
PLASTIC: Improving Input and Label Plasticity
for Sample Efficient Reinforcement Learning

Hojoon Lee∗ Hanseul Cho∗ Hyunseung Kim∗ Daehoon Gwak Joonkee Kim
Jaegul Choo Se-Young Yun Chulhee Yun

Kim Jaechul Graduate School of AI, KAIST
{joonleesky, jhs4015, mynsng, daehoon.gwak, joonkeekim,

jchoo, yunseyoung, chulhee.yun}@kaist.ac.kr

Abstract

In Reinforcement Learning (RL), enhancing sample efficiency is crucial, particu-
larly in scenarios when data acquisition is costly and risky. In principle, off-policy
RL algorithms can improve sample efficiency by allowing multiple updates per
environment interaction. However, these multiple updates often lead the model to
overfit to earlier interactions, which is referred to as the loss of plasticity. Our study
investigates the underlying causes of this phenomenon by dividing plasticity into
two aspects. Input plasticity, which denotes the model’s adaptability to changing
input data, and label plasticity, which denotes the model’s adaptability to evolv-
ing input-output relationships. Synthetic experiments on the CIFAR-10 dataset
reveal that finding smoother minima of loss landscape enhances input plasticity,
whereas refined gradient propagation improves label plasticity. Leveraging these
findings, we introduce the PLASTIC algorithm, which harmoniously combines
techniques to address both concerns. With minimal architectural modifications,
PLASTIC achieves competitive performance on benchmarks including Atari-100k
and Deepmind Control Suite. This result emphasizes the importance of preserving
the model’s plasticity to elevate the sample efficiency in RL. The code is available
at https://github.com/dojeon-ai/plastic.

1 Introduction

PLASTIC (RR8)

(RR4)

(RR2)

(RR2)

(RR4)

SR-SPR(RR8)

DreamerV3

MLR

PlayVirtual

(RR4)

PLASTIC��(RR8)
†

Figure 1: Scaling of our proposed
method, PLASTIC, on the Atari-100k
benchmark compared to state-of-the-art
methods (Section 4.3).

In Reinforcement Learning (RL), achieving sample effi-
ciency is crucial in various domains including robotics, au-
tonomous driving, and healthcare, where data acquisition
is constrained and expensive [42, 36]. In theory, off-policy
RL algorithms promise increased sample efficiency by al-
lowing multiple updates of policy or value functions from
a single data instance [26, 24, 43]. However, they tend to
suffer from the loss of plasticity, a phenomenon where the
models overfit to earlier interactions and fail to adapt to
new experiences [52, 19, 43].

The origins of the loss of plasticity are a focus of contem-
porary research. One avenue of study points is the role
of the smoothness of the loss surface. Models seeking
smoother minima of loss landscape tend to exhibit more
stable learning patterns and enhanced plasticity [46, 47].

∗Equal contributions.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/dojeon-ai/plastic

C
R
e
LU

Atari�100k
26�tasks

S
A
M

LNB
a
se

0.25

R
e
se
t

P
LA
S
T
IC

0.20

0.35

0.30

0.40

C
R
e
LU

DMC�Suite
11�tasks

S
A
M

LNB
a
se

200

R
e
se
t

P
LA
S
T
IC

100

400

300

500

RL�Benchmark

C
R
e
LU

Input�Plasticity

S
A
M

LNB
a
se

65

R
e
se
t

P
LA
S
T
IC

60

75

70

80

C
R
e
LU

Label�Plasticity

S
A
M

LNB
a
se

67

R
e
se
t

P
LA
S
T
IC

66

69

68

70

Synthetic�Experiment

Figure 2: Left: Performance of Synthetic Experiments. Layer Normalization (LN) and Sharpeness-
Aware Minimization (SAM) considerably enhance input plasticity, while their effect on label plasticity
is marginal. Conversely, Concatenated ReLU (CReLU) and periodic reinitialization (Reset) predomi-
nantly improve label plasticity with subtle benefits on input plasticity. Right: Performance of RL
Benchmarks. PLASTIC consistently outperforms individual methods, highlighting the synergistic
benefits of its integrated approach.

Another line of investigation emphasizes the role of gradient propagation, highlighting that as train-
ing continues, the saturation of active units can impede weight updates, diminishing the model’s
adaptability [18, 2].

To understand the interplay of these factors within the context of RL, we designed a couple of synthetic
experiments. The RL agent often confronts two adaptation scenarios, which involve adjusting to new
data inputs and evolving input-label dynamics. In particular, an example of the latter might be an
action once considered to be positive but later perceived as negative. Therefore, throughout this work
including our synthetic experiments, we categorize the model’s plasticity into two cases:

• Input Plasticity: adaptability to shifts in input data distributions, p(x).

• Label Plasticity: adaptability to evolving labels (returns) for given inputs (observations), p(y|x).

For our exploration, we employ the CIFAR-10 dataset [37]. To assess input plasticity, we train
the model from a progressively growing dataset, where the data is segmented into 100 chunks and
sequentially added to the buffer. On the other hand, label plasticity is examined by altering labels at
intervals, reflecting the dynamic nature of input-output associations in RL. We also adopt strategies
to enhance loss smoothness and gradient propagation in the tested models. The Sharpeness-Aware
Minimization (SAM) optimizer [21] and Layer Normalization (LN) [5] are employed for the former,
while periodic reinitialization of the last few layers (Reset) [81, 52] and Concatenated ReLU (CReLU)
activations [61, 2] are used to enhance the latter.

Our synthetic experiments yield clear distinctions between the proposed two concepts of plasticity. As
illustrated on the left side of Figure 2, smoother minima of loss largely improve input plasticity, while
maintaining the amount of gradient propagation has a pronounced impact on label plasticity. Building
on these findings, we propose an algorithm called PLASTIC, which combines SAM optimizer, LN,
periodic Reset, and CReLU activation to improve both input and label plasticity. The simplicity
of PLASTIC facilitates its seamless integration into standard off-policy RL frameworks, requiring
minimal code modifications. Notably, across the Atari-100k and Deepmind Control Suite benchmarks,
PLASTIC achieved competitive performance to the leading methods, underscoring its potential in
enhancing RL’s sample efficiency.

In summary, our main contributions are listed as follows:

• Through synthetic experiments, we find out that loss smoothness and refined gradient propagation
play separate roles in improving the model plasticity (Section 3).

• We introduce the PLASTIC, a simple-to-use and efficient algorithm that improves the model’s
plasticity by seeking a smooth region of loss surface and preserving gradient propagation.

• Empirically, PLASTIC achieved competitive performance on challenging RL benchmarks, includ-
ing Atari-100k and Deepmind Control Suite (Section 4.2-4.5).

2

2 Preliminaries

2.1 Sample Efficient Reinforcement Learning

Achieving sample efficiency is crucial for applying RL to real-world problems. Constraints such
as limited online data collection (e.g., robotics, educational agents) or safety considerations (e.g.,
autonomous driving, healthcare) emphasize the need for efficient RL algorithms [36, 42].

Off-policy RL algorithms like Rainbow [26] and SAC [24] offer improved sample efficiency by
permitting multiple policy or value function updates based on a single data collection. However, this
advantage may introduce a pitfall: the increased update rate can lead to overfitting, undermining the
model’s generalizability and adaptability to new datasets [29, 43].

To overcome these challenges, various methods have been proposed:

• Data Augmentation: Renowned for its effectiveness in computer vision [16, 80], data augmen-
tation excels in visual RL algorithms [73, 72, 40, 55, 68], particularly when combined with
self-supervised learning methods [39, 58, 77].

• Regularization: Diverse regularization strategies have also demonstrated their effectiveness,
including L2 regularization [45], spectral normalization [23, 11], dropout [27], and both feature
mixing [12] and swapping [10].

• Self-Supervised Learning: By incorporating auxiliary learning objectives, self-supervised learning
has emerged as a potential solution. Objectives encompass pixel or latent space reconstruction
[74, 77], future state prediction [58, 19, 41], and contrastive learning focusing on either instance
[39, 20] or temporal discrimination [53, 64, 48].

Despite these advancements, a key question remains. Why does an overfitted model face challenges
when adapting to new datasets?

2.2 Understanding Plasticity in Reinforcement Learning

The question for understanding model plasticity in RL is driven by the inherent need for plasticity as
agents consistently encounter new inputs and evolving input-output relationships.

A seminal contribution by Lyle et al. [47] highlighted the importance of smoother loss landscapes.
By applying layer normalization across all convolutional and fully connected layers, they managed to
flatten the loss landscapes, subsequently enhancing performance in Atari environments. While the
emphasis on smooth loss landscapes is relatively new in RL, its importance has been substantiated in
supervised learning, where empirical evidence suggests models converged on a wider and smoother
loss surface generalize better to unseen datasets [34, 30, 71]. Following this insight, the sharpness-
aware minimization (SAM) optimizer [21] has recently gained attention in supervised learning
[13, 44], aiming to minimize both training loss and its sharpness.

Concurrently, various studies point out a progressive decline in a network’s active units as a probable
cause for the loss of plasticity [2, 18]. As neural networks iteratively adjust their weights to minimize
training losses, the number of active units tends to shrink, often culminating in the dead ReLU
phenomenon [28, 17]. This reduction in active units hampers the gradient propagation to upper layers,
thus impairing network adaptability. Proposed remedies include periodic neuron reinitialization
[52, 19, 63] or employing Concatenated ReLU activation [61, 2], both showing promise in RL.

With these observations in mind, our primary endeavor is to delve into the complex interplay of
these factors. We aim to analyze whether these factors synergistically affect the model’s plasticity or
operate as distinct, individual contributors.

2.3 Off-Policy Reinforcement Learning Algorithms

Rainbow. Rainbow [26] is a widely used off-policy algorithm for discrete control settings that
integrates six different extensions to the standard DQN algorithm [50]. The extensions include
Double Q-learning [66], Prioritized Experience Replay [57], Dueling Networks [69], Multi-Step
Return, Distributional Q-function [8], and Noisy Networks [22]. Rainbow significantly improves the
performance and robustness of the standard DQN algorithm, thereby addressing shortcomings in
function approximation and exploration-exploitation trade-offs.

3

The Q-value updates in the Rainbow algorithm follow the principle of minimizing the Temporal-
Difference (TD) error which is defined as:

L(w,w−, τ) = [Qw(s, a)− (r + γmax
a′

Qw−(s′, a′))]2 (1)

where w denotes the model weights, w− is the weights of the target model, and τ = (s, a, r, s′) is
the transition sampled from the replay buffer B.

Noisy Networks [22] introduce stochasticity into the model weights, reparameterizing them as:

w = µ+ σ · ε̃ (2)

where µ and σ are the learnable weights, whereas ε̃ is a random vector sampled from an isotropic
Gaussian distribution, adding randomness to the layer. (We denote element-wise product by ‘·’.)

Soft Actor-Critic. Soft Actor-Critic (SAC) [24], a prevalent off-policy algorithm for continuous
control, aims to maximize the expected return coupled with an entropy bonus. SAC consists of a
policy π and a critic model Q, each parameterized by weights θ and w respectively.

In training, the critic Qw is trained to minimize the following objective, defined as

LQ(θ,w; τ) = [Qw(s, a)− (r + γ(Qw(s′, a′)− α log πθ(s
′, a′)))]2, a′ ∼ πθ(·|s′) (3)

where α is the entropy coefficient and τ = (s, a, r, s′) is the transition sampled from the buffer B.

Subsequently, the policy πθ is jointly trained to maximize the following objective:

Lπ(θ,w; s) = Ea∼πθ
[(Qw(s, a)− α log πθ(a|s)]. (4)

Throughout this paper, all of the plasticity-preserving methods (LN, SAM, Reset, CReLU) will be
integrated and evaluated on top of these standard off-policy RL algorithms.

3 Synthetic Experiments

Analyzing the loss of plasticity in RL is indeed intricate given RL’s multifaceted nature, encompassing
challenges such as credit assignments, noisy targets, and the exploration-exploitation tradeoff. To
alleviate this complexity, we design synthetic supervised learning experiments within a controlled
framework using the CIFAR-10 dataset [37]. Our focus is to evaluate the model’s adaptive capabilities
under two distinct adaptation scenarios:

Input Adaptation: In RL, as the agent continually interacts with the environment, it constantly
encounters new data through exploration. Effective adaptation to this data is paramount for effective
decision-making. To simulate this scenario, we partitioned the training data into 100 chunks,
sequentially adding them to a buffer. The training was conducted by sampling data from this
progressively growing buffer. Overfitting to earlier data chunks and failing to adapt to newer ones
would indicate performance degradation compared to a model trained on the entire dataset.

Label Adaptation: The RL domain often experiences shifts in the relationships between inputs and
labels. Our synthetic experiment mirrored this dynamic by periodically altering labels during the
training phase. The labels were randomly shuffled 100 times, with each class’s labels uniformly
reassigned, ensuring a consistent reassignment within a class (e.g., all ’cat’ images transition from
class 3 to class 4). A model’s overfitting to initial relationships would impede its capability to adeptly
adapt to evolving relationships.

Our experimental setup resonates with common design choices in RL [50, 26, 73], comprising three
convolutional layers for the backbone and three fully connected layers for the head. Employing
Stochastic Gradient Descent (SGD) with momentum [56, 54] as the optimizer, and a batch size of
128, the model underwent 50,000 updates, with 500 updates at each alternation step (i.e., appending
a chunk for input adaptation and alternating labels for label adaptation). An exhaustive sweep was
carried out for the learning rate and weight decay range from {0.1, 0.01, 0.001, 0.0001, 0.00001},
integrating weight decay to minimize variance across individual runs. Each methodology was trained
over 30 random seeds, with results presented within a 95% confidence interval.

To delve into the impact of pursuing a smooth loss surface and preserving gradient propagation,
we selected four distinct methods: Layer Normalization (LN) and Sharpness-Aware Minimization

4

LN SAM CReLU Reset
5

0

5

10

15

In
pu

t A
da

pt
at

io
n

Improvement of individual method

LN+SAM LN+CReLU LN+Reset SAM+CReLU SAM+Reset CReLU+Reset PLASTIC
5

0

5

10

15

In
pu

t A
da

pt
at

io
n

Improvement of combined methods

1

0

1

2

3

4

5

La
be

l A
da

pt
at

io
n

1

0

1

2

3

4

5

La
be

l A
da

pt
at

io
n

Figure 3: Comparative performance improvements of various methods and their combinations on
input and label adaptation tasks. The left panel showcases individual method performance, while the
right panel delves into the synergistic benefits of combining multiple methods.

(SAM) optimizer for the former, and Concatenated Rectified Linear Unit (CReLU) activation and
Reset for the latter. For the SAM optimizer, the perturbation parameter was tuned across the set
{0.1, 0.03, 0.01}, and for the Reset method, the reset interval was tuned over {5, 10, 20} data chunks.
Our analysis extended to exploring the synergistic interplay between these methods. To this end,
we examined all unique pair-wise combinations of the selected methods (LN + SAM, ..., CReLU +
Reset) with a combination of all methods. This exploration aimed to unveil synergetic effects between
different methods in promoting smoother model landscapes and enhancing gradient propagation.

In Figure 3, we observed a clear distinction between the effects of various methods on input and label
adaptation capabilities. The left panel illustrates the performance of applying individual methods. We
found that LN and SAM excel in enhancing input adaptation, yet only offer marginal improvements
for label adaptation. In contrast, CReLU and Reset yield modest enhancements in input adaptation
while exhibiting a significant impact on label adaptation.

Turning our attention to the right panel, the focus is on the combined synergies of methods. The pairing
of LN with SAM predominantly enhances input adaptation. When LN is merged with either CReLU
or Reset, there’s a marked improvement across both adaptation types. Likewise, the combination of
SAM with either CReLU or Reset benefits both input and label adaptation scenarios. Among these
combinations, the CReLU and Reset pairing is skewed towards improving label adaptation. Notably,
PLASTIC, which integrates all of these methods yielded the most significant enhancements.

In summary, while individual methods are tailored towards specific enhancement areas, the integration
of these techniques can yield synergies across both adaptation landscapes. These findings reinforce
our notion of distinct yet complementary roles of seeking smooth loss surface and enhancing gradient
propagation to improve the model’s plasticity.

4 Experiments

In this section, we evaluate the effectiveness of enhancing the model’s plasticity towards achieving
sample-efficient reinforcement learning. Our experiments span two widely recognized benchmarks:
the Atari-100k [9] for discrete control tasks and the DeepMind Control Suite (DMC) [65] for
continuous control tasks. We have organized our experimental pursuits into four main subsections:

• Assessing the performance of the PLASTIC algorithm across both domains (Section 4.2).

• Analyzing the scaling behavior of PLASTIC. Specifically, we focus on the model’s responsiveness
with respect to the number of updates per environment interaction (Section 4.3).

• Exploring the advantages of improving plasticity on a large pre-trained model (Section 4.4).

• Ablation study for different combinations of plasticity-preserving methods (Section 4.5).

4.1 Experimental Setup

Atari-100k. Following the standard evaluation protocol from [32, 58], we evaluate the performance
of 26 games on Arcade Learning Environments [73], limited to 100k interactions. The results are

5

measured by averaging over 10 independent trials. We use Data-Regularized Q-learning (DrQ) [73]
as a base algorithm of PLASTIC, which is built on top of the Rainbow algorithm [26] and utilize data
augmentation techniques to alleviate overfitting.

Deepmind Control Suite Medium (DMC-M). To evaluate performance in the DMC benchmark,
we adopt the evaluation protocol and network architecture identical to Nikishin et al. [52]. This
benchmark consists of 19 continuous control tasks (i.e., 8 easy tasks and 11 medium tasks), where the
agent controls its behavior from raw pixels. We selected 11 medium tasks and trained the agent for 2
million environment steps. Within this setting, we use Data-Regularized Q-learning (DrQ) algorithm
[73], which incorporates data augmentation techniques in conjunction with the soft actor-critic
algorithm [24]. The results are averaged over 10 random seeds.

Baselines. This section presents a selection of plasticity-preserving methods designed to seek
smooth loss surfaces or improve gradient propagation in RL. To seek a smooth loss surface, we
consider Layer Normalization (LN) [47] and Sharpness-Aware Minimization Optimizer (SAM).
For LN, we apply layer normalization after each convolutional layer in the backbone network. For
SAM, we vary the perturbation parameter ρ from {0.03, 0.1, 0.3}, selecting the model with the best
performance.

For enhancing gradient propagation, we consider the re-initialization of the part of the networks
(Reset) [52] and Concatenated ReLU activations (CReLU) [2]. Reset involves periodically resetting
the parameters of the head layers to their initial distribution. Following [52], we reinitialize the
parameters of the head layers’ for every 40,000 gradient updates in Atari and 100,000 gradient
updates in DMC. For CReLU, we replace ReLU activation with concatenated ReLU, which preserves
both positive and negative features.

Metrics. To gain a deeper understanding of the underlying geometry of the loss landscape (i.e.,
smoothness), we employ the maximum eigenvalue of the Hessian (λmax) [33]. This metric provides
insights into the curvature of the loss function, where a larger value indicates a sharper and more
intricate optimization landscape and a smaller value corresponds to a smoother and potentially more
favorable landscape for optimization. To quantify the gradient propagation, we periodically record
the fraction of the active units in the feature map by processing 512 transitions [47, 61, 18], randomly
sampled from the replay buffer. When using ReLU activation, values below zero become inactive,
which does not contribute to the updates of incoming weights.

To evaluate the performance of the agent, we report a bootstrapped interval for the interquartile
mean (IQM), median, mean, and optimality gap, following the guidelines from [3]. For each
environment, we average the performance of the trajectories at the end of training, 100 for Atari
and 10 for DMC. For Atari, we normalize these scores to a Human Normalized Score (HNS) as
HNS= agent_score - random_score

human_score - random_score , which quantifies the relative performance of the agent compared to
human-level performance. More details of the experimental setup can be found in the Appendix.

4.2 Main Experiments

In this section, we present the experimental results aimed at evaluating the sample efficiency of the
PLASTIC algorithm. Our examination involved contrasting its efficacy against individual plasticity-
preserving methods. For this purpose, we used the Atari-100k and DMC-Medium benchmarks.

Table 1: Performance on Atari-100k and DMC-M. The results are averaged over 10 random seeds.

Method Atari-100k DMC-M

IQM Median Mean IQM Median Mean

Base 0.258 (0.224, 0.292) 0.277 (0.209, 0.295) 0.476 (0.432, 0.520) 213 (146, 304) 288 (223, 356) 293 (239, 347)

SAM [21] 0.325 (0.296, 0.354) 0.327 (0.284, 0.368) 0.501 (0.465, 0.537) 278 (196, 371) 341 (264, 404) 332 (277, 389)

LN [47] 0.259 (0.235, 0.293) 0.247 (0.218, 0.276) 0.463 (0.403, 0.522) 412 (332, 488) 415 (351, 491) 421 (366, 477)

CReLU [2] 0.256 (0.224, 0.287) 0.193 (0.176, 0.252) 0.498 (0.444, 0.553) 338 (133, 566) 398 (235, 549) 394 (267, 522)

Reset [52] 0.343 (0.314, 0.373) 0.291 (0.231, 0.369) 0.660 (0.611, 0.715) 514 (434, 590) 491 (430, 568) 498 (442, 555)

PLASTIC 0.421 (0.388, 0.457) 0.347 (0.266, 0.422) 0.933 (0.812, 1.067) 565 (498, 626) 540 (476, 599) 537 (487, 587)

6

Table 1 showcases the comparative outcomes of these methods. From the results, we observed that
while individual plasticity-preserving methods enhanced sample efficiency across both discrete and
continuous control benchmarks, the PLASTIC algorithm outperformed them all. This integration of
multiple methods within PLASTIC clearly demonstrates superior results over any single approach. A
comprehensive set of results for each environment is available in the Appendix.

None LN SAM CReLU Reset PLASTIC
Method

0

5

10

15

20

25

30

M
ax

im
um

 E
ig

en
 V

al
ue

 (
m

ax
)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (105)

0.0

0.2

0.4

0.6

0.8

1.0

(H
ea

d)
 Fr

ac
tio

n
of

 A
U None

LN
SAM
Reset

CReLU
PLASTIC

Figure 4: Left: The maximum eigenvalue of Hessian (λmax(∇2L)), representing the curvature of the
loss landscape. Right: Fraction of active units in the head layers. Both metrics were derived from the
DrQ algorithm’s evaluation on the Atari-100k benchmark.

To delve deeper into the mechanisms driving these performance enhancements, we focused on two
specific metrics: the maximum eigenvalue of the Hessian (λmax) and the fraction of active units in
the head layers. As illustrated in Figure 4, methods such as LN and SAM encourage the model to
converge on a smoother loss landscape. On the other hand, CReLU and Reset exhibit a pronounced
presence of active units. Notably, by integrating these methods, PLASTIC succeeded in converging
to a smooth loss region while maintaining a large number of active units.

Our prior synthetic experiments provided insight that convergence on a smoother loss landscape
improves the model’s input plasticity while enhanced gradient propagation enhances the model’s
label plasticity. Consequently, we conjecture that PLASTIC’s superior performance is attributed to
its capability to synergistically enhance both input and label plasticity.

4.3 Scaling Replay Ratio

Off-policy RL algorithms, in theory, promise enhanced sample efficiency by increasing the updates
per environment interaction, commonly known as the replay ratio. Yet, a practical challenge arises:
escalating updates often inversely affect sample efficiency due to the loss of the model’s plasticity.
This section delves into whether our PLASTIC algorithm can combat this decrement in plasticity,
thereby improving sample efficiency with a scaling replay ratio.

For our analysis, we scaled the replay ratio up to 8 and evaluated the efficacy of PLASTIC on the
Atari-100k benchmark. In addition, we compared PLASTIC against notable state-of-the-art (SOTA)
model-based and model-free algorithms.

To ensure consistency and comparability in our evaluation, we computed the GPU hours for every
method by leveraging their official codebases. For instance, PlayVirtual [76], MLR [78], SR-SPR
[19], and PLASTIC can parallelize multiple runs on a single GPU. Thus, for a fair comparison, we
followed the protocol as outlined by [19], dividing the total execution time by the total number of
executed runs.

Given that SAM requires an auxiliary gradient computation during optimization, and CReLU increases
the number of parameters, we introduced a simplified alternative, PLASTIC†. This simplified
version only integrates Layer Normalization (LN) and the reset mechanism, ensuring minimal
computational overhead. In addition, for each reset, we incorporate the Shrink & Perturb [4] method
on the backbone network parameters. Shrink & Perturb softly reinitializes the model’s parameters
as θt = αθt−1 + (1 − α)ϕ, where ϕ ∼ initializer. While Shrink & Perturb slightly lower
performance at a replay ratio of 2, it demonstrated enhanced sample efficiency when scaling the
replay ratio upwards.

As depicted in Table 2 and Figure 1, PLASTIC† establishes a Pareto frontier between Inter-Quartile
Mean (IQM) and computational cost, illustrating its notable computational efficiency. While Ef-

7

Table 2: Comparison to the SOTA on Atari-100k. For IRIS, DreamerV3, EfficientZero, PlayVirtual,
MLR, SR-SPR, and PLASTIC the results are averaged over 5, 5, 32, 15, 3, 10, and 5 seeds respectively.

Type Method Search Params (M) RR GPU hours IQM Median Mean OG

Model-Based
IRIS [49] - 30.4 - 36.3 0.501 0.289 1.046 0.512
DreamerV3 [25] - 17.9 - 5.1† 0.497 0.466 1.097 0.505
EfficientZero [75] ✓ 8.4 - 28.0 n/a 1.090 1.943 n/a

Model-Free

PlayVirtual [76] - 7.4 2 4.9 0.374 n/a n/a 0.558
MLR [78] - 161.7 2 3.7 0.432 n/a n/a 0.522

SR-SPR [19] - 7.3
2 2.7 0.444 0.336 0.910 0.516
4 5.3 0.544 0.523 1.111 0.470
8 10.2 0.589 0.560 1.188 0.452

PLASTIC† - 6.8
2 0.5 0.396 0.425 0.702 0.541
4 1.0 0.518 0.517 0.858 0.478
8 1.9 0.583 0.542 0.939 0.448

PLASTIC - 7.2
2 1.0 0.421 0.347 0.933 0.535
4 1.9 0.545 0.407 1.002 0.475
8 3.8 0.571 0.494 0.968 0.461

ficientZero exhibits state-of-the-art performance, it uniquely employs a search algorithm coupled
with a domain-specific heuristic, namely early environment resets. When excluding these specific
elements, PLASTIC stands out as a strong competitor against the other methods.

Through these results, we found that PLASTIC can effectively prevent the loss of plasticity by
incorporating various plasticity-preserving strategies. Furthermore, for practitioners, the construc-
tion of the Pareto frontier by PLASTIC† is particularly beneficial. By simply incorporating layer
normalization and implementing resets in the underlying off-policy RL algorithms, they can achieve
improved sample efficiency. This comes with the advantage of minimal computational overhead and
only requires minor code adjustments.

In conclusion, our experiments underscore the potential of leveraging enhanced plasticity as a means
to improve sample efficiency in RL.

4.4 Compatibility with a Large Pretrained Model

Recent years have seen growing interest in leveraging large pretrained models to improve sample
efficiency in RL [59, 60, 7]. We investigate how combining PLASTIC’s principles with these models
can counteract the loss of plasticity, a common obstacle to rapid adaptation.

For our evaluation, we selected the SimTPR model [41]. Using a 30-layer convolutional network,
SimTPR is pretrained via self-predictive representation learning on suboptimal Atari video datasets.
As SimTPR does not employ Layer Normalization (LN) and Concatenated ReLU (CReLU) acti-
vations, we employ SAM to seek a smoother loss landscape and use Reset techniques to facilitate
gradient propagation. Following the approach in section 4.3, for each reset, we applied Shrink &
Perturb to the backbone network. In the fine-tuning phase, we initialized an MLP-based head network
on top of the frozen, pretrained backbone network. This head network underwent training for 100k
environment steps, leveraging the Rainbow algorithm. See the Appendix section for more details.

Table 3 provides a summary of applying either SAM or
Reset to the pretrained model. Solely scaling the replay
ratio during fine-tuning leads to a noticeable decrement
in its efficacy. However, we observed that the usage of
Reset or SAM can counteract this decrease, leading to a
pronounced enhancement in performance. Furthermore,
the integration of both techniques surpassed individual
contributions, indicating the presence of synergy.

These observations imply that elevating both input and
label plasticity can play a pivotal role in enhancing sample
efficiency, even in large, pre-trained models.

Table 3: Fine-tuning from a pretrained
model. Reset† applies a soft reset to the
backbone and a hard reset to the head.

RR SAM Reset† IQM

2
0.366 (0.324, 0.397)

✓ 0.709 (0.650, 0.745)

✓ ✓ 0.776 (0.703, 0.854)

4
0.243 (0.214, 0.267)

✓ 0.780 (0.706, 0.865)

✓ ✓ 0.834 (0.769, 0.889)

8

4.5 Ablation Studies

To further analyze the interplay between seeking a smooth loss surface and improving gradient
propagation, we have conducted a series of ablation studies for different combinations of plasticity-
preserving methods. Here, we averaged the performance over 10 random seeds.

Table 4: Performance comparison of various
plasticity-preserving method combinations on
the Atari-100k benchmark.

LN SAM CReLU Reset IQM

0.258 (0.224, 0.292)
✓ 0.259 (0.235, 0.293)

✓ 0.325 (0.296, 0.354)
✓ 0.256 (0.224, 0.287)

✓ 0.343 (0.314, 0.373)

✓ ✓ 0.341 (0.325, 0.366)
✓ ✓ 0.284 (0.257, 0.314)
✓ ✓ 0.396 (0.365, 0.430)

✓ ✓ 0.372 (0.357, 0.408)
✓ ✓ 0.411 (0.377, 0.447)

✓ ✓ 0.373 (0.344, 0.402)

✓ ✓ ✓ ✓ 0.421 (0.388, 0.457)

Table 4 showcases the results when applying vari-
ous combinations to the Atari-100k benchmark. The
first five and the last rows echo the results from Ta-
ble 1. It becomes clear that the concurrent pursuit
of a smooth loss surface and the enhancement of
gradient propagation surpasses the individual applica-
tion of either strategy (for instance, LN + CReLU >
LN ≈ CReLU). The comprehensive integration of
all methods, referred to as PLASTIC, demonstrates
the highest performance.

For practitioners considering our approach, it’s worth
highlighting its adaptability. The methodology does
not necessitate the application of all methods across
every plasticity category to reap substantial benefits.
Instead, deploying just one technique from each cat-
egory can yield notable improvements. For scenarios
constrained by computational resources, using LN
and Reset is recommended over SAM, due to the latter’s extra computational burden, and CReLU,
given its added parameters (as noted in PLASTIC† in Section 4.3). Additionally, when one is working
with a pre-trained network where altering the overall architecture is not feasible, LN and CReLU
might not be practical since they inherently change the network’s structure. In such instances, as
detailed in Section 4.4, the combination of SAM and Reset emerges as a potent solution to improve
downstream performance.

5 Conclusion, Limitations, and Future Work

In this paper, we aimed to address the prevalent issue of the "loss of plasticity" in off-policy RL
algorithms. Through synthetic experiments on CIFAR-10, we discovered that finding a smoother
point of loss landscape largely improves input plasticity, while maintaining effective gradient prop-
agation enhances label plasticity. From these insights, we proposed PLASTIC, an algorithm that
synergistically combines the SAM optimizer, LN, periodic Reset, and CReLU activation. Empirically,
this combination substantially improves both forms of plasticity. Demonstrating robust performance
on benchmarks including Atari-100k, PLASTIC offers a promising avenue for advancing sample
efficiency in RL.

Nevertheless, our study has certain constraints. Our empirical evaluations were primarily limited
to the Atari and DMC environments. A compelling direction for future work would be to assess
PLASTIC’s efficacy in more intricate settings, such as MetaWorld [79], or Procgen [15]. These
environments introduce greater non-stationarities, challenging the model’s adaptability.

While the smoothness of loss surfaces and gradient propagation are fundamental to our findings, they
might not capture the full complexity of the "loss of plasticity" phenomenon. Notably, even though
SAM was sufficient to find the smoothest loss surfaces, Layer Normalization’s integration amplifies
its efficacy. Similarly, while CReLU inherently mitigates the reduction of active units, introducing
periodic resets offers pronounced enhancements. We hypothesize that the nuanced attributes like the
smoothness of loss landscapes and the number of active units might only scratch the surface of deeper
determinants influencing model plasticity. Therefore, an in-depth understanding and measurement of
network plasticity can pave the way for more foundational solutions.

In conclusion, while we acknowledge the constraints, our research offers practioncal insights for
amplifying the plasticity of RL agents We hope our findings open up a diverse possibility for future
exploration, potentially leading to more sample-efficient and adaptable algorithms in RL.

9

Acknowledgments and Disclosure of Funding

This work was supported by the Institute of Information & Communications Technology Planning
& Evaluation (IITP) grant funded by the Korean government (MSIT) (No.2019-0-00075, Artifi-
cial Intelligence Graduate School Program(KAIST)). HL, HK, and JC acknowledge support from
the National Supercomputing Center with supercomputing resources including technical support
(KSC-2023-CRE-0074). HC and CY acknowledge support from the Institute of Information &
communications Technology Planning & Evaluation (IITP) grant (No. 2022-0-00184, Development
and Study of AI Technologies to Inexpensively Conform to Evolving Policy on Ethics) and the
National Research Foundation of Korea (NRF) grant (No. RS-2023-00211352), both funded by the
Korea government (MSIT).

References
[1] Momin Abbas, Quan Xiao, Lisha Chen, Pin-Yu Chen, and Tianyi Chen. Sharp-maml: Sharpness-

aware model-agnostic meta learning. In Proc. the International Conference on Machine
Learning (ICML), 2022. 19

[2] Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of
plasticity in continual deep reinforcement learning. arXiv preprint arXiv:2303.07507, 2023. 2,
3, 6

[3] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. Proc. the Advances
in Neural Information Processing Systems (NeurIPS), 34:29304–29320, 2021. 6

[4] Jordan Ash and Ryan P Adams. On warm-starting neural network training. Proc. the Advances
in Neural Information Processing Systems (NeurIPS), 33:3884–3894, 2020. 7

[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016. 2

[6] Dara Bahri, Hossein Mobahi, and Yi Tay. Sharpness-aware minimization improves language
model generalization. In Proc. the Annual Meeting of the Association for Computational
Linguistics (ACL), pages 7360–7371, 2022. 19

[7] Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by
watching unlabeled online videos. Proc. the Advances in Neural Information Processing
Systems (NeurIPS), 2022. 8

[8] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-
ment learning. In Proc. the International Conference on Machine Learning (ICML), pages
449–458. PMLR, 2017. 3

[9] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013. 5

[10] David Bertoin and Emmanuel Rachelson. Local feature swapping for generalization in rein-
forcement learning. Proc. the International Conference on Learning Representations (ICLR),
2022. 3

[11] Nils Bjorck, Carla P Gomes, and Kilian Q Weinberger. Towards deeper deep reinforcement
learning with spectral normalization. Proc. the Advances in Neural Information Processing
Systems (NeurIPS), 34:8242–8255, 2022. 3

[12] Edoardo Cetin, Philip J Ball, Steve Roberts, and Oya Celiktutan. Stabilizing off-policy deep
reinforcement learning from pixels. arXiv preprint arXiv:2207.00986, 2022. 3

[13] Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform
resnets without pre-training or strong data augmentations. Proc. the International Conference
on Learning Representations (ICLR), 2022. 3

10

[14] Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform
resnets without pre-training or strong data augmentations. In International Conference on
Learning Representations, 2022. 19

[15] Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In Proc. the International Conference on Machine
Learning (ICML), pages 2048–2056. PMLR, 2020. 9

[16] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural
networks with cutout. arXiv preprint arXiv:1708.04552, 2017. 3

[17] Shibhansh Dohare, Juan Hernandez-Garcia, Parash Rahman, Richard Sutton, and A Rupam
Mahmood. Loss of plasticity in deep continual learning. 2023. 3

[18] Shibhansh Dohare, Richard S Sutton, and A Rupam Mahmood. Continual backprop: Stochastic
gradient descent with persistent randomness. arXiv preprint arXiv:2108.06325, 2021. 2, 3, 6

[19] Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.
In Proc. the International Conference on Learning Representations (ICLR), 2023. 1, 3, 7, 8, 16

[20] Jiameng Fan and Wenchao Li. Dribo: Robust deep reinforcement learning via multi-view
information bottleneck. In Proc. the International Conference on Machine Learning (ICML),
pages 6074–6102. PMLR, 2022. 3

[21] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware min-
imization for efficiently improving generalization. In Proc. the International Conference on
Learning Representations (ICLR), 2021. 2, 3, 6, 19

[22] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex
Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for
exploration. arXiv preprint arXiv:1706.10295, 2017. 3, 4

[23] Florin Gogianu, Tudor Berariu, Mihaela C Rosca, Claudia Clopath, Lucian Busoniu, and Razvan
Pascanu. Spectral normalisation for deep reinforcement learning: an optimisation perspective.
In International Conference on Machine Learning, pages 3734–3744. PMLR, 2021. 3

[24] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proc. the International
Conference on Machine Learning (ICML), pages 1861–1870. PMLR, 2018. 1, 3, 4, 6

[25] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023. 8

[26] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improve-
ments in deep reinforcement learning. In Proc. the AAAI Conference on Artificial Intelligence
(AAAI), 2018. 1, 3, 4, 6, 16

[27] Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsu-
ruoka. Dropout q-functions for doubly efficient reinforcement learning. Proc. the International
Conference on Learning Representations (ICLR), 2022. 3

[28] Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip
Isola. The low-rank simplicity bias in deep networks. 2023. 3

[29] Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon White-
son. Transient non-stationarity and generalisation in deep reinforcement learning. Proc. the
International Conference on Learning Representations (ICLR), 2021. 3

[30] Pavel Izmailov, Dmitrii Podoprikhin, T. Garipov, Dmitry P. Vetrov, and Andrew Gordon Wilson.
Averaging weights leads to wider optima and better generalization. In Proc. the Conference on
Uncertainty in Artificial Intelligence (UAI), 2018. 3, 19

11

[31] Jean Kaddour, Linqing Liu, Ricardo Silva, and Matt J Kusner. When do flat minima optimizers
work? Proc. the Advances in Neural Information Processing Systems (NeurIPS), 35:16577–
16595, 2022. 19

[32] Łukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błażej Osiński, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model
based reinforcement learning for atari. In Proc. the International Conference on Learning
Representations (ICLR), 2019. 5

[33] Simran Kaur, Jeremy Cohen, and Zachary Chase Lipton. On the maximum hessian eigenvalue
and generalization. In I Can’t Believe It’s Not Better Workshop: Understanding Deep Learning
Through Empirical Falsification, 2023. 6

[34] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima.
In Proc. the International Conference on Learning Representations (ICLR), 2017. 3, 19

[35] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Proc. the
International Conference on Learning Representations (ICLR), 2015. 19

[36] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research, 2013. 1, 3

[37] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009. 2, 4

[38] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009. 16

[39] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised represen-
tations for reinforcement learning. In Proc. the International Conference on Machine Learning
(ICML), 2020. 3

[40] Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learning with augmented data. Proc. the Advances in Neural Information
Processing Systems (NeurIPS), 2020. 3

[41] Hojoon Lee, Koanho Lee, Dongyoon Hwang, Hyunho Lee, Byungkun Lee, and Jaegul Choo. On
the importance of feature decorrelation for unsupervised representation learning in reinforcement
learning. arXiv preprint arXiv:2306.05637, 2023. 3, 8

[42] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020. 1,
3

[43] Qiyang Li, Aviral Kumar, Ilya Kostrikov, and Sergey Levine. Efficient deep reinforcement
learning requires regulating overfitting. arXiv preprint arXiv:2304.10466, 2023. 1, 3

[44] Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and
scalable sharpness-aware minimization. In Proc. of the IEEE conference on computer vision
and pattern recognition (CVPR), pages 12360–12370, 2022. 3

[45] Zhuang Liu, Xuanlin Li, Bingyi Kang, and Trevor Darrell. Regularization matters in policy
optimization–an empirical study on continuous control. Proc. the International Conference on
Learning Representations (ICLR), 2021. 3

[46] Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss
in reinforcement learning. Proc. the International Conference on Learning Representations
(ICLR), 2022. 1

[47] Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will
Dabney. Understanding plasticity in neural networks. Proc. the International Conference on
Machine Learning (ICML), 2023. 1, 3, 6

12

[48] Bogdan Mazoure, Remi Tachet des Combes, Thang Long Doan, Philip Bachman, and R Devon
Hjelm. Deep reinforcement and infomax learning. Advances in Neural Information Processing
Systems, 33:3686–3698, 2020. 3

[49] Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample efficient world
models. arXiv preprint arXiv:2209.00588, 2022. 8

[50] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 2015. 3, 4, 16

[51] Clara Na, Sanket Vaibhav Mehta, and Emma Strubell. Train flat, then compress: Sharpness-
aware minimization learns more compressible models. In Proc. of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 4909–4936, 2022. 19

[52] Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville.
The primacy bias in deep reinforcement learning. In Proc. the International Conference on
Machine Learning (ICML), pages 16828–16847. PMLR, 2022. 1, 2, 3, 6, 16, 17, 18

[53] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018. 3

[54] Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr
computational mathematics and mathematical physics, 4(5):1–17, 1964. 4, 19

[55] Roberta Raileanu, Max Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus. Auto-
matic data augmentation for generalization in deep reinforcement learning. arXiv preprint
arXiv:2006.12862, 2020. 3

[56] Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of
Mathematical Statistics, 22(3):400 – 407, 1951. 4, 19

[57] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
Proc. the International Conference on Learning Representations (ICLR), 2016. 3

[58] Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip
Bachman. Data-efficient reinforcement learning with self-predictive representations. In Proc.
the International Conference on Learning Representations (ICLR), 2020. 3, 5

[59] Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin,
R Devon Hjelm, Philip Bachman, and Aaron C Courville. Pretraining representations for
data-efficient reinforcement learning. Proc. the Advances in Neural Information Processing
Systems (NeurIPS), 2021. 8

[60] Younggyo Seo, Kimin Lee, Stephen L James, and Pieter Abbeel. Reinforcement learning
with action-free pre-training from videos. In Proc. the International Conference on Machine
Learning (ICML), pages 19561–19579. PMLR, 2022. 8

[61] Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. Understanding and improving
convolutional neural networks via concatenated rectified linear units. In Proc. the International
Conference on Machine Learning (ICML), pages 2217–2225. PMLR, 2016. 2, 3, 6

[62] Dongkuk Si and Chulhee Yun. Practical sharpness-aware minimization cannot converge all the
way to optima. Proc. the Advances in Neural Information Processing Systems (NeurIPS), 2023.
19

[63] Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron
phenomenon in deep reinforcement learning. Proc. the International Conference on Machine
Learning (ICML), 2023. 3

[64] Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation
learning from reinforcement learning. In Proc. the International Conference on Machine
Learning (ICML), 2021. 3

13

[65] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018. 5

[66] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proc. the AAAI Conference on Artificial Intelligence (AAAI), volume 30, 2016. 3

[67] Hado P Van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models
in reinforcement learning? Proc. the Advances in Neural Information Processing Systems
(NeurIPS), 32, 2019. 16

[68] Kaixin Wang, Bingyi Kang, Jie Shao, and Jiashi Feng. Improving generalization in reinforce-
ment learning with mixture regularization. Proc. the Advances in Neural Information Processing
Systems (NeurIPS), 33:7968–7978, 2020. 3

[69] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas.
Dueling network architectures for deep reinforcement learning. In Proc. the International
Conference on Machine Learning (ICML), pages 1995–2003. PMLR, 2016. 3

[70] Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How sharpness-aware minimization minimizes
sharpness? In Proc. the International Conference on Learning Representations (ICLR), 2023.
19

[71] Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust
generalization. Advances in Neural Information Processing Systems, 33:2958–2969, 2020. 3,
19

[72] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous
control: Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645,
2021. 3, 22

[73] Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In Proc. the International Conference on Machine
Learning (ICML), 2020. 3, 4, 5, 6, 16, 22

[74] Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus.
Improving sample efficiency in model-free reinforcement learning from images. In Proc. the
AAAI Conference on Artificial Intelligence (AAAI), volume 35, pages 10674–10681, 2021. 3

[75] Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari
games with limited data. Proc. the Advances in Neural Information Processing Systems
(NeurIPS), 34:25476–25488, 2021. 8

[76] Tao Yu, Cuiling Lan, Wenjun Zeng, Mingxiao Feng, Zhizheng Zhang, and Zhibo Chen. Playvir-
tual: Augmenting cycle-consistent virtual trajectories for reinforcement learning. Proc. the
Advances in Neural Information Processing Systems (NeurIPS), 34:5276–5289, 2021. 7, 8

[77] Tao Yu, Zhizheng Zhang, Cuiling Lan, Yan Lu, and Zhibo Chen. Mask-based latent reconstruc-
tion for reinforcement learning. Proc. the Advances in Neural Information Processing Systems
(NeurIPS), 35:25117–25131, 2022. 3

[78] Tao Yu, Zhizheng Zhang, Cuiling Lan, Yan Lu, and Zhibo Chen. Mask-based latent reconstruc-
tion for reinforcement learning. Proc. the Advances in Neural Information Processing Systems
(NeurIPS), 35:25117–25131, 2022. 7, 8

[79] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on robot learning, pages 1094–1100. PMLR, 2020. 9

[80] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017. 3

[81] Hattie Zhou, Ankit Vani, Hugo Larochelle, and Aaron Courville. Fortuitous forgetting in
connectionist networks. Proc. the International Conference on Learning Representations
(ICLR), 2022. 2

14

Appendix
A Implementation Details 16

A.1 Computation . 16

A.2 Synthetic Experiment . 16

A.3 Arcade Learning Environment (Atari-100k) . 16

A.4 Deepmind Control Suite Medium (DMC-M) . 18

B Applying SAM to Deep RL 19

B.1 Preliminaries and Backgrounds on SAM . 19

B.2 Deep Q-Learning with SAM and Noisy Layers 20

B.3 Soft Actor-Critic with SAM . 21

B.4 Ablations on the usage of SAM . 22

C Per Environment Results 23

C.1 Atari-100k . 23

C.2 DMC-M . 23

D Broader Impact 26

15

A Implementation Details

A.1 Computation

For all experiments, we used an NVIDIA RTX 3090 GPU for neural network training and a 32-
core AMD EPYC 7502 for multi-threaded tasks, accelerating machine learning model training and
inference.

For the Atari 100k benchmark, our computations were based on the DrQ algorithm with SAM
(Sharpness-Aware Minimization) and Reset. We ran 3 experiments in parallel on a single GPU where
PLASTIC and PLASTIC† took 3 and 1.5 hours, which effectively translates to an average of 1 and
0.5 hours per run.

For the DeepMind Control Suite (DMC), runtimes varied based on the individual environment due to
the differences in action repeat (i.e., the number of the same actions taken for each environmental
interaction). On our experimental setup, training took roughly 8 hours to complete 2 million
environment steps with an action repeat of 4, and around 15 hours with an action repeat of 2.

A.2 Synthetic Experiment

In our synthetic experiment, we utilized the CIFAR-10 dataset [38] to test both input adaptation and
label adaptation scenarios. The dataset comprises 50,000 training images and 10,000 test images,
evenly distributed across 10 classes. Each image in the dataset is a color image of size 32x32.

Input Adaptation: In the input adaptation experiment, the training data was segmented into 100
chunks, each consisting of 500 images. These chunks were sequentially added to a buffer, which
progressively expanded during the course of the experiment. For every model update, data were
randomly sampled from this progressively growing buffer.

Label Adaptation: In the label adaptation experiment, label alterations were done 100 times during
the training phase. The process of label reassignment was performed in a uniform manner across all
classes. For example, if the original class labels ranged from 0 to 9, after each label alteration, all data
points within a specific class would be consistently reassigned to a new class within the same range.

We selected a model architecture that reflects common architectural designs utilized in reinforcement
learning research [50, 26]. The architecture consists of three convolutional layers for the backbone
and three fully-connected layers for the head. The three convolutional layers employed kernel sizes
of 3x3, with strides of (3, 3, 1), and the number of channels was set as (32, 64, 64) respectively.
Subsequent to this, the three fully-connected layers consisted of hidden dimensions of (512, 128, 10).

The model was trained for a total of 50,000 updates, with a batch size of 128 for each update (i.e.,
equivalent to training 128 epochs). The training was conducted using Stochastic Gradient Descent
(SGD) with momentum. To select the learning rates and weight decay rates, we vary the values
range from {0.1, 0.01, 0.001, 0.0001, 0.00001}, integrating weight decay to minimize variance across
individual runs.

In the synthetic experiment, we utilized four distinct methods: Layer Normalization (LN), Sharpness-
Aware Minimization, Concatenated Rectified Linear Unit (CReLU), and Reset. For the SAM
optimizer, we vary the perturbation parameter across the set {0.1, 0.03, 0.01} and for the Reset
method, we search the reset interval over {5, 10, 20} data chunks.

Finally, we reported the test accuracy, averaged over 30 random seeds with a 95% confidence interval,
at the end of each experiment.

A.3 Arcade Learning Environment (Atari-100k)

We implemented the Rainbow algorithm [26] while following design choices from DER [67] and
DrQ [73]. Furthermore, we integrated modifications suggested by D’Oro et al [19], including the
application of a momentum encoder for the target network and the use of this target network for
exploration. While these adjustments had little impact under a low replay ratio regime (<=2), they
played a significant role when scaling the replay ratio with the reset mechanism [52]. A detailed
hyperparameter is described in Table 5.

16

In the case of LN, we apply layer normalization after each convolutional and fully-connected layer.
For CReLU, we replaced all ReLU activations with concatenated ReLU where the input dimensions
are doubled for each subsequent layers. For the methods using the Reset mechanism, we reset the
head layer’s parameters every 40,000 gradient updates, in accordance with the original paper [52].

Table 5: Hyperparameters on Atari 100k. The ones introduced by this work are at the bottom.
Hyperparameter Value

State downsample size (84, 84)
Grey scaling True
Data augmentation Random Shifts and Intensity Jittering
Random Shifts ± 4 pixels
Intensity Jiterring scale 0.05
Frame skip 4
Stacked frames 4
Action repeat 4
Training steps 100k
Update Distributional Q
Dueling True
Support of Q-distribution 51
Discount factor γ 0.99
Batch size 32
Optimizer (β1, β2, ϵ) Adam (0.9, 0.999, 0.000015)
Learning rate 0.0001
Max gradient norm 10
Priority exponent 0.5
Priority correction 0.4→ 1
EMA coefficient (τ) 0.99
Exploration Network Target
Exploration Noisy nets
Noisy nets parameter 0.5
Replay buffer size 100k
Min buffer size for sampling 2000
Replay ratio 2
Multi-step return length 10
Q-head hidden units 512
Q-head non-linearity ReLU
Evaluation trajectories 100

SAM parameter ρ 0.1
Reset interval 40, 000

17

A.4 Deepmind Control Suite Medium (DMC-M)

We utilized an open-source JAX implementation provided by Nikishin et al. [52] as the foundation
for our work. We integrated the SAM optimizer implementation into this existing framework. To
ensure consistency and comparability with prior studies, we strictly followed the architecture and
hyperparameters outlined by Nikishin et al. [52], documented in Table 6.

In the case of the Base, L2, and Reset models described in Table 6, we adopted the results from
Nikishin et al [52]. For the LN model, we incorporated layer normalization after each convolutional
and fully-connected layer. Additionally, we replaced all ReLU activations with concatenated ReLU
for the CReLU baseline.

We utilized the same training steps of 2,000,000 and reset interval of 100,000 for the DMC medium
task as used by Nikishin et al [52].

Table 6: Hyperparameters on DMC. The ones introduced by this work are at the bottom.

Parameter Setting

Gray-scaling True
Observation down-sampling (64, 64)
Frame stacked 3
Discount factor 0.99
Minibatch size 512
Learning rate 0.0003
Backbone: channels 32, 64, 128, 256
Backbone: stride 2, 2, 2, 2
Backbone: latent dim 50
Head: n. hidden layers 2
Head: hidden units 256
Target network update period 1
EMA coefficient τ 0.995
Initial Temperature 0.1
Updates per step 1
Replay Buffer Size 1, 000, 000
Total training steps 2, 000, 000
Evaluation trajectories 100

SAM parameter ρ Quadruped : 0.1
Others : 0.01

Reset interval 100, 000

18

B Applying SAM to Deep RL

B.1 Preliminaries and Backgrounds on SAM

The capability to make a correct prediction when given unseen inputs, which we refer to as input
plasticity, has been recognized as an important issue across the entirety of machine learning research,
and numerous studies have been conducted to address it. Keskar et al. [34] propose a sharpness
measure, arguing that finding wide and smooth minima is beneficial in terms of generalizability
(i.e., performance on unseen datasets). Stochastic Weight Averaging (SWA) finds a flat minimum
by averaging checkpoints in the model’s training trajectory [30]. The work by [71] incorporates the
addition of adversarial weight perturbation over the course of training. These works are based on the
hypothesis by [34] that wide and flat minima result in a more plastic model under change of inputs.

Following a similar philosophy, Foret et al. [21] devised sharpness-aware minimization (SAM),
which aims to reduce not only the value of the training loss but also its sharpness. By reducing the
sharpness of the loss and encouraging the model to get closer to a flat minimum, SAM has been
successfully applied in various settings including computer vision [14], natural language processing
[6], meta-learning [1], and model compression [51].

The aforementioned studies concern training in stationary data distributions. In contrast, our work
involves experiments in reinforcement learning which has non-stationary data distribution in which
the efficacy of SAM has not yet been verified. Indeed, we empirically verified that the usage of SAM
enhances the adaptability of deep RL agents.

Now, we elaborate on what SAM is. Originally, SAM aims to train a model which is robust to
adversarially perturbed model weights, by solving the following bi-level optimization problem on the
loss function L:

minw
{
maxϵ:∥ϵ∥2≤ρ L(w + ϵ)

}
. (5)

This problem implies minimization of loss value around an ℓ2-ball of radius ρ, which encourages a
model parameter w to find a smoother region of the loss landscape. Here, ρ > 0 is a hyperparameter,
called SAM parameter, restricting the size of perturbation to make the bi-level problem (5) feasible.
Since the exact solution of the inner maximization problem in (5) is not tractable yet, first-order
Taylor approximation is applied as a remedy for finding an approximately optimal perturbation at w,

ϵ∗ρ(w) :=
ρ

∥∇wL(w)∥2
∇wL(w).

We call the step of computing ϵ∗ρ(w) as the perturbation step of SAM. As a result of the perturbation
step, we can approximately solve the problem (5) with any gradient update algorithm (i.e., base
optimizer), such as Stochastic Gradient Descent (SGD) [56], SGD with momentum [54], or Adam
[35], using the SAM gradient at current weight wt: ∇wL(wt+ϵ∗ρ(wt)). We call the step of updating
the weights with SAM gradient as the update step of SAM. In essence, SAM is an iterative algorithm
alternating perturbation and update steps. Readers can check a more detailed derivation of the SAM
gradient in [21].

It is both theoretically and empirically proven that such an optimization scheme implicitly prefers
the weights in smoother (i.e., less sharp) region of loss landscape, in terms of, e.g., the maximum
eigenvalue and/or trace of Hessian [21, 31, 70, 62].

Naturally, in (deep) RL, we never have access to the full static loss function as described above.
Hence, analogous to most of the applications of SAM, it is natural to randomly sample a mini-batch
Bt of m transitions from replay buffer and apply SAM update (often called m-SAM) using the
stochastic gradient∇wLBt

(
wt + ϵ∗ρ,Bt

(wt)
)
, where

ϵ∗ρ,B(w) :=
ρ

∥∇wLB(w)∥2
∇wLB(w).

There are several considerations for applying SAM to RL agents. When applying SAM to the
Rainbow agent, the random noises from noisy layers embedded in the agent might hurt the SAM
perturbation. However, we observe that the effect of regulating the noises is not significant. Moreover,
there are options to apply SAM perturbation solely to the backbone or head. We find that applying
SAM to the whole network is the most beneficial for enhancing generalization capability, yet we

19

observe that solely applying SAM to the backbone is quite similar to the case of applying it to the
whole. On the other hand, when applying SAM to the SAC agent, there are multiple loss functions
to be optimized, which share parameters. Again, applying SAM to both actor and critic is the
most desirable option, yet we observe that the application to critic is more critical for performance
improvement. More detailed ablation studies appear in Section B.4.

B.2 Deep Q-Learning with SAM and Noisy Layers

We used the Rainbow agent and its variants to learn discrete control problems of the Atari-100k
benchmark. Although there are many other components inside the Rainbow agent, such as multi-step
learning, distributional RL, and dueling Deep Q-Network (DQN), it would be confusing to integrate
all details together in the pseudocode. Thus, for simplicity of the display, we provide a pseudocode
of applying SAM to vanilla DQN with noisy layers. See Algorithm 1.

Algorithm 1: Deep Q-Learning with Noisy Layers & SAM
1 Input: Learning rate η; SAM parameter ρ; Replay ratio R; Discount factor γ; Polyak averaging

factor τ ;
2 Initialize: Replay memory D; Q-function weight w; Target weight w− ← w ;
3 foreach environment step t = 1, 2, . . . do
4 Collect a trajectory (s, a, r, s′, d) with ε-greedy (d = 1[s′ is terminal]);
5 Store the trajectory to D ;
6 If d = 1, Reset environment state;
7 foreach optimization step i ∈ {1, . . . , R} do
8 Sample a minibatch of transitions B = {(s, a, r, s′, d)} from D ;
9 Compute TD target y(r, s′, d) = r + γ(1− d)max

a′
Qw−(s′, a′);

// Perturbation step
10 Sample a random noise ξ of noisy layers inside Q-function; w ← w + ξ;

11 Compute gradient g(w) = ∇w
1

|B|
∑

(s,a,r,s′,d)∈B

(y(r, s′, d)−Qw(s, a))
2 ;

12 Compute SAM perturbation w̃SAM = w +
ρ

∥g(w)∥2
g(w) ;

// Update step
13 Sample a random noise ξ′ of noisy layers inside Q-function; w̃SAM ← w̃SAM + ξ′;
14 Compute SAM gradient gSAM = g(w̃SAM);
15 Gradient descent update w ← w − ηgSAM; // Could be modified as any

gradient-based optimizer
16 Update target weight w− ← τw− + (1− τ)w ;

20

B.3 Soft Actor-Critic with SAM

We also provide a pseudocode for applying SAM to the SAC algorithm. See Algorithm 2.

Algorithm 2: Soft Actor-Critic with SAM
1 Input: Learning rates ηQ, ηπ, ηα; SAM parameters ρQ, ρπ, ρα; Replay ratio R; discount factor
γ; Polyak averaging factor τ ; minimum expected entropyH;

2 Initialize: Replay memory D; Q-function weights w1,w2; Q-function weights w−
1 ,w

−
2 ;

Policy weight θ; Entropy regularization coefficient α ;
3 foreach environment step t = 1, 2, . . . do
4 Observe state s and sample/execute an action a ∼ πθ(·|s);
5 Observe reward r, next state s′, and done signal d = 1[s′ is terminal];
6 Store the trajectory (s, a, r, s′, d) to D ;
7 If d = 1, Reset environment state;
8 foreach optimization step i ∈ {1, . . . , R} do
9 Sample a minibatch of transitions B = {(s, a, r, s′, d)} from D ;

// Perturbation step
10 Compute target

y(r, s′, d;θ) = r + γ(1− d)

(
min
i=1,2

Qw−
i
(s′, a′)− α log πθ(a

′|s′)
)

(a′ ∼ πθ(·|s));

11 Compute Q-function gradient:

gQ,i(wi) = ∇wi

1

|B|
∑

(s,a,r,s′,d)∈B

(y(r, s′, d;θ)−Qwi
(s, a))

2
; (i = 1, 2)

12 Compute policy gradient by sampling differentiable action ãθ(s) ∼ πθ(·|s):

gπ(w) = ∇θ
1

|B|
∑
s∈B

(
min
i=1,2

Qwi(s, ãθ(s))− α log πθ(ãθ(s)|s)
)2

;

13 Compute temperature gradient: gtemp(α) = ∇α
1
|B|

∑
s∈B (−α log πθ(ãθ(s)|s)− αH);

14 SAM-perturbations:

w̃SAM
i = wi +

ρQ
∥gQ,i(wi)∥2

gQ,i(wi); (i = 1, 2)

θ̃SAM = θ +
ρπ

∥gπ(θ)∥2
gπ(θ);

α̃SAM = α+
ρα

∥gtemp(α)∥2
gtemp(α);

// Update step
15 Compute target y(r, s′, d; θ̃SAM);
16 Compute SAM gradients:

gSAM
Q,i = gQ,i(w̃

SAM
i), gSAM

π = gπ(θ̃
SAM), gSAM

temp = gtemp(α̃
SAM);

17 Gradient descent updates:

wi ← wi − ηQg
SAM
Q,i ; θ ← θ − ηπg

SAM
π ; α← α− ηαg

SAM
temp;

// Could be modified as any gradient-based optimizer
18 Update target weight w−

i ← τw−
i + (1− τ)wi ;

21

B.4 Ablations on the usage of SAM

We conduct some ablation studies aiming to answer the following questions:

1. How should we deal with noisy layers during training?
2. What if we solely apply SAM perturbation to the backbone or head of Rainbow agent?
3. What if we solely apply SAM perturbation to the actor or critic of SAC agent?

The first two questions are answered by experiments with the DrQ algorithm tested on the Atari-100k
benchmark, whereas for the last question we test on the DMC-M benchmark with the SAC agent.

(i) (ii) (iii)0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

IQ
M

 o
f H

NS

Abl: Noisy Layer on/off
SAM
SAM+Reset
Base
Reset

(a) Noisy layers on/off.

No reset Reset0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

IQ
M

 o
f H

NS

Abl: backbone-/head-SAM
B:Adam | H:Adam
B:SAM | H:Adam
B:Adam | H:SAM
B:SAM | H:SAM

(b) Backbone/Head SAM.

Base Only Actor Only Critic SAM

150

200

250

300

350

IQ
M

 o
f H

NS

Abl: Which networks to use SAM
Base
SAM, Only Actor
SAM, Only Critic
SAM

(c) Actor/Critic SAM.

Figure 5: Ablation study on utilizing SAM.

Noisy Layers. For the case of the Rainbow agent, we compare three different schemes of SAM
updates regarding random noises from noisy layers: (i) perturbation with independent noise, using
independently sampled (e.g., different) noise between perturbation and update step (default setting);
(ii) update with reused noise, turning the noise on at the perturbation step and reusing that noise at
the update step; (iii) noise-less perturbation, turning the noise off at the perturbation step and turning
it on at the update step. Despite the variations, the overall impact on the agent’s performance was
relatively consistent. Note that option (i) is the most naïve approach which can be implemented by
simply adding a SAM optimizer code block into any RL implementation with noisy layers.

Backbone-SAM v.s. Head-SAM. We experiment with resectioning the parts to be updated with
SAM in the RL agent architecture. We temporarily turn off the gradient of either backbone or head
at the perturbation step and then turn on that gradient back at the update step. The result of the
experiment, presented in Figure 5b, says that updating with backbone-only perturbation is more
beneficial than using head-only perturbation, although applying both is much better. Indeed, SAM
perturbation of the head alone hurts the performance without any other SAM perturbation or resetting.

We want to explain why these happen from the point of view of the number of active neurons in the
backbone/head. Interestingly, we observe that the SAM perturbation of backbone parameters induces
more active units in the head, whereas the SAM perturbation of head parameters results in less active
units in the backbone. Recall that both tendencies are observed when we apply SAM perturbation to
both the backbone and head at once. From this, we can say that the rise of active units in the head by
applying SAM is due to the SAM perturbation of the backbone, whereas the reason for the backbone
getting sparser is the SAM perturbation of the head.

Actor-SAM v.s. Critic-SAM. SAC is an actor-critic algorithm that employs three distinct sets
of updating parameters, namely the actor, critic, and alpha. Since alpha has just one parameter, we
focus on investigating the impact of SAM on actor and critic parameters. We conduct an ablation
study utilizing the identical configuration as the DMC experiment presented in Section 4.2. Figure 5c
demonstrates that exclusively applying SAM to critic parameters is more critical than solely applying
SAM to actor parameters while using both is much better.

In the context of SAC, the actor and critic networks are constructed to jointly utilize the backbone
layer. In order to ensure stable learning, updates to the backbone layer are exclusively driven by
critic losses, while actor losses do not influence the backbone layer [73, 72]. Consequently, if SAM
is exclusively applied to the actor parameters, the backbone layer remains unaffected by SAM as

22

there is no gradient propagation. As a result, the performance of the SAM solely used on the actor
parameters, which has no impact on the backbone, is inferior to other approaches incorporating SAM,
which corroborates the aforementioned findings.

ρ=0.03 ρ=0.1 ρ=0.30.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

IQ
M

 o
f H

NS

Ablation: SAM param (ρ)
SAM
SAM+Reset
Base
Reset

(a) SAM parameter ρ.

bs=16 bs=32 bs=640.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

IQ
M

 o
f H

NS

Ablation: Batch size
SAM
SAM+Reset
Base
Reset

(b) Batch sizes.

Figure 6: More ablation studies on using SAM.

SAM parameter (ρ). Being the main hyperparameter of SAM, the ρ > 0 represents the intensity
of SAM perturbation. In every other experiment with DER and DrQ(-Rainbow), we do not tune
the value of ρ but fix them as 0.1. Here, however, we run two other values of ρ’s, 0.03 and 0.3, to
examine the effect of ρ. The result is shown in Figure 6a. We definitely observe the trade-off due to
the size of ρ. If the ρ is too small, the scale of SAM perturbation becomes negligible and it cannot
drastically improve the generalization capability compared to the case without SAM. However, a
larger value of ρ is not always beneficial; the generalization capability does not always scale with
the size of SAM perturbation. We, however, claim that finding an appropriate value of ρ is not too
difficult; our recommendation is to test a few values between 0.01 and 1.

Batch size. We further study robustness with respect to batch sizes. We investigate the batch
sizes among 16, 32 (baseline), and 64. From the resulting plot Figure 6b, we observe that SAM
consistently improves the performance regardless of the choice of batch size, by comparing solid
lines (SAM+Adam) and dashed lines (Adam). We also observe that the performance improvement
between reset and non-reset becomes much larger when SAM is applied.

C Per Environment Results

C.1 Atari-100k

C.2 DMC-M

23

Table 7: Mean trajectory scores on DrQ algorithm. We report the mean trajectory scores on the
26 Atari games, evaluated on top of DrQ. For each random seed, the results are averaged over 100
different trajectories at the end of training. The results are then averaged over 10 random seeds.

Game Random Human Base SAM LayerNorm CReLU Reset PLASTIC
Alien 227.8 7127.7 757.62 854.84 899.14 1011.84 926.73 1032.0
Amidar 5.8 1719.5 164.12 187.76 176.12 146.69 158.22 201.6
Assault 222.4 742.0 582.59 597.9 566.26 585.57 694.17 888.5
Asterix 210.0 8503.3 823.3 780.6 889.3 887.8 921.15 1066.0
BankHeist 14.2 753.1 48.36 185.25 56.16 79.88 141.14 161.2
BattleZone 2360.0 37187.5 4088.0 13999.0 14416.0 11306.0 4700.0 2099.0
Boxing 0.1 12.1 11.56 16.43 21.2 18.75 44.14 44.5
Breakout 1.7 30.5 13.16 12.64 13.71 10.56 18.46 21.0
ChopperCommand 811.0 7387.8 778.0 977.7 879.2 1150.6 777.5 891.2
CrazyClimber 10780.5 35829.4 13182.2 17927.7 15852.8 13957.6 19082.8 31223.8
DemonAttack 152.1 1971.0 701.38 735.54 556.33 531.05 1074.29 2117.8
Freeway 0.0 29.6 22.32 27.79 30.49 24.54 26.92 27.1
Frostbite 65.2 4334.7 1856.64 2052.95 1409.34 763.64 1257.33 1802.3
Gopher 257.6 2412.5 374.28 476.02 433.92 445.88 711.14 839.4
Hero 1027.0 30826.4 5096.67 6496.56 5645.98 6332.89 6987.43 7007.2
Jamesbond 29.0 302.8 348.8 333.3 287.2 239.7 369.2 461.1
Kangaroo 52.0 3035.0 3773.2 3453.8 3589.0 4919.8 2830.8 1636.1
Krull 1598.0 2665.5 3612.06 3385.05 3483.26 3710.24 4379.46 5019.5
KungFuMaster 258.5 22736.3 20412.4 16380.3 8646.2 15188.4 12737.4 16105.0
MsPacman 307.3 6951.6 1210.02 1471.33 1226.5 1191.2 1362.05 1245.6
Pong −20.7 14.6 −8.82 −6.42 −12.85 1.96 −10.0 −17.7
Qbert 11.5 7845.0 3776.3 3495.45 2648.4 2429.2 3492.18 3986.3
RoadRunner 68.4 42054.7 15696.6 11919.5 13045.6 13703.4 12939.5 15073.8
Seaquest 24.9 69571.3 525.88 519.2 394.24 383.8 645.26 635.9
PrivateEye 163.9 13455.0 100.0 96.04 100.0 99.4 100.13 100.0
UpNDown 533.4 11693.2 3690.74 4963.46 5596.2 4565.04 15463.98 66473.0

IQM 0.0 1.0 0.258 0.325 0.259 0.256 0.343 0.421
Median 0.0 1.0 0.277 0.327 0.247 0.193 0.291 0.347
Mean 0.0 1.0 0.476 0.501 0.463 0.498 0.660 0.933
OG 1.0 0.0 0.633 0.589 0.627 0.628 0.579 0.535

Table 8: Mean trajectory scores on State-of-the-art methods. We report the individual scores on
the 26 Atari games. For IRIS, DreamerV3, EfficientZero, PlayVirtual, MLR, SR-SPR, and PLASTIC
the results are averaged over 5, 5, 32, 15, 3, 10, and 5 seeds respectively.

Game EfficientZero IRIS DreamerV3 PlayVirtual MLR SR-SPR:4 SR-SPR:8 PLASTIC†:8 PLASTIC:8
Alien 808.5 420.0 1095.8 947.8 990.1 964.4 1015.5 1021.7 1368.6
Amidar 148.6 143.0 142.9 165.3 227.7 211.8 203.1 186.2 220.2
Assault 1263.1 1524.4 638.0 702.3 643.7 987.3 1069.5 821.5 1074.2
Asterix 25557.8 853.6 982.8 933.3 883.7 894.2 916.5 1184.7 1188.0
BankHeist 351.0 53.1 617.8 245.9 180.3 460.0 472.3 370.1 313.8
BattleZone 13871.2 13074.0 12800.0 13260.0 16080.0 17800.6 19398.4 15728.0 16868.0
Boxing 52.7 70.1 67.8 38.3 26.4 42.0 46.7 45.9 41.8
Breakout 414.1 83.7 18.9 20.6 16.8 26.1 28.8 21.9 20.9
ChopperCommand 1117.3 1565.0 400.0 922.4 910.7 1933.7 2201.0 799.4 871.2
CrazyClimber 83940.2 59324.2 71620.0 23176.7 24633.3 38341.7 43122.3 31652.6 47893.0
DemonAttack 13003.9 2034.4 545.0 1131.7 854.6 3016.2 2898.1 1562.9 2460.9
Freeway 21.8 31.1 0.0 16.1 30.2 24.5 24.9 29.4 30.4
Frostbite 296.3 259.1 1108.4 1984.7 2381.1 1809.9 1752.8 2152.5 2195.4
Gopher 3260.3 2236.1 5828.6 684.3 822.3 717.5 711.2 582.7 612.6
Hero 9315.9 7037.4 10964.6 8597.5 7919.3 7195.7 7679.6 11195.5 9000.7
Jamesbond 517.0 462.7 510.0 394.7 423.2 408.8 392.8 401.3 428.8
Kangaroo 724.1 838.2 3550.0 2384.7 8516.0 2024.1 3254.9 6218.2 2249.2
Krull 5663.3 6616.4 8012.0 3880.7 3923.1 5364.3 5824.8 5201.9 5647.6
KungFuMaster 30944.8 21759.8 29420.0 14259.0 10652.0 17656.5 17095.6 20839.6 19546.2
MsPacman 1281.2 999.1 1388.5 1335.4 1481.3 1544.7 1522.6 1662.0 1292.4
Pong 20.1 14.6 18.5 −3.0 4.9 −5.5 −3.0 0.3 −3.5
Qbert 13781.9 745.7 3117.9 3620.1 3410.4 3699.8 3850.6 4372.8 4967.2
RoadRunner 17751.3 9614.6 14036.6 13429.4 12049.7 14287.3 13623.5 16254.0 20709.0
Seaquest 1100.2 661.3 582.0 532.9 628.3 766.6 800.5 574.7 859.1
PrivateEye 96.7 100.0 1124.0 93.9 100.0 95.8 95.8 100.0 100.0
UpNDown 17264.2 3546.2 9234.0 10225.2 6675.7 91435.2 95501.1 34342.4 33203.3

IQM n/a 0.501 0.497 0.374 0.432 0.544 0.589 0.583 0.571
Median 0.227 0.289 0.466 n/a n/a 0.523 0.560 0.542 0.494
Mean 0.562 1.046 1.097 n/a n/a 1.111 1.188 0.939 0.968
OG n/a 0.512 0.505 0.558 0.522 0.470 0.452 0.448 0.461

24

Table 9: Mean trajectory scores for each value of replay ratio (2, 4, 8). We report the individual
scores on the 26 Atari games. Here, the results are averaged over 5 random seeds.

Game PLASTIC†:2 PLASTIC:2 PLASTIC†:4 PLASTIC:4 PLASTIC†:8 PLASTIC:8
Alien 1063.1 1032.0 1251.2 1138.3 1021.7 1368.6
Amidar 195.2 201.6 151.4 206.1 186.2 220.2
Assault 763.6 888.5 767.2 939.7 821.5 1074.2
Asterix 1007.6 1066.0 1098.1 1058.0 1184.7 1188.0
BankHeist 217.7 161.2 328.1 268.0 370.1 313.8
BattleZone 17767.0 2099.0 17762.0 9292.0 15728.0 16868.0
Boxing 39.1 44.5 53.6 46.4 45.9 41.8
Breakout 16.4 21.0 22.4 27.9 21.9 20.9
ChopperCommand 972.4 891.2 798.0 875.4 799.4 871.2
CrazyClimber 21967.5 31223.8 24615.0 42557.6 31652.6 47893.0
DemonAttack 1016.2 2117.8 1630.6 2402.2 1562.9 2460.9
Freeway 30.1 27.1 29.6 29.6 29.4 30.4
Frostbite 1582.0 1802.3 2119.4 1899.3 2152.5 2195.4
Gopher 616.4 839.4 635.2 811.6 582.7 612.6
Hero 6582.8 7007.2 10350.0 8118.2 11195.5 9000.7
Jamesbond 397.5 461.1 383.7 438.7 401.3 428.8
Kangaroo 2836.3 1636.1 6860.8 2386.6 6218.2 2249.2
Krull 4485.6 5019.5 4719.8 5266.4 5201.9 5647.6
KungFuMaster 11873.9 16105.0 17613.4 19828.6 20839.6 19546.2
MsPacman 1399.6 1245.6 1401.9 1457.2 1662.0 1292.4
Pong −6.3 −17.7 0.1 −7.1 0.3 −3.5
Qbert 4006.1 3986.3 3794.1 4736.4 4372.8 4967.2
RoadRunner 15883.0 15073.8 17704.2 19487.8 16254.0 20709.0
Seaquest 576.1 635.9 692.8 537.0 574.7 859.1
PrivateEye 46.6 100.0 94.1 100.0 100.0 100.0
UpNDown 15470.0 66473.0 11398.0 51764.5 34342.4 33203.3

IQM 0.396 0.421 0.518 0.545 0.583 0.571
Median 0.425 0.347 0.517 0.407 0.542 0.494
Mean 0.702 0.933 0.858 1.002 0.968 0.939
OG 0.541 0.535 0.478 0.475 0.448 0.461

Table 10: Mean trajectory scores on DrQ algorithm. We report the mean trajectory scores on the
DMC medium environments, evaluated on top of DrQ. For each random seed, the results are averaged
over 10 trajectories at the end of training. The results are then averaged over 10 random seeds.

Game Base SAM LayerNorm CReLU Reset PLASTIC
acrobot-swingup 16.34 15.36 23.45 40.79 57.83 68.24
cartpole-swingup_sparse 79.03 197.91 164.57 321.83 740.0 691.16
cheetah-run 727.44 736.61 591.47 835.33 665.67 708.04
finger-turn_easy 207.02 129.92 325.21 221.0 232.76 379.69
finger-turn_hard 80.95 60.07 485.70 117.5 89.11 546.56
hopper-hop 284.78 255.84 277.48 293.52 284.69 254.62
quadruped-run 155.06 261.03 266.84 78.89 466.93 426.57
quadruped-walk 88.08 130.85 173.13 80.02 632.33 528.12
reacher-easy 505.08 738.80 926.94 914.3 957.96 879.71
reacher-hard 450.96 495.32 746.55 795.77 794.53 798.10
walker-run 632.93 639.94 652.41 643.24 564.95 632.55

IQM 213 278 412 338 514 565
Median 288 341 415 398 491 540
Mean 293 332 421 394 498 537

25

D Broader Impact

Our research possesses broader impacts in two different aspects. The first impact lies in the sample
efficiency of Reinforcement Learning (RL) algorithms. We incorporate principles of preventing the
loss of plasticity, leading to more efficient and adaptive solutions. This advance can improve RL’s
sample efficiency, opening new avenues for future research in this domain.

The second impact is on inclusivity and accessibility in RL. By decreasing data and computational
demands, this work can aid underprivileged communities with fewer resources to participate in
RL research and benefit from its many applications. This approach encourages a diverse range of
perspectives and experiences in the field, enriching the community.

However, while our research has these positive implications, it is important to also acknowledge
potential risks associated with RL technologies, particularly in robotics. We must continue to
uphold ethical standards and prioritize safety to prevent misuse or harm that could arise from these
advancements.

26

	Introduction
	Preliminaries
	Sample Efficient Reinforcement Learning
	Understanding Plasticity in Reinforcement Learning
	Off-Policy Reinforcement Learning Algorithms

	Synthetic Experiments
	Experiments
	Experimental Setup
	Main Experiments
	Scaling Replay Ratio
	Compatibility with a Large Pretrained Model
	Ablation Studies

	Conclusion, Limitations, and Future Work
	Implementation Details
	Computation
	Synthetic Experiment
	Arcade Learning Environment (Atari-100k)
	Deepmind Control Suite Medium (DMC-M)

	Applying SAM to Deep RL
	Preliminaries and Backgrounds on SAM
	Deep Q-Learning with SAM and Noisy Layers
	Soft Actor-Critic with SAM
	Ablations on the usage of SAM

	Per Environment Results
	Atari-100k
	DMC-M

	Broader Impact

