
A Implementation details

Our algorithm is an extension of the Soft Actor-Critic algorithm [7, 50], implemented in PyTorch.
Like [36, 51], we initialize agents’ replay buffer with a 1000 seed observations collected with a
uniform random policy. We update the Q-network pairs to predict the augmented Q value function
at every interaction step, and the actor network to maximize the augmented Q value function every
second interaction step. The augmented Q targets take the following form:

y = r(st,at) + γ [Q(st+1,at+1)− α(log πθ(at+1|st+1)− log ϕθ(at+1|at−τ :t))] (6)
where at+1 ∼ πθ(·|st+1). To train the networks we sampled B tuples of state, actions, next state,
reward and terminal flags, as well as the τ actions that led to them. To allow the agent to train on
observations early in episodes, we sampled τ from a uniform distribution of integers between 5
and τmax (see tables 1, 2) for every mini-batch sample used for training. We update the adaptive
priors used in SPAC and MIRACLE together with the actor network. All actor and critic networks
consisted of two hidden layers with 256 ReLU units [52] each. The action prior used in MIRACLE
was implemented as a multivariate isotropic Gaussian with learnable mean and standard deviation.

Since actions are bounded between -1 and 1, we transform actions sampled from the policy using
the tanh transform at = tanh(ut),ut ∼ πθ. We transformed the log-likelihood of an action under a
Gaussian policy πθ or action prior ϕθ using the following formula [7, 50]:

log πθ(at|st) = logµ(ut|st)−
DX

i=1

log(1− tanh2(ui)) (7)

log ϕθ(at|at−τ :t−1) = logψθ(ut|at−τ :t−1)−
DX

i=1

log(1− tanh2(ui)) (8)

where logψθ(ut|at−τ :t−1) is the log likelihood of the untransformed action ut under the untrans-
formed sequence prior ψθ.

A.1 Quantifying compressibility

We used the LZ4 algorithm to quantify the compressibility of action sequences. The following code
snippet describes how we computed the sequence complexity term in Eq. 3

sequence_i = action_sequence.numpy().ravel()
# get length of compressed sequence at t
length_t1 = len(compression_algorithm.compress(sequence_i))
action_next = policy(state).numpy().ravel() # get next on-policy action
sequence_j = np.concatenate((sequence_i, action_next), axis=0)
# get length of compressed sequence at t+1
length_t2 = len(compression_algorithm.compress(sequence_j))
delta = length_t - length_t2 # delta is the difference

Since the actions were continuous vectors, we quantized all action sequences with the following
function:

def quantize(action_sequence, N=100):
return (action_sequence*N).floor()

Here N determines the granularity of the quantization, with lower N producing more coarse-grained
sequences. We set N = 100 for our experiments.

A.2 Pseudo-code for lZ4 algorithm

The lZ4 algorithm compresses sequences by replacing repeating sub-sequences in the data with
references to an earlier occurring copy of the sub-sequence. These copies are maintained in a sliding
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window. Repeating sub-sequences are encoded as length-distance pairs (l, d), specifying that a set of
l symbols have a match d symbols back in the uncompressed sequence. The following pseudo-code
sketches compression implemented by LZ4 [32]:

Algorithm 1 LZ4 pseudo-code
Require: Buffer size b, window size w, sequence k

t = 0
window ← ⟨ ⟩
while t < len(k) do

match ← longest repeated occurrence in window found in kt:t+b

if match exists then
d ← distance to start of match
l ← length of match
c ← symbol at kt+l

else
d ← 0
l ← 0
c ← 0

end if
output (d, l, c)
start ← max(t− w + l, 0)
end t ← t+ l
window ← kstart:end
t ← t+ l + 1

end while

B Hyperparameters

B.1 Increasing reward scale

Figure 9: Halving the incentive of acting randomly does not close the performance gap between
LZ-SAC and SAC.

We investigated whether LZ-SAC’s performance improvement could simply be attributed to the incen-
tive to act more deterministically. We tested whether we could attain the same level of performance
with SAC just by lowering the incentive of acting randomly. Doubling the scale of extrinsic reward
relative to the intrinsic reward of acting randomly did not close the gap between the algorithms (Fig.
9). Instead, we see a decline in performance when we set the incentive of randomness lower than
α = 0.1 (or α = 0.02 in walker run). This indicates that there is value in having a preference for
simplicity on the sequence level that goes beyond simply being predictable at the level of individual
actions.

B.2 Algorithm hyperparameters

We implement all algorithms using hyperparameters from [36], with slight deviations depending on
the task. Since the computational overhead of using lz4 as a compressor is small compared to the
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transformer, we train the agents using larger action sequences. All networks were trained with the
Adam optimizer [53]. A full list of hyperparameters is given below:

Table 1: Hyperparameters used for SAC, MIRACLE, LZ-SAC, and SPAC

Hyperparameter Value
Complexity cost α (walker run, hopper hop, quadruped walk) 0.02

Complexity cost (all other environments) α 0.1
Discount γ 0.99

Critic update frequency 1
Actor update frequency 2

Action prior update frequency 2
Soft update ρ 0.01

Batch size 128
Learning rate actor 10−3

Learning rate critic 10−3

Optimizer Adam
Max context length LZ-SAC (τmax) Interaction steps in episode × 0.4

Max context length LZ-SAC (τmax; walker run) Interaction steps in episode × 0.25

B.3 Transformer

The SPAC agent uses a causal transformer [9] to learn a prior over action sequences. Our transformer
was implemented with the following hyperparameters:

Table 2: Transformer hyperparameters.

Hyperparameter Value
Attention heads 5

Embedding dimensions 30
Learning rate decay Linear

Warmup tokens 10000
Max context length (τmax) 20

Number of layers 2
Learning rate 3× 10−4

Dropout 0.1
Optimizer Adam

C Task specification

We evaluated agents on tasks from the DeepMind Control Suite. Though dynamics are otherwise
deterministic, the starting state of an episode is sampled from a distribution p(s0). All episodes
consist of 1000 environment steps. However, in practice the episode length is reduced to a number of
interaction steps, that is smaller than 1000. This is due to an action repeat hyperparameter which
determines how many times an action at is repeated after it is selected. An action repeat value of
4 thus reduces the number of time steps where the agent needs to act to 250 interaction steps. The
action repeat hyperparameter makes it more practical to train agents in the DeepMind Control Suite
[34]. We adopt conventional action repeat settings from the literature [36]. In the walker and
hopper domains we fitted the action repeat value for all agents among [2, 4, 8] and chose the value
that produced the best performance. Table 3 shows the action repeat values used in our experiments:

C.1 Pixel-based control

Our LZ-SAC and SAC implementations in the visual control domain differed little from the
state-based implementations. We equipped the agents with the convolutional neural network
architecture and image augmentation transformation from [54]. All MLPs had two hidden
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Table 3: Action repeat values.

Task Action repeat
acrobot swingup 8

cheetah run 4
fish swim 4
hopper hop 8
hopper stand 8

quadruped walk 4
reacher hard 4
walker run 2

walker run (SPAC) 4

Table 4: All final average model scores in the DeepMind Control 100k benchmark with pixel
observations. Scores are averaged over 10 runs after 100k steps for five seeds. Scores of the other
baselines are the ones reported in the respective papers [41] [36].

DMC 100k LZ-SAC SAC CURL SAC+AE
Finger, Spin 814 738 767 740

Cartpole, Swingup 683 609 582 311
Walker, Walk 635 609 403 394

Ball In Cup, Catch 653 499 769 391
Cheetah, Run 307 396 299 274
Reacher, Easy 513 427 538 274

layers and 512 ReLU units. We optimized the α hyperparameter both for the LZ-SAC and
SAC agents for all tasks with a grid search. For tasks with higher dimensional action spaces
a lower α of 0.01 worked best. In the end, the best performing α for both algorithms was the
same across task. Since LZ4 encoding lengths are not necessarily on the same scale as the log
likelihoods of the actions given the state in Equation 4, we experimented with scaling the LZ4 en-
coding cost by 0.5, which slightly improved performance. The full scores of the models are in Table 4.

Table 5: Action repeat values and complexity cost for both LZ-SAC and SAC agents in the pixel-based
tasks.

Task Action repeat α
finger spin 2 0.01

cartpole swingup 8 0.1
walker walk 2 0.01

ball in cup catch 4 0.01
cheetah run 4 0.01
reacher easy 2 0.1

D Mutual information approximation

The mutual information I(X;Y ) between variables X and Y is a measure of how much they depend
on each other. In our case we are interested in the mutual information between states and actions
I(s; a). The mutual information here quantifies how many bits of information knowing the outcome
of the random variable st provides about the other random variable at, in other words, how much the
state reveals about what action will be selected. The more an agent’s actions vary as a function of the
state, the more bits of information the state reveals about the action that the agent will select.

The mutual information is defined as the following quantity

I(a; s) = H[a]−H[a|s] (9)
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Figure 10: Return per bit for the stochastic policies. LZ-SAC attains the highest return per bit ratio in
most tasks.

To compute the mutual information we need to know the entropy of the distribution of actions used to
solve the task, and the conditional entropy of a|s. Since we make the policies deterministic, we know
that H[a|s] = 0. This way the mutual information reduces to the entropy over actions H[a]. Given a
sample of actions produced by the agent solving the task, we approximate H[a] the following way:
We first quantized each selected action into 100× |A| bins, where A is the action space. We then
calculated a categorical distribution over actions based on the frequencies of the quantized actions, the
entropy of which we used as our approximation for H[a]. The categorical distribution was calculated
based on actions selected over 50 episodes.

D.1 Return per bit for stochastic policies

We evaluated the information efficiency of the stochastic variants of the policies learned by LZ-SAC,
SPAC, SAC and MIRACLE. We approximated the entropy of the distribution of actions in the same
way described above, sampling actions over 50 episodes. To compute the conditional entropy of
actions given the state H[a|s], we sampled 1000 actions from the policy at every state st. We then
calculated a categorical distribution (described in previous section) based on this sample, the entropy
of which we used as our approximation of the conditional entropy H[a|s]. In this setting too, the
SPAC algorithm tends to produce the most information efficient agents (Fig. 10).

E Open-loop control

Increasing the number of closed-loop actions used to prompt the transformer makes it generate more
rewarding action sequences. This shows the importance of providing the sequence models with
enough context, to be able to predict rewarding behaviors (Fig. 11).

F Partial observability

The augmented reward function that induces the preference for simple action sequences depends
on the actions the agent selected in the past. This makes the reward function partially observable
for a purely state-conditioned policy. Our agents learn to maximize this reward function despite
this partial observability. We tested whether augmenting the state to contain information about
actions selected in the past produced substantial differences in the learned policies. We equipped
the LZ-SAC agents with a recurrent neural network (a Gated Recurrent Unit [55]) whose inputs
were sequences of actions. We trained this network along with a single readout layer to produce
embeddings et of action sequences with which we defined the augmented state at ∼ πθ(·|s̃t) where
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Figure 11: Cumulative rewards attained by sequence priors in the fish swim environment, with a
prompt length of 25.

Figure 12: Returns and compressibility of action sequences when the reward function is partially
observable and fully observable.

s̃t = Concatenate(st, et). In three tasks we observed only minor differences in the policies learned
(Fig 12).

G Pretraining the prior

We trained Transformer models to perform next-action prediction from action sequences produced by
the converged LZ-SAC agent for all tasks. Using the pretrained transformers (with frozen weights)
rather than a randomly initialized one whose weights were updated with stochastic gradient descent
sped up learning significantly and allowed the SPAC agent to learn more rewarding behaviors (see
Fig. 13). This showcases an interesting possible connection between our sequence compression
framework and behavioral cloning.
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Figure 13: Learning curves for SPAC using a pretrained transformer with frozen weights and a
randomly initialized transformer. Using a pretrained transformer allows SPAC to solve the more
challenging tasks in the benchmark. Learning curves are averaged over three seeds. Shaded region
represents 20-80 percentile.
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