
Interpreting Unsupervised Anomaly Detection
in Security via Rule Extraction

Ruoyu Li§†, Qing Li∗†, Yu Zhang§, Dan Zhao†, Yong Jiang♮†, Yong Yang‡
§Tsinghua University, China; †Peng Cheng Laboratory, China
♮Tsinghua Shenzhen International Graduate School, China

‡Tencent Security Platform Department, China
{liry19,yu-zhang23}@mails.tsinghua.edu.cn; {liq,zhaod01}@pcl.ac.cn

jiangy@sz.tsinghua.edu.cn; coolcyang@tencent.com

Abstract

Many security applications require unsupervised anomaly detection, as malicious
data are extremely rare and often only unlabeled normal data are available for
training (i.e., zero-positive). However, security operators are concerned about the
high stakes of trusting black-box models due to their lack of interpretability. In this
paper, we propose a post-hoc method to globally explain a black-box unsupervised
anomaly detection model via rule extraction. First, we propose the concept of dis-
tribution decomposition rules that decompose the complex distribution of normal
data into multiple compositional distributions. To find such rules, we design an
unsupervised Interior Clustering Tree that incorporates the model prediction into
the splitting criteria. Then, we propose the Compositional Boundary Exploration
(CBE) algorithm to obtain the boundary inference rules that estimate the decision
boundary of the original model on each compositional distribution. By merging
these two types of rules into a rule set, we can present the inferential process
of the unsupervised black-box model in a human-understandable way, and build
a surrogate rule-based model for online deployment at the same time. We con-
duct comprehensive experiments on the explanation of four distinct unsupervised
anomaly detection models on various real-world datasets. The evaluation shows
that our method outperforms existing methods in terms of diverse metrics including
fidelity, correctness and robustness.

1 Introduction

In recent years, machine learning (ML) and deep learning (DL) have revolutionized many security
applications such as network intrusion detection [1–3] and malware identification [4, 5] that outper-
form traditional methods in terms of accuracy and generalization. Among these works, unsupervised
anomaly detection becomes more promising, which detects malicious activities by the deviation
from normality. Compared to supervised methods, this type of method is more desirable in security
domains as 1) it hardly requires labeled attack/malicious data during the training (i.e., zero-positive
learning), which are typically much more sparse and difficult to obtain in contrast with benign data;
2) it does not fit any known threats, enabling better detection on unforeseen anomalies.

Due to the black-box nature of these models, ML/DL models are usually not directly interpretable
and understandable. Many local explanation methods [6–10] have attempted to interpret the models
by presenting feature importance of the decision for a single point. However, globally explaining
black-box models, especially using rule extraction to characterize the whole decision boundaries, is
particularly desirable in security systems since it can provide the following benefits:
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Trust over High Stakes. To minimize the chance of errors and potential losses, security operators
tend to trust human-understandable rules rather than unintuitive outputs such as labels and numeric
values from complex and incomprehensible black-box models.

Online Defense. Interpreting black-box models into rules with high fidelity enables easy integration
with the majority of defense tools that use rule-based expressions (e.g., iptables [11], Snort [12]), thus
allowing for deployment of online defense with extraordinary efficiency (e.g., Tbps throughput [13]).

Existing global ML/DL explanation approaches are mostly proposed for supervised models. Little
research has been done on explaining unsupervised anomaly detection, which faces several challenges:

Unlabeled One-class Data (CH1). Supervised explanation methods [14–16] need labeled data of
both positive and negative classes to determine the decision boundaries of black-box models. This
requirement goes against unsupervised anomaly detection’s advantage of not requiring attack data.

Lack of Surrogate Models (CH2). Global methods typically use an inherently explainable model
to mimic the black-box model, such as decision trees [15, 16] and linear models [17], which are
all supervised models. However, there lacks a proper surrogate model that is unsupervised and can
satisfy the properties of being self-explained and well-performed for high-stake security applications.

Accuracy Loss (CH3). A common problem with global methods is that the surrogate model suffers
from the loss of accuracy since it simplifies the original model [18]. In this case, though these
methods can provide model explanation, they cannot meet the need of online deployment which
requires high detection accuracy in security applications.

We observe that an important reason why simple surrogate models are ineffective is that they cannot
learn well about the complex data distribution in high-dimensional space. Specifically, even one-class
data may be multimodal, i.e., the overall distribution consists of multiple compositional distributions.
For example, the normal activities of a host may consist of many services (e.g., web, database) and
are for various purposes, and they could present considerable differences in feature space.

In light of this, this paper proposes an accurate and efficient divide-and-conquer method to globally
interpret unsupervised anomaly detection. First, we propose the concept of distribution decomposition
rules that cut the feature space into multiple subspaces, each of which encloses a compositional
distribution. To obtain such rules, we design a new tree model called Interior Clustering Tree that
extends the CART decision tree in terms of splitting criteria and can fully work in an unsupervised
manner. Second, we propose the Compositional Boundary Exploration algorithm to obtain the bound-
ary inference rules that estimate the decision boundary of the original model on each compositional
distribution. To accurately and efficiently find such rules, this algorithm starts from hypercube-shaped
rules and uses an approximation for gradient ascent of model prediction to find the optimal direction
of iterations. By merging the distribution decomposition rules and the boundary inference rules into a
rule set, we can present the inferential process of the black-box model in a human-understandable
way, and build a surrogate rule-based model for online defense at the same time.

During the experiment, we use four different unsupervised anomaly detection models well trained
on three benchmark datasets, and evaluate our method with five distinct explanation methods as
baselines. The experiment shows that our method can extract interpretable and accurate rules from
black-box models. The extracted rules outperform prior work in terms of diverse metrics including
fidelity, robustness, true positive rate and true negative rate, meeting the demand of improving human
trust in black-box models and maintaining high detection accuracy for online deployment. Our code
is available at https://github.com/Ruoyu-Li/UAD-Rule-Extraction.

2 Related Work

To combat persistent emergence of new attacks in cyberspace, recent security applications [1–3, 19–
21] make heavy use of unsupervised models to detect unknown anomalies, such as one-class classifiers
[22–24], Isolation Forests [25, 26], autoencoders and variational autoencoders [27]. Despite many
unsupervised model-based approaches have achieved good detection rates, security operators are still
concerned about the semantic gap between black-box model prediction and human understanding,
considering the risks of the great cost incurred by bad decisions [10]. To resolve such concerns,
explainable AI (XAI) has been applied to anomaly detection [28–30]. For example, Kauffmann et al.
propose a decomposition method to explain anomalies of one-class SVMs [28]. Philipp et al. present
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an explainable deep one-class classification method called Fully Convolutional Data Description
[30]. However, these methods are specific to a limited range of models and not versatile enough to
accommodate the vastly heterogeneous models of unsupervised anomaly detection.

Some prior work also incorporates popular model-agnostic explanation methods, such as LIME [6],
SHAP [7] and their variations [8], and applies them to explain unsupervised models [31–33] and
security applications [9, 34, 35, 10]. These methods typically use sparse linear models to interpret
predictions by estimating feature importance. Guo et al. propose a method named LEMNA that uses
a fused lasso to explain malware classification [9]. Sipple uses Integrated Gradients [36] to attribute
anomalies of IoT device failure [34]. Nonetheless, these methods can only interpret one data point at
a time (i.e., local explanation) but not reveal the complete decision-making process of a model.

To fully understand how black-box models work and safely deploy them, the most appropriate method
is model-agnostic global post-hoc explanation. It aims to match the predictions of any well-trained
models with an inherently interpretable explainer, such as decision trees [15, 16], symbolic rules [14],
sparse linear models [17] and decision lists [37]. In [15], the authors construct global explanations of
complex black-box models in the form of a decision tree approximating the original model. Jacobs
et al. propose a framework that takes an existing ML model and training dataset and generates tree
models to interpret security-related decisions [16]. However, most of these methods are only suitable
for interpreting supervised models that have labeled data of all classes, which are often unavailable.
Though work like [38] can extract rules from unsupervised anomaly detection models, it still assumes
that enough outliers exist in the training dataset judged by the black-box model so as to determine its
decision boundary. This assumption may not hold in practice if a model has great generalization and
can achieve a low false positive rate on normal data (e.g., [1]).

Some recent studies aggregate several local explanation models into near-global explanation [39–41].
However, this type of method is inherently computationally challenging when data volumes are
large and has to make trade-offs between fidelity and coverage. While techniques like knowledge
distillation can also realize model transformation to reduce complexity and promote interpretability
[42, 43], the fundamental purpose of these efforts is to compress models while ensuring accuracy
rather than explaining the original models with high fidelity.

3 Overview

3.1 Problem Definition

Let X ⊆ Rd be the variable space of d-dimensional features; x and xi denote a data sample and the
i-th dimension of the data sample. We give the following definitions for the rest of the paper:

Definition 1 (Unsupervised Anomaly Detection). Given unlabeled negative data (i.e., normal
data) X sampled from a stationary distribution D for training, an unsupervised model estimates
the probability density function f(x) ≈ PX∼D(x), and detects an anomaly via a low probability
f(x) < φ, where φ > 0 is a threshold determined by the model itself or by humans.

It is noted that the threshold φ is a non-zero value, meaning that the model inevitably generates false
positives, which is a common setting in most of the works [1–3] even though the false positive rate
can be very low. Besides, the normal data may occasionally be contaminated or handled with errors.
We consider the anomaly detection tolerant of noisy data, but their proportion in training dataset is
small and we do not have any ground truth labels of the training data.

Definition 2 (Global Explanation by Rule Extraction). Given a trained model f with its anomaly
threshold φ and the training set X , we obtain an in-distribution rule set C = {C1, C2, ...} that
explains how the model f profiles the distribution of normal data. A rule C = ... ∧ (xi ⊙ υi) ∧ ... ∧
(xj ⊙ υj) is a conjunction of several axis-aligned constraints on a subset of the feature space, where
υi is the bound for the i-th dimension and ⊙ ∈ {≤, >}.
Let x ∈ C indicate that a data sample satisfies a rule. From C, we can build a surrogate model hC(x),
whose inference is to regard a data sample that cannot match any of the extracted rules as anomalous:

hC(x) = ¬(x ∈ C1) ∧ ¬(x ∈ C2) ∧ ..., Ci ∈ C. (1)

Our Goal. We expect the extracted rules to have a high fidelity to the original model, that is, a similar
coverage of normal data (i.e., true negative rate), and a similar detection rate of anomalies (i.e., true
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(a) The unlabeled data (b) Compositional distribu-
tions

(c) Process of the CBE al-
gorithm

(d) The final rule set

Figure 1: A high-level illustration of our method. The small circles are unlabeled normal data. The
dashed curves are the decision boundary of the black-box model. The vertical/horizontal lines in (b)
and (c) are the distribution decomposition rules.

positive rate). To this end, we formulate our objective as follow:

argmin
C

LX∼D(C, f, φ) + LX≁D(C, f, φ). (2)

3.2 Methodology Overview

To minimize the first item in Equation (2), suppose the training data X can well represent the
distribution D, a straightforward approach is to find the bound of X as rules, such as using a
hypercube to enclose the data samples which can easily achieve the minimization of the partial loss
Lx∈X(C, f, φ) = 0. However, as D is not a prior distribution and we do not have labeled abnormal
samples, the second item LX≁D(C, f, φ) is neither deterministic nor estimable unless we create
sufficient random samples and query f , which is challenging given the high-dimensional space of X .

As prior studies [21, 34] suggest, normal data are typically multimodal, i.e., the overall distribution is
formed by multiple compositional distributions. For example, a server supports multiple services
such as web, email and database. The representations of these services can be disparate and located in
different regions in feature space with little transition between the regions, making it infeasible to find
a uniform rule set to accurately estimate the original model. An example is illustrated in Figure 1a.

Based on this intuition, we propose a divide-and-conquer approach. First, we propose an Interior
Clustering Tree model (Section 4) to find the distribution decomposition rules, which cut the feature
space into subspaces so that each subspace contains data belonging to the same compositional
distribution, as shown in Figure 1b. Then, we design a Compositional Boundary Exploration
algorithm (Section 5) to explore the decision boundary on each compositional distribution, as
depicted in Figure 1c. Particularly, the algorithm starts from the minimal hypercube that encloses
all data of the distribution, and finds the boundary by recursively extending the boundary following
the optimal direction guided by a gradient approximation. Upon obtaining the decision boundary
of a distribution, the corresponding boundary inference rule can be extracted. Last, the rule set that
globally approximates the original model can be obtained by merging the distribution decomposition
rule and the boundary inference rule of each compositional distribution, as illustrated in Figure 1d.
We formally define the distribution decomposition rule and the boundary inference rule as follows.

Definition 3 (Distribution Decomposition Rule). Denoted by CI
k that decomposes the overall

distribution of normal data D into K compositional distributions, i.e., PX∼D(x) =
∑K

k=1 ϕk ·
PX∼Dk

(x|x ∈ CI
k) where ϕk denotes the weight of each compositional distribution, so that a data

sample x ∼ Dk has significantly small probability of belonging to other distributions.

Definition 4 (Boundary Inference Rule). Denoted by CE
k that estimates the decision boundary of

the original model for each distribution Dk, i.e., argmin
CE

k

LX∼Dk
(CE

k , f, φ) + LX≁Dk
(CE

k , f, φ).

With the definition of these two types of rules, we translate the objective in Equation (2) to the
following objective as our intuition indicates. We give a proof of this proposition in the appendix.
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Proposition 1. The original objective can be estimated by finding the union of the conjunction of
distribution decomposition rules and boundary inference rules for each compositional distribution:

K⋃
k=1

argmin
Ck

LX∼Dk
(Ck, f, φ) + LX≁Dk

(Ck, f, φ),where Ck = CI
k ∧ CE

k . (3)

4 Interior Clustering Tree

To obtain distribution decomposition rules, we first need to decide how to define a compositional
distribution Dk. We notice that, though we do not have labeled data, we can use the output of the
original model that estimates the overall distribution D as a criterion for decomposition.

Proposition 2. If two data samples x(i) and x(j) belong to the same distribution Dk, the difference
of their probabilities belonging to D will be less than ϵ, where ϵ is a small constant.

Proof. Recall the definition of distribution decomposition rules and compositional distributions.
Since the two data samples belong to the same distribution Dk, the probability of belonging to other
distributions PX∼Dl

(x) is near to zero for l ̸= k. Hence, the probability PX∼D(x), which is the
weighted sum of the probability of belonging to all the compositional distributions, is approximately
equal to PX∼Dk

(x) for both the data samples.

Based on this, we propose a tree-based model dubbed Interior Clustering Tree (IC-Tree), which
extends the CART decision tree [44]. The main difference between IC-Tree and CART is that, rather
than splitting data based on ground truth labels, IC-Tree uses the probability output by the original
model as splitting criteria, enabling it to work in a completely unsupervised manner.

Node Splitting. Given the data N at a tree node, we first obtain the output of the anomaly detection
model f(x) for x ∈ N . Similar to decision trees, the node of an IC-Tree finds a splitting point
s = (i, bi) that maximizes the gain:

s = argmax
s

I(N)− |N l|
|N |

I(N l)−
|N r|
|N |

I(N r), (4)

where bi is the splitting value for the i-th dimension, N l and N r are the data split to the left and
right child nodes, |N | denotes the number of data samples, and I is a criterion function such as Gini
index I = 2p(1− p) for binary classification with the probability of p. Specifically, we let p be the
average output of the anomaly detection model, which can be interpreted as the expectation of the
probability that the data belong to the same distribution:

p = Ex∈N [PX∼D(x)] =
1

|N |
∑
x∈N

f(x). (5)

An IC-Tree continues to split nodes until it satisfies one of the following conditions: i) the number of
data samples at the node |N | = 1; ii) for any two of the data samples at the node ∀x(i),x(j) ∈N ,
|f(x(i))− f(x(j))| < ϵ; iii) it reaches a maximum depth τ , which is a hyperparameter.

Distribution Decomposition Rule Extraction. A trained IC-Tree that has K leaf nodes (K ≤ 2τ )
represents K distributions separated from the overall distribution D. Suppose the k-th leaf node has
a depth of τ ′. A distribution decomposition rule that describes the k-th compositional distribution
can be extracted by the conjunction of the splitting constraints from the root to the leaf node:

CI
k = (xi ⊙1 bi|s1 = (i, bi)) ∧ ... ∧ (xj ⊙τ ′ bj |sτ ′ = (j, bj)), (6)

where ⊙ is “≤” if the decision path goes left or “>” if the decision path goes right.

5 Compositional Boundary Exploration

To accurately find the decision boundary of a detection model within each compositional distribution,
we propose the Compositional Boundary Exploration (CBE) algorithm (described in Algorithm 1).
The CBE algorithm uses the minimal hypercube that encloses the normal data of each compositional
distribution as a starting point. Further, we refer to adversarial attacks [45] and propose a method to
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approximate the optimal direction to explore the decision boundary, which makes the algorithm more
efficient and accurate to estimate the decision boundary.

Starting from Hypercube (line 1). Let Xk denote the training data falling into the k-th leaf node of
an IC-Tree that represents a compositional distribution. Recall the definition of boundary inference
rules that target minLX∼Dk

(CE
k , f, φ) + LX≁Dk

(CE
k , f, φ). We use the minimal hypercube Hk

as a starting point of boundary inference rules to bound every dimension of the data samples in
Xk judged by the original model as normal, which obviously achieves Lx∈Xk

(Hk, f, φ) = 0. The
minimal hypercube is enclosed by 2× d axis-aligned hyperplanes, which can be characterized by the
following rule:

Hk = (υ−1 ≤ x1 ≤ υ
+
1 ) ∧ ... ∧ (υ−d ≤ xd ≤ υ

+
d ), (7)

where υ−i = min(xi|f(x) > φ,x ∈Xk) and υ+i = max(xi|f(x) > φ,x ∈Xk).

Explorer Sampling (line 4∼6). The CBE algorithm explores the decision boundary of the original
model by estimating the bound of one feature dimension at a time. For i-th dimension, we uniformly
sample Ne data points on each hyperplane of the hypercube, i.e., e(1), ..., e(Ne) ∈ Hk ∧ (xi =
υi), υi ∈ {υ−i , υ

+
i }, which are called the initial explorers for this hyperplane. For an initial explorer e,

we further sample Ns auxiliary explorers near it from a truncated multivariant Gaussian distribution
denoted by N (e,Σ, i). Particularly, the center of sampling is the explorer e and the radius of
sampling is constrained by the covariance matrix Σ = diag(ρ|υ+1 − υ

−
1 |, ..., ρ|υ

+
d − υ

−
d |), where ρ is

a hyperparameter, and the sampling on i-th dimension is half-truncated to only keep the distribution
outside the hypercube as we desire to extend the boundary. With Ne×Ns auxiliary explorers in total,
we query the original model and use Beam Search to select Ne samples with the minimal probability
of being normal as the candidate explorers for the next iteration.

Gradient Approximation (line 7∼9). Though we have obtained Ne candidate explorers in the
previous step, using them directly for the next iteration does not guarantee the optimal direction of
movement towards the decision boundary. To find the optimal direction, we utilize the Fast Gradient
Sign Method [45] that employs gradient ascent to find the direction of feature perturbation. However,
we do not know the loss function of the original model in black-box scenarios. To deal with it, given
a selected auxiliary explorer ê that is sampled around an initial explorer e on the i-th dimension
hyperplane, we approximate the i-th dimension of the model gradient (i.e., the partial derivative) by
the slope of a linear model across the two data points, and use the midpoint with its i-th dimension
minus the approximation as the new explorer for the next iteration:

ei,next =
ei + êi

2
− η · sign(∇i),where ∇i =

∂f(x)

∂xi
≈ f(e)− f(ê)

ei − êi
, (8)

sign(·) is the sign function, and η is a hyperparameter to control the stride of one iteration. The
iteration stops when i) an auxiliary explorer êext that satisfies f(êext) < φ is found, or ii) it reaches
the maximum number of iterations.

Rule Acquisition (line 12). If the iteration stops due to the first condition, we produce a boundary
constraint for each dimension using the coordinate of êext that extends the boundary of the hypercube,
i.e., ci = (xi ⊙ êext,i), where ⊙ is “≤” if êext,i is greater than υ+i , or “>” if êext,i is less than υ−i .
If the iteration stops due to the second condition, it means the algorithm encounters difficulties
in moving towards the decision boundary by perturbing this feature dimension. We calculate the
difference between the model prediction of the last auxiliary explorer and that of the initial explorers
on the hyperplane. If the difference is smaller than a threshold δ, we decide that this feature dimension
is a contour line, i.e., it has no significant correlation with the model prediction. In this case, we do
not produce any constraints for this dimension. If the difference is greater than the threshold, we
produce constraints in the same way as those produced under the first condition. The final boundary
inference rule is the disjunction of the hypercube and the constraints on each dimension.

6 Evaluation

6.1 Experimental Setup

Black-box Models and Datasets. We use four different types of unsupervised anomaly detection
models widely used in security applications as the original black-box models, including autoencoder
(AE, used by [1]), variational autoencoder (VAE, used by [46]), one-class SVM (OCSVM, used by
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Algorithm 1: Compositional Boundary Exploration
Input: Data falling into the k-th leaf node Xk, anomaly detector f and its threshold φ
Output: Boundary inference rule Ck on this leaf node such that Ck encapsulates normality

1 Hk ← MinimalHypercube(Xk);
2 for i-th dimension in Xk do
3 e(1), ..., e(Ne) ← IntialExplorer(Hk) on i-th dimension;
4 while True do
5 ê(1), ..., ê(Ns) ← AuxiliaryExplorer(e) for each initial explorer e;
6 Beam Search for Ne candidate explorers from Ne ×Ns auxiliary explorers that have the

minimal probability of being normal judged by f and φ;
7 e← GradientApprox(ê) for each candidate explorer selected from auxiliary explorers;
8 if ending condition satisfied then
9 ci ← (xi ⊙ êi) and break;

10 end while
11 end for
12 return CE

k = Hk ∨ (c1 ∧ c2 ∧ ... ∧ cd);

[47]) and Isolation Forest (iForest, used by [48]). We employ three benchmark datasets for network
intrusion detection in the experiment, including CIC-IDS2017, CSE-CIC-IDS2018 [49] and TON-IoT
[50]. The representation of these datasets is tabular data, where each row is a network flow record
and each column is a statistical attribute, such as the mean of packet sizes and the inter-arrival time.
The datasets are randomly split by the ratio of 6:2:2 for training, validation and testing. We use
only normal data to train the anomaly detection models and calibrate their hyperparameters. The
description of the datasets and the AUC score of the models on the datasets are shown in Table 1.

Baselines. We employ five prior explanation methods as baselines: 1) We use [38] that extracts rules
from unsupervised anomaly detection (UAD); 2) For other global methods, we use the estimated
greedy decision tree (EGDT) proposed by [15], and Trustee [16] that specifically explains security
applications; 3) We also consider one method LIME [6] that can use a Submodular Pick algorithm to
aggregate local explanations into global explanations, and a knowledge distillation (KD) method [43]
that globally converts a black-box model to a self-explained decision tree. These methods, like ours,
can only access normal data to extract explanations. More details about baselines are in the appendix.

Metrics. We refer to the metrics in [18] to evaluate the rule extraction. Due to limited space, we
demonstrate the following four metrics in this section and present other results in the appendix:
1) Fidelity (FD), i.e., the ratio of input samples on which the predictions of original models and
surrogate models agree over the total samples, which indicates the extent to which humans can trust
the explanations; 2) Robustness (RB), i.e, the persistence of the surrogate model to withstand small
perturbations of the input that do not change the prediction of the original model; 3) True positive
rate (TPR) and true negative rate (TNR), suggesting whether the detection capability meets the need
of online defense and whether the extracted rules generate noticeable false alarms that cause “alert
fatigue” [51] in highly unbalanced scenarios of most security applications, respectively.

6.2 Quality of Rule Extraction

We extract rules from the four unsupervised anomaly detection models using the five baseline methods
and our method, and test the performance of the extracted rules. The results on the three datasets
are in Table 2. We find that our method achieves the highest fidelity on all the detection models
and datasets, and half of the scores are even over 0.99. It shows our method can precisely match
the predictions of the black box models, which ensures the correctness of its global interpretation.

Table 1: Summary of datasets for network intrusion detection and AUC of trained models.
No. Dataset #Classes #Features #Normal #Attack AE VAE OCSVM iForest

1 CIC-IDS2017 6 attacks + 1 normal 80 687,565 288,404 0.9921 0.9901 0.9967 0.9879
2 CSE-CIC-IDS2018 14 attacks + 1 normal 80 693,004 202,556 0.9906 0.9767 0.9901 0.9734
3 TON-IoT 9 attacks + 1 normal 30 309,086 893,006 0.9998 0.9998 0.9993 0.9877
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Table 2: Performance of rule extraction on different datasets.
CIC-IDS2017 dataset

Method
AE VAE OCSVM iForest

FD RB TPR TNR FD RB TPR TNR FD RB TPR TNR FD RB TPR TNR
UAD 0.1325 0.4991 0.0003 0.9792 0.1438 0.4839 0.022 0.9988 0.0725 0.5000 0.00 1.00 0.1262 0.5000 0.0 1.00

EGDT 0.533 1.00 0.4354 0.9947 0.1437 1.00 0.022 0.9961 0.9189 0.9994 0.9306 0.838 0.9729 0.9996 0.9417 0.9189
Trustee 0.4871 0.6412 0.3844 0.9981 0.1552 0.9857 0.0152 0.9988 0.539 0.6108 1.00 1.00 0.4543 0.5801 0.9795 0.4486
LIME 0.6918 0.9999 0.7889 0.0014 0.8232 1.00 0.9329 0.001 0.068 0.9999 0.0777 0.0241 0.8910 0.9998 0.8246 0.9913

KD 0.5776 0.9989 0.4792 0.9998 0.2010 0.9817 0.1016 0.9993 0.3620 1.00 0.3102 0.9995 0.1262 0.7016 0.00 1.00
Ours 0.9835 1.00 0.9457 0.9915 0.9620 0.9993 0.9610 0.9944 0.9275 1.00 1.00 1.00 1.00 0.9949 0.9968 0.9843

CSE-CIC-IDS2018 dataset

Method
AE VAE OCSVM iForest

FD RB TPR TNR FD RB TPR TNR FD RB TPR TNR FD RB TPR TNR
UAD 0.3796 0.3077 0.0004 0.7418 0.2697 0.2930 0.1490 0.4857 0.6051 0.3069 0.3004 0.9876 0.6811 0.4035 0.3539 0.9724

EGDT 0.5821 1.00 0.1432 0.9801 0.2197 0.9989 0.2308 0.9554 0.5106 1.00 1.00 0.9546 0.9546 0.7813 0.9888 0.8971
Trustee 0.5157 0.9006 0.1901 0.9857 0.3642 0.9752 0.0124 0.9636 0.3616 0.5955 1.00 1.00 0.4241 0.4700 0.9641 0.5162
LIME 0.5838 0.9997 0.7681 0.0255 0.6814 1.00 0.9402 0.0213 0.0560 1.00 0.9999 0.0186 0.8903 1.00 0.9884 0.8745

KD 0.5074 0.9999 0.3562 0.9979 0.4234 0.9989 0.1086 0.9925 0.3180 0.9967 0.4308 0.1510 0.3596 0.6834 0.0000 1.00
Ours 0.9954 0.9997 0.9998 0.9774 0.8962 0.9985 0.9997 0.8268 0.9929 0.9997 0.9983 0.9753 0.9947 0.9291 0.9988 0.9583

TON-IoT dataset

Method
AE VAE OCSVM iForest

FD RB TPR TNR FD RB TPR TNR FD RB TPR TNR FD RB TPR TNR
UAD 0.1499 0.015 0.0258 0.908 0.2157 0.4010 0.1863 0.7787 0.0489 0.5000 0.00 1.00 0.0674 0.5000 0.00 1.00

EGDT 0.9750 1.00 0.9739 0.9943 0.7660 1.00 0.7538 0.9948 0.8139 0.9997 0.8051 0.9759 0.6345 0.9226 0.6247 0.9475
Trustee 0.4774 0.5722 0.4502 0.9971 0.3807 0.6689 0.3484 0.9975 0.7942 0.8430 1.00 1.00 0.7476 0.8145 0.9824 0.1943
LIME 0.6971 0.9999 0.7939 0.0027 0.8289 1.00 0.9379 0.0015 0.0687 0.9999 0.0787 0.0231 0.8963 0.9998 0.8296 0.9918

KD 0.0821 1.00 0.0341 0.9987 0.0591 0.9997 0.0099 0.9980 0.0494 1.00 0.0005 0.9994 0.0674 0.9955 0.00 1.00
Ours 0.9996 1.00 1.00 0.9845 0.9995 1.00 1.00 0.9831 0.9511 1.00 1.00 0.9881 1.00 0.9890 1.00 0.9715

Table 3: Fidelity of extracted rules under varying percentages of noisy training data.

Percentage Random Noise Mislabeled Noise
AE VAE OCSVM iForest AE VAE OCSVM iForest

0% 0.9829 0.9814 0.9729 0.9876 0.9997 0.9977 0.9975 0.9984
1% 0.9829 0.9824 0.9148 0.9940 0.9991 0.9992 0.9952 0.9953
3% 0.9876 0.9873 0.8960 0.9920 0.9991 0.9992 0.9952 0.9953
5% 0.9855 0.9675 0.9511 0.7732 0.9914 0.9996 0.9992 0.9966

10% 0.9739 0.9881 0.9600 0.5148 0.9987 0.9983 0.9996 0.9978

Moreover, our method achieves the highest TPR on all the detection models and datasets; specifically,
the TPR is equal to 1.00 for all the detection models on TON-IoT dataset. This result suggests that our
rules can accurately detect various anomalous data, making it possible to realize online deployment
and defense using these rules. Our method also reaches a high level of robustness (minimum 0.9890,
maximum 1.00) and true negative rate (minimum 0.9715, maximum 1.00). Therefore, it is concluded
that our method can obtain rules of high quality from different black-box unsupervised anomaly
detection models using only unlabeled one-class data.

Considering that obtaining a “clean” training set requires huge manual effort in reality [52], we also
assess the efficacy of our method under varying percentages of “noisy” data. We evaluate the fidelity
of extracted rules using two approaches for the injection of noisy data: 1) random noise; 2) mislabeled
data from other classes, i.e., attack data. The results are shown in Table 3. We find that the impact of
the noisy data proportion is not significant: 36 of 40 fidelity scores in the table preserve over 0.95, and
the variation of fidelity scores is not obvious with the increase of noisy data for most of the models.
This shows that our rule extraction method can retain similar performance to the black-box model
that it extracts from. Nonetheless, the results of iForest also reveal that a sufficiently large proportion
of noisy data may cause a certain negative impact on the rule extraction for certain models.

6.3 Understanding Model Decisions

To demonstrate that the rules obtained by our method are in line with human understanding, we use
the OCSVM as an example of black-box models to exhibit several explanations. We extract rules
from the well-train model and use the rules to predict three typical types of attack data, including
Distributed Denial-of-Service (DDoS) attacks, scanning attacks, SQL injection, and backdoor attacks.
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Table 4: Examples of explanation on four types of attacks.
Attack Rules of Normality Attack Value Feature Meaning Human Understanding

DDoS
ps_mean > 101.68 57.33 Mean of IP packet sizes DDoS attacks use packets of small sizes to achieve

asymmetric resource consumption on the victim side,
and send packets at a high rate to flood the victim.

iat_mean > 0.063 0.00063 Mean of packet inter-arrival time
dur > 12.61 0.00126 Duration of a connection

Scanning count > 120 1 IP packet count per connection Scanning attacks send a constant probe packet to a port,
and the victim will not reply if the port is closed.ps_var > 2355.20 0.0 Variance of IP packet sizes

SQL
Injection

ps_bwd_mean ≤ 415.58 435.80 Mean of backward IP packet sizes Unauthorized access to additional data from websites,
usually establish short connections for one attack.dur > 1.64 0.37 Duration of a connection

Backdoor ps_max > 275.28 48.0 Maximum of IP packet sizes It persists in compromised hosts and sends stealthy
keep-alive packets with no payload (thus very small).ps_min > 49.41 40.0 Minimum of IP packet sizes

Table 4 shows some features of the rules extracted from normal data that cannot be matched by the
attack data, and exhibits how humans can interpret the model decisions2. For example, the data of
DDoS attacks cannot match the rules of three feature dimensions, including mean of packet sizes,
mean of packet inter-arrival time, and duration of a connection. It can be observed that the feature
values of attacks are markedly lower than the bound of the rules. Such results are easy to interpret.
Because the purpose of DDoS attacks is to overwhelm the resources of a victim, an attacker will
realize asymmetric resource consumption between the victim and himself (i.e., using small packets),
send packets at an extremely high rate (i.e., low inter-arrival time), and establish as many useless
connections as possible (i.e., short duration of connections). These explanations are in line with
how humans recognize the attack data. Hence, we can draw a conclusion that our method is able to
provide precise insights into black-box anomaly detection models in a human-understandable way.

6.4 Ablation Study

To evaluate the contribution of each component in our method, including the IC-Tree and the CBE
algorithm, we conduct an ablation experiment by 1) replacing the IC-Tree with a clustering algorithm
K-Means, 2) using only the CBE algorithm, and 3) replacing the CBE algorithm with directly using
hypercubes as rules. In Table 5, we find that our method (IC-Tree + CBE) outperforms others in
terms of fidelity on both datasets. Though using the K-Means can reach similar results, it cannot
be expressed by axis-aligned rules with high interpretability and deployability as the IC-Tree can
achieve. In summary, both components are helpful for the quality of rule extraction.

Table 5: Ablation study on the components of our method.
Method CIC-IDS2017 TON-IoT

FD Comparison FD Comparison

IC-Tree + CBE (our method) 0.9856 - 0.9840 -
K-Means (k=10) + CBE 0.9731 1.268%↓ 0.9802 0.386%↓
K-Means (k=5) + CBE 0.9735 1.228%↓ 0.9793 0.386%↓

Only CBE 0.9735 1.228%↓ 0.9784 0.478%↓
IC-Tree + Hypercube 0.9652 2.069%↓ 0.0647 93.43%↓

6.5 Computational Cost and Complexity

We also evaluate the computational cost of our method with respect to training and prediction. Since
CIC-IDS2017 dataset has 80 features in total, we train the model using the first 20, 40, 60, and 80
features of 4000 samples to investigate the influence of feature sizes. The results are shown in Table 6,
which demonstrate the average training and prediction time of our method. It can be seen that the
training time is around 1 minute, which is acceptable and practical for large-scale training. Besides,
the training time increases basically linearly with the increase of feature sizes. This is because our
method adopts a feature-by-feature strategy to explore the decision boundary of the model. For
prediction time, our method is highly efficient, which only costs microsecond-level overhead for one
inference. It shows that as a rule-based approach, our method can achieve real-time execution for
online use. Note that the runtime is measured purely based on Python. In practice, the prediction
time of our method can be even less with more efficient code implementation.

2Note that the “human understanding” was derived from the knowledge of the authors, and hence may be
subjective and not reflect the wide population of security experts. We give more clarification of obtaining the
content of Table 4 in the appendix, as well as potential reasons for the disagreement between humans and models.
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Table 6: Average training and prediction time per sample for different feature sizes.
Feature Size Training Time (ms) Prediction Time (ms)

20 5.40 ± 5.50 × 10−4 5.48 × 10−3 ± 2.51 × 10−9

40 15.5 ± 6.80 × 10−2 5.52 × 10−3 ± 2.34 × 10−9

60 14.7 ± 8.75 × 10−5 6.99 × 10−3 ± 3.56 × 10−8

80 30.7 ± 3.08 × 10−1 6.91 × 10−3 ± 9.00 × 10−8

(a) Maximum tree depth (b) #Explorers (c) Sampling coefficient (d) Iteration stride

Figure 2: Sensitivity experiments of hyperparameters.

We also theoretically analyze the time complexity of our algorithms. For training, the complexity of
the IC-Tree is identical to a CART: O(d · n log n), where d is the feature size and n is the sample
number; the complexity of the CBE algorithm is O(K · d ·Ne ·Ns), where K is the number of leaf
nodes of the IC-Tree, and Ne and Ns are the number of initial explorers and auxiliary explorers.
Therefore, the training time is theoretically linear to the feature size, which is in line with the empirical
results. For execution, the time complexity is O(|C| · d), where |C| is the number of extracted rules.

6.6 Hyperparameter

We perform a sensitivity analysis of several hyperparameters on their influence on the rule extraction.
We present four major hyperparameters in Figure 2, including the maximum depth τ of an IC-Tree,
Ne number of explorers, the coefficient ρ of sampling, and the factor η that controls the stride of an
iteration. Due to limited space, the analysis of other hyperparameters is placed in the appendix.

Maximum tree depth. A deeper IC-Tree has more leaf nodes, and can accordingly decompose more
distributions that ease the difficulty of rule extraction. Meanwhile, excessively fine-grained splitting
might cause overfitting. We find that τ = 15 achieves the best performance.

Number of Explorers. It is essentially the number of selected nodes per iteration in Beam Search,
which considers multiple local optima to improve greedy algorithms. But selecting too many nodes
may also include more redundancy. Figure 2b shows that a value between 6 and 8 is recommended.

Coefficient of sampling. Figure 2c shows that a higher value of the hyperparameter achieves
better results. A large coefficient decides a large radius of sampling from a multivariant Gaussian
distribution, which helps the CBE algorithm quickly find the decision boundary of the original model.

Factor of iteration stride. In Figure 2d, we find that a larger factor η can obtain rules of higher
quality. As it decides the stride of finding the explorers for the next iteration, a higher value of the
hyperparameter might help the convergence of the iteration process.

7 Conclusion and Future Work

This paper proposes a novel method to globally interpret black-box unsupervised anomaly detection,
in which we introduce two types of rules and corresponding algorithms to extract these rules. The
evaluation shows that our method outperforms prior work in terms of various metrics, boosting user
confidence in complex models and facilitating their integration into high-stake security applications.

There are numerous meaningful directions for future work. First, new algorithms can be developed
based on model interpretation to troubleshoot illogical inference processes in black-box models (e.g.,
false positives) and realize the automation of precisely fixing errors. Moreover, researchers can
investigate the integration of rule extraction with high-performance rule-based defense systems, such
as P4 [13], to implement a more efficient security system. In addition, since the proposed method can
be generic, the transfer to other areas of industry that also demand interpretable anomaly detection,
such as health, manufacturing and criminal investigation, can be further explored.
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A Appendix

A.1 Proof of Proposition 1

Our Goal. We expect the extracted rules to have a high fidelity to the original model, that is, a similar
coverage of normal data (i.e., true negative rate), and a similar detection rate of anomalies (i.e., true
positive rate). To this end, we formulate our objective as follows:

argmin
C

LX∼D(C, f, φ) + LX≁D(C, f, φ). (9)

Proposition 1. The original objective can be estimated by finding the union of the conjunction of
distribution decomposition rules and boundary inference rules for each compositional distribution:

K⋃
k=1

argmin
Ck

LX∼Dk
(Ck, f, φ) + LX≁Dk

(Ck, f, φ),where Ck = CI
k ∧ CE

k . (10)

We give the following lemma equivalent to Proposition 1 and prove it:

Lemma 1.1. If the distribution decomposition rules and the inference boundary rules that minimize
the loss on each of the compositional distributions are found, the sum of the minimum losses on each
of the compositional distributions can estimate the minimum loss on the overall distribution with a
significantly small error ψ, i.e.,

minLX∼D(C, f, φ) + LX≁D(C, f, φ)

=

K∑
k=1

min(LX∼Dk
(Ck, f, φ) + LX≁Dk

(Ck, f, φ)) + ψ,

where Ck = CI
k ∧ CE

k , ψ ≥ 0.

(11)

Proof. The sum of the minimum losses on each of the compositional distributions is calculated by an
iteratively cumulative process. Let Lj be the sum of the minimum losses on each of the compositional
distributions at the j-th iteration, i.e.,

Lj =

j∑
k=1

min(LX∼Dk
(Ck, f, φ) + LX≁Dk

(Ck, f, φ)).

Let X ∼
⋃j

k=1Dk represent a variable belonging to any of the compositional distributionsD1, ...,Dj .
We prove the Loop Invariant of Lj during the iteration, which always satisfies:

Lj = min(LX∼
⋃j

k=1 Dk
(

j⋃
k=1

Ck, f, φ) + LX≁
⋃j

k=1 Dk
(

j⋃
k=1

Ck, f, φ)) + ψ. (12)

1) For the first iteration, the equation L1 = minLX∼D1
(C1, f, φ)+LX≁D1

(C1, f, φ)+ψ obviously
holds where ψ = 0.

2) Suppose the Equation (12) holds at the j-th iteration. For the (j + 1)-th iteration, we have the
following derivations:

Lj+1 =

j+1∑
k=1

min(LX∼Dk
(Ck, f, φ) + LX≁Dk

(Ck, f, φ))

=min(LX∼
⋃j

k=1 Dk
(

j⋃
k=1

Ck, f, φ) + LX≁
⋃j

k=1 Dk
(

j⋃
k=1

Ck, f, φ)) + ψ

+min(LX∼Dj+1
(Cj+1, f, φ) + LX≁Dj+1

(Cj+1, f, φ))

=min(LX∼
⋃j+1

k=1 Dk
(

j+1⋃
k=1

Ck, f, φ) + LX≁
⋃j+1

k=1 Dk
(

j+1⋃
k=1

Ck, f, φ)) + ψ

+ LX∼
⋃j

k=1 Dk∩Dj+1
(

j+1⋃
k=1

Ck, f, φ) + LX≁
⋃j

k=1 Dk∩Dj+1
(

j+1⋃
k=1

Ck, f, φ),
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where
⋃j+1

k=1Dk ∩ Dj+1 represents the overlap area between the conjunction of the compositional
distributions

⋃j+1
k=1Dk and the (j + 1)-th compositional distribution Dj+1. Recall the definition of

the compositional distributions that a data sample belonging to one compositional distribution has a
significantly small probability of belonging to other compositional distributions, meaning that the
overlap area between the compositional distributions is significantly small. Therefore, the loss with
respect to the overlap area is also significantly small, given the data samples belonging to the area are
significantly rare. Let

ψ = ψ + LX∼
⋃j

k=1 Dk∩Dj+1
(

j+1⋃
k=1

Ck, f, φ) + LX≁
⋃j

k=1 Dk∩Dj+1
(

j+1⋃
k=1

Ck, f, φ),

and we can get the final result of Lj+1:

Lj+1 = min(LX∼
⋃j+1

k=1 Dk
(

j+1⋃
k=1

Ck, f, φ) + LX≁
⋃j+1

k=1 Dk
(

j+1⋃
k=1

Ck, f, φ)) + ψ,

which proves the loop invariant in Equation (12). At the last iteration when j = K, as the overall
distribution is equal to the conjunction of the compositional distributions, i.e., D =

⋃K
k=1Dk, we

prove Equation (11) holds and Lemma 1.1 is correct.

A.2 Implementation of Our Method

Our implementation is primarily based on PyTorch (version 1.12.1) for the deep learning models,
such as AE and VAE. Additionally, for data preprocessing, feature engineering, and model evaluation,
we employ the versatile machine learning library scikit-learn (version 1.1.3). Python (version 3.9.15)
serves as the programming language for our implementation, providing a rich ecosystem of libraries
and tools for data manipulation and experiment orchestration.

Our experiments were conducted on a server equipped with the Intel(R) Xeon(R) Gold 5218 CPU @
2.30GHz (128GB RAM) and the GeForce RTX 2080 Super (8GB VRAM). Note that GPU is only
used for the training of some DL-based anomaly detectors (e.g., AE, VAE), and our rule extraction
method only requires the use of CPU.

A.3 Implementation of Baselines

In this section, we delve into the details of the baseline methods used for evaluation in our experi-
ments, focusing on their implementation in the context of globally explaining unsupervised anomaly
detection. The five baseline methods include Rule extraction from UAD, Estimated Greedy Decision
Tree (EGDT), Trustee, Local Interpretable Model-agnostic Explanations (LIME), and a Knowledge
Distillation (KD) method.

A.3.1 Rule Extraction from UAD

The Rule Extraction from UAD method was initially designed for one-class support vector machines
(OCSVM) but is applicable to various types of unsupervised anomaly detection models. It uses feature
scaling, anomaly detection, and clustering to produce rules from the input parametersX, ln, lc, d,m, t,
where X refers to the input data frame with the features, ln is a list with the numerical columns, lc is
a list with the categorical columns, d is a dictionary with the hyperparameters for OCSVM (kernel
type, upper bound on the fraction of training errors and a lower bound of the fraction of support
vectors, ν, and the kernel coefficient, γ). m is a variable that defines the type of cluster algorithm,
and t is a variable that specifies the type of approximation for obtaining the hypercubes.

The approach for obtaining rules depends on the type of cluster algorithm used and can involve
iterative clustering and splitting of data points. The choice of kernel type in the OCSVM model can
influence the rules obtained, with RBF kernel tending to enclose inliers and leave outliers outside,
eventually forming hypercubes to represent the rules.

A.3.2 Estimated Greedy Decision Tree (EGDT)

The EGDT method constructs a decision tree that approximates the black-box model. The algorithm
generates new training data by actively sampling new inputs and labeling them with a black-box
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model. Based on these training data, EGDT constructs the decision tree T ∗ of size k similar to CART,
in a greedy manner and is pruned to improve interoperability. The algorithm takes into account the
distribution of points that are routed to each leaf node in the decision tree to ensure that the label
assigned to each leaf node is accurate.

A.3.3 Trustee

The model-agnostic DT extraction method Trustee, specifically focuses on interpreting security
applications. The core idea is to construct an interpretable decision tree by minimizing the difference
between the black-box model and the surrogate model. The algorithm creates several high-fidelity
decision trees by executing an outer loop S times and an inner loop N times. In an unsupervised
setting, we treat the predictions of the black-box model as pseudo-labels and employ the same process
as for the supervised case.

A.3.4 Local Interpretable Model-agnostic Explanations (LIME)

By learning an interpretable model locally around the prediction, LIME explains the predictions of
any classifier in an interpretable and faithful manner. LIME uses locally weighted square loss and an
exponential kernel to approximate the black-box model. LIME trains a sparse linear model on the
local dataset to explain the prediction. The feature importance scores assist in identifying the most
important features that contribute to the prediction, which can be used to gain insights into the model
and improve LIME’s trustworthiness.

In addition, this paper proposes “SP-LIME” that selects a set of representative instances with expla-
nations to address the “trusting the model” problem, via submodular optimization. The submodular
pickup method is used to select a subset of instances that are representative of the entire dataset while
reducing redundancy. This method allows for a global perspective to ascertain trust in the model,
in addition to explaining individual predictions. LIME can therefore be transformed from a local
method to a global method using the submodular pickup method, which makes it more useful in real
scenarios.

The implementation of LIME in unsupervised settings is fairly straightforward. For a given input
instance, we create a set of perturbations, predict their labels using the black-box model, and then fit
an interpretable model (usually a linear model) on this newly created dataset to approximate the local
decision boundary.

A.3.5 Knowledge Distillation (KD) Method

In order to achieve interpretability and effectiveness simultaneously, the KD method proposes a
knowledge distillation-based decision tree extension, called rectified decision trees (ReDT), and tries
to transfer the knowledge from a complex model (the teacher) to a simpler one (the student). ReDT
extends the splitting criteria and the ending condition of the standard decision trees to allow training
with soft labels distilled from a well-trained teacher model while preserving the deterministic splitting
paths. They recommend a jackknife-based distillation to obtain soft labels, which does not require
backpropagation for the student model, and analyze the effectiveness of adopting soft labels instead
of hard ones empirically and theoretically. In an unsupervised scenario, we employ the anomaly
scores produced by the teacher model as pseudo-labels. The student model is then trained to imitate
these scores. This method’s limitation lies in its strong reliance on the correctness of the teacher
model’s scores.

We need to note that these unsupervised adaptations of the baselines essentially introduce a supervised
flavor to the learning process, with the black-box model’s predictions serving as the pseudo-labels. It
is an important observation that these methods do not inherently work in an unsupervised manner
and their application in such settings might be unreliable depending on the accuracy of the black-
box model’s predictions. On the other hand, our proposed method is fundamentally designed for
unsupervised settings, making it a more trustworthy choice for real-world applications.

It is also worth mentioning that, except for LIME3 and Trestee4 which use open-source code, all
other baseline methods were implemented in Python using the scikit-learn library, with default

3https://github.com/marcotcr/lime
4https://github.com/TrusteeML/trustee
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parameters unless specified otherwise. Hyperparameters were set based on the initial grid search and
then manually fine-tuned.

A.4 More Details in Experiments

A.4.1 More Metrics

We also examine other metrics in addition to the metrics given in the main article.

• Precision (PR) measures the proportion of correctly predicted positive instances out of the
total instances anticipated as positive. It indicates the model’s ability to avoid false positives.
A lower rate of false positives is indicated by precision values that are higher.

• Correctness (CR) evaluates the precision of the explanations provided by the IC-Tree
method with respect to the underlying model. This can be quantified using the Jaccard
similarity index, defined as Cr = r

N , where r is the number of correct outputs by the model.

• Recall (RC) also known as sensitivity or true positive rate, quantifies the proportion of
correctly predicted positive instances out of all actual positive instances. It indicates the
model’s ability to identify all positive instances without missing any. Higher recall values
indicate a lower rate of false negatives. It can be quantitatively assessed by the ratio
RC = TP

TP+FN .

• F1 score (F1) is the harmonic mean of precision and recall combined into a single statistic,
which provides a balanced measure of both precision and recall, capturing the overall
performance of the model.

Besides the aforementioned metrics, in fact, we believe that the most appropriate way to assess
“human’s trust in anomaly detection models” should be employing a trial in which human security
experts are invited to inspect the rules of interpretation, measuring the consistency of understanding.
Yet this is not an easy task to conduct: to eliminate the subjective influence of each expert, enough
people must be invited to participate in the trial, which can be somewhat difficult to carry out. Despite
the intrinsic limitations of lacking such a metric, it is indeed a common practice to employ only those
commonly used metrics (e.g., fidelity, F1 score) even in research works accepted to top venues, which
may reveal an obvious gap between “research” and “practice”.

The specifics of the performance metrics of our proposed method in comparison to other baseline
methods, including UAD, EGDT, Trustee, LIME, and KD, are demonstrated in Table 7 and Table
8. In addition, we analyze the effects of several hyperparameters on our methodology, as shown in
Table 9. The performance metrics are categorized based on different anomaly detection algorithms:
Autoencoder (AE), Variational Autoencoder (VAE), One-Class SVM (OCSVM), and Isolation Forest
(iForest) are shown in Table 8. Precision (PR), Correctness (CR), Recall (RC), and F1 score (F1) are
evaluated in this paper. Notably, our proposed method achieves the highest performance in almost
all categories, with a few significant instances where it ties with the best performer. This indicates
the comprehensive superiority of our approach, as it consistently delivers exceptional performance
across a wide range of models and metrics.

Table 7: Performance of rule extraction on CIC-IDS2017 dataset.

Method
AE VAE OCSVM iForest

PR CR RC F1 PR CR RC F1 PR CR RC F1 PR CR RC F1

UAD 0.5896 0.0659 0.1027 0.175 0.6104 0.0874 0.1126 0.1901 0.9912 0.067 0.999 0.9951 0.9993 0.067 0.9292 0.963
EGDT 0.5729 0.4729 0.4729 0.8924 0.5613 0.873 0.6864 0.5462 0.9904 0.9244 0.8553 0.9179 0.9942 0.9402 0.9938 0.994
Trustee 0.8651 0.4255 0.6482 0.4255 0.812 0.831 0.7655 0.828 0.856 0.5509 0.6664 0.7494 0.954 0.4842 0.8676 0.8952
LIME 0.9998 0.7614 0.7569 0.8616 0.7091 0.7331 0.8641 0.9003 0.9892 0.741 0.9263 0.9567 0.8641 0.8305 0.8305 0.8751
KD 0.5141 0.5141 0.6871 0.5835 0.5612 0.1618 0.4516 0.5623 0.9157 0.3564 0.3748 0.5319 0.7863 0.067 0.8465 0.8461

Ours 0.9994 0.9488 0.9457 0.9718 0.9633 0.9633 0.9633 0.9645 0.9351 0.933 1 0.9653 0.933 0.9933 0.9354 0.9841

This extensive evaluation underlines the robustness and effectiveness of our method compared to
established baselines. The superior performance, across varying metrics and under different detection
models, signifies its potential as a versatile solution for rule extraction in the TON-IoT dataset. This
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Table 8: Performance of rule extraction on TON-IoT dataset.

Method
AE VAE OCSVM iForest

PR CR RC F1 PR CR RC F1 PR CR RC F1 PR CR RC F1

UAD 0.0058 0.085 0.1257 0.182 0.6153 0.216 0.3546 0.6845 0.9847 0.0501 0.0526 0.0998 0.9949 0.0501 0.1776 0.3014
EGDT 0.9749 0.9749 0.9854 0.9749 0.7659 0.7659 0.7856 0.8621 0.9979 0.8136 0.651 0.788 0.9964 0.6408 0.7977 0.886
Trustee 0.8475 0.4776 0.5465 0.4776 0.3809 0.3809 0.8416 0.3809 0.8482 0.7932 0.4147 0.557 0.9548 0.2338 0.6576 0.7525
LIME 0.7651 0.7664 0.6845 0.7561 0.9035 0.9053 0.8486 0.9053 0.7896 0.0749 0.7815 0.7512 0.7987 0.8354 0.8861 0.8354
KD 0.5765 0.0824 0.6548 0.3554 0.5648 0.0594 0.5486 0.5461 0.8966 0.0505 0.1004 0.1805 0.5154 0.0501 0.8456 0.8465

Ours 0.9992 0.9992 0.9345 0.9801 0.9992 0.9992 0.9861 0.9814 0.9345 0.9499 1 0.9743 0.9933 0.9933 0.9456 0.9968

demonstrates the practical utility of our proposed method, especially in a diverse and dynamic domain
such as IoT, which could significantly benefit from such adaptable and high-performing solutions.

As for the baseline methods, while some of them can achieve acceptable fidelity for certain models,
they fail to maintain such results on other models, indicating that they cannot achieve qualified
model-agnostic global explanations for unsupervised models. Further, most of their recall scores
cannot meet the requirement of using their rules for online defense. It is mainly because these
methods either require labeled data to determine the boundary between normal and abnormal (e.g.,
EGDT and LIME), or need sufficient outliers in the training data (e.g., UAD and KD), which can be
unavailable in many security applications. In contrast, our method eliminates these requirements by
the IC-Tree and CBE algorithm that explores the decision boundary in an unsupervised manner, and
meanwhile realizes a high detection rate of anomalies.

Lastly, it is worth noting that while our method exhibits superior performance, we do not imply the
obsoleteness of other methods. Every method has its strengths and use cases, thus the selection of the
method should always be context-dependent. Future work could involve fine-tuning our method to
improve its performance further or be applied to other domains.

A.4.2 More Clarification of Human Understanding

We present a step-by-step description of obtaining the content in Table 4 in an ideal experiment,
which takes data points as input and then shows the steps that come up with the explanations:

1. For a reported anomaly x, we use the IC-Tree to pinpoint the rule of normality that judges
x as anomalous. It is realized by inputting x into the tree and recursively finding the leaf
node. The rule is denoted by Cx.

2. For each constraint of features in Cx, we compare the corresponding feature value of x with
the range of the constraint.

3. For the feature values outside the range of the constraints, the Rules of Normality, Feature
Values, and Feature Meaning (i.e., the three columns in Table 4) along with the raw data
sample will be sent as the explanation to the security expert for further analysis.

4. The security expert will analyze the data sample to determine the type of attack (i.e., the
Attack column in Table 4) and give her/his understanding of the important attributes that
make her/him identify the attack (i.e., the Human Understanding column in Table 4).

5. If there is a huge gap between the provided explanation and expert understanding, it indicates
that the anomaly detector is not trustworthy. The security expert may conduct further actions
to improve the detector, such as retraining, fine-tuning, or reconsidering feature selection.

Note that such a gap may not only occur when the anomaly detector makes erroneous decisions
but also when the anomaly detector correctly detects an attack sample by unreasonable features.
For example, the most obvious attribute of a Denial-of-Service (DoS) attack is typically its high
rate of forwarding packets in order to overwhelm the victim. However, the provided explanation
might suggest the IP address is an important feature for the anomaly detector to make this inference,
which is quite doubtful from the perspective of a security expert. In practice, this may be due to
“spurious correlation” or “shortcut learning”5. Specifically, for the DoS example mentioned in our
paper, unreliable decisions could be made due to inappropriate testbed settings for the collection of

5D. Arp, E. Quiring, et al., “Dos and Don’ts of Machine Learning in Computer Security”, in 31st USENIX
Security Symposium, USENIX Security 2022.
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training data, such as the DoS attack being launched from one separate host address while all other
normal traffic is from other host addresses.

A.4.3 More Hyperparameter Analysis

The robustness of our method against changes in hyperparameters also needs to be evaluated. Sensi-
tivity analysis analysis us to identify which parameters are most influential, thereby concentrating on
tuning those to achieve optimal performance. In our study, we perform a sensitivity analysis on the
hyperparameters: Maximum Iteration, Auxiliary Explorer Sample Size (Ns), Distribution Similarity
Threshold (ϵ), and Significance Threshold (δ)).

Maximum Iteration represents the maximum number of iterations that the algorithm will run. In our
analysis, as shown in Table 9, this parameter’s variation from 0.01 to 0.5 has a negligible effect on all
the measured indicators. This displays the algorithm’s resilience and robustness to changes in this
hyperparameter, indicating that the model converges relatively rapidly.

Auxiliary Explorer Sample Size (Ns) represents the number of samples gathered to assist the
model’s exploration phase. The results indicate that our model effectively makes use of the available
samples because an increase in Ns has little to no effect on the majority of the metrics. However, a
slight increase in fidelity, correctness, and accuracy is observed at larger sample sizes, indicating that
providing more samples can marginally enhance the model’s performance.

Distribution Similarity Threshold (ϵ) dictates how similar the proposed and baseline distributions
should be for the tree’s branches to accept the proposed distribution. Interestingly, whereas other
metrics practically remain constant as epsilon goes from 10 to 150, fidelity, correctness, and accuracy
show a slight uptick. This suggests that our model exhibits an adaptable behavior to changes in
distribution similarity thresholds.

Significance Threshold (δ), which determines the minimum difference that should be deemed
noteworthy, also shows a negligible effect on all the performance indicators. This shows that the
model is not sensitive to changes in δ and supports the robustness of the proposed approach.

One noticeable aspect across all parameters is the TPR and TNR values. The TPR is consistently
at its maximum, showcasing the system’s excellent ability to identify positive instances. TNR also
remains high, demonstrating the system’s effectiveness in accurately identifying negative instances.

This sensitivity analysis underlines the robustness and adaptability of our proposed method. De-
spite varying hyperparameters, our method consistently delivers high performance, emphasizing its
potential as a versatile solution in diverse real-world scenarios. However, care should be taken to
appropriately tune these parameters according to the specifics of the given context.

Future work might explore other influential hyperparameters and conduct a similar sensitivity analysis.
Moreover, utilizing methods like automatic hyperparameter tuning or evolutionary algorithms can
lead to more efficient and optimal configuration settings.

Table 9: Performance of different hyperparameters.

Metric
Maximum Iteration Auxiliary Explorer Sample Size Distribution Similarity Threshold Significance Threshold

0.01 0.05 0.1 0.5 50 100 150 350 10 50 100 150 0.001 0.005 0.01 0.1

Fidelity 0.9996 0.9996 0.9996 0.9995 0.9996 0.9996 0.9996 0.9995 0.9996 0.9998 0.9998 0.9998 0.9996 0.9996 0.9996 0.9995
Robustness 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Correctness 0.9992 0.9992 0.9992 0.9992 0.9993 0.9992 0.9992 0.9992 0.9992 0.9995 0.9996 0.9996 0.9992 0.9992 0.9992 0.9992
Accuracy 0.9992 0.9992 0.9992 0.9992 0.9993 0.9992 0.9992 0.9992 0.9992 0.9995 0.9996 0.9996 0.9992 0.9992 0.9992 0.9992

TPR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
TNR 0.9844 0.9845 0.9849 0.9842 0.9853 0.9846 0.9845 0.9841 0.9844 0.9909 0.9925 0.9920 0.9850 0.9847 0.9848 0.9841

A.5 Limitations

Though our method achieves global explanation with high fidelity, it still has several limitations. First,
our method works well with tabular data but might be inapplicable to raw image data. It is because
our method treats every dimension of the feature space as a semantic feature, such as the average
packet size of a network connection, and extracts rules from each dimension of the feature space. In
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contrast, raw image data are tensors of pixels. Their high-level semantics cannot directly derive from
each of the pixels but usually need a deep model with spatial awareness (e.g., CNN, ViT) to extract
feature maps, which are inconsistent with our method. Hence, this issue may limit the transferability
of the proposed method to other domains. Nonetheless, due to the typical trust in expert knowledge
over deep models in security domains, most security applications still rely on sophisticated feature
engineering and use data representations with explicit semantics, suggesting that our method remains
general in the field of security.

Second, recall that the rules extracted by our method are axis-aligned, which can be interpreted
as a certain feature over/under a threshold and are human-understandable. Though this format of
rules significantly promotes interpretability, it may limit its degree of fitting to the decision boundary
of the original model, which can be of various shapes in the high-dimensional feature space for
different models. Though our IC-Tree has mitigated this issue by splitting the distribution of normal
data into multiple compositional distributions, which are more compact and more likely to be fitted
using axis-aligned rules, there is little guarantee that our method cannot encounter underfitting if the
decision boundary of the original model is extremely irregular. It should be clarified that this is a
common limitation for all the global explanation methods that employ axis-aligned rules or decision
trees as the surrogate expression. To this end, we are also exploring other surrogate models and
algorithms that can further balance the interpretability and fitting ability.

Lastly, as we mentioned above, we believe that the experiments on “human understanding and
trust” can be significantly strengthened by introducing security practitioners to participate in a use
test, finding if the interpretation provided by the proposed method is consistent with their expert
knowledge of judging an anomaly. Currently, we are collaborating with the Tencent Security Platform
Department, aiming to rectify this limitation by accounting for the opinions of real practitioners.
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