤ 16ψ(γ)2/γ ≤ c2(ε/16)M2 ≤ (ε/16)⟨b̂γ(x),∇Φ(x̄)⟩2, (115)

which concludes the proof.
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D.7 Submartingale problem and weak solution

We are now ready to conclude the proof.

Theorem 22. There exists P⋆ a distribution on D([0, T ] ,M) such that limγ→0 P̂γ = P⋆. In addition,
for any f ∈ C1,2([0, T ] ×M,R) with ⟨∇Φ(x̄),∇f(x)⟩ ≥ 0 for any t ∈ [0, T ] and x ∈ ∂M, we
have that the process (f(t, ω(t)))t∈[0,T ] given for any t ∈ [0, T ]

f(t, ω(t))−
∫ t

0
(∂sf(s, ω(s) +

1
2∆f(s, ω(s)))1M(ω(s))ds, (116)

is a P submartingale.

Proof. Condition (A) (Stroock et al., 1971, p.197) is a consequence of Proposition 13. Condition (B)
(Stroock et al., 1971, p.197) is a consequence of Proposition 18. Condition (C) (Stroock et al., 1971,
p.198) is a consequence of Corollary 16. Condition (D) (Stroock et al., 1971, p.198) is a consequence
of Proposition 14. We fix ρ = 0 and condition (1) (Stroock et al., 1971, p.203) is a consequence of
Proposition 19. Condition (2)-(iii) (Stroock et al., 1971, p.203) is a consequence of Proposition 20.
Condition (2)-(iv) (Stroock et al., 1971, p.203) is a consequence of Proposition 21. We conclude
upon using (Stroock et al., 1971, Theorem 6.3) and (Stroock et al., 1971, Theorem 5.8).

We finally conclude the proof of Theorem 6 upon using the results of (Kang et al., 2017) which
establish the link between a weak solution to the reflected SDE and the solution to a submartingale
problem.

Theorem 23. For any T ≥ 0, (X̂γ
t )t∈[0,T ] weakly converges to (Xt)t∈[0,T ] such that for any

t ∈ [0, T ]

Xt = x+Bt − kt, |k|t =
∫ t

0
1Xs∈∂Md|k|s, kt =

∫ t

0
n(Xs)d|k|s. (117)

Proof. Using Theorem 22 and (Kang et al., 2017, Theorem 1, Proposition 2.12), we have that P in
Theorem 22is associated with a solution to the extended Skorokhod problem. We conclude that a
solution to the extended Skorokhod problem is a solution to the Skorokhod problem using (Ramanan,
2006, Corollary 2.10).

D.8 Extension to the Metropolis process

We recall that the Metropolis process is defined as follows. Let (Xγ
k )k∈N given for any γ > 0 and

k ∈ N by Xγ
0 = x ∈ M and for Xγ

k+1 = Xγ
k +
√
γZk if Xγ

k +
√
γZγ

k ∈ M and Xγ
k otherwise,

Zk ∼ N(0, Id). We recall that b̂γ , Σ̂γ and ∆̂γ are given by (48), (51) and (55). In particular, denoting
K̂γ the Markov kernel associated with (X̂γ

k )k∈N, i.e. K̂γ : M×B(M)→ [0, 1] such that for any
x ∈ M, K̂γ(x, ·) is a probability measure, for any A ∈ B(M), K̂γ(·,A) is a measurable function
and E[1A(X̂

γ
1 ) | X̂

γ
0 = x] = K̂γ(x,A). We have that for any γ > 0 and x ∈M

b̂γ(x) = (1/γ)
∫
M(y − x)K̂γ(x,dy), (118)

Σ̂γ(x) = (1/γ)
∫
M(y − x)⊗2K̂γ(x, dy), (119)

∆̂γ(x) = (1/γ)
∫
M ∥y − x∥

4K̂γ(x, dy). (120)

In what follows, we denote aγ(x) = E[1x+
√
γZ0∈M]. Denote Kγ the kernel associated with

(Xγ
k )k∈N. We have that for any A ∈ B(M), γ > 0 and x ∈M

Kγ(x,A) = E[1Xγ
k+1∈A1x+

√
γZk+1∈M] + (1− aγ(x))1A(x) (121)

= aγ(x)K̂γ(x,A) + (1− aγ(x))1A(x). (122)

We define for any γ > 0 and x ∈M

bγ(x) = (1/γ)
∫
M(y − x)Kγ(x,dy), (123)

Σγ(x) = (1/γ)
∫
M(y − x)⊗2Kγ(x, dy), (124)

∆γ(x) = (1/γ)
∫
M ∥y − x∥

4Kγ(x, dy). (125)
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Using (122), we get that for any γ > 0 and x ∈M

bγ(x) = aγ(x)b̂γ(x), Σγ(x) = aγ(x)Σ̂γ(x), ∆γ(x) = aγ(x)∆̂γ(x). (126)

Using Lemma 12, we have that for any γ ∈ (0, γ̄) and x ∈M, aγ(x) ≥ 1/4.

In order to conclude for the convergence of the Metropolis process we adapt Theorem 22 and
Theorem 23. We define Xγ : R+ → M given for any k ∈ N by Xγ

kγ = Xγ
k and for any

t ∈ [kγ, (k + 1)γ), Xγ
t = Xγ

k . Note that (Xt)t∈[0,T ] is a D([0, T ] ,M) valued random variable,
where D([0, T ] ,M) is the space of right-continuous with left-limit processes which take values in
M. We denote Pγ the distribution of (Xt)t∈[0,T ] on D([0, T ] ,M).

Theorem 24. There exists P⋆ a distribution on D([0, T ] ,M) such that limγ→0 Pγ = P⋆. In addition,
for any f ∈ C1,2([0, T ] ×M,R) with ⟨∇Φ(x̄),∇f(x)⟩ ≥ 0 for any t ∈ [0, T ] and x ∈ ∂M, we
have that the process (f(t, ω(t)))t∈[0,T ] given for any t ∈ [0, T ]

f(t, ω(t))−
∫ t

0
(∂sf(s, ω(s) +

1
2∆f(s, ω(s)))1M(ω(s))ds, (127)

is a P submartingale.

Proof. Condition (A) (Stroock et al., 1971, p.197) is a consequence of Proposition 13 and (126).
Condition (B) (Stroock et al., 1971, p.197) is a consequence of Proposition 18 and (126). Condition
(C) (Stroock et al., 1971, p.198) is a consequence of Corollary 16 and (126). Condition (D) (Stroock
et al., 1971, p.198) is a consequence of Proposition 14 and (126). We fix ρ = 0 and condition (1)
(Stroock et al., 1971, p.203) is a consequence of Proposition 19 and that limγ→0 a

γ = 1 uniformly
on compact subsets K ⊂ M. Condition (2)-(iii) (Stroock et al., 1971, p.203) is a consequence
of Proposition 20 and (126). Condition (2)-(iv) (Stroock et al., 1971, p.203) is a consequence of
Proposition 21 and (126). We conclude upon using (Stroock et al., 1971, Theorem 6.3) and (Stroock
et al., 1971, Theorem 5.8).

Theorem 25. For any T ≥ 0, (Xγ
t )t∈[0,T ] weakly converges to (Xt)t∈[0,T ] such that for any

t ∈ [0, T ]

Xt = x+Bt − kt, |k|t =
∫ t

0
1Xs∈∂Md|k|s, kt =

∫ t

0
n(Xs)d|k|s. (128)

Proof. The proof is identical to Theorem 23.

E Modelling geospatial data within non-convex boundaries

To demonstrate the ability of the proposed method to model distributions whose support is restricted
to manifolds with highly non-convex boundaries, we derived a geospatial dataset based on the
historical wildfire incidence rate within the continental United States (described in in Appendix E.1)
and, using the corresponding country borders, trained a constrained diffusion model by adapting the
point-in-spherical-polytope conditions outlined in (Ketzner et al., 2022) (described in Appendix E.2).

E.1 Derivation of bounded geospatial dataset

Specifically, we retrieved the rasterised version of the wildfire data provided by Welty et al. (2020),
converted it to a spherical geodetic coordinate system using the CARTOPY library (Met Office, 2010
- 2015), and drew a weighted subsample of size 1× 106. We then retrieved the country borders of
the continental United States from (Natural Earth, 2023) and mapped them to the same geodetic
reference frame as the wildfire data. A visualization of the resulting dataset is presented in Figure 9.

E.2 Point-in-spherical-polytope algorithms

The support of the data-generating distribution we aim to approximate is thus restricted to a highly
non-convex spherical polytope P ∈ S2 given by the country borders of the continental United States.
To determine whether a query point q ∈ S2 is within P, we adapt an efficient reformulation of the
point-in-spherical-polygon algorithm (Bevis et al., 1989) presented in (Ketzner et al., 2022). The
algorithm requires the provision of a reference point r ∈ S2 known to be located in P and determines

15



Figure 9: Orthographic projection of the wildfire dataset described in Appendix E. The projection is
aligned with the centroid of the continental United States and zoomed in ten-fold for visual clarity.
All visualisations of geospatial data were generated using the GEOVIEWS (Rudiger et al., 2023) and
DATASHADER (Bednar et al., 2023) libraries.

whether q is inside or outside the polygon by checking whether the geodesic between r and q crosses
the polygon an even or odd number of times. Letting x̂ ∈ R3 denote the Cartesian coordinates of a
point x ∈ S2, (Ketzner et al., 2022) rely on a Cartesian reference coordinate system Q̂ (with its z-axis
given by r̂) and the corresponding spherical coordinate system Q to decompose the edge-crossing
condition of Bevis et al. (1989) into two efficiently computable parts. That is, the geodesic between q
and r crosses an edge ei = (vi, vj) of the polygon if:

(i) the longitude of q in Q is bounded by the longitudes of vi and vj in Q, i.e.

ϕQ(q) ∈ [min(ϕQ(vi), ϕQ(vj)),max(ϕQ(vi), ϕQ(vj))],

(ii) the plane specified by the normal vector p̂i = v̂i × v̂j represents an equator that separates q
and r into two different hemispheres, i.e.

sign(⟨p̂i, r̂⟩ · ⟨p̂i, q̂⟩) = −1.

Especially when P is fixed and the corresponding coordinate transformations and normal vectors
can be precomputed for each edge, this algorithm affords an efficient and parallelisable approach to
determining whether any given point on S2 is contained by a spherical polytope.

F Supplementary Experimental Results

F.1 Evaluating log-barrier and Euclidean models

Following (Fishman et al., 2023), we approached the empirical evaluation of our Metropolis model by
computing the maximum mean discrepancy (MMD) (Gretton et al., 2012) between samples from the
true distribution and the trained diffusion models. The MMD is a statistic that quantifies the similarity
of two samples by computing the distance of their respective mean embeddings in a reproducing
kernel Hilbert space. For this, we use an RBF kernel with the same length scales as the standard
deviations of the normal distributions used to generate the synthetic distribution. We sum these RBF
kernels by the weights of the corresponding components of the synthetic Gaussian mixture model.

This is essential to be able to include the log-barrier in the comparison since the log-barrier methods
suffer severe instabilities around the boundary, as the space is stretched to more and more. These
instabilities cause the problems in fitting the log-barrier model and in computing the likelihood using
the log-barrier model.
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Table 5: Maximum mean discrepancy (MMD) (↓) of a held-out test set from a synthetic bimodal
distribution over convex subsets of Rd bounded by the hypercube [−1, 1]d and unit simplex ∆d.
Means and standard deviations are computed over 3 different runs.

Manifold Dimension Process MMD % in Manifold
mean std mean

∆d

2

Euclidean 0.027 0.011 0.969
Log-Barrier 0.050 0.012. 1.000
Reflected 0.041 0.008 1.000
Rejection 0.030 0.002 1.000

3

Euclidean 0.032 0.015 0.969
Log-Barrier 0.238 0.009 1.000
Reflected 0.179 0.013 1.000
Rejection 0.111 0.002 1.000

10

Euclidean 0.028 0.001 0.946
Log-Barrier 0.275 0.0015 1.000
Reflected 0.233 0.004 1.000
Rejection 0.226 0.005 1.000

[0, 1]d

2

Euclidean 0.069 0.004 0.992
Log-Barrier 0.66 0.006 1.000
Reflected 0.048 0.012 1.000
Rejection 0.025 0.005 1.000

3

Euclidean 0.074 0.004 0.991
Log-Barrier 0.209 0.0077 1.000
Reflected 0.085 0.006 1.000
Rejection 0.049 0.006 1.000

10

Euclidean 0.086 0.007 0.968
Log-Barrier 0.330 0.004 1.000
Reflected 0.314 0.049 1.000
Rejection 0.138 0.007 1.000

From the results in Table 5, it is clear that the log-barrier approach performs significantly worse
than the Reflected model and the Metropolis models across all settings. This, in conjunction with
numerical instabilities we encountered when attempting to evaluate sample likelihoods with the
log-barrier models as presented in (Fishman et al., 2023), motivated us to focus on the Reflected and
Metropolis models in the main text.

Additionally, we note that the unconstrained Euclidean models outperform the constrained methods on
both the simplex and the hypercube as the dimensionality of the problem space increases. Especially
on the simplex, we attribute this performance primarily to the fact that the synthetic distribution
is simply a standard Normal with only a small portion close to the boundary. The amount of
reflection needed to model the distribution decreases in higher dimensions, as the mass of the Normal
distribution gets increasingly concentrated—which Euclidean diffusion models will fit well. This
same dynamic is partially responsible for the hypercube performance.

F.2 Implementational details

All source code that is needed to reproduce the results presented below is made available under
https://github.com/oxcsml/score-sde/tree/metropolis, which requires a supporting package to handle
the different geometries that is available under https://github.com/oxcsml/geomstats/tree/polytope.

We use the same architecture in all of our experiments: a 6-layer MLP with 512 hidden units and sine
activation functions, except in the output layer, which uses a linear activation function. Following
(Fishman et al., 2023), we implement a simple linear function that scales the score by the distance
to the boundary, approaching zero within ϵ = 0.01 of the boundary. This ensures the score obeys
the Neumann boundary conditions required by the reflected Brownian Motion. For the geospatial
dataset within non-convex country borders, we do not use distance rescaling. Instead, we substitute
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it with a series of step functions to rescale the score. This is a proof-of-concept to show that even
when computing the distance is hard, simple and efficient approximations suffice. When constructing
Riemannian diffusion models on the torus and sphere for the protein and geospatial datasets, we follow
(De Bortoli et al., 2022) and include an additional preconditioner for the score on the manifold. We
do not use the residual trick or the standard deviation trick, which are both common score-rescaling
functions in image model architectures; in our setting, we find that they adversely affect model
training.

For the forward/reverse process we always set T = 1, β0 = 1× 10−3 and then tune β1 to ensure that
the forward process just reaches the invariant distribution with a linear β-schedule. At sampling time
we use N = 100 steps of the discretised process. We discretise the training process by selecting a
random N between 0 and 100 for each example, rolling out to that time point. This lets us cheaply
implement a simple variance reduction technique: we take multiple samples from this trajectory by
selecting multiple random N to save for each example. This technique was originally described in
(Fishman et al., 2023) and we find it is also helpful for our Metropolis models. For all experiments,
we use the ism loss with a modified weighting function of (1 + t), which we found to be essential to
model training. All experiments use a batch size of 256 with 8 repeats per batch. For training, we use
a learning rate of 2× 10−4 with a cosine learning rate schedule. We trained for 100,000 batches on
the synthetic examples and 300,000 batches on the real-world examples (robotics, proteins, wildfires).

We selected these hyperparameters from a systematic search over learning rates (6× 10−4, 2× 10−4,
6 × 10−5, 2 × 10−5), learning rate schedules (cosine, log-linear), and batch sizes (128, 256, 512,
1024) on synthetic examples for the reflected and log-barrier models. Similar parameters worked well
for both, and we used those for our Metropolis models to allow a straightforward comparison. We
tried N = 100, 1000 for several synthetic examples but found that very large rollout times actually
hurt performance for the Metropolis model, though the log-barrier performed a bit better with longer
rollouts and the reflected was the same.

All models were trained on a single NVIDIA GeForce GTX 1080 GPU. All of the Metropolis models
presented here can easily be trained on this hardware in under 4 hours. The runtime for the log-barrier
and reflected models is considerably longer.

F.3 Synthetic Distributions on Constrained Manifolds of Increasing Dimensionality

(a) Data distribution (b) Metropolis model (c) Reflected model (d) Uniform distribution

Figure 10: Qualitiative comparison of samples from the data distribution, our Metropolis model, a
Reflected model and the uniform distribution for a synthetic bimodal distribution on [−1, 1]2.

(a) Data distribution (b) Metropolis model (c) Reflected model (d) Uniform distribution

Figure 11: Qualitiative comparison of samples from the data distribution, our Metropolis model, a
Reflected model and the uniform distribution for a synthetic bimodal distribution on ∆2.

18



F.4 Constrained Configurational Modelling of Robotic Arms

The following univariate marginal and pairwise bivariate plots visualise the distribution of different
samples in

(i) the three dimensions needed to describe an ellipsoid M =

[
l1 l2
l2 l3

]
∈ S2++ and

(ii) the two dimensions needed to describe a location in R2.

F.4.1 Visualisation of samples from the data distribution

(a) Plots of the univariate marginal and pairwise
bivariate distributions of 1× 105 samples from the
data distribution in S2

++.

(b) Plots of the univariate marginal and pairwise
bivariate distributions of 1× 105 samples from the
data distribution in R2.

Figure 12: Visualisation of the data distribution in S2++ × R2 using univariate marginal and pairwise
bivariate plots.

F.4.2 Visualisation of samples from our Metropolis sampling-based diffusion model

(a) Plots of the univariate marginal and pairwise
bivariate distributions of 1 × 105 samples from
our Metropolis sampling-based diffusion model in
S2
++.

(b) Plots of the univariate marginal and pairwise
bivariate distributions of 1×105 samples from our
Metropolis sampling-based diffusion model in R2.

Figure 13: Visualisation of the distribution learned by our Metropolis sampling-based diffusion model
in S2++ × R2 using univariate marginal and pairwise bivariate plots.
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F.4.3 Visualisation of samples from a reflected Brownian motion-based diffusion model

(a) Plots of the univariate marginal and pairwise
bivariate distributions of 1× 105 samples from a
reflected Brownian motion-based diffusion model
in S2

++.

(b) Plots of the univariate marginal and pairwise
bivariate distributions of 1× 105 samples from a
reflected Brownian motion-based diffusion model
in R2.

Figure 14: Visualisation of the distribution learned by a reflected Brownian motion-based diffusion
model in S2++ × R2 using univariate marginal and pairwise bivariate plots.

F.4.4 Visualisation of samples from the uniform distribution

(a) Plots of the univariate marginal and pairwise
bivariate distributions of 1× 105 samples from the
uniform distribution in S2

++.

(b) Plots of the univariate marginal and pairwise
bivariate distributions of 1× 105 samples from the
uniform distribution in R2.

Figure 15: Visualisation of the uniform distribution in S2++ × R2 using univariate marginal and
pairwise bivariate plots.

F.5 Conformational Modelling of Protein Backbones

The following univariate marginal and pairwise bivariate plots visualise the distribution of different
samples in (i) the polytope P ⊂ R3 and (ii) the torus T4 used to parametrise the conformations of a
polypeptide chain of length N = 6 with coinciding endpoints. We refer to (Han et al., 2006) for full
detail on the reparametrisation and to (Fishman et al., 2023) for a full description of the dataset.
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F.5.1 Visualisation of samples from the data distribution

(a) Plots of the univariate marginal and pairwise
bivariate distributions of 1× 105 samples from the
data distribution in P ⊂ R3.

(b) Plots of the univariate marginal and pairwise
bivariate distributions of 1× 105 samples from the
data distribution in T4.

Figure 16: Visualisation of the data distribution in P ⊂ R3 × T4 using univariate marginal and
pairwise bivariate plots.

F.5.2 Visualisation of samples from our Metropolis sampling-based diffusion model

(a) Plots of the univariate marginal and pairwise
bivariate distributions of 1×105 samples from our
Metropolis model in P ⊂ R3.

(b) Plots of the univariate marginal and pairwise
bivariate distributions of 1×105 samples from our
Metropolis model in T4.

Figure 17: Visualisation of the distribution learned by our Metropolis model in P ⊂ R3 × T4 using
univariate marginal and pairwise bivariate plots.
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F.5.3 Visualisation of samples from a reflected Brownian motion-based diffusion model

(a) Plots of the univariate marginal and pairwise
bivariate distributions of 1× 105 samples from a
reflected Brownian motion-based diffusion model
in P ⊂ R3.

(b) Plots of the univariate marginal and pairwise
bivariate distributions of 1× 105 samples from a
reflected Brownian motion-based diffusion model
in T4.

Figure 18: Visualisation of the distribution learned by a reflected Brownian motion-based diffusion
model in P ⊂ R3 × T4 using univariate marginal and pairwise bivariate plots.

F.5.4 Visualisation of samples from the uniform distribution

(a) Plots of the univariate marginal and pairwise
bivariate distributions of 1× 105 samples from the
uniform distribution in P ⊂ R3.

(b) Plots of the univariate marginal and pairwise
bivariate distributions of 1× 105 samples from the
uniform distribution in T4.

Figure 19: Visualisation of the uniform distribution in P ⊂ R3 × T4 using univariate marginal and
pairwise bivariate plots.
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