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Abstract

Densely structured pruning methods utilizing simple pruning heuristics can de-
liver immediate compression and acceleration benefits with acceptable benign
performances. However, empirical findings indicate such naïvely pruned networks
are extremely fragile under simple adversarial attacks. Naturally, we would be
interested in knowing if such a phenomenon also holds for carefully designed
modern structured pruning methods. If so, then to what extent is the severity?
And what kind of remedies are available? Unfortunately, both questions remain
largely unaddressed: no prior art is able to provide a thorough investigation on the
adversarial performance of modern structured pruning methods (spoiler: it is not
good), yet the few works that attempt to provide mitigation often do so at various
extra costs with only to-be-desired performance.
In this work, we answer both questions by fairly and comprehensively investigating
the adversarial performance of 10+ popular structured pruning methods. Solution-
wise, we take advantage of Grouped Kernel Pruning (GKP)’s recent success in
pushing densely structured pruning freedom to a more fine-grained level. By
mixing up kernel smoothness — a classic robustness-related kernel-level metric —
into a modified GKP procedure, we present a one-shot-post-train-weight-dependent
GKP method capable of advancing SOTA performance on both the benign and
adversarial scale, while requiring no extra (in fact, often less) cost than a standard
pruning procedure. Please refer to our GitHub repository for code implementation,
tool sharing, and model checkpoints.

1 Introduction

Convolutional neural networks (CNNs) have demonstrated solid performance on tasks centered
around computer vision. However, with modern CNNs growing in both widths and depths, the issue
of over-parameterization has drawn increasing attention due to such networks often requiring large
computational resources and memory capacity. To mitigate the burden, network pruning — the study
of removing redundant parameters from original networks without significant performance loss —
has become a popular approach for its simplicity and directness [LeCun et al., 1989, Blalock et al.,
2020, He and Xiao, 2023].
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Despite the popularity of the pruning field in general, few prior arts have been available to provide
improved adversarial robustness under the constraint of (densely) structured pruning; even
though empirical findings show vanilla structured pruning methods implemented with naïve pruning
strategies often experience huge performance drop on such adversarial tasks [Wang et al., 2018,
Sehwag et al., 2020, Vemparala et al., 2021]. More concerning, no prior art has made an effort to
provide a comprehensive investigation on whether the same phenomenon also exists under carefully
designed modern structured pruning methods, where such methods are often capable of delivering
excellent benign accuracy retention after pruning (sometimes, even improvements).

Below, we provide a walk-through of why a densely structured method and having an adversarially
robust pruned model are preferable and important, to how we developed our solution by leveraging
the power of increased structural pruning freedom (grouped kernel pruning) with kernel-level metrics
(kernel smoothness). In the later sections of this paper, we replicate and evaluate around 13 popular
densely structured pruning methods and variants against various white box (evasion) adversarial
attacks, where our proposed method showcases clear dominance.

1.1 Structured v.s. Unstructured Pruning: Accuracy-Efficiency Trade-off

Most of the existing CNN pruning methods can be roughly categorized into structured and unstruc-
tured pruning. Note we said roughly because there is no universally agreed delineation between
structured and unstructured pruning methods. The general consensus is that methods considered
more unstructured often enjoy a higher degree of freedom on where to apply their pruning strategies
(e.g., weight-level pruning) and therefore result in better accuracy retention.

In contrast, structured pruning methods often prune weights in a grouped manner following some
kind of architecturally defined constraints (e.g., filter-level pruning). Compared to their unstructured
counterparts, structured pruning methods are more hardware-friendly and easier to obtain compression
and acceleration on commodity hardware, though at the cost of worse accuracy retention. This
difference is due to unstructurally pruned networks’ tendency to have pruned (zeroed) parameters
randomly distributed in the weight matrix, leading to poor data reuse and locality [Yang et al., 2018].
Such unstructurally pruned networks struggle to have wall-clock time speed up without supports like
custom-indexing, special operation design, sparse operation libraries, or even dedicated hardware
setups [Yang et al., 2018, Han et al., 2016, He and Xiao, 2023].

Among all structured pruning methods, one popular line of research is to produce pruned networks
that are entirely dense, a.k.a. densely structured, where the pruned weights are stored in the normal
dense tensor format. Such format of a pruned network is considered to be most library/hardware-
friendly and, therefore, most deployable in a practical context. With such significant benefits, densely
structured pruning methods consist of the absolute majority of structured pruning methods.
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Figure 1: Visualization of different pruning granularities.

Densely structured pruning methods come with different pruning granularities, where a significant
portion of prior arts prune at a filter or channel level. These two types of pruning are historically
considered to be the limit of densely structured pruning, as showcased in Figure 1: if we go down
one more level, we will have kernel pruning; however, its pruned network is not dense. This is until
recently, authors from Zhong et al. [2022] utilized kernel pruning with grouped convolution, where
they prune at a grouped kernel level to ensure an entirely dense pruned network. To the best of our
knowledge, grouped kernel pruning carries the highest degree of pruning freedom among all densely
structured pruning methods.
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1.2 Pruned Models Are Fragile Under Adversarial Attacks — But Why Do We Care?

Empirical findings like Wang et al. [2018] suggest that although pruned neural networks may have
acceptable benign accuracy, they are often more vulnerable to adversarial attacks. Adversarial
robustness is recognized as a long-standing metric to evaluate model quality, as a model with
undesired adversarial robustness can be easily exploited to produce wrong and potentially harmful
output, resulting in fairness and accountability issues.

We would argue such robustness properties are especially valued under the context of (struc-
tured) pruning, where pruned models are often deployed to resource-constraint devices with less
central oversight available and requiring execution in a more real-time manner. Imagine if an OCR
model for real-time check redeeming can be maliciously exploited to read the number 1 as 9; the
result will surely be unpleasant for many parties involved.

To alleviate such a problem (though not under a pruning context), prior arts like Wang et al. [2020b]
demonstrate the adversarial robustness of a convolutional network is largely correlated to its sensi-
tiveness to high-frequency components (HFC), where such sensitiveness can be mitigated with some
simple kernel-level operations like kernel smoothness. More on this in Section 2.

1.3 Solution: Grouped Kernel Pruning with Adversarial-Robustness-Boosting Kernel Metrics

With the recent Grouped Kernel Pruning (GKP) framework pushing the pruning freedom of densely
structured pruning to a (close) kernel-level [Zhong et al., 2022], we explore the unique possibility
of mixing up adversarial-robustness-boosting kernel metrics — such as kernel smoothness — into
the procedure of GKP. We present Smoothly Robust Grouped Kernel Pruning (SR-GKP), a densely
structured pruning method that works in a simple post-train one-shot manner, but is often capable of
delivering competitive benign performance and much stronger adversarial performance against SOTA
filter and channel pruning methods that require more sophisticated procedures. Solution-wise, our
main claims and contributions are:

• Free improvement on adversarial robustness. Our method has no extra (in fact, often less) cost
compared to a standard pruning method, making the gained adversarial robustness entirely free.

• One-shot & post-train & weight-dependent: the simplest procedure with most compatibility.
Our method is a one-shot-post-train-weight-dependent1 structured pruning method for CNN that
follows the classic train - prune - fine-tune procedure, where all excessive components are pruned
all at once before fine-tuning. This means it is compatible with any trained CNNs (as it does not
interfere with the training pipeline) yet straightforward to execute, as the pruning procedure before
fine-tuning does not rely on access to data but only the trained model’s parameters.

• Raise attention to the important but overlooked field of adversarially robust structured
pruning. Our method is among the few structured pruning methods capable of delivering pruned
networks with improved adversarial performance — a field with severe problems, but receives little
recognition or solutions.

On the investigation side, we are the first to comprehensively reveal:

• Drastic adversarial performance difference under a similar benign report. We found that while
different carefully designed modern densely structured pruning methods may showcase similar
benign performance, most are done so at the cost of adversarial robustness.

• One less reason for filter/channel pruning: further endorsing GKP. Filter and channel pruning
methods have dominated the field of densely structured pruning for years; our work — together
with Zhong et al. [2022] and Park et al. [2023] — showcased that when done right, grouped kernel
pruning-based methods are superior under both benign and adversarial tasks, making it a promising
direction for future densely structured pruning research.

1Note the term “one-shot” can be ambiguous under a pruning context. Some literature, including ours, refer
to “one-shot” as the pruning procedure is done all at once before fine-tuning [Liu et al., 2019, Frankle and
Carbin, 2019, Renda et al., 2020]; yet, some other work refers to “one-shot” as without requiring a fine-tuning
stage [Chen et al., 2023, Frantar et al., 2023]. We hereby clarify that our proposed method still requires a
fine-tuning stage after pruning. Further, Only-Train-Once (OTO) [Chen et al., 2023] — a popular series of
iterative from-scratch pruning methods known for its automatically applicable property — utilizes the term
“one-shot” in a manner in line with “one-stop,” highlighting its end-to-end nature and model-agnostic capability.
For disambiguation, we hereby clarify that our method is, in fact, limited to CNN pruning, requires a trained
model to start with, and does not possess such model-agnostic or automatically applicable properties.
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For added bonuses, we are the first ones to reproduce and comprehensively report the benign and
adversarial performances of multiple structured pruning methods under a fair setting. We believe the
lack of such fair and comprehensive reports (on both benign and adversarial tasks) is mainly due to
the lack of user-friendly tools. Thus, alongside our method implementation and checkpoint files, we
also provide the pruning community a lightweight open-sourced tool capable of a plug-and-play
style of testing different victim models with various adversarial attacks while supporting all
procedures a modern pruning method may require.

2 Related Work and Discussion

Due to the page limitation, we will discuss related work regarding white box evasion adversarial
attacks, adversarially robust structured pruning, and grouped kernel pruning. Other related topics,
such as the compression/acceleration implications of structured and unstructured pruning methods,
input component frequency with kernel smoothness, as well as other related ML efficiency and AI
safety literature, will be introduced in Appendix B.

Adversarial Attacks. Neural networks are known to be vulnerable to adversarial attacks, i.e., a
small perturbation applied to the inputs can mislead models to make wrong predictions Szegedy et al.
[2014], Goodfellow et al. [2014]. In practice, popular adversarial attacks can often be categorized as
white-box and black-box evasion attacks. The difference being white-box attacks have access to the
entirety of the model, including input features, architectures, and model parameters, while black-box
attacks’ access is often constrained (e.g., only input-output pair). Thus, white-box attacks are almost
always more effective and efficient than black-box ones; in fact, many classic black-box attacks are
constructed in a way to approximate the information that is directly accessible by white-box attacks
(e.g., gradient) [Chen et al., 2020]. We opt for white-box attacks for the scope of this paper, given one
significant use case of structurally pruned models is edge-device deployments, where the model is
more likely to be accessed. Also, white-box attacks generally offer a more straightforward workflow
with harder challenges posed.

Structured Pruning for Adversarial Robustness. Structured pruning methods, which arguably
carry the most practical significance, have been heavily studied throughout the years [Molchanov
et al., 2017, Yu et al., 2018, He et al., 2019, Wang et al., 2019a,b, Lin et al., 2019, He et al., 2018, Li
et al., 2021, Zhong et al., 2022]. Despite their popularity, few of them focus on adversarial robustness.
To the best of our knowledge, there are only four prior arts presenting structured pruning methods
while claiming improved performance on adversarial robustness metrics [Vemparala et al., 2021,
Ye et al., 2019, Sehwag et al., 2020, Zhao and Wressnegger, 2023]. Unfortunately, Vemparala et al.
[2021] does not have a public repository for code, Ye et al. [2019] does not have any experiment
on standard BasicBlock ResNets for comparative investigation despite their popularity. [Blalock
et al., 2020], Sehwag et al. [2020] and Zhao and Wressnegger [2023] mostly propose unstructured
methods with only a few structurally pruned ablation studies conducted on limited model-dataset
combinations, with some of their structured pruning implementation not published.

The lack of traffic, infrastructure, or baseline in this area has undoubtedly created deterrents to all
interested scholars. To fill the gap, we provide the community an open-sourced toolkit capable of
testing various victim models against different adversarial attacks under a pruning context,
coming with 10+ popular structured pruning methods already integrated for comparative
evaluation. Model checkpoints are also available for direct evaluations.

Grouped Kernel Pruning. Our work relies on the GKP framework — particularly inspired by the
recent work of Zhong et al. [2022]. The core of GKP is grouped kernel pruning and reconstruction
to a grouped convolution format, where this combination has been explored a few times under the
context of structure pruning.

Specifically, Zhong et al. [2022] proposed their take on grouped kernel pruning with a three-stage
procedure: filter clustering, generating then deciding which grouped kernel pruning strategy to employ,
then reconstructing to grouped convolution format via permutation. This particular framework
solved the previous drawback of requiring a complex procedure, yet a rich set of experiment results
was showcased to demonstrate its performance advantages against many SOTA structured pruning
methods. Our proposed method is largely enabled by the extra pruning freedom that GKP provides.
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Outside of Zhong et al. [2022], concurrent work like Zhang et al. [2022a] and follow-up work like
Park et al. [2023] have showcased the excellent benign performance of different GKP implementations
under a benign context.

3 Proposed Method
3.1 Motivation: Pruning May Amplify Overfitting to High-Frequency Components
Wang et al. [2020b] suggests CNNs are prone to overfitting high-frequency components (HFC) of
inputs — a type of feature that is not robust yet can be easily replicated with adversarial perturbations.
Though Wang’s finding is towards an unpruned model, such phenomenon can be found, and in fact,
even amplified, under a structural pruning setting.

Figure 2: A frog figure from CIFAR-10 test set in its original, LFC, and HFC-reconstructed formats.
The output indicates the correctness of classification results when testing through an unpruned and a
L1Norm pruned ResNet-56 (pruning rate ≈ 43.75% to be consistent with Table 2).
A classic demonstration of such phenomena can be seen in Figure 2. Despite the frog-labeled
figure reconstructed with only low-frequency components showing visible resemblance to its original
benign format, a ResNet-56 model pruned by L1Norm filter pruning [Li et al., 2017] cannot classify it
correctly. However, such pruned models can somehow correctly classify the same input reconstructed
with only HFCs, even if it already lost all semantics of a frog to a human audience. This indicates a
model pruned by methods without having adversarial robustness in consideration is more likely to
overfit to HFC.

Table 1: Unpruned and structurally pruned ResNet-56 v. HFC/LFC-reconstructed CIFAR-10 test set.
θ represents the cutoff threshold (for 0 ≤ θ ≤ 1). With a higher θ, the HFC-reconstructed images
will exclusively include more high-frequency information; vice-versa for a lower θ. Pruning rate ≈
43.75%; pruned model checkpoints are taken from Table 2.

INPUT UNPRUNED BASELINE CC PRUNED NPPM PRUNED L1NORM-B PRUNED

FULL (θ = 0.0) 93.24 94.04 93.55 92.62
HFC (θ = 0.3) 77.05 80.22 78.08 79.83
HFC (θ = 0.5) 50.77 57.49 55.47 56.06
HFC (θ = 0.7) 22.79 25.78 21.92 27.15

We emphasize that the above example (Figure 2) is not a cherry-picked one. As shown in Table 1, by
reconstructing the entire test set of CIFAR-10 with solely their high-frequency components, we find
that a structurally pruned model is more prone to fitting HFCs than its unpruned counterpart under
various settings. This is potentially because HFCs are easily learnable features under a benign setting,
so pruned models want to “make most use” of their remaining weights given the reduced network
capacity, and therefore become even more overfitted to HFCs by treating them as short-cut features.

Kernel smoothness as an indicator for learning from HFC. Fortunately, Wang et al. [2020b]
suggests kernel smoothness is highly correlated to the learning of HFC. Specifically, Wang et al.
[2020b] found that a CNN with “smoother” kernels — where neighbor weights within a 2D kernel
have less of a value difference — will reduce the overfitting of HFCs, thus making the model more
robust against adversarial perturbations. For the ease of the following conversation, we define the
kernel smoothness of a convolution kernel k for k ∈ RH×W to be:

smoothness(k) =
h×w∑
i=1

∑
j∈values

border with ki

∣∣k2j − k2i
∣∣, (1)
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where H and W are the kernel dimensions; in most CNNs, such dimensions are set to 3× 3.

The finding of kernel smoothness and adversarial robustness presents a unique opportunity under the
context of GKP. Prior to GKP, densely structured pruning is almost always done at a filter/channel
level, where kernel-level metrics/operation have little bearing when relaxed (see Appendix C.1.3).
However, GKP prunes at a (close) kernel level, where a kernel-level metric may still retain its power.

3.2 Mixing Smoothness into Grouped Kernel Pruning Procedure

It is natural to want to encapsulate some kernel-level operations/metrics — in this case, kernel
smoothness — into the procedure of GKP. However, the challenge comes with how we can do it in an
efficient and effective manner. Particularly, how can we achieve improved adversarial performance
without sacrificing benign tasks?

For the ease of illustration, let W ℓ ∈ RCℓ
out×Cℓ

in×Hℓ×W ℓ

be the weight of the ℓ-th convolutional
layer, which consist of Cℓ

out filters, with each filter consisting of Cℓ
in number of Hℓ ×W ℓ 2D kernels.

According to Zhong et al. [2022], a standard GKP procedure has two potential stages:

Stage 1: Filter grouping stage: where the Cℓ
out filters are clustered into n equal-sized filter groups

{FGℓ
i ,FGℓ

j , . . . ,FGℓ
n}, with each filter group FGℓ ∈ RCℓ

out/n×Cℓ
in×Hℓ×W ℓ

.
Stage 2: Pruning strategies obtaining/pruning stage: where the pruning method generates a set of

“candidate” grouped kernel pruning strategies to be evaluated and select from; a grouped
kernel is defined as a GK ∈ FGℓ with GK having a shape of Cℓ

out/n × 1 ×Hℓ ×W ℓ.
Finally, we evaluate all collected candidate strategies and decide which to pursue.

However, how to apply kernel smoothness-related criteria to such stages is a non-trivial question. Our
empirical results from some proof-of-concept experiments suggest some naïve applications either will
not work at all or will only work by significantly sacrificing the performance on benign tasks: e.g., if
we simply replace Stage 2 above by pruning the grouped kernels with greater

∑
k∈GK smoothness(k),

we will experience a huge drop on benign accuracy (Appendix C). Therefore, we must drive our
attention to discover some more sophisticated ways of mixing up such criteria into the above stages.

3.2.1 Smoothness Snaking: Is Filter Clustering the Only Right Answer for GKP?

Per TMI-GKP [Zhong et al., 2022], filters within the same convolutional layer are grouped into
several equal-sized groups by a filter clustering schema, which consist of some different combinations
of dimensionality reduction and clustering techniques. The motivation of grouping by clustering
is natural as it establishes a preferable search space for pruning algorithms, where the power of
pruned components can likely be retrained via similar unpruned components within the same group.
However, later procedures of TMI-GKP (e.g., Stage 2 per Section 3.2) then seek to maintain a
diverse representation of kept components within each filter group, which begs the question: is filter
clustering the only right answer for GKP? If finding a diverse set of unpruned grouped kernels
is the goal, why not have filter groups with filter diversity to start with? And if the answer to the
first question is “No.” How can we utilize this opportunity to mix up with kernel smoothness criteria?
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Grouped-based pruning will always seek out some kind of balance among groups to avoid a skewed
distribution where all important components are distributed to certain groups [Zhong et al., 2022].
Following this principle, we want our filter groups to have balanced smoothness — so that we do
not end up having any filter group that is “over” or “under-smoothed” to start with for pruning.
However, this is equivalent to the partition problem [Korf, 1998], which is known to be NP-hard.
Given the filter grouping stage is often robust to adjustments2, we proposed to sort filters according to
their smoothness, then assign them iteratively in an S-shaped “snaking” manner across a predefined
number of filter groups, as shown in Figure 3, namely Smoothness Snaking. Empirical results
suggest although smoothness snaking may not be as optimal as the dynamic clustering scheme in
Zhong et al. [2022] in terms of benign performance, it is able to provide better adversarial robustness
under adversarial attacks and is much faster to execute (Table 8) due to the absence of dimensionality
reduction & clustering procedures (Appendix C). We consider this to be a successful mix-up.

3.2.2 Smooth Beam Greedy GKP Search

Knowing that the pruning strategies obtaining/decision stage (Stage 2 per Section 3.2) of GKP is
sensitive to tampering, a direct application of smoothness criteria would not work (Appendix C).
This indicates the distance-based cost formula (Equation 5) proposed in Zhong et al. [2022] carries
a significant influence on the performance of a pruned network, which is unsurprising given the
vast popularity of distance-based pruning arts. Since we can’t directly replace this cost formula,
we propose to widen the capacity of pruning strategies obtaining stage with smoothness in mind
while keeping the decision stage akin to the cost formula. By doing this, the chances of more
“smoothness-aware” pruning strategies being employed are increased.
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Figure 4: Smoothness-aware Beam Greedy Search for Grouped Kernel Pruning (Stage 2).

Again, to keep our approach simple, we implemented a custom beam search element to consider
more grouped kernels during each advancement (Figure 4). Per each iteration, all gathered candidate
grouped kernel pruning strategies will be evaluated against a mixture of smoothness and cost criteria,
where only a Beamwidth amount of grouped kernels will be kept for further advancement (until the
desired pruning ratio is reached). The scoring formula to determine which subset of strategies may
be kept in the beam is defined as (larger scores are better/preferred):

Score
mix-up

(GKbranch, α) = α · ϕ
(
Cost(GKbranch)

)
+ (1− α) · ϕ

(
Smoothness(GKbranch)

)
, (2)

where ϕ
(
Criterion(GKbranch)

)
for Criterion ∈ {Cost,Smoothness} represents the rank of such

GKbranch when all collected GKbranch candidates are sorted according to the given Criterion in
a descending order. So ϕ

(
Smoothness(GKbranch)

)
= 0 would suggest this particular GKbranch

has a greater smoothness ranking (a.k.a. “less smooth”) then all other GKbranch candidates in
considerations. α is a tunable balancing parameter that adjusts the importance of one criterion over

2In Zhong et al. [2022], various filter grouping strategies — including random assignment — were proposed.
Many of them tend to perform reasonably well, albeit less performant nor stable than the proposed TMI-driven
solution.
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the other. The Smoothness(GKbranch) equation is simply the sum of all kernels within all GKkept
over Equation 1; the Cost(GKbranch) equation is a modified version of Equation 5 in Zhong et al.
[2022], where we removed some hyperparameters for simplicity and to reduce tuning workload.
Please refer to Figure 4 and Appendix C.3 for more details.

4 Experiments and Results

4.1 Experiment Setups

We evaluate the efficacy of our method on ResNet-32/56/110 with the BasicBlock implementation,
ResNet-50/101 with the BottleNeck implementation, and VGG-16 [He et al., 2016, Simonyan and
Zisserman, 2015]. For datasets, we choose CIFAR-10 [Krizhevsky, 2009], Tiny-ImageNet [Wu et al.,
2017], and ImageNet-1k [Deng et al., 2009] for a wide range of coverage. For all compared methods
and under most model-dataset combinations, we tried our best to replicate them with a ≈ 300 epochs
(except for ImageNet, where we only employ 100 epochs) of fine-tuning/retraining budget while
maintaining all other settings either identical or proportional to their original publications.

4.2 Compared Methods and Evaluating Criteria

We evaluate our proposed method against up to 13 popular densely structured pruning methods and
variants shown in Appendix D. Whenever possible, we produce pruned-and-fine-tuned (or retrained)
models upon identical unpruned baseline models with similar post-prune MACs and Params. Then,
we compare their inference accuracy on benign inputs as well as adversarially-perturbed inputs
powered by FGSM and PGD attacks in various perturbation budgets and intensities [Goodfellow
et al., 2014, Madry et al., 2018].

One reporting mechanism that is probably unique to our paper — in comparison to standard pruning
art under the benign space — is for some of our methods, results of multiple epochs are reported,
each showcasing a method’s peak performance against different evaluation metrics (a.k.a.
“superscore”). This is because for benign tasks, following Li et al. [2017] and He et al. [2019], only
the epoch checkpoint with the best benign accuracy needs to be reported. But under an adversarial
context, if a pruning method is capable of producing more than one fully pruned model during
the fine-tuning/retraining stage, oftentimes, the best performer per each evaluation metric does not
overlap. We believe it is responsible to report them all as there are no dominant evaluation metrics
in our experiments; however, this is an important advantage for methods that can generate multiple
usable pruned models (e.g., one-shot pruning) over methods that can only generate a few or just one
fully pruned model (e.g., layer-wise iterative pruning). We survey the availability of such checkpoints
and their epoch cutoff in Table 10: “Fully Pruned Epoch” column.

We also comprehensively investigate each pruning method against a checklist of questions as presented
in Table 10 of Appendix D.1.3, including pruning granularity, procedure, when is the first fully pruned
epoch, zero-masked or hard-pruning, and many other important questions. This investigation, along
with the epoch budget constraint and baseline control, should provide our audience with a more
leveled playing field for fair and informed methods comparison.

Further, to facilitate digesting mass results reported across many methods/variants and against various
metrics, we present our large-scale empirical evaluation in three different ways. Take BasicBlock
ResNets on CIFAR-10 as an example (with pruning rate ≈ 43.75%), we present the raw results as
Table 11, 12, and 13; where we visualize them accordingly as Figure 6, 7, and 8. Last, we make
a rank chart, Table 3, to provide a straightforward gauge of the competitiveness among different
pruning methods.

4.3 Results and Analysis

Our abbreviated results — Table 2 and Table 4 — showcased the performance of various modern
SOTA methods as well as our proposed methods on the two most popular model-dataset combinations
[Blalock et al., 2020]. For ResNet-56 on CIFAR-10, our method outperformed every other method
on all evaluating criteria, except for PGD; as RAP-ADMM [Ye et al., 2019] outperformed SR-GKP
significantly with 61.16% v. 44.85%. However, it is worth noting that RAP-ADMM does adversarial
training on PGD-perturbed data, so it is not surprising that it performs well against the seen type
of attack. Unfortunately, it seems like the adversarially trained RAP-ADMM cannot generalize its
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Figure 5: Visualization of ResNet-56 on CIFAR-10 with pruning rate ≈ 43.75% — note this plot is
done in a “superscore” manner for a concise presentation; the four bars of a method may not belong
to the same model checkpoint.

Table 2: ResNet-56 on CIFAR-10. All pruning methods are performed on the same baseline model.
“Best (a)” represents the performance of a model checkpoint that meats the showcased MACs/Params
reduction that performs the best against criterion (a).

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 (c) PGDε=8/255, εstep=2/255
max_iter=3 MACs (M) Params (M)

Unpruned - 93.24 75.15 39.64 42.58 126.561 0.853

CC [Li et al., 2021]
Best Benign 94.04 74.78 29.25 37.85

69.837 0.616Best (a) 93.73 75.75 29.26 38.86
Best (b) 93.70 75.56 29.89 38.90

FPGM [He et al., 2019]
Best Benign 93.60 75.31 43.20 43.55

71.661 0.482Best (a) 93.37 76.28 44.96 44.66Best (b)

HRank [Lin et al., 2020]
Best Benign 92.27 72.32 19.11 32.51 79.237 0.584Best (b)
Best (a) 92.07 72.59 18.94 32.21

L1Norm-B [Li et al., 2017]
Best Benign 92.62 72.97 41.30 41.79

72.115 0.586Best (a) 91.94 75.16 42.49 43.71
Best (b) 91.70 74.40 45.16 43.41

LRF [Joo et al., 2021]
Best Benign 93.93 73.47 25.59 34.86

71.009 0.490Best (a) 93.68 74.80 27.39 36.78
Best (b) 93.63 74.06 28.20 35.98

NPPM [Gao et al., 2021]
Best Benign 93.55 74.82 29.07 37.12

70.843 0.601Best (a) 93.35 75.50 30.29 38.09
Best (b) 93.43 75.27 31.18 38.13

RAP-ADMM[Ye et al., 2019] - 78.37 75.19 27.84 61.15 71.661 0.482

SFP[He et al., 2018] - 93.15 75.63 43.83 44.10 71.462 0.481

TMI-GKP [Zhong et al., 2022]
Best Benign 93.95 75.18 42.18 43.46

71.855 0.482Best (a) 93.37 75.88 42.55 43.74
Best (b) 93.66 75.74 44.09 44.51

SR-GKP (Ours)
Best Benign 94.08 75.89 42.60 43.85

71.855 0.482Best (a) 93.83 76.40 45.17 44.85Best (b)

Table 3: Methods ranked against each other on each model with pruning rate ≈ 43.75%, lower is
better. “ResNet-XX Mean Rank” means a method’s average ranks across four metrics on ResNet-XX;
e.g., SR-GKP is ranked #1/#1/#4/#2 for its best performance across benign/FGSM 0.01/FGSM
0.1/PGD metrics on ResNet-56 against other methods, so it’d have a ResNet-56 Mean Rank of
(1+1+4+2)/4 = #2. Methods with incomplete presence across the three models are excluded. This
table is provided to facilitate the digestion of Table 2, 11, 12, and 13, which consist of raw results.

Method ResNet-32 Mean Rank ResNet-56 Mean Rank ResNet-110 Mean Rank All Models Mean Rank

CC [Li et al., 2021] #5.5 #6.5 #9.25 #7.08
DHP [Li et al., 2020] #10.5 #8.75 #12.25 #10.5
FPGM [He et al., 2019] #4.75 #4 #2.5 #3.75
L1Norm-A [Li et al., 2017] #7.75 #7 #8.75 #7.83
L1Norm-B [Li et al., 2017] #4 #6.75 #8 #6.25
LRF [Joo et al., 2021] #7.75 #8.75 #7 #7.83
NPPM [Gao et al., 2021] #6.5 #8 #8.25 #7.58
OTOv2 (from-scratch) [Chen et al., 2023] #12.5 #12.5 #12.25 #12.42
OTOv2 (post-train) [Chen et al., 2023] #6.75 #8.75 #6 #7.17
RAP-ADMM [Ye et al., 2019] #7 #7.5 #7 #7.17
SFP [He et al., 2018] #9 #6.25 #3 #6.08
TMI-GKP [Zhong et al., 2022] #5.25 #4.25 #4.25 #4.58
SR-GKP (Ours) #3.75 #2 #2.5 #2.75
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Table 4: ResNet-50 on ImageNet-1k. Note this table includes two baselines: “self-trained” and
“torchvision”. This is because TMI-GKP requires training epoch snapshots, which is not sup-
plied with the torchvision pretrained ResNet-50. Methods included in this table are either well-
performing methods under the CIFAR-10 experiments or specifically recommended by the reviewers.

Method Baseline Benign FGSMε=0.001 FGSMε=0.01 FGSMε=0.1 PGDε=4/255, εstep=1/255
max_iter=3 MACs (M) Params (M)

Unpruned Self-trained 75.70 67.57 25.82 16.16 6.66 4122.828 25.557

TMI-GKP [Zhong et al., 2022] Self-trained 75.02 67.62 25.86 15.82 7.26 2725.954 17.069
SR-GKP 75.29 68.02 26.45 15.83 8.08 2725.954 17.069

Unpruned torchvision 76.13 70.18 28.70 13.93 9.27 4122.828 25.557

DFPC [Narshana et al., 2022] torchvision 73.80 67.45 25.15 12.24 7.43 - -
FPGM [He et al., 2019] torchvision 75.04 68.50 25.84 13.06 7.43 2641.670 18.310
OTOv2 (post-train) [Chen et al., 2023] torchvision 75.38 68.04 21.01 12.76 5.26 - -
SFP [He et al., 2018] torchvision 58.50 55.72 25.82 9.01 11.00 2635.129 17.302
SR-GKP torchvision 75.34 68.04 26.65 15.94 7.85 2759.672 17.803

defense to other adversarial attacks, even though they are similar in nature. Also, RAP-ADMM has
the worst benign performance across all showcased methods, yet its training time is significantly
longer due to the need to perturb its training data on the fly constantly.

Table 2 (and similar experiments showcased in Appendix D) may answer one of our research questions:
are carefully designed modern structured pruning methods also fragile under adversarial
attacks? The answer is an unfortunate “Yes,” as not only do recent structured pruning methods
show serious performance drops under adversarial attacks, such drops are often more severe than
their predecessors — which often rely on much naïve designs. Figure 5 as well as the ranked chart
Table 3 provide a vivid illustration with LRF [Joo et al., 2021] — a 2021 method — showing one of
the weakest adversarially robustness across all evaluated methods.

Upon careful comparison, we noticed that SFP [He et al., 2018] and FPGM [He et al., 2019] —
two pre-2020 methods — tend to be the best filter pruning methods under the double scrutiny of
benign and adversarial tasks. However, this only holds true to smaller scale experiments, as SFP is
significantly outperformed by SR-GKP on ResNet-50 on ImageNet for benign accuracy (58.50% v.
74.34%). Though FPGM tends to perform better on the same task, it is still behind SR-GKP in a
general sense (Table 4). We further note ImageNet with adversarial metrics is rarely evaluated
under the context of adversarially robust pruning [Chen et al., 2022, Ye et al., 2019]; this is
mainly because many of ImageNet sub-classes are closely related in terms of semantics (e.g., man-
eating shark v. tiger shark) [Ozbulak et al., 2021]. We provide the ImageNet results primarily to
show SR-GKP can deliver competitive benign ImageNet performance, where most ImageNet results
compared in Table 4 are from methods with strong adversarial performance on CIFAR-10.

Last, although TMI-GKP [Zhong et al., 2022] is optimized for benign tasks, and its procedure does
not consider adversarial scenarios, it naturally comes with strong adversarial robustness. We believe
this has a lot to do with the increased pruning freedom enabled by the GKP granularity, which further
highlights the potential of GKP-based methods outside its achievements in the benign space. Due to
the page limitation, we hereby only showcase a much-abbreviated version of our experiments. We
strongly encourage our readers to check out our full experiments at Appendix D with a lot more
comprehensive coverage on many more dataset-model combinations, as well as ablation studies.

5 Conclusion
Our work studies the area of adversarially robust structured pruning, a topic presenting severe
problems but lacking proper recognition or exploration. On the investigation side, we reveal that
— just like their naïve predecessors — carefully designed modern structured pruning methods are
also fragile under adversarial attacks, yet different pruning methods may yield drastically different
adversarial performance while hiding behind similar benign reports. On the solution side, we propose
SR-GKP: a simple one-shot GKP method that showcases competitive benign performance with a
significant advantage under adversarial attacks against comparable SOTA methods while requiring
no extra cost from a pruning procedure perspective.

We believe the overlooked nature of this field is mainly two-fold: the lack of pruning freedom to
utilize findings of other fields, and the lack of user-friendly tools and resources for doing adversarial
evaluations under a pruning context. We present our take and contribution to both issues by showcas-
ing the capability of GKP-based methods and providing our community with an open-sourced tool
and model checkpoints for future studies.
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A Limitation and Broader Impact

Note although our investigation revealed serious performance issues under adversarial tasks in terms
of structured pruning methods, where our proposed method provides sensible mitigation; our findings
are still limited to the benign and artificially perturbed input. Though we expect grouped kernel
pruning-based methods to deliver good performance under other reasonable evaluating metrics due
to the improved pruning freedom, we will leave a more comprehensive investigation against other
robustness metrics for future work. We also provide a brief discussion of such related metrics in
Appendix B.4.

B Extended Related Work and Discussion

B.1 Structured v.s. Unstructured Pruning

Pruning methods can be roughly divided into structured pruning and unstructured pruning according
to the pruning granularity. Specifically, unstructured pruning often means we prune each weight
independently. In contrast, structured pruning bundles weights into groups, then prune the whole
group instead of the individual weight (e.g., block-wise Lagunas et al. [2021], channel-wise He et al.
[2017], group-wise pruning Zhong et al. [2022]).

Unstructured pruning can maintain the model performance better with the same number of parameters.
However, unstructured pruned models yield marginal wall-clock time efficiency or even slower than
the unpruned model at the low sparsity regime. This is because unstructured pruned matrices need to
be stored in sparse matrix format, as the zeros are randomly distributed in these matrices Yang et al.
[2018]. Operations executed on sparse matrices (e.g., sparse matrix multiplication, sparse embedding
table look-up) are notoriously inefficient on commodity hardware, e.g., GPUs and CPUs, due to the
limited data reuse and random memory access Yang et al. [2018], Han et al. [2016].

In contrast, although structured pruning has less flexibility compared to unstructured one, it is much
more hardware/library-friendly since structurally pruned matrices can still be stored in the dense
matrix format. Thus, operations executed on structured pruned matrices are the same as those in the
unpruned model, which are highly optimized. Consequently, the compression provided by structured
pruning can often translate into the real wall-clock time speedup upon proper implementation.

B.2 Unstructured Pruning for Adversarial Robustness

In Section 2, we introduced the few structured pruning methods which claim increased adversarial
robustness, indicating the lack of presence of adversarially robust structured pruning methods.
However, many unstructured pruning literature have explored the possibility of pruned models with
improved adversarial robustness, such as Sehwag et al. [2020], Zhao and Wressnegger [2023], Ye
et al. [2019], Jian et al. [2022], Li et al. [2022], Gui et al. [2019]. Given it is natural for scholars to
adopt insights from unstructured pruning methods into a structured context, we hereby provide this
list of unstructured pruning arts for inspiration purposes.

B.3 Learning of High-Frequency Components and its Adversarial Implications

As we consult adversarial-robustness-boosting kernel metrics and operations, we heavily rely on the
findings from Wang et al. [2020b], a work that discusses how learning components with different
frequencies may affect the adversarial robustness of a CNN, and how some kernel-level metrics like
kernel smoothness influence such type of learning. We have elaborated more on this in the Section 3.1
above. Following work can also be referenced when it comes to how component frequency may affect
(or be adopted to improve) adversarial robustness, efficiency, and general neural network learning
[Wang et al., 2020a, 2023b,a].

B.4 More on ML efficiency and AI safety

The point of studying adversarially robust structured pruning methods is to progress ML efficiency
while being aware of its safety. We note that structured pruning is not the sole method that can
achieve efficiency benefits, yet adversarial robustness is nowhere near a comprehensive metric for AI
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safety. Approaches such as quantization, network architecture search, knowledge distillation, lossy
approximation, efficiency-aware architecture tweak, and transformation to hardware-friendly patterns
also provide efficiency gains [Frantar et al., 2023, Lin et al., 2023, Wang et al., 2020a, Zhang et al.,
2022b, Liu et al., 2023, Xiao et al., 2023, Dettmers et al., 2023, Dao et al., 2022b,a]; yet aspects like
explainability, domain generalization, fairness/bias-mitigation, model/data security, and robustness
under a noisy environment are also considered important metrics for building reliable, safe, and
trustworthy AI solutions [Wang et al., 2022, Wan et al., 2023, Chuang et al., 2023a,b, Chang et al.,
2023c,a, Jiang et al., 2022, Chang et al., 2023b, Tang et al., Zha et al., 2023].

C Additional Details on Proposed Method

C.1 Naïve Mix-Up Attempts of Kernel Smoothness

As per Section 3.2, there are generally two stages in a GKP procedure: Filter Grouping and Grouped
Kernel Pruning. The following experiments shall attempt to mix-up kernel smoothness criteria into
each of such stages, and we can therefore find out which stage is “friendly” to such mix-up operations
and how such operations should look like.

C.1.1 During GKP Filter Grouping (Stage 1)

In TMI-GKP [Zhong et al., 2022], the filter grouping stage is driven by the tickets magnitude increase
score, known as TMI-driven Clustering. We utilize it as a baseline to investigate whether our
smoothness-aware filter grouping operation — Smoothness Snaking (Section 3.2.1 and Figure 3) —
can maintain the baseline performance and provide improvements. Note, we denote TMI-GKP’s
grouped kernel pruning scheme (GK Pruning) as Greedy in the following Table 5.

Table 5: Comparison of different Filter Grouping methods in GKP. All compared models are pruned
to identical MACs/Params for fairness.

Model Filter Grouping GK Pruning Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1

ResNet-32

Unpruned - 92.80 71.93 31.35

TMI-driven Clustering Greedy
Best Benign 92.99 69.15 19.59

Best (a) 92.03 70.61 15.85
Best (b) 92.77 69.90 30.51

Smoothness Snaking Greedy
Best Benign 92.77 71.47 30.64Best (a)

Best (b) 92.65 70.82 30.65

ResNet-56

Unpruned - 93.24 75.15 39.64

TMI-driven Clustering Greedy
Best Benign 93.95 75.18 42.18

Best (a) 93.37 75.88 42.55
Best (b) 93.66 75.74 44.09

Smoothness Snaking Greedy
Best Benign 93.62 75.68 41.21

Best (a) 93.40 76.05 43.03
Best (b) 93.44 75.69 44.62

It can be observed that though Smoothness Snaking may yield a slightly lower benign performance
than its TMI-driven baseline, it may improve the adversarial robustness when used with the same
grouped kernel pruning procedure. We would also note Smoothness Snaking is significantly faster (up
to 1,600x) than TMI-driven clustering due to the absence of dimensionality reduction and clustering
procedure (see Table 8 for details).

C.1.2 During GKP Pruning Strategies Obtaining/Pruning (Stage 2)

Following the section above, here we investigate the performance of different Grouped Kernel
Pruning methods. Our proposed method is denoted as Smooth Beam Greedy (see Figure 4 for details),
TMI-GKP’s grouped kernel pruning method is denoted as Greedy as above, and Least Smooth
represents a vanilla adaptation of smoothness-driven pruning, where the grouped kernels that are
least smooth are pruned.
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Table 6: Comparison of different Grouped Kernel Pruning methods in GKP. All compared models
are pruned to identical MACs/Params for fairness.

Model Filter Grouping GK Pruning Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1

ResNet-32

Unpruned - 92.80 71.93 31.35

Smoothness Snaking Greedy
Best Benign 92.77 71.47 30.64Best (a)

Best (b) 92.65 70.82 30.65

Smoothness Snaking Least Smooth
Best Benign 90.09 63.91 17.22

Best (a) 88.90 70.41 15.33
Best (b) 48.37 47.80 28.55

Smoothness Snaking Smooth Beam Greedy
Best Benign 92.97 70.57 29.31

Best (a) 92.88 71.52 30.39
Best (b) 92.86 70.79 31.32

ResNet-56

Unpruned - 93.24 75.15 39.64

Smoothness Snaking Greedy
Best Benign 93.62 75.68 41.21

Best (a) 93.40 76.05 43.03
Best (b) 93.44 75.69 44.62

Smoothness Snaking Least Smooth
Best Benign 90.97 73.32 24.95

Best (a) 90.01 74.63 14.10
Best (b) 90.59 73.60 26.40

Smoothness Snaking Smooth Beam Greedy
Best Benign 94.08 75.89 42.60

Best (a) 93.83 76.40 45.17Best (b)

From Table 6, we may tell that Smooth Beam Greedy may significantly improve the adversarial
robustness of the pruned networks, yet, it also provides remedies to the decrease in benign performance
due to the smoothness snaking operation. It may also be worth noting that the Least Smooth operation
is extremely detrimental to almost all tracking metrics, suggesting a vanilla mix-up is inappropriate.

C.1.3 Bonus Investigation: Is Smoothness-aware Filter Pruning Possible?

One main purpose of our paper is to endorse the potential of GKP under adversarial tasks, after
[Zhong et al., 2022, Zhang et al., 2022a, Park et al., 2023] showcased the power of GKP in a benign
context, thus “one less reason for filter pruning.” But to make such a claim proper, we will need
to investigate whether it is possible to do the same smoothness-aware mix-up with a filter pruning
procedure.

Here in Table 7, we use SFP [He et al., 2018] as the baseline, which is considered one of the strongest
filter pruning methods on CIFAR-10 [Krizhevsky, 2009]. Then, we try to apply the same ranked-
based kernel-smoothness mix-up algorithm as in Equation 2 to find out if such a strong filter pruning
baseline can withstand the same mix-up under a filter level.

Table 7: Filter pruning method SFP [He et al., 2018] applied with the same mix-up algorithm in
Equation 2. Note “CSB” represents “cost smoothness balancer”, which is also α in Equation 2 — so
a higher CSB means more biased towards the distance-based Cost metrics. All compared models are
pruned to identical MACs/Params for fairness.

Model Method Benign FGSMε=0.01 FGSMε=0.1 PGDε=8/255, εstep=2/255
max_iter=3

ResNet-32
SFP 91.94 69.25 30.34 30.18

CSB = 0.5 83.49 40.86 21.12 24.28
CSB = 0.75 91.03 65.94 22.92 25.40

ResNet-56

SFP 93.15 75.63 43.83 44.10

CSB = 0.5 81.83 60.46 19.59 28.45
CSB = 0.75 92.26 72.11 37.42 36.64
CSB = 0.9 93.09 74.78 40.64 41.41
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It can be observed that SFP under such mix-up is completely unusable due to the degradation of
benign performance; which suggests the same mix-up strategy, though effective on GKP, is not
transferable to filter pruning.

C.2 Speed-Up Analysis

C.2.1 Pruning Procedure Speed Comparison: TMI-Driven Clustering v.s. Smoothness
Snaking

Table 8: Wall-clock runtime comparison between SR-GKP (Ours) and TMI-GKP [Zhong et al.,
2022].

Method ResNet-32 Group ResNet-32 Total ResNet-56 Group ResNet-56 Total ResNet-110 Group ResNet-110 Total

TMI-GKP 47m 6s 1h 20m 10s 2h 32m 12s 2h 36m 22s 4h 53m 33s 5h 30m 18s
SR-GKP 3s 11m 36s 5s 20m 43s 11s 1h 10m 16s

In Table 8, we showcased the significant runtime advantage of SR-GKP to TMI-GKP due to the
absence of clustering and dimensionality reduction procedures.

C.2.2 Inference Speed Discussion: Standard Convolution v.s. Grouped Convolution

In the realm of structured pruning, there are two types of popular implementations in practice, which
may result in different readings on efficiency metrics, such as inference cost reduction (FLOPs/MACs),
inference speed-up, and model size compression (number of parameters):

Masking (soft pruning) To deploy a structured binary mask upon the original unpruned model,
but clear the gradients of some (or all) pruned components before the weight update step during
fine-tuning, therefore theoretically “structural pruning” the model. In this implementation, the pruned
model will not reduce in dimension; thus, no acceleration and compression benefits can be directly
observed.

This is a popular implementation — as surveyed in Table 10 “Zero-Masked?” column — because
some iterative pruning methods would like the pruned/zeroed components to be reactive during
fine-tuning, then pruning another set of components instead. If the pruning granularity is structured
(e.g., filter-level), the fine-tuned model can be converted to a hard pruned model by the end of the
update as defined below.

Component removal (hard pruning) To remove the pruned components entirely, where the pruned
model will reduce in size, providing immediate compression benefits.

Our method, SR-GKP, is implemented as hard pruning. This means that if you inspect the weights of
a GKP-pruned network, they are in regular shapes, and there is no zeroed weight to be found — a.k.a.
“densely structured.” Which may lead to a direct reduction in FLOPs/MACs and model size.

In terms of inference acceleration, previous grouped convolution implementations cannot provide
speed-up benefits against a standard convolution (even with much fewer MACs/Params) because
the standard convolution operator has been extensively optimized, while the grouped one hasn’t
(e.g., pytorch issue #10229 and #18631). But after torch 2.0, this is not the case at large.
For simplicity, here we compare the forward wall-clock between a standard Conv2d of (C_in =
512, C_out = 512, kernel_size = (3, 3)) with the exact same Conv2d but with groups = 2
(meaning half of its kernels are structurally removed).

Table 9: Inference wall-clock comparison between a standard convolution operator and a GKP
convolution operator (w/ groups=2 and pruning rate = 50%). Input size set as (64, 3, 224,
224).

Operator Forward Macs Params

Unpruned Standard Conv 129.56 ms 550528 359296
GKP-pruned Grouped Conv 72.96 ms (56.31%) 275264 (50%) 179648 (50%)
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As showcased in Table 9, an organic inference time speed-up of grouped convolution over standard
convolution can be observed.

(Note, we emphasized at large above because we indeed can find shapes that are slower with grouped
convolution in torch 2.0. We believe this is very much a framework optimization issue that is
beyond the scope of our paper and shall be on the road map of the torch community, as well as other
more inference-specific frameworks, granted their already observed improvements.)

C.3 SR-GKP Procedure

C.3.1 Simplifying the Cost Formula from TMI-GKP

For better readability, we hereby follow the notation of TMI-GKP [Zhong et al., 2022] (Equation 4),
where we assume V ∗ represents a set of kept grouped kernels provided by a pruning strategy, where
gℓ the convolutional layer in question. The quality V ∗, under our design, is deemed by:

Score
grouped kernel pruning

(V ∗, gℓ) =
∑

su,sv∈(V
∗
2 )

w(su, sv)− β
( ∑
si=1∈V ∗

w(pi, si)
)
. (3)

Where w(su, sv) represents the Euclidean distance between grouped kernels su and sv, but si
represents the kept grouped kernel that has the least w(pi, si) to a pruned grouped kernel pi. Thus,
the former term of this equation calculates the inner distance sum of grouped kernels within strategy
V ∗, and the latter term represents the outer distance between a pruned grouped kernel and its closest
kept grouped kernel. Intuitively, we would like the former term to be large, as we would prefer our
ideal V ∗ to have great diversity. Following the same idea, we would like to have the latter term small,
as we want the kept kernels to cover the representation power of a certain pruned kernel. By using a
−β to connect two term, we have V ∗

best = argmax
V ∗

(Score(V ∗, gℓ)) for all V ∗s obtained in Stage 2

(Figure 4).

Though similar, we differ from TMI-GKP [Zhong et al., 2022] (Equation 4) in two spots: first, we set
β =

(
V ∗

2

)
/pnum, where pnum represent the number of pruned grouped kernels in layer gℓ, balancing

the two terms automatically. Secondly, for the latter term of Equation 3, we only match one pruned
kernel pi with one kept kernel si, instead of several of them. We made these modifications for the
main purpose of removing hyperparameters. We kept the grouped kernel strategy selection stage
similar to TMI-GKP, but only expanded its search scope using the Smooth Beam Greedy search
(Figure 4), because prior investigation suggests this stage is sensitive to smoothness-aware mix-up
operations.
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D Extended Experiments and Results

D.1 Preliminary

D.1.1 Details of Experiment Setups

For all experiments on VGG-16 and ResNet-32/56/110, we aim to provide all pruning methods an
around 300 epochs fine-tuning/retraining budget. Experiments conducted on ResNet-50/101 are
budgeted with 100 epochs. We allow compared methods to utilize their own training schedule and
vanilla SGD optimizer setup.

SR-GKP utilizes an initial lr of 0.01, with a step size of 100 or 30, depending on if it is on the
300 epoch or 100 epoch schedule. BasicBlock ResNets with VGG use a weight decay of 5e-4
but BottleNeck ResNets use a weight decay of 1e-4. SR-GKP strictly employs a batch size of
64 for all CIFAR-10 experiments, 128 for Tiny-ImageNet experiments, and 256 for ImageNet-1k
experiments.

D.1.2 Details of Evaluation Criteria

We manually ensure all pruned models have a similar MACs/Params reduction from the identical
baseline models. Then, following Li et al. [2017], we report all model checkpoints — yielded
during the pruning procedure — that may reach the target MACs/Params reduction. For performance
(accuracy) evaluation, we test each model against FGSM [Goodfellow et al., 2014] and PGD [Madry
et al., 2018] under various settings and intensities.

D.1.3 Details of Compared Methods

We provide a method overview in Table 10 to provide our readers with a more comprehensive
understanding of such methods.

Table 10: Details of Compared Methods. Note “C/F/GK” under “Type” represents Chan-
nel/Filter/Grouped Kernel Pruning. Whether a method requires a “Special Setup” is determined
by whether it follows the most vanilla train - prune - fine-tune procedure. “Fully Pruned Epoch”
reflects if given a 300 fine-tune/retrain budget, what would be the first epoch that meets the target
MACs/Params reduction? (a.k.a. checkpoints after this epoch are reportable as “superscore” readings
defined in Section 4.2.) “Zero-Masked?” reflects whether the pruning method can easily yield a
compressed model without masking (a.k.a. hard pruning).

Method Venue Type Procedure Special Setup? Zero-Masked? Fully Pruned Epoch

CC [Li et al., 2021] CVPR C One-shot Y(requires data) N 1
DHP [Li et al., 2020] ECCV F Iterative (from-scratch) Y (hypernet) Y 100
FPGM [He et al., 2019] CVPR F Iterative N Y 1
GAL [Lin et al., 2019] CVPR F Iterative Y (GAN) Y close to 300
GReg [Wang et al., 2021] ICLR F One-shot No N 1
HARP [Zhao and Wressnegger, 2023] ICLR C One-shot Y (adv. training) N 1
HRank [Lin et al., 2020] CVPR F Iterative N Y 325 or 327
L1Norm [Li et al., 2017] ICLR F One-shot Y (dynamic pruning rate) N 1
LRF [Joo et al., 2021] AAAI C One-shot Y (requires data, adding 1x1, dark knowledge) N 1
NPPM [Gao et al., 2021] CVPR C One-shot Y (hypernet) N 1
OTOv2 [Chen et al., 2023] ICLR F Iterative (from-scratch) N N 300
RAP-ADMM [Ye et al., 2019] ICCV F Iterative Y (adv. training) Y 151
SFP [He et al., 2018] IJCAI F Iterative Y (soft pruning) Y 300
TMI-GKP [Zhong et al., 2022] ICLR GK One-shot N N 1
SR-GKP (Ours, 2023) NeurIPS GK One-shot N N 1

Further, following the background introduction of pruning implementation in Appendix C.2.2, we
hereby justify why a post-train one-shot hard pruning method — such as SR-GKP — may “require
no extra (in fact, often less) cost than a standard pruning procedure.”

Under the classic train - prune - fine-tune/retrain paradigm (where our method lives), the training cost
is determined at two stages: training the unpruned baseline model and fine-tuning the pruned model.

SR-GKP carries no additional training cost as it is a post-train pruning method, so it won’t affect
the training cost of the first stage. As for fine-tuning, the SR-GKP one-shot pruned model is already
compressed and will go through a vanilla SGD update with no extra operation; we also specifically
ensured that all compared methods are using an identical (or similar to the best of the method’s
ability) epoch budget for fine-tuning as stipulated in Section 4.2 — thus, it requires no additional (in
fact, often less) cost on the fine-tuning stage as well.
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For illustration convenience, here we walk through two exemplary comparisons:

Compared to TMI-GKP [Zhong et al., 2022] — the founding method of Grouped Kernel Pruning —
a SR-GKP pruned model shares the exact same format with a TMI-GKP pruned model. Both pruned
models will go through an identical fine-tuning procedure. In this case, SR-GKP yields no additional
training/fine-tuning cost. Additionally, we’d like to direct your attention to Table 8, which indicates
SR-GKP has a much faster execution time than TMI-GKP in terms of pruning procedure, thus being
a more “executionally efficient” method overall.

Compared to SFP [He et al., 2018] — a popular filter pruning method that exhibits strong adversarial
performance — SFP produces a zero-masked model while SR-GKP’s pruned model is hard-pruned.
Such zeroed weights will reactivate during its retraining/fine-tuning, where the algorithm decides
which filter to zero out between epochs. In this case, the one-shot pruned SR-GKP induces signifi-
cantly less cost as a) it does not require weight updates to the full model, but only on a compressed
one; and b) it does not perform extra pruning operations during the fine-tuning/retraining stage.
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D.2 Additional Experiments

D.2.1 ResNet-32/56/110 on CIFAR-10 with pruning rate ≈ 43.75% (in addition to Table 2)

Please refer to Table 11 with Figure 6, Table 12 with Figure 7, and Table 13 with Figure 8 for details.
We also provide Table 3 in a ranked chart format for an easy digest of the three aforementioned tables.
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Figure 6: “Superscore” visualization of ResNet-32 on CIFAR-10 with pruning rate ≈ 43.75%

Table 11: Full experiments of ResNet-32 on CIFAR-10 with pruning rate ≈ 43.75%. All pruning
methods are performed on the same baseline model. “Best (a)” represents the performance of a model
checkpoint that meets the showcased MACs/Params reduction and performs best against criterion (a).

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 (c) PGDε=8/255, εstep=2/255
max_iter=3 MACs (M) Params (M)

Unpruned - 92.80 71.93 31.35 35.40 69.479 0.464

CC [Li et al., 2021]
Best Benign 93.01 70.06 25.26 30.40

39.261 0.312Best (a) 92.69 70.92 25.84 30.75
Best (b) 92.82 70.50 26.79 31.20

DHP [Li et al., 2020]
Best Benign 92.26 67.25 21.35 26.12

40.091 0.283Best (a) 91.88 68.14 26.64 26.80
Best (b) 91.80 67.62 27.23 26.65

FPGM [He et al., 2019]
Best Benign 92.41 69.75 29.61 32.32

39.352 0.262Best (a) 92.06 70.84 29.74 32.57
Best (b) 92.23 69.96 30.99 32.43

GAL [Lin et al., 2019] - 90.31 72.21 31.68 38.32 38.80 0.233

L1Norm-A [Li et al., 2017]
Best Benign 91.45 68.04 24.03 28.71

39.861 0.252Best (a) 91.03 70.00 25.92 30.70
Best (b) 90.38 67.61 32.50 29.67

L1Norm-B [Li et al., 2017]
Best Benign 91.58 67.04 25.24 28.91

39.630 0.313Best (a) 91.03 71.59 29.11 35.20
Best (b) 90.59 69.67 34.62 34.02

LRF [Joo et al., 2021]
Best Benign 93.04 69.38 25.82 30.07

38.791 0.260Best (a) 92.63 70.22 25.13 29.74
Best (b) 92.79 69.21 27.54 28.64

NPPM [Gao et al., 2021]
Best Benign 93.13 69.88 26.03 29.75

39.605 0.326Best (a) 92.88 70.45 27.27 30.41
Best (b) 92.89 70.08 27.97 30.51

RAP-ADMM [Ye et al., 2019] - 74.88 72.27 25.80 57.66 39.370 0.271

OTOv2 (from scratch) [Chen et al., 2023] - 90.97 66.36 17.28 27.15 - -

OTOv2 (post train) [Chen et al., 2023] - 92.14 70.63 28.01 31.96 - -

SFP [He et al., 2018] - 91.94 69.25 30.34 30.18 40.375 0.266

TMI-GKP [Zhong et al., 2022]
Best Benign 92.99 69.15 19.59 28.09

39.545 0.263Best (a) 92.03 70.61 15.85 29.44
Best (b) 92.77 69.90 30.51 32.05

SR-GKP (Ours)
Best Benign 92.97 70.57 29.31 32.01

39.545 0.263Best (a) 92.88 71.52 30.39 33.36
Best (b) 92.86 70.79 31.32 32.89

23



20

40

60

80

100

Unpruned CC DHP FPGM Greg-1 Greg-2 HRank L1Norm-A L1Norm-B LRF NPPM OTOv2 (FS) OTOv2 (PT) RAP-ADMM SFP TMI-GKP SR-GKP (Ours)

44.8544.5144.10

54.22

41.58

25.52

38.13
36.78

43.7142.74

32.51

43.71
42.22

44.66

33.64

38.90

42.58
45.1744.0943.83

45.35

40.46

23.63

31.18
28.20

45.16
48.19

39.30
37.11

44.96

70.42

29.26

39.64

76.4075.8875.63

61.08

74.29

65.91

75.5074.8075.1674.30
72.59

75.4074.78
76.28

70.66

75.7575.15

94.0893.9593.15

61.54

93.02
91.57

93.5593.9392.6292.4492.27
93.7493.3093.6092.42

94.0493.24

Benign FGSM ε = 0.01 FGSM ε = 0.1 PGD ε = 8/255, ε_step = 2/255, max_iter = 3

Ac
cu

ra
cy

Figure 7: “Superscore” visualization of ResNet-56 on CIFAR-10 with pruning rate ≈ 43.75%

Table 12: Full experiments of ResNet-56 on CIFAR-10 with pruning rate ≈ 43.75%. All pruning
methods are performed on the same baseline model. “Best (a)” represents the performance of a model
checkpoint that meets the showcased MACs/Params reduction and performs best against criterion (a).

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 (c) PGDε=8/255, εstep=2/255
max_iter=3 MACs (M) Params (M)

Unpruned - 93.24 75.15 39.64 42.58 126.561 0.853

CC [Li et al., 2021]
Best Benign 94.04 74.78 29.25 37.85

69.837 0.616Best (a) 93.73 75.75 29.26 38.86
Best (b) 93.70 75.56 29.89 38.90

DHP [Li et al., 2020]
Best Benign 92.42 69.50 29.93 32.56

73.289 0.480Best (a) 92.34 70.66 30.17 33.64
Best (b) 92.07 31.54 70.42 32.83

FPGM [He et al., 2019]
Best Benign 93.60 75.31 43.20 43.55

71.661 0.482Best (a) 93.37 76.28 44.96 44.66Best (b)

GAL [Lin et al., 2019] - 91.27 76.38 47.32 47.36 98.24 0.700

HRank [Lin et al., 2020]
Best Benign 92.27 72.32 19.11 32.51 79.237 0.584Best (b)
Best (a) 92.07 72.59 18.94 32.21

L1Norm-A [Li et al., 2017]
Best Benign 92.44 73.00 41.00 40.76

67.995 0.487Best (a) 91.65 74.30 43.59 42.74
Best (b) 91.34 71.94 48.19 42.10

L1Norm-B [Li et al., 2017]
Best Benign 92.62 72.97 41.30 41.79

72.115 0.586Best (a) 91.94 75.16 42.49 43.71
Best (b) 91.70 74.40 45.16 43.41

LRF [Joo et al., 2021]
Best Benign 93.93 73.47 25.59 34.86

71.009 0.490Best (a) 93.68 74.80 27.39 36.78
Best (b) 93.63 74.06 28.20 35.98

NPPM [Gao et al., 2021]
Best Benign 93.55 74.82 29.07 37.12

70.843 0.601Best (a) 93.35 75.50 30.29 38.09
Best (b) 93.43 75.27 31.18 38.13

RAP-ADMM [Ye et al., 2019] - 78.37 75.19 27.84 61.15 71.661 0.482

OTOv2 (from scratch) [Chen et al., 2023] - 91.57 65.91 23.63 25.52 79.780 0.480

OTOv2 (post train) [Chen et al., 2023] - 93.02 74.29 40.46 41.58 66.196 0.554

SFP [He et al., 2018] - 93.15 75.63 43.83 44.10 71.462 0.481

TMI-GKP [Zhong et al., 2022]
Best Benign 93.95 75.18 42.18 43.46

71.855 0.482Best (a) 93.37 75.88 42.55 43.74
Best (b) 93.66 75.74 44.09 44.51

SR-GKP (Ours)
Best Benign 94.08 75.89 42.60 43.85

71.855 0.482Best (a) 93.83 76.40 45.17 44.85Best (b)
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Figure 8: “Superscore” visualization of ResNet-110 on CIFAR-10 with pruning rate ≈ 43.75%

Table 13: Full experiments of ResNet-110 on CIFAR-10 with pruning rate ≈ 43.75%. All pruning
methods are performed on the same baseline model. “Best (a)” represents the performance of a model
checkpoint that meets the showcased MACs/Params reduction and performs best against criterion (a).

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 (c) PGDε=8/255, εstep=2/255
max_iter=3 MACs (M) Params (M)

Unpruned - 94.26 78.56 48.83 50.85 254.995 1.728

CC [Li et al., 2021]
Best Benign 94.31 75.12 27.31 38.24

144.414 1.046Best (a) 94.17 75.88 28.14 39.78
Best (b) 94.23 75.52 29.00 39.64

DHP [Li et al., 2020]
Best Benign 92.53 67.94 25.08 26.83

101.350 0.612Best (a) 92.21 68.86 25,51 27.19
Best (b) 92.25 67.82 26.64 26.67

FPGM [He et al., 2019]
Best Benign 94.18 79.32 52.16 52.46

114.357 0.976Best (a) 94.02 79.78 53.33 52.73
Best (b) 94.10 79.70 54.15 52.82

GAL [Lin et al., 2019] - 93.42 82.34 52.79 57.55 180.677 1.186

HRank [Lin et al., 2020] Best Benign 92.96 73.70 16.87 35.72 158.992 1.060

L1Norm-A [Li et al., 2017]
Best Benign 92.75 74.84 38.03 41.54

143.454 0.958Best (a) 91.93 75.83 39.71 44.04
Best (b) 92.21 75.26 45.48 45.49

L1Norm-B [Li et al., 2017]
Best Benign 92.96 75.26 41.19 44.86

144.909 1.094Best (a) 92.40 76.10 41.36 47.05
Best (b) 91.71 73.58 41.92 42.69

LRF [Joo et al., 2021]
Best Benign 94.49 76.60 29.50 42.15

144.405 0.997Best (a) 94.22 76.93 29.27 42.59
Best (b) 94.38 76.71 30.67 42.67

NPPM [Gao et al., 2021]
Best Benign 94.16 76.16 32.84 41.54

146.722 1.120Best (a) 94.01 76.56 33.71 42.14Best (b)

RAP-ADMM [Ye et al., 2019] - 81.43 78.36 29.26 63.11 144.357 0.976

OTOv2 (from scratch) [Chen et al., 2023] - 91.58 71.43 23.94 34.74 - -

OTOv2 (post train) [Chen et al., 2023] - 93.99 77.25 47.96 48.46 - -

SFP [He et al., 2018] - 94.44 78.75 53.62 52.57 144.274 0.976

TMI-GKP [Zhong et al., 2022]
Best Benign 94.90 77.50 47.15 49.00

144.551 0.976Best (a) 94.63 78.02 45.95 48.81
Best (b) 94.90 77.50 47.15 49.00

SR-GKP (Ours)
Best Benign 95.00 78.01 46.53 48.86

144.551 0.976Best (a) 94.69 79.14 47.49 50.01
Best (b) 94.60 78.92 49.09 49.83
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D.2.2 ResNet-32/56/110 on CIFAR-10 with pruning rate ≈ 62.5%)

Please refer to Table 15, 16, and 17. We also provide Table 14 in a ranked chart format for an easy
digest of the three aforementioned tables.

Table 14: Methods ranked against each other on each model with pruning rate ≈ 62.5%, lower is
better. “ResNet-XX Mean Rank” means a method’s average ranks across four metrics on ResNet-XX;
e.g., SR-GKP is ranked #1/#1/#3/#3 for its best performance across benign/FGSM 0.01/FGSM
0.1/PGD metrics on ResNet-110 against other methods, so it’d have a ResNet-110 Mean Rank of
(1+1+3+3)/4 = #2. Methods with incomplete presence across the three models are excluded. This
table is provided to facilitate the digestion of Table 15, 16, and 17, which consist of raw results.

Method ResNet-32 Mean Rank ResNet-56 Mean Rank ResNet-110 Mean Rank All Models Mean Rank

CC [Li et al., 2021] #1 #3.5 #5.75 #3.42
DHP [Li et al., 2020] #3.75 #7.5 #7.75 #6.33
FPGM [He et al., 2019] #4.25 #3.75 #2 #3.33
L1Norm-A [Li et al., 2017] #5.5 #3.75 #5.75 #5.00
L1Norm-B [Li et al., 2017] #6.25 #6.25 #4.25 #5.58
NPPM [Gao et al., 2021] #5 #4 #5.5 #4.83
SFP [He et al., 2018] #7.5 #5 #3 #5.17
SR-GKP (Ours) #2.75 (2nd-best) #2.25 #2 #2.33

Table 15: Full experiments of ResNet-32 on CIFAR-10 with pruning rate ≈ 62.5%. All pruning are
performed on the same baseline model. “Best (a)” represents the performance of a model checkpoint
that meets the showcased MACs/Params reduction and performs best against criterion (a).

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 (c) PGDε=8/255, εstep=2/255
max_iter=3 MACs (M) Params (M)

Unpruned - 92.80 71.93 31.35 35.40 69.479 0.464

CC [Li et al., 2021]
Best Benign 92.39 70.71 15.45 30.87

26.904 0.210Best (a) 91.83 69.99 28.84 30.91
Best (b) 92.01 67.97 29.07 29.29

DHP [Li et al., 2020]
Best Benign 91.73 66.87 28.00 26.71

- -Best (a) 91.36 67.71 26.83 26.89
Best (b) 91.31 66.84 28.75 26.39

FPGM [He et al., 2019]
Best Benign 91.32 65.41 20.91 24.97

- -Best (a) 90.47 67.77 15.95 26.61
Best (b) 91.04 56.51 24.47 25.68

L1Norm-A [Li et al., 2017]
Best Benign 89.96 66.06 20.44 27.29

26.511 0.163Best (a) 89.52 67.65 18.07 27.93
Best (b) 89.23 66.75 23.21 27.88

L1Norm-B [Li et al., 2017]
Best Benign 90.01 64.89 19.39 24.52

26.157 0.146Best (a) 89.78 67.14 17.75 26.91
Best (b) 89.42 66.66 21.63 27.55

LRF [Joo et al., 2021]
Best Benign 92.79 68.97 22.02 27.95

29.915 0.196Best (a) 92.46 70.56 20.91 28.90
Best (b) 92.43 69.50 25.40 29.22

NPPM [Gao et al., 2021]
Best Benign 91.92 66.83 22.23 25.63

26.998 0.198Best (a) 91.79 67.56 22.39 25.91
Best (b) 91.67 67.16 23.97 25.60

SFP [He et al., 2018] - 90.28 66.71 20.35 25.47 - -

SR-GKP (Ours)
Best Benign 92.21 66.38 21.91 25.98

26.717 0.176Best (a) 91.52 69.33 14.83 27.94
Best (b) 92.04 66.37 23.55 25.80
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Table 16: Full experiments of ResNet-56 on CIFAR-10 with pruning rate ≈ 62.5%. All pruning
methods are performed on the same baseline model. “Best (a)” represents the performance of a model
checkpoint that meets the showcased MACs/Params reduction and performs best against criterion (a).

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 (c) PGDε=8/255, εstep=2/255
max_iter=3 MACs (M) Params (M)

Unpruned - 93.24 75.15 39.64 42.58 126.561 0.853

CC [Li et al., 2021]
Best Benign 93.57 73.63 25.30 35.40

48.692 0.421Best (a) 93.33 74.29 24.96 35.54
Best (b) 93.37 62.56 26.12 35.25

DHP [Li et al., 2020]
Best Benign 91.66 70.66 29.75 31.40

- -Best (a) 91.36 71.22 26.36 31.05
Best (b) 91.48 70.41 30.15 31.27

FPGM [He et al., 2019]
Best Benign 92.64 71.80 35.17 35.17

- -Best (a) 92.31 72.58 35.98 35.94
Best (b) 92.62 71.86 35.99 35.61

HRank [Lin et al., 2020] - 90.63 69.49 17.14 29.51 - -

L1Norm-A [Li et al., 2017]
Best Benign 91.79 68.95 24.68 34.90

47.562 0.355Best (a) 91.12 71.76 37.01 36.97
Best (b) 91.47 70.10 39.83 37.03

L1Norm-B [Li et al., 2017]
Best Benign 91.56 69.56 32.80 33.61

47.794 0.322Best (a) 90.66 71.24 33.22 35.09
Best (b) 91.07 69.25 26.19 33.66

NPPM [Gao et al., 2021]
Best Benign 93.07 73.23 29.66 35.24

52.550 0.446Best (a) 92.84 74.21 28.27 35.38
Best (b) 93.02 72.91 30.39 34.03

SFP [He et al., 2018] - 92.24 72.21 33.65 35.39 - -

SR-GKP (Ours)
Best Benign 92.93 70.94 21.15 32.01

48.409 0.323Best (a) 92.69 73.54 35.42 38.39
Best (b) 92.69 73.38 36.53 38.95

Table 17: Full experiments of ResNet-110 on CIFAR-10 with pruning rate ≈ 62.5%. All pruning
methods are performed on the same baseline model. “Best (a)” represents the performance of a model
checkpoint that meets the showcased MACs/Params reduction and performs best against criterion (a).

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 (c) PGDε=8/255, εstep=2/255
max_iter=3 MACs (M) Params (M)

Unpruned - 94.26 78.55 48.84 50.85 254.995 1.728

CC [Li et al., 2021]
Best Benign 94.29 73.77 24.50 36.32

98.582 0.727Best (a) 94.05 74.23 24.87 36.71
Best (b) 94.03 73.70 26.03 36.44

DHP [Li et al., 2020]
Best Benign 92.73 71.39 23.19 35.51

- -Best (a) 92.35 72.41 23.70 36.22
Best (b) 92.50 71.27 25.13 34.86

FPGM [He et al., 2019]
Best Benign 94.11 76.11 47.62 47.54

- -Best (a) 94.00 76.52 48.39 47.75
Best (b) 93.93 76.41 49.33 47.62

HRank [Lin et al., 2020] - 91.94 70.13 15.04 30.19 - -

L1Norm-A [Li et al., 2017] Best Benign 92.50 73.06 40.19 41.77 97.952 0.622Best (a) & (b) 91.51 74.99 42.62 43.45

L1Norm-B [Li et al., 2017]
Best Benign 94.04 74.81 41.82 41.28

101.256 0.484Best (a) 93.79 75.55 42.36 41.99
Best (b) 93.86 74.96 43.43 41.99

LRF [Joo et al., 2021]
Best Benign 94.10 75.47 20.66 39.87

94.479 0.638Best (a) 93.88 76.96 33.44 42.52
Best (b) 93.98 76.21 34.55 41.77

NPPM [Gao et al., 2021]
Best Benign 93.93 74.71 31.37 38.81

99.915 0.746Best (a) 93.76 75.32 31.12 39.26
Best (b) 93.79 75.02 32.62 39.26

SFP [He et al., 2018] - 92.98 76.08 52.15 47.26 - -

SR-GKP (Ours)
Best Benign 94.31 76.31 43.88 45.44

97.217 0.654Best (a) 94.17 76.52 43.98 46.01
Best (b) 94.27 76.17 44.56 45.74

D.2.3 VGG-16 on CIFAR-10

Please refer to Table 18 with Figure 9 for details.
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Figure 9: “Superscore” visualization of VGG-16 on CIFAR-10.

Table 18: Full experiments of VGG-16 on CIFAR-10. All pruning methods are performed on the
same baseline model. “Best (a)” represents the performance of a model checkpoint that meets the
showcased MACs/Params reduction and performs best against criterion (a).

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 (c) PGDε=8/255, εstep=2/255
max_iter=3 MACs (M) Params (M)

Unpruned - 93.94 83.73 50.51 64.99 313.433 14.728

CC [Li et al., 2021]
Best Benign 94.14 83.09 47.83 62.81

178.107 -Best (a) 93.88 83.38 47.70 62.74
Best (b) 93.97 83.14 48.97 62.85

GAL [Lin et al., 2019] - 91.29 81.69 61.96 67.29 203.224 7.732

HRank [Lin et al., 2020]
Best Benign 93.57 81.45 31.80 56.28

212.264 8.700Best (a) 93.53 81.58 34.00 56.50
Best (b) 93.54 81.52 34.76 56.34

L1Norm [Li et al., 2017]
Best Benign 92.88 80.85 37.21 56.43

179.561 9.135Best (a) 92.41 81.53 31.10 56.17
Best (b) 92.06 80.48 41.81 57.03

TMI-GKP [Zhong et al., 2022] Best Benign 94.07 83.48 55.30 66.06 178.184 8.293

SR-GKP (Ours)
Best Benign 93.95 83.49 56.64 65.57

178.184 8.293Best (a) 93.77 83.85 57.48 66.51
Best (b) 93.86 83.61 59.03 66.62

D.2.4 ResNet-56/101 on Tiny-ImageNet

Please refer to Table 19 for details.

Table 19: Full experiments of ResNet-56/101 on Tiny-Imagenet. All pruning methods are performed
on the same baseline model. “Best (a)” represents the performance of a model checkpoint that meets
the showcased MACs/Params reduction and performs best against criterion (a).

Model Method Criterion Benign (a) FGSMε=0.001 (b) FGSMε=0.01 (c)FGSMε=0.1 (d) PGDε=4/255, εstep=1/255
max_iter=3 MACs (M) Params (M)

ResNet-56
Unpruned - 55.59 53.55 28.29 8.00 15.80 506.254 0.865
SR-GKP (Ours) Best Benign 54.83 54.14 29.22 7.71 17.08 318.690 0.547
TMI-GKP [Zhong et al., 2022] Best Benign 51.48 50.07 27.23 7.62 15.42 318.690 0.547

ResNet-101

Unpruned - 65.51 65.12 48.10 10.13 37.66 10081.092 42.902

SR-GKP (Ours)

Best Benign 67.21 66.52 46.98 8.95 37.34

5721.113 24.226Best (a) 65.69 64.91 37.95 10.95 25.94
Best (b) 65.61 64.71 38.27 10.85 25.97
Best (c) 65.69 64.91 37.95 10.96 25.95

ResNet-101 TMI-GKP [Zhong et al., 2022]

Best Benign 64.69 64.03 42.57 8.40 32.52 5721.113 24.226
Best (a) 63.53 62.23 33.47 10.46 20.61 5721.113 24.226
Best (b) 63.60 61.94 33.71 10.71 20.47 5721.113 24.226
Best (c) 63.50 61.93 33.67 10.77 20.63 5721.113 24.226

D.2.5 Comparison with Channel Pruned HARP

HARP by Zhao and Wressnegger [2023] is one of a few adversarially robust structured pruning
methods available for comparison, as it has a channel pruning version offered in its appendix
(HARP-CP). However, HARP utilizes several different training schedules than other methods, and we
therefore cannot compare it with other methods using a unified baseline (as in Table 18). To fulfill the
comparison, we opt to align SR-GKP with HARP under different potential training schedule settings
offered in HARP literature or our experiment setup. Please refer to Table 20 for details.
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Table 20: Comparison with Channel-Pruned HARP (HARP-CP) by Zhao and Wressnegger [2023] on
VGG-16 with CIFAR-10 dataset. (AT = Adversarial Training; NT = Natural Training; AS = epoch
with best adversarial accuracy is saved; NS = epoch with best benign accuracy is saved; LS = last
epoch is saved; SS = “Superscore” readings according to Section 4.2 and Table 10.

Method Baseline Budget Pruning Budget Fine-tuning Budget Best Benign FGSMε=0.01 FGSMε=0.1 PGD

HARP-CP NT, 300 (AS) AT, 20 (LS) NT, 300 (NS) 91.66 55.11 23.13 3.30
HARP-CP NT, 300 (NS) AT, 20 (LS) NT, 300 (NS) 87.04 23.49 10.71 0.05
HARP-CP NT, 300 (AS) AT, 20 (LS) AT, 100 (AS) 72.06 64.08 17.96 50.93
SR-GKP (Ours) NT, 300, (LS) 0 NT, 300 (SS) 93.95 83.85 59.03 66.62
SR-GKP (Ours) NT, 300, (LS) 0 NT, 100 (SS) 93.48 82.62 52.35 62.18

We believe it is safe to conclude that SR-GKP showcased clear dominance over the HARP-CP.

Although one network-dataset combination is not a comprehensive evaluation, Figure 13 of HARP
suggests HARP-CP is extremely close to RAP-ADMM [Ye et al., 2019] — a method we already
compared — in terms of both benign and adversarial acc; and from Figure 6, 7, 8 as well as Table 3,
we may conclude that RAP-ADMM performs vastly below SR-GKP on various metrics. We find it
interesting that HARP and RAP-ADMM — two methods utilizing adversarial training — still perform
worse than SR-GKP on most adversarial tasks, though SR-GKP only sees benign inputs; indicating
the effectiveness of SR-GKP. We suspect this is mainly due to the fact HARP and RAP-ADMM are
not structured pruning-focused methods.

D.3 Ablation Studies

Please refer to Table 21, Table 22, and Table 23 for ablation studies on hyperparameter α in Equation 2.
We denote it as CSB as it is in essence a “cost-smoothness balancer.” It can be observed that a
relatively high CSB — meaning giving more bias to the distance-based cost metrics — may yield
better performance.

Table 21: Ablation study of cost-smoothness balancer “CSB” (α in Equation 2) on ResNet-32 with
CIFAR-10.

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 MACs (M) Params (M)

Unpruned - 92.80 71.93 31.35 69.479 0.464

0.1 CSB
Best Benign 92.79 70.39 28.09

39.545 0.263Best (a) 92.59 71.50 29.03
Best (b) 92.47 70.94 29.69

0.25 CSB
Best Benign 93.01 70.45 27.91

39.545 0.263Best (a) 92.70 71.32 30.46Best (b)

0.5 CSB
Best Benign 93.07 68.74 28.07

39.545 0.263Best (a) 92.54 70.63 21.42
Best (b) 92.78 70.29 30.47

0.75 CSB
Best Benign 92.93 70.55 30.02

39.545 0.263Best (a) 92.70 71.09 30.89Best (b)

0.9 CSB
Best Benign 92.97 70.57 29.31

39.545 0.263Best (a) 92.88 71.52 30.39
Best (b) 92.86 70.79 31.32
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Table 22: Ablation study of cost-smoothness balancer “CSB” (α in Equation 2) on ResNet-56 with
CIFAR-10.

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 MACs (M) Params (M)

Unpruned - 93.24 75.15 39.64 126.561 0.853

0.1 CSB
Best Benign 93.72 75.17 39.90

71.855 0.482Best (a) 93.38 75.79 42.53Best (b)

0.25 CSB
Best Benign 93.83 75.68 40.40

71.855 0.482Best (a) 93.70 76.49 42.35
Best (b) 93.57 75.72 43.92

0.5 CSB
Best Benign 93.76 75.61 41.20

71.855 0.482Best (a) 93.41 76.69 42.58
Best (b) 93.45 75.97 42.69

0.75/0.9 CSB
Best Benign 94.08 75.89 42.60

71.855 0.482Best (a) 93.83 76.40 45.17Best (b)

Table 23: Ablation study of cost-smoothness balancer “CSB” (α in Equation 2) on ResNet-110 with
CIFAR-10.

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 MACs (M) Params (M)

Unpruned - 94.26 78.56 48.83 254.995 1.728

0.1 CSB
Best Benign 94.60 78.44 44.20

144.551 0.976Best (a) 94.47 79.62 46.03
Best (b) 94.35 79.41 47.5

0.25 CSB
Best Benign 94.50 77.86 47.07

144.551 0.976Best (a) 94.35 78.65 46.04
Best (b) 94.40 78.52 48.10

0.5 CSB
Best Benign 95.00 78.01 46.53

144.551 0.976Best (a) 94.69 79.14 47.49
Best (b) 94.60 78.92 49.09

0.75 CSB
Best Benign 94.49 77.97 45.93

144.551 0.976Best (a) 94.26 78.91 47.84
Best (b) 94.32 78.44 48.89

0.9 CSB
Best Benign 94.54 78.21 47.16

144.551 0.976Best (a) 94.29 78.81 46.71
Best (b) 94.31 78.25 48.55
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