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Abstract

The explicit incorporation of task-specific inductive biases through sym-
metry has emerged as a general design precept in the development of
high-performance machine learning models. For example, group equivariant
neural networks have demonstrated impressive performance across various
domains and applications such as protein and drug design. A prevalent
intuition about such models is that the integration of relevant symmetry
results in enhanced generalization. Moreover, it is posited that when the
data and/or the model may only exhibit approximate or partial symmetry,
the optimal or best-performing model is one where the model symmetry
aligns with the data symmetry. In this paper, we conduct a formal unified
investigation of these intuitions. To begin, we present general quantitative
bounds that demonstrate how models capturing task-specific symmetries
lead to improved generalization. In fact, our results do not require the trans-
formations to be finite or even form a group and can work with partial or
approximate equivariance. Utilizing this quantification, we examine the more
general question of model mis-specification i.e. when the model symmetries
don’t align with the data symmetries. We establish, for a given symmetry
group, a quantitative comparison between the approximate/partial equivari-
ance of the model and that of the data distribution, precisely connecting
model equivariance error and data equivariance error. Our result delineates
conditions under which the model equivariance error is optimal, thereby
yielding the best-performing model for the given task and data. Our results
are the most general results of their type in the literature.

1 Introduction

It is a common intuition that machine learning models that explicitly incorporate task-specific
symmetries tend to exhibit superior generalization. The rationale is simple: if aspects of
the task remain unchanged or change predictably when subject to certain transformations,
then, a model without knowledge of them would require additional training samples to
learn to disregard them. While the general idea is by no means new in machine learning, it
has experienced a revival in interest due to the remarkable successes of group equivariant
convolutional neural networks (GCNNs) [14, 38, 29, 16, 13, 60, 8, 34, 24, 66]. Such networks
hard-code equivariance to the action of an algebraic group on the inputs and have shown
promise in a variety of domains [55, 5, 42, 2, 28, 62, 25, 52, 18, 61, 68], in particular in
those where data is scarce, but exhibits clear symmetries. Further, the benefits of encoding
symmetries in this manner extend beyond merely enhancing generalization. Indeed, in
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numerous applications in the physical sciences, neglecting to do so could lead to models
producing unphysical outputs. However, the primary focus of most of the work in the
area has been on estimating functions that are strictly equivariant under a group action.
It has often been noted that this may impose an overly stringent constraint as real-world
data seldom exhibits perfect symmetry. The focus on strict equivariance is partly due
to convenience: the well-developed machinery of group representation theory and non-
commutative harmonic analysis can easily be marshalled to design models that are exactly
equivariant. A general prescriptive theory for such models also exists [29, 16]. In a certain
sense, the basic architectural considerations of such models are fully characterized.
Recent research has begun to explore models that enforce only partial or approximate
equivariance [40, 59, 23, 56]. Some of these works suggest interpolating between models that
are exactly equivariant and those that are fully flexible, depending on the task and data.
The motivation here is analogous to what we stated at the onset. If the data has a certain
symmetry – whether exact, approximate or partial – and the model’s symmetry does not
match with it, its performance will suffer. We would expect that a model will perform best
when its symmetry is correctly specified, that is, it aligns with the data symmetry.
Despite increased research interest in the area, the theoretical understanding of these intu-
itions remains unsatisfactory. Some recent work has started to study improved generalization
for exactly equivariant/invariant models (see section 2). However, for the more general
case when the data and/or model symmetries are only approximate or partial, a general
treatment is completely missing. In this paper, we take a step towards addressing this
gap. First, we show that a model enforcing task-specific invariance/equivariance exhibits
better generalization. Our theoretical results subsume many existing results of a similar
nature. Then we consider the question of model mis-specification under partial/approximate
symmetries of the model and the data and prove a general result that formalizes and validates
the intuition we articulated above.
We summarize below the main contributions of the paper:

• We present quantitative bounds, the most general to date, showing that machine
learning models enforcing task-pertinent symmetries in an equivariant manner afford
better generalization. In fact, our results do not require the set of transformations
to be finite or even be a group. While our investigation was initially motivated by
GCNNs, our results are not specific to them.

• Using the above quantification, we examine the more general setting when the
data and/or model symmetries are approximate or partial and the model might be
misspecified relative to the data symmetry. We rigorously formulate the relationship
between model equivariance error and data equivariance error, teasing out the precise
conditions when the model equivariance error is optimal, that is, provides the best
generalization for given data. To the best of our knowledge, this is the most general
result of its type in the literature.

2 Related Work

As noted earlier, the use of symmetry to encode inductive biases is not a new idea in machine
learning and is not particular to neural networks. One of the earliest explorations of this
idea in the context of neural networks appears to be [46]. Interestingly, [46] originated in
response to the group invariance theorems in Minsky & Papert’s Perceptrons [36], and was
the first paper in what later became a research program carried out by Shawe-Taylor &
Wood, building more general symmetries into neural networks [63, 48, 49, 65, 64], which
also included PAC style analysis [50]. While Shawe-Taylor & Wood came from a different
perspective and already covered discrete groups [14, 38], modern GCNNs go beyond their
work [29, 16, 13, 60, 8, 34, 24]. Besides, GCNNs [14] were originally proposed as generalizing
the idea of the classical convolutional network [32], and seem to have been inspired by
symmetry considerations from physics [15]. Outside neural networks, invariant/equivariant
methods have also been proposed in the context of support vector machines [43, 57], general
kernel methods [39, 26], and polynomial-based feature spaces [44].
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On the theoretical side, the assertion that invariances enhance generalization can be found
in many works, going back to [47]. It was argued by [1] that restricting a classifier to be
invariant can not increase its VC dimension. Other examples include [3, 4, 51, 41]. The
argument in these, particularly [51, 41] first characterizes the input space and then proceeds
to demonstrate that certain data transformations shrink the input space for invariant models,
simplifying the input and improving generalization. Some of our results generalize their
results to the equivariant case and for more general transformations.
Taking a somewhat different tack, [22] showed a strict generalization benefit for equivariant
linear models, showing that the generalization gap between a least squares model and its
equivariant counterpart depends on the dimension of the space of anti-symmetric linear maps.
This result was adapted to the kernel setting in [19]. [9] studied sample complexity benefits
of invariance in a kernel ridge regression setting under a geometric stability assumption, and
briefly discussed going beyond group equivariance. [53] expands upon [9] by characterizing
minimax optimal rates for the convergence of population risk in a similar setting when the data
resides on certain manifolds. [35] characterizes the benefits of invariance in overparameterized
linear models, working with invariant random features projected onto high-dimensional
polynomials. Benefits of related notions like data augmentation and invariant averaging are
formally shown in [33, 12]. Using a standard method from the PAC-Bayesian literature [37]
and working on the intertwiner space, [7] provide a PAC-Bayesian bound for equivariant
neural networks. Some improved generalization bounds for transformation-invariant functions
are proposed in [67], using the notion of an induced covering number. A work somewhat
closer to some of our contributions in this paper is [20], which gives PAC bounds for (exact)
group equivariant models. However, we note that the proof of the main theorem in [20] has
an error (see the Appendix for a discussion), although the error seems to be corrected in the
author’s dissertation [21]. An analysis that somewhat overlaps [20], but goes beyond simply
providing worst-case bounds was carried out by [45].
Finally, recent empirical work on approximate and partial equivariance includes [40, 59, 23, 56].
These make the case that enforcing strict equivariance, if misspecified, can harm performance,
arguing for more flexible models that can learn the suitable degree of equivariance from data.
However, there is no theoretical work that formalizes the underlying intuition.

3 Preliminaries

In this section, we introduce basic notation and formalize some key notions that will be
crucial to ground the rest of our exposition.

3.1 Learning with equivariant models

Learning problem. To begin, we first describe the general learning problem which we
adapt to the equivariant case. Let’s say we have an input space X and an output space Y,
and assume that the pairs Z = (X, Y ) ∈ X × Y are random variables having distribution
D. Suppose we observe a sequence of n i.i.d pairs Zi = (Xi, Yi) ∼ D, and want to learn a
function f̃ : X → Y that predicts Y given some X. We will consider that f̃ belongs to a class
of functions F̃ ⊂ {f̃ : X → Y} and that we work with a loss function ℓ : X × Y → [0, ∞).
To fully specify the learning problem we also need a loss class, comprising of the functions
f(x, y) := ℓ(f̃(x), y) : X × Y → [0, ∞). Using these notions, we can define:

F := {f(x, y) := ℓ(f̃(x), y) : f̃ ∈ F̃}, Pf := E[f(X, Y )], Pnf := 1
n

n∑
i=1

f(Xi, Yi).

The quantities Pf and Pnf are known as the risk and the empirical risk associated with
f̃ , respectively. In practice we have access to Pnf , and we estimate Pf by it. One of the
chief quantities of interest in such a setup is the worst-case error of this approximation on a
sample {Zi} = {Zi}n

i=1, that is, the generalization error:
GenErr(F , {Zi}, D) := sup

f∈F
(Pf − Pnf).

Group actions. We are interested in the setting where a group G acts by measurable
bijective transformations over X and Y , which can also be seen as a G-action over Z, denoted
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by g · Z = (g · X, g · Y ), where g ∈ G. Such actions can also be applied to points (x, f̃(x))
in the graph of functions f̃ , transforming any f̃ ∈ F̃ into g · f̃ : x 7→ g−1 · f̃(g · x). The set
G · f̃ := {g · f̃ : g ∈ G} forms the orbit of f̃ under the action of G. Note that although
we treat G as an abstract group throughout, we will sometimes abuse notation and use the
same letter to also refer to the representations of G as transformations over the spaces in
which X, Y, Z, f̃ , f live.

Equivariant models. We are now in a position to specify the learning setup with equivariant
models. We say that f̃ ∈ F̃ is equivariant, if G · f̃ = {f̃}. Further, we say that the hypothesis
class is G-equivariant if all f̃ ∈ F̃ are equivariant. Note that if the G-action over Y is trivial,
that is, if we have g · Y = Y for all g ∈ G, y ∈ Y ), then f̃ being equivariant reduces to
requiring f̃(g · x) = f̃(x) for all g, x. In such a case the model f̃ is said to be invariant.
Also note that f̃(x) being equivariant corresponds to f(x, y) = ℓ(f̃(x), y) being invariant
under some suitable product G-action over X × Y.
Averaging over a set of transformations. Let G be a set of transformations of Z. The
G-averaged generalization error for arbitrary F by taking averages Eg with respect to the
natural probability measure PG

3 on G is as follows:

GenErr(G)(F , {Zi}, D) := sup
f∈F

(EgEZ [f(g · Z)] − 1
n

n∑
i=1

Egf(g · Zi)),

Note that the above equals GenErr(F , {Zi}, D) if F is composed of invariant functions.
Data augmentation/Orbit averaging. Following our discussion above, it might be
instructive to consider the case of data augmentation. Note that a data distribution which is
invariant under some G-action can be created from any D by averaging over G-orbits: we
take g to be a random variable uniformly distributed over a compact set of transformations
G. Then let D(G) := 1

|G|
´

G
g · D. This is the distribution of the dataset obtained from D

under G-augmentation. Then we have by change of variables:

GenErr(G)(F , {Zi}, D) = GenErr(F , {Eg[g · Zi]}, D(G)). (3.1)
Note that the notions of orbit and averaging used above do not rely on the property that G
is a group in order to be well-defined.

3.2 Partial and Approximate Equivariance

Since our analysis treats the general case where the model and/or data symmetries are not
strict, we now state some basic attendant notions.
Error to equivariance function. We first need a measure to quantify how far off we are
from perfect equivariance. To do so, we can define a function in terms of f(x, y) as:

ee : F × G → [0, +∞), ee(f, g) = ∥g · f − f∥∞.

The crucial property here is that ee(f, g) = 0 iff g · f = f . Note that one could use other
distances or discrepancies (e.g. like the ℓ2 norm) directly in terms of f̃ , using which we can
measure the error between g · f̃ and f̃ .
More general sets of transformations. We can use ee(·) to precisely specify the notions
of partial and approximate equivariance that we work with. We consider the general case
where the underlying transformations on (X, Y ) still have a common label set G and are
assumed to be bijective over X and Y, but don’t necessarily form a group. For ϵ > 0 and
f ∈ F we consider the ϵ-stabilizer

Stabϵ(f) := {g ∈ G : ee(f, g) ≤ ϵ}.

It is fairly easy to see that this subset is automatically a group for ϵ = 0, but most often
will not be when ϵ > 0. The latter corresponds to partial symmetry and thus to the setting
3We take PG to be the uniform measure over G if G is finite, and the normalization of the Haar
measure of G to G if G ⊂ G is a positive measure subset of an ambient locally compact group G.
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of partial equivariance. On the other hand, if we consider specific hypotheses such that
for some ϵ > 0 we have Stabϵ(f) = G for all f ∈ F , then we are working in the setting of
approximate equivariance [59, 56].
Conditions on G. We conclude this section with a remark on the nature of G we consider
in our paper. In our bounds, we first restrict to finite G. However, this setting can be
extended to compact groups which are doubling with respect to a metric that respects the
composition operation. That is, a distance dG over G, such that dG(gh, g′h) = d(g, g′). The
main examples we have in mind are compact Lie groups such as S1, SO(n), O(n), and their
finite subgroups like Z/NZ, as well as their quotients and products.

4 PAC bounds for G-equivariant hypotheses

In this section, we study the generalization properties of equivariant models. More specifically,
we derive PAC bounds for both exact and approximately G-equivariant hypotheses. But
first, we present some preliminaries related to PAC bounds in what follows.
PAC learning bounds.
We follow the standard approach (such as that outlined in [10]). We start with the following
concentration bound, where F is composed of functions with range [−M/2, M/2]:

P
[
sup

F
|(P − Pn)f | ≥ R(FZ) + ϵ

]
≤ 2 exp

(
−ϵ2n

M

)
, (4.1)

where Rn(F) denotes the Rademacher complexity, which is given by

R(FZ) := Eσ sup
F

1
n

n∑
i=1

σif(Zi),

and where Z1, . . . , Zn ∼ D are n i.i.d. samples and σ = (σ1, . . . , σn) denotes the so-called
Rademacher variable, which is a uniformly distributed random variable over {−1, 1}n,
independent of the Zi’s. R(FZ) can be bounded using a classical technique for bounding the
expected suprema of random processes indexed by the elements of a metric space, variously
called the Dudley entropy integral or the chaining bound. The result below was proven in
[45, Lemma 3] (also see slightly stronger results in [58, Thm. 17] or [6, Thm. 1.1])

R(FZ) ≤ 4 inf
α>0

(
α + 3√

n

ˆ diam(F)

α

√
ln N (F , t, ∥ · ∥∞)dt

)
. (4.2)

Recall that for a metric space (X, dX), the covering number N (X, ϵ, dX) is the smallest
number of balls of radius ϵ required to cover X. In (4.2) we use the cover numbers of
F in supremum distance, i.e. the distance between two functions f, g ∈ F , ∥f − g∥∞ :=
supz∈Z |f(z) − g(z)|). It is known that by rescaling the fundamental estimate due to
Kolmogorov-Tikhomirov [54, eq. 238, with s = 1, and eq. 1], and under the mild assumption
that F is composed of 1-Lipschitz4 functions on Z with values in an interval [−M/2, M/2],
for a centralizable5 metric space Z, the following holds

N (Z, 2ϵ) ≤ log2 N (F , ϵ, ∥ · ∥∞) ≤ log2

(
M

ϵ
+ 1
)

+ N (Z, ϵ/2). (4.3)

Before we start stating our results, we need to define a few more notions:
Doubling and Hausdorff dimensions. If in a metric space (X, dX), every ball of radius
R can be covered by at most λ balls of radius R/2, the space has doubling dimension
ddim(X) = log2 λ. The doubling dimension coincides with the usual notion of (Hausdorff)
dimension dimX, i.e. ddimX = dimX, in case X is a compact manifold with bounded
injectivity radius, in particular it equals d if X ⊂ RD is a regular d-dimensional submanifold
or if D = d and X is a regular open subset such as a ball or a cube.
4All of our formulas generalize to classes of ℓ-Lipschitz functions for general ℓ > 0: the change
amounts to applying suitable rescalings, see the Appendix for more details.

5This mild condition signifies that for any open set U of diameter at most 2r there exists a point x0

so that U is contained in B(x0, r).
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Discrete metric spaces. A metric space (X, dX) is discrete if it has strictly positive
minimum separation distance δX := minx ̸=x′∈X dX(x, x′) > 0. We then have

N (X, ϵ) = N (X, min{ϵ, δX}), (4.4)
which is especially relevant for finite groups G endowed with the word distance (i.e.
dG(g, g′), which is the minimum number of generators required to express g−1g′), for which
δG = 1. Now, note that as a straightforward consequence of the definition, there exists a
universal c > 0 such that[30, 31]:

N (Z, ϵ) ≤
(

2diam(Z)
ϵ

)ddim(Z)
. (4.5)

and by (4.3) we get the simplified bound (where implicit constants are universal):

ln N (F , ϵ, ∥ · ∥∞) ≲
(

4diam(Z)
ϵ

)ddim(Z)
. (4.6)

By all the above considerations, we can bound the generalization error as follows:
Proposition 4.1. Assume that d = ddim(Z) > 2, and 0 < δ < 1/2, and let D := diam(Z).
Then for any probability distribution D of data over Z, with notation as in the beginning of
Section 4, the following holds with probability at least 1 − δ:

GenErr(F , {Zi}, D) ≲ 4dd

d − 2

(
Dd

n

)1/d

+ n−1/2
√

∥F∥∞ log(2/δ),

the implicit constant is independent of δ, n; only depending on Z through the constants in
(4.5).
Due to space constraints, all our proofs are relegated to the Appendix. With the above
background, we now first show generalization bounds under the more general notions of
equivariance we have discussed.

4.1 Generalization bounds improvement under partial or approximate
equivariance

In this section, we prove generalization error bounds with the notations and definitions from
Section 3.2. We consider the following sets of transformations:

Stabϵ = Stabϵ(F) :=
⋂

f∈F

Stabϵ(f).

We note that the strict equivariance case is recovered if, for ϵ = 0, we have Stab0 = G.
Proposition 4.2. Let Stabϵ be as above, and assume that |Stabϵ| > 0. let Z0

ϵ ⊂ Z be a
measurable choice of Stabϵ-orbit representatives for points in Z, and let ι0

ϵ : Z → Z0
ϵ be the

measurable map that associates to each z ∈ Z its representative in Z0
ϵ . Let F0

ϵ := {f |Z0
ϵ

:
f ∈ F} and let ι0

ϵ(D) represent the image measure of D. Then for each n ∈ N, if {Zi}n
i=1

are i.i.d. samples with Zi ∼ D and Z0
i,ϵ := ι0

ϵ ◦ Zi, then we have

GenErr(F , {Zi}, D) ≤ 2ϵ + GenErr(Stabϵ)(F , {Zi}, D) = 2ϵ + GenErr(F0
ϵ , {Z0

i,ϵ}, ι0
ϵ(D)).

The above result says that the generalization error of our setting of interest could roughly
be obtained by working with a reduced set of only the orbit representatives for points in Z.
This is in line with prior work such as [51, 20, 41]. However, note that our result is already
more general and does not require that the set of transformations form a group. With this,
we now need an understanding of the covering of spaces of representatives Z0

ϵ and the effect
of Stabϵ on them. The answer is evident in case Stabϵ = G, that G, Z0 are manifolds, and
Z = Z0 × G. Since ddim coincides with topological dimension, and we immediately have

d0 = d − dim(G).
Intuitively, the dimensionality of G can be understood as eliminating degrees of freedom
from Z, and it is this effect that improves generalization by n−1/(d−dim(G)) − n−1/d.
We now state a simplified form of Theorem A.3, which is sufficient for proceeding further.
Our results generalize [51, Thm. 3]: we allow for non-product structure, possibly infinite
sets of transformations that may not form a group, and we relax the distance deformation
hypotheses for the action on Z).

6



Corollary 4.3 (of Thm. A.3). With the same notation as above, assume that for Stabϵ

the transformations corresponding to the action of elements of Stabϵ satisfy the following
for some L > 0, and for a choice of a set of representatives Z0

ϵ ⊂ Z of representatives of
Stabϵ-orbits:

1. For all z0, z′
0 ∈ Z0

ϵ and all g ∈ Stabϵ it holds that d(z0, z′
0) ≤ L d(g · z0, g · z′

0).
2. For all g, g′ ∈ Stabϵ it holds that dG(g, g′) ≤ L dist(g · Z0

ϵ , g′ · Z0
ϵ )6.

Then for each δ > 0 there holds N (Z0
ϵ , δ) ≤ N (Z, δ/2L)/N (Stabϵ, δ).

To be able to quantify the precise generalization benefit we need a bound on the quantity
N (Stabϵ, δ). For doing so, we assume that Stabϵ is a finite subset of a discrete group G, or
is a positive measure subset of a compact group G. As before, let |G| and dG denote ♯G
and ddim(G) respectively for finite G. Also, denote the Hausdorff measure and dimension
by Vol(G) and dim(G) for compact metric groups. Note that the minimum separation δG is
zero for dim(G) > 0. Then our covering bound can be expressed in the following umbrella
statement:

Assumption: N (Stabϵ, δ) ≳ max
{

1,
|Stabϵ|

(max{δ, δG})dG

}
. (4.7)

In order to compare the above to the precise equivariance case, we later use the factor

Dens(ϵ) := |Stabϵ|
|G|

∈ (0, 1],

which measures the richness of Stabϵ compared to the whole ambient group G, in terms of
error ϵ. The fact that Dens(ϵ) > 0 follows from our assumption that |Stabϵ| > 0. Furthermore,
Dens(ϵ) is always an increasing function of ϵ, as follows from the definition of Stabϵ. With
these considerations on coverings, we can state a general result quantifying the generalization
benefit, where if we set ϵ = 0, we recover the case of exact group equivariance.
Theorem 4.4. Let ϵ > 0 be fixed. Assume that for a given ambient group G the almost
stabilizers Stabϵ satisfy assumption (4.7) and that the assumptions of Corollary 4.3 hold for
some finite L = Lϵ > 0. Then with the notations of Proposition 4.1 we have with probability
≥ 1 − δ

GenErr(F , {Zi}, D) ≲ n−1/2
√

∥F∥∞ log(2/δ) + 2ϵ + (Eϵ),
where

(Eϵ) :=


4d0 d0
d0−2 δ

−d0/2+1
G

(
(2Lϵ)dDd

|Stabϵ|n

)1/2
if G is finite and (2Lϵ)dDd < |Stabϵ|n δd0

G ,

4d0 d0
d0−2

(
(2Lϵ)dDd

|Stabϵ|n

)1/d0
else.

The interpretation of the above terms is direct: the term 2ϵ is the effect of approximate
equivariance, and the term (Eϵ) includes the dependence on |Stabϵ| and thus is relevant to
the study of partial equivariance. In general the Lipschitz bound Lϵ is increasing in ϵ as well,
since Stabϵ includes more elements of G as ϵ increases, and we can expect that actions of
elements generating higher equivariance error in general have higher oscillations.

5 Approximation error bounds under approximate data
equivariance

In the introduction, we stated that we aim to validate the intuition that that model is best
whose symmetry aligns with that of the data. So far we have only given bounds on the
generalization error. Note that our bounds hold for any data distribution: in particular, the
bounds are not affected by whether the data distribution is G-equivariant or not. However,
6Here dist(A, B) := min{d(a, b) : a ∈ A, b ∈ B} denotes the distance between sets, induced by d.
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the fact that data may have fewer symmetries than the ones introduced in the model will
have a controlled effect on worsening the approximation error, as described in this section.
However, controlling the approximation error has an additional actor in the fray to complicate
matters: the distinguishing power of the loss function. Indeed, having a degenerate loss
function with a large minimum set will not distinguish whether the model is fit to the data
distribution or not. Thus, lowering the discrimination power of the loss has the same effect
as increasing the function space for which we are testing approximation error.

Assuming at first that F̃ is composed of G-equivariant functions, we compare its ap-
proximation error to the one of the set M of all measurable functions m : X → Y.
Recall that f(Z) = ℓ(f̃(X), Y ) is a positive function for all f̃ ∈ F̃ , thus, denoting by
M′ := {F (x, y) = ℓ(m(x), y), m ∈ M}, the approximation error gap can be defined and
bounded as follows (where F ∗ ∈ M′ is a function realizing the first minimum in the second
line below):
AppGap(F , D, ) := AppErr(F , D) − AppErr(M′, D) := min

f∈F
E[f(Z)] − min

F ∈M′
E[F (Z)]

≥ min
F ∈M′

E[Eg[F (g · Z)]] − min
F ∈M′

E[F (Z)] ≥ E[Eg[F ∗(g · Z)]] − E[F ∗(Z)]

≥ min
F ∈M′

E[Eg[F (g · Z)] − F (Z)].

With applications to neural networks in mind, we will work with the following simplifying
assumptions:

1. The loss function quantitatively detects whether the label is correct, i.e. we have
ℓ(y, y′) = 0 if y = y′, and ℓ(y, y′) ≥ φ(dY(y, y′)) for a strictly convex φ with
φ(0) = 0, where dY is the distance on Y. This assumption seems reasonable for
use in applications, where objective functions with strict convexity properties are
commonly used, as they help for the convergence of optimization algorithms.

2. The minimization across all measurable functions F̃ = M produces a zero-risk
solution, i.e. minF ∈M′ E[F (Z)] = 0 is achieved by a measurable function y∗ :
X → Y. By assumption 1, this implies that D is concentrated on the graph of
y∗. This assumption corresponds to saying that the learning task is in principle
deterministically solvable. Under this assumption, the task becomes to approximate
to high accuracy the (unknown) solution y∗.

With the above hypotheses we have
AppGap(F , D) = AppErr(F , D) ≥ min

F ∈M′
EZ [Eg[F (g · Z)]].

As a slight simplification of Assumption 1 for ease of presentation, we will simply take
Y = Rd and ℓ(y, y′) = dY(y, y′)2 below. Note that Assumption 1 directly reduces to this
case, as a strictly convex φ(t) with φ(0) = 0 as in Assumption 1 is automatically bounded
below by a multiple of t2.
Now, with the aim to capture the mixed effects of approximate and partial equivariance, we
introduce the following set of model classes. For ϵ ≥ 0, λ ∈ (0, 1]:

Cϵ,λ :=
{

F ⊂ M′ : Dens(ϵ) = |Stabϵ(F)|
|G|

≥ λ

}
.

In order to establish some intuition, note that Stabϵ(F) is increasing in ϵ and as a consequence
Cλ,ϵ is also increasing in ϵ. Directly from the definition one finds that Stab0(F) is necessarily
a subgroup of G, and thus we allow ϵ > 0, which allows more general sets of symmetries than
just subgroups of G. The most interesting parameter in the above definition of Cϵ,λ is λ, which
actually bounds from below the "amount of prescribed symmetries" for our models. In the
fully equivariant case ϵ = 0, λ = 1, we have the simple description C0,1 = {F : F ⊆ (M(G))′},
whose maximal element is (M(G))′. However in general Cϵ,λ will not have a unique maximal
element for λ < 1: this is due to the fact that two different elements F1 ̸= F2 ∈ Cϵ,λ may have
incomparable stabilizers, so that |Stabϵ(F1)\ Stabϵ(F2)| > 0 and |Stabϵ(F2)\ Stabϵ(F1)| > 0,
and thus F1 ∪ F2 /∈ Cϵ,λ. Our main result towards our approximation error bound is the
following.
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Proposition 5.1. Assume that (Y, dY) is a compact metric space and consider ℓ(y, y′) =
dY(y, y′)2. Fix ϵ ≥ 0. Then for each λ ∈ (0, 1] there exists an element F ∈ Cϵ,λ and
a measurable selection ι0

ϵ : X → X 0
ϵ of representatives of orbits of X under the action

of Stabϵ(F), such that if X0
ϵ , g are random variables obtained from X ∼ D by imposing

X0
ϵ := ι0

ϵ ◦ X and X = g · X0
ϵ , then we have

AppErr(F , D) ≤ EX0
ϵ

min
y

Eg|X0
ϵ

[(
max

{
dY
(
g · y, y∗(g · X0

ϵ )
)

− ϵ, 0
})2
]

.

In the above, as ϵ increases, we see a decrease in the approximation gap, since in this case
model classes F allow more freedom for approximating y∗ more accurately. On the other
hand, the effect of parameter λ is somewhat more subtle, and it has to do with the fact that
as λ decreases, Stabϵ(F) for F ∈ Cϵ,λ can become smaller and the allowed oscillations of
y∗(g · X0

ϵ ) are more and more controlled.
Now to bound the approximation error above using the quantities that we have been working
with, we will use the following version of an isodiametric inequality on metric groups G.
As before we assume that G has Hausdorff dimension dim(G) > 0 which coincides with the
doubling dimension, or is discrete. By |X| we denote the Hausdorff measure of X ⊆ G if
dim(G) > 0 or the cardinality of X if G is finite. Then there exists an isodiametric constant
CG depending only on G such that for all X ⊆ G it holds that

|X|
|G|

≥ λ ⇒ diam(X) ≥ CGλ1/ddim(G). (5.1)

The above bound can be obtained directly from the doubling property of G, applied to a
cover of X via a single ball of radius diam(X), which can be refined to obtain better and
better approximations of |X|. We can now control the bound from Proposition 5.1 as follows:

Theorem 5.2. Assume that (Y, dY) is a compact metric space and ℓ(y, y′) = dY(y, y′)2. Let
G be a compact Lie group or a finite group, with distance dG. Let ddim(G) be the doubling
dimension of G, and assume that for all g ∈ G such that the action of g over X is defined,
it holds that d(g · x, g′ · x) ≤ L′dG(g, g′). Then, there exists a constant CG depending only on
G such that for all λ ∈ (0, 1] and ϵ > 0, there exists an element F ∈ Cϵ,λ where for any data
distribution D, y∗ can be chosen Lipschitz with constant Lip(y∗). We have

AppErr(F , D) ≤
(

max
{

CG L′ (1 + Lip(y∗))λ1/ddim(G) − ϵ, 0
})2

.

We note that, given our proof strategy of Proposition 5.1, we conjecture that actually the
above bound is sharp up to a constant factor: minF∈Cϵ,λ

AppErr(F , D) may have a lower
bound comparable to the above upper bound. The goal of the above result is to formalize
the property that the approximation error guarantees of F will tend to grow as the amount
of imposed symmetries grow, as measured by λ.

6 Discussion: Imposing optimal equivariance

We have so far studied bounds on the generalization and the approximation errors, each of
which take a very natural form in terms of properties of the space of orbit representatives
(and thus the underlying G). One of them depends on the data distribution, while the other
doesn’t. Using them we can thus state a result that quantifies the performance error, or
gives the generalization-approximation trade-off, of a model based on the data distribution
(and their respective symmetries). Define the performance error of a model class F ∈ Cϵ,λ

over an i.i.d. sample {Zi}n
i=1, Zi ∼ D as

PerfErr(F , {Zi}, D) := GenErr(F , {Zi}, D) + AppErr(F , D).

Combining Theorems 4.4 and 5.2, we get the following:
Theorem 6.1. Under the assumptions of Theorems 4.4 and 5.2, we have that, assuming
all the function classes are restricted to functions with values in [−M, M ], then there exist
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values C1, C2, C3 > depending only on d0, (2LD)d/|G|, δG and C = CGL′(1 + Lip(y∗)) such
that with probability at least 1 − δ,

PerfErr(F , {Zi}, D) ≲ n−1/2
√

M log(2/δ)+2ϵ+(Cλ1/dG−ϵ)2
++

 C1
1

(nλ)1/2 if nλ ≥ C3,

C2
1

(n λ)1/d0 if n λ < C3.

Note that the above bounds are not informative as λ → 0 for the continuous group
case, which corresponds to the second option in Theorem 6.1. This can be sourced back
to the form of Assumption (4.7), in which the covering number on the left is always
≥ 1, whereas in the continuous group case, the right-hand side may be arbitrarily small.

Error versus lambda for large n for fixed
values of C, C1, C2, C3.

Thus the result is only relevant for λ away from 0. If
we fix ϵ = 0 and we optimize over λ ∈ (0, 1] in the
above bound, we find a unique minimum λ∗ for the
error bound, specifying the optimum size of Stabϵ for
the corresponding case (see the Appendix for more
details). This validates the intuition stated at the
onset that for the best model its symmetries must
align with that of the data. As an illustration, for
C, C1, C2 = 0.04 and C3 = 0.01 with n = 1000000,
the error trade-off is shown on the figure on the right.

7 Concluding Remarks

In this paper, we have provided general quantitative bounds showing that machine learning
models with task-pertinent symmetries improve generalization. Our results do not require
the symmetries to be a group and can work with partial/approximate equivariance. We also
presented a general result which confirms the prevalent intuition that if the symmetry of
a model is mis-specified w.r.t to the data symmetry, its performance will suffer. We now
indicate some important future research directions, that correspond to limitations of our
work:

• (Model-specific bounds) While in Theorem 6.1 we obtain the existence of an optimal
amout λ∗ without hopes to be sharp in such generality, we may expect that if we
restrict to specific tasks, the bounds can become much tighter, and if so, the value
λ∗ of optimal amount of symmetries can become interpretable and give insights into
the structure of the learning tasks.

• (Tighter bounds beyond classical PAC theory) For the sake of making the basic
principles at work more transparent, we based our main result on long-known
classical results. However, tighter data-dependent or probabilistic bounds would be
very useful for getting a sharper value for the optimal value of symmetries λ∗ via a
stronger version of Theorem 6.1.

• (Beyond controlled doubling dimension) Our focus here is on groups G of controlled
doubling dimension. This includes compact and nilpotent Lie groups, and discrete
groups of polynomial growth, but the doubling dimension is not controlled for notable
important cases, such as for the permutation group Sn (cf. section 3 of [17]) or for
the group (Z/2Z)n. In order to cover these cases, it will be interesting to build
analogues of our main result based on other group complexity bounds, beyond the
doubling dimension case.
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A Proofs

A.1 Proofs of results from Section 4

A.1.1 Proof of Proposition 4.1

Proof. Reformulating (4.1) we find that with probability at least 1 − δ it holds that:

sup
f∈F

|(P − Pn)f | ≤ R(FZ) +
√

2∥F∥∞ log(2/δ)√
n

. (A.1)

Next, we compound the bounds for R(FZ). The optimum α > 0 in the first line of (4.2) is the
one for which n

9 = ln N (F , α, ∥ · ∥∞). Keeping in mind (4.6), we choose α = diam(Z)n− 1
ddimZ

in (4.2), which gives (abbreviating d = ddimZ, D = diamZ)

R(FZ) ≲ D/n1/d + n−1/2
ˆ ∞

Dn−1/d

(D/t)d/2dt = D/n1/d + (D/n)1/2
ˆ ∞

n−1/d

τ−d/2dτ

= D

n1/d

(
1 + 2

d − 2

)
.

Now the last equation and equation (A.1) yield the claim.

A.1.2 Proof of Proposition 4.2

We start with a preliminary result under hypotheses of strict equivariance. In this case,
we are able to use a change of variables to reduce the generalization error formula to an
equivalent one depending only on a measurable choice of G-orbit representatives of elements
from Z:
Proposition A.1. Let F be a set of G-invariant functions, and let Z0 ⊂ Z be a choice of
G-orbit representatives for points in Z, such that ι0 : Z → Z0 associating to each z ∈ Z its
orbit representative z0, is Borel measurable. Let F0 := {f |Z0 : f ∈ F} and denote by ι0(D)
the image measure of D. Then for each n ∈ N if {Zi}n

i=1 are i.i.d. samples with Zi ∼ D and
Z0

i := ι0 ◦ Zi, we have

GenErr(F , {Zi}, D) = GenErr(G)(F , {Zi}, D) = GenErr(F0, {Z0
i }, ι0(D)).

Proof. For the first equality, we use the definition of GenErr and the change of variable
formula (3.1) and the fact that G-invariant functions f satisfy f(Z) = Eg[f(g · Z)]. For the
second equality, note that by hypothesis, for each f ∈ F we have f(z) = f(g · z) for all
g ∈ G, z ∈ Z, in particular f(z) = f(ι0(z)) and we conclude by a change of variable by the
map ι0 in the expectations from the definition of GenErr(G).

Now the proof Proposition 4.2 combines the above idea with a simple extra step:

Proof of Proposition 4.2: The proof uses the triangular inequality. For f ∈ F and g ∈ Stabϵ,
we have:

|Pf − Pnf | =

∣∣∣∣∣E[f(Z)] − 1
n

n∑
i=1

f(Zi)

∣∣∣∣∣ ≤

∣∣∣∣∣E[g · f(Z)] − 1
n

n∑
i=1

g · f(Zi)

∣∣∣∣∣+ 2∥g · f − f∥∞.

By averaging over g ∈ Stabϵ, we obtain the inequality in the statement of the proposition. The
equality follows by a change of variable via map ι0

ϵ , exactly as in the strategy of Proposition
A.1.

A.1.3 Proof of Corollary 4.3 and of the more general result of Theorem A.3

In order to make the treatment better digestible, we first consider the intuitively simpler
case of strict equivariance, and then describe how to extend it to the more general case of
approximate and partial equivariance. In this case, if we restrict our equivariant functions to
only the space of orbit representatives Z0, the dimension counts from classical generalization
bounds of Proposition 4.1 improve as follows:
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Corollary A.2. Assume that F is composed of G-invariant functions and that d0 :=
ddim(Z0) > 2. Also, denote D0 := diam(Z0). With the same notation as in Proposition A.1
and with the hypotheses of Proposition 4.1, for any probability distribution D over Z, the
following holds with probability at least 1 − δ:

GenErr(F , {Zi}, D) ≲ d0

d0 − 2

(
Dd0

0
n

)1/d0

+ n−1/2
√

∥F∥∞ log(2/δ).

Proof. Due to Proposition A.1, we only need to bound GenErr(F0, {Z0
i }, ι0(D)). Thus it

suffices to apply Proposition 4.1 for the above function. We note that ∥F0∥∞ ≤ ∥F∥∞ to
conclude.

The drawback of the above Corollary, is that it leaves open the question of how to actually
bound the diameter and dimension of Z0, on which we do not have direct control. The next
steps we take consist precisely in translating the information from properties of G to relevant
properties of Z0.
A first, simpler, approach could be the following. Under the reasonable assumption that Z, Z0

have diameter greater than 1, the leading term on the left in Corollary A.2 is n−1/d0 .Thus
the optimal choices of Z0 are those which minimize the doubling dimension d0 = ddim(Z0)
amongst sets of representatives of G-orbits. This is a weak regularity assumption, implying
that we want Z0 to not oscillate wildly. The effect of G on coverings is evident in case G,
Z0 are manifolds, and Z = Z0 × G (see (A.3) for the strictly equivariant case, and the more
general (A.5) for the general case). Since ddim coincides with topological dimension, we
immediately have

d0 = d − dim(G).
Intuitively, the dimensionality of G can be understood as eliminating degrees of freedom
from Z, and it is this effect that improves generalization by n−1/(d−dim(G)) − n−1/d.
In order to include more general situations, we now describe a second, more in-depth approach.
We take a step back and rather than addressing direct diameter and dimension bounds
for Z0, we go "back to the source" of Proposition 4.1. We update the bounds on covering
numbers of Z0, directly in terms of the G-action and of Z. The ensuing framework is robust
enough to later include, after a few adjustments, also the cases of partial and approximate
equivariance. Here is our fundamental bound, which generalizes and extends [51, Thm.3].
Theorem A.3. Assume that Z is a metric space with distance d and S ⊂ G is a subset of a
metric group G consisting of transformations g : Z → Z (with action denoted g · z := g(z))
for which there exists a choice of S-orbit representatives Z0 ⊂ Z and a distance function
d on S satisfying the following for L, L′ ∈ (0, +∞] (with the conventions 1/ + ∞ := 0 and
N (X, 0) := +∞, N (X, +∞) := 0):

1. For all z0, z′
0 ∈ Z0 and all g ∈ S it holds that 1

L d(z0, z′
0) ≤ d(g ·z0, g ·z′

0) ≤ L′d(z0, z′
0).

2. For all g, g′ ∈ S and z0, z′
0 ∈ Z0 it holds that 1

LdG(g, g′) ≤ d(g · z0, g′ · z′
0) ≤

L′dG(g, g′).

Then for each δ′ > 0 the following holds

N (Z0, 2δ′L)N (S, 2δ′L) ≤ N (Z, δ′) ≤ N (Z0, δ′/2L′)N (S, δ′/2L′). (A.2)

Before the proof, we observe how Corollary 4.3 can be recovered using the choice L > 0, L′ =
+∞ in Theorem A.3:

Proof of Corollary 4.3: We apply Theorem A.3 to S = Stabϵ and Z0 = Z0
ϵ as in the corollary

statement. Then we take δ = 2Lδ′ in the conclusion (A.2), and consider only the lower
bound inequality, which directly gives the claim of the corollary.

Proof of Theorem A.3: In this proof, we will denote a minimal α-ball cover of a metric space
X by Xα.
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Note that we are not assuming G to be a group, but due to lower bound in property 1. it
follows that z0 7→ g · z0 is injective (for z0 ̸= z′

0 we have d(z0, z′
0) > 0 and thus g · z0 ̸= g · z′

0),
and when below we write "g−1" this has to be interpreted as the inverse of the g-action,
restricted to its image.
Further, note that the case when one of L, L′ is +∞, corresponds to removing the part of
the assumptions (and of the conclusions) involving that value, thus we only consider the case
of finite L′ and finite L.
On fixing an arbitrary point z ∈ Z, we can write z = g · z0 for a suitable g ∈ G, z0 ∈ Z0.
Let η := δ′/2L′. For fixed covers Z0

η , Gη, there exists a point z′
0 ∈ Z0

η with d(z′
0, z0) < η and

g′ ∈ Gη with dG(g′, g) < η. Thus by property 1. we have d(g · z′
0, z) < L′η = ϵ/2 and by

property 2. we have d(g′ · z′
0, g · z′

0) < L′η = δ′/2. By the triangle inequality, d(g′ · z′
0, z) < δ′

and thus Gη · Z0
η is an δ′-cover of Z. Thus we have

N (Z, δ′) ≤ #Gδ′/2L′ #Z0
δ′/2L′ ,

optimizing over the cardinalities on the right hand side yields the second inequality in (A.2).
Now consider an δ′-cover Zδ′ of Z, and for η = 2δL consider an η-cover Gη of G. We find
that for each z ∈ Zδ′ , there exists at most one g ∈ Gη such that dist(z, g · Z0) < η/2L = δ′.
Notice that if this were false, we could use the triangle inequality and contradict property 2.
in the statement. For each g ∈ Gη denote Zg the set of such points z ∈ Zδ′ such that there
exists x ∈ g · Z0, and assign exactly one such x = x(z) to each z, forming a set Xg of all
such x(z). Any other point x′ ∈ g · Z0 such that d(x′, z) < δ′ then satisfies d(x′, x) < 2δ′ by
triangle inequality, and thus Xg is a 2δ′-cover of g ·Z0. If for g ·z0 ∈ g ·X0 the point x ∈ g ·X0
satisfies d(g · z0, x) < 2δ′, then by property 1. in the statement we have d(z0, g−1 · x) < 2δ′L,
and thus g−1 · Xg is a 2δ′L-cover of Z0, having the same cardinality as Zg. We then compute
as follows, proving the first inequality in (A.2):

N (Z, δ′) ≥
∑

g∈Gη

#Zg =
∑

g∈Gη

#(g−1 · Xg) ≥ N (G, 2δ′L)N (Z0, 2δ′L).

A.1.4 Proof of Theorem 4.4

As before, we focus again first on the exact equivariance case, where Theorem A.4 is the
direct analogue to (or special case of) Theorem 4.4.
Under the hypotheses of Theorem A.3 on the G-action, we directly obtain the following, for
the strictly equivariant case:

N (Z0, δ) ≤ N (Z, δ/2L)
N (G, δ) . (A.3)

We next impose that for δ ≲ diam(G) the group G satisfies the natural "volume growth"
assumption, where for compact groups Vol(G) is its dim(G)-dimensional Hausdorff measure
and dim(G) is the usual Hausdorff dimension, and for finite groups we use minimum separation
notation δG > 0 as defined in (4.4):

Assumption: N (G, δ) ≳
{

#G/(max{δ, δG})ddim(G), if G finite,

Vol(G)/δdimG, if dimG > 0.
(A.4)

Similarly to Proposition 4.1, we then get the following, in which the leading term in the
bound has exponent figuring d0 = ddim(Z) − dim(G). Recall that dim(G) = 0 for finite
groups, thus the distinction can be made directly in terms of the dimension of G.
Theorem A.4. Let δ > 0 be fixed. Assume that for a given ambient group G the group
G satisfies assumption (A.4) and that its action satisfies the the assumptions 1. and 2. of
Theorem A.3 for some finite L > 0 and L′ = +∞. We denote dG = ddim(G) if G is a discrete
group and dG = dim(G) if G is compact and non-discrete, and d = ddim(Z). Furthher assume
d0 := d − dG > 2. Furthermore, set |G| := Vol(G) if dimG > 0 and |G| := #G for finite G.
Then with the notations of Proposition 4.1 we have with probability ≥ 1 − δ

GenErr(F , {Zi}, D) ≲ n−1/2
√

∥F∥∞ log(2/δ) + (E),
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where

(E) :=


d0

d0−2 δ
−d0/2+1
G

(
(2L)dDd

|G|n

)1/2
if G is finite and (2L)dDd < |G|n δd0

G ,

d0
d0−2

(
(2L)dDd

|G|n

)1/d0
otherwise.

Proof. We follow the same computation as Proposition 4.1, but use Proposition A.1 in order
to reduce to restrictions of functions to Z0. In this case, using (A.3) and assumption (A.4),
and with notation as in our statement, we will have:

N (Z0, t) ≲ (2L)dDd

|G|
max{δG, t}−d0 ,

where we have δG = 0 for dimG > 0. We set C := (2L)dDd

|G| for simplicity of notation. In case
Cδd0

G < 1 (which includes the case dimG > 0), we take α = (C/n)1/d0 in the Dudley integral
(4.2) and find

R(FZ0) ≲ α + n−1/2
ˆ ∞

α

√
Ct−d0dt,

from which the proof goes exactly as in Proposition 4.1, with C replacing Dd, and we get
the second option for the value of (E) as given in our statement. In case Cδd0

G < 1 instead
we take α = 0 and our above bound for N (Z0, t) plugged into (4.2) (recalling the notation
for C):

R(FZ0) ≲
ˆ ∞

0

√
C max{δG, t}−d0dt = δ

−d0/2+1
G

√
C/n +

√
C/n

ˆ ∞

δG

t−d0/2dt,

from which the second case of the value of (E) follows by direct computation.

Now the proof of Theorem 4.4 proceeds in exactly the same manner as the above. Below we
explain the required adaptations:

Proof of Theorem 4.4: The following updates are the principal adaptations required for the
above proof of Theorem A.4:

• The role of G should be replaced by Stabϵ, except for the fact that parameters δG, dG

remain unchanged (i.e. we use their values corresponding to "ambient" group G
rather than those for Stabϵ).

• The G-orbit representative set Z0 then should be replaced by representatives Z0
ϵ for

orbits of Stabϵ.

With these changes, assumption (A.4) implies its more general version, assumption (4.7).
Indeed, |G| equals #G for finite G and Vol(G) for compact G, and δG > 0 only in the first
case. Furthermore, we have δStabϵ

≥ δG as a direct consequence of Stabϵ ⊆ G.
We observe that Corollary 4.3 (which also is obtained from Theorem A.3 with the above two
main substitutions) directly gives the version of Theorem (A.3) required to get the correct
replacement of (A.3) under our initially declared two substitutions. We get:

N (Z0
ϵ , δ) ≤ N (Z, δ/2L)

N (Stabϵ, δ) . (A.5)

With the above changes, the proof follows by exactly the same steps as in the above proof of
Theorem A.4.

Remark A.5. Note that, as might be evident from the last proof, we could have introduced
new more precise parameters to keep track of dimensionality and minimum separation for
Stabϵ rather than formulating assumption (4.7) in terms of dG, δG. This is justified for the
aims of this work. Indeed, all the main situations of interest to us are those in which Stabϵ

is a "large" subset of G, i.e. it has dimension dG, and in all our examples for finite groups
δG > 0, the minimum separation for Stabϵ is within a small factor of δG itself.
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A.2 Proof of Proposition 5.1

Proof. We have that Z = (X, Y ) is a data distribution in which by our assumption 2.
preceding the proposition, we have that almost surely Y = y∗(X) for a deterministic function
y∗. With this notation, we may write

EZ [f(Z)] = EX0
ϵ
Eg|X0

ϵ
[f(g · X0

ϵ , y∗(g · X0
ϵ )].

Recalling that we restrict to functions of the form f(x, y) = ℓ(f̃(x), y) = dY(f̃(x), y)2, we
first consider the precise equivariance case ϵ = 0. In this case for g ∈ Stabϵ(F) we find also
f̃(g · X0

ϵ ) = g · f̃(X0
ϵ ) and thus when optimizing over f̃ we have to determine the optimal

value of y = f̃(X0
ϵ ) to be associate to each X0

ϵ . Thus as a consequence of all the above, if F̃
would be the class of all precisely Stabϵ-equivariant measurable functions, we would get the
following rewriting:

AppGap(F , D) = min
f̃∈F̃

EZ [dY(f̃(X), y∗(X)] = EX0
ϵ

min
y∈Y

Eg|X0
ϵ

[
dY(g · y, y∗(g · X0

ϵ )2] . (A.6)

For ϵ > 0, for each fixed X0
ϵ = x0

ϵ we may further perturb the associated y = f̃(x0
ϵ ) by at most

ϵ in the direction of y∗(X0
ϵ ), while still obtaining a measurable function with approximation

ℓ∞-norm error bounded by ϵ, thus the above bound is improved to

AppErr(F , D) ≤ EX0
ϵ

min
y

Eg|X0
ϵ

[(
dY(g · y, y∗(g · X0

ϵ )) − ϵ
)2

+

]
, (A.7)

as desired. In case F̃ contains a strict subset of measurable invariant functions with error ϵ,
we would only get an inequality instead of the first equality in (A.6) but we still have the
same bound as in (A.7), and thus the proof is complete.

A.3 Proof of Theorem 5.2

Proof. We use the isodiametric inequality (5.1) in G, applying it to Stabϵ(F) for F ∈ Cϵ,λ.
Then by taking Stabϵ(F) = X which is optimal for inequality (5.1) we can saturate the two
bounds (modulo discretization errors for discrete G) and we get

|Stabϵ(F)|
|G|

≃ λ, diam(Stabϵ(F)) ≃ CGλ1/ddim(G).

We next use Lipschitz deformation bounds and find that for all x ∈ X we have

diam {y∗(g · x) : g ∈ Stabϵ(F)} ≤ diam(Stabϵ(F)) Lip(y∗) L′

≤ CGλ1/ddim(G)ϵ(F)) Lip(y∗) L′.

Then we use Proposition 5.1 for F and observe that when g, X0
ϵ are random variables as

in the proposition, in particular g ∈ Stabϵ(F) and for each X0
ϵ = x0

ϵ we find the following
estimate valid uniformly over y ∈

{
y∗(g · X0

ϵ ) : g ∈ Stabϵ(F)
}

:

dY(y, y∗(g · x0
ϵ)) ≤ C ′

Gλ1/ddim(G) Lip(y∗) L′.

In a similar way, we also find

dY(y, g · y) ≤ C ′
Gλ1/ddim(G) L′.

By triangle inequality, and using the assumption that Lip(y∗) ≃ 1 it follows that

dY(y, y∗(g · x0
ϵ) ≤ C ′

Gλ1/ddim(G)(1 + Lip(y∗))L′ ≲ C ′
Gλ1/ddim(G) Lip(y∗) L′.

Then we may perturb each y by ϵ in order to possibly diminish this value without violating
the condition defining Stabϵ(F), and with these choices we obtain the claim.
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A.4 Finding the optimal λ = λ∗ for the bound of Theorem 6.1

We note that λ∗ minimizing Cλα + C ′λ−β for α, β > 0 is given by

λ∗ =
(

β

α

C ′

C

)1/(α+β)
.

recall that in our case have the following choices, for case 1 and case 2 in the theorem’s
statement.

α1 = α2 = 1/dG, β1 = 1/2, β2 = 1/d0,

and

C = CGLip(y∗)L′,

C ′
1 ≃ (2LD)d/2|G|1/2

δ
(d0−2)/2
G

,

C ′
2 ≃ (2LD)d/d0 |G|1/d0 ,

and thus the optimal choice of λ is

in case nλ ≥ C3, λ∗ =
(

2
dG

(2LD)d/2|G|1/2

δ
(d0+2)/2
G

)2dG/(dG+2)

n−dG/(dG+2),

in case nλ > C3, λ∗ =
(

d0

dG
(2LD)d/d0 |G|1/d0

)d0dG/(d0+dG)
n−dG/(dG+2).

B Examples

We describe some concrete examples of partial and approximate equivariance using the
language we used in section 3.2 while sourcing them from existing literature. But first, we
expand a little on our equivariance error notation.

B.1 Equivariance error notation

Recall that the action of elements of an ambient group G over the product space Z = X × Y
may be written as follows: For coordinates z = x × y we may write g · z = (g · x, g · y), and
thus for f̃ : X → Y and f(x, y) = ℓ(f̃(x), y), we have the action

(g · f)(z) := f(g · z) = ℓ(f̃(g · x), g · y).

For the equivariance error of g, f , interpreted as "the error of f ’s approximate equivariance
under the action by g", we get the following, which is valid in the common situations in
which ℓ(y, y′) ≥ 0 in general with ℓ(y, y) = 0 for all y ∈ Y:

ee(f, g) := ∥g · f − f∥∞ = sup
x,y

∣∣∣ℓ(f̃(g · x), g · y) − ℓ(f̃(x), y)
∣∣∣ ≥ sup

x
ℓ(f̃(g · x), g · f̃(x)), (B.1)

where the last inequality follows by restricting the supremum from X × Y to the graph of f̃ ,
namely by imposing y = f̃(x).

In several recent works, the equivariance error is defined simply by comparing g · f̃(x)andf̃(g ·
x), as in the rightmost term of (B.1), thus it is lower than the one found here. We provide a
justification for our definition of the equivariance error:

• The loss ℓ is the integrative part of the model, thus a definition for equivariance
error which does not include it will only detect partial information concerning the
influence of symmetries.

• The notion of equivariance error defined via ℓ simplifies the comparison between f̃
and data distributions D.
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B.2 Examples

B.2.1 Imperfect translation equivariance in classical CNNs

We consider here the most common examples of group equivariant convolutional networks
(GCNNs), which are the usual Convolutional Neural Networks (CNNs) for computer vision
tasks. We follow observations from [27] and [11], and connect the underlying ideas to
Theorem 6.1.

Setting of the problem. We consider a usual CNN layer, keeping in mind a segmentation
task, where both X = Y represent spaces of images. More precisely, we think of images
as pixel values at integer-coordinate positions taken from the index set Z × Z. We also
assume that the relevant information of each image only comes from a square of size n × n
pixels, outside which the pixel values are taken to be 0. We consider the application of a
single convolution kernel/filter, of k × k pixels (with k a small odd number). One typically
applies padding by a layer of 0’s of size (k − 1)/2 on the perimeter of the n × n square, after
which convolution with the kernel is computed on the n × n central pixels of the resulting
(n + k − 1) × (n + k − 1) padded input image. The output relevant information is restricted
to a n × n square, outside which pixel values are set to 0 again, via padding.

Metric on X . As a natural choice of distance over X we may consider L2-difference
between pixel-value functions, or interpret pixel values as probability densities, and use
Wasserstein distance, or consider other ad-hoc image metrics.

Group action: translations. The group acting on our “pixel-value functions” is the
group of translations with elements from Z × Z. We expect the following invariance for the
segmentation function f : X → X :

f(v · x) = v · f(x),

where x ∈ X represents an image with pixel values assigned to integer coordinates and
v ∈ Z2 is a translation vector and (in two alternative notations) v · x = τv(x) is the result of
translating all pixel values of x by v.

Deformation properties of the action. If we take the previously mentioned distance
functions on X and the usual distance induced from R2 over translation vectors v, it is easy
to verify that the assumptions of Theorem A.3 about the action of translations hold, and the
Lipschitz constants with respect to the metric on X only depend on the mismatch near the
boundary, due to “zero pixels moving in” and to “interior pixels moving out” of our n × n
square, and being truncated. The ensuing bounds only depend on the precise distance that
we introduce use on X .

More realistic actions. An alternative more realistic definition of Z × Z-action consists
of defining v · x as the truncation of τv(x) where, for pixels outside our “relevant” n × n
square we set pixel value to 0 after the translation.

Problems near the boundary. Nevertheless, the updated translation action, will move
pixel values of 0, coming from pixels outside the n × n square, and will create artificial zero
pixel values inside the image v · x, different than the values that would be present in real
data.

Imperfect equivariance of data. Also, even in the latter more realistic alternative, the
above translation equivariance is not respecting by segmentation input-output pairs coming
from finite n × n images, since, independently of n, the boundary pixel positions translated
by v, fall outside the original image.

Approximate stabilizer. In any case, we have to restrict the choices of v to integer-
coordinate elements of a (subset of a) n × n square, containing only the translations that
are relating “real” segmentations that appear within our n × n relevant window. It is thus
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natural to restrict Stabϵ to only include vectors in a smaller subset of Z × Z, of cardinality
|Stabϵ| ≤ n2.

The value of error ϵ may quantify the allowed error (or noisiness) for our model sets.

Reducing to finite G and computing λ. For the sake of computing λ in our Theorem
6.1, we can observe that input and output values outside the “padding perimeter” given by
a (n + k − 1) × (n + k − 1) square, are irrelevant, and thus we may actually periodize the
images and consider the images as subsets of a padded torus (Z/(n + k − 1)Z)2, which we
consider as acting on itself by translations. In this case G ≃ (Z/(n + k − 1)Z)2, so that

|G| = (n + k − 1)2 and thus λ = |Stabϵ|
(n + k − 1)2 .

Further extensions. In [27], it is argued that convolutional layers in classical CNNs are
not fully translation-equivariant, and can encode positional information, due to the manner
in which boundary padding is implemented. Possible solutions are increasing the padding to
size k (so that the padded image is a square of size (n + 2k) × (n + 2k)) or extending images
by periodicity, via so-called "circular padding" (which transforms each image into a space
equivalent to the torus (Z/nZ)2). In either case, the application of actions by translations
by vectors that are too large compared to the image size of n × n, will increase the mismatch
between model equivariance and data equivariance.

Stride and downsampling. In [11], a different equivariance error for classical CNNs is
studied, related to the use of stride > 1 in order to lower the output dimensions of CNN layer
outputs. If for example we use stride 2 when defining layer operation f : X → Y , then Y will
have relevant pixel values only in an n/2 × n/2-square, and we apply the k × k convolution
kernel only at positions with coordinates in (2Z) × (2Z) from image x. In this case we require
that translations by group elements v ∈ (2Z) × (2Z) on x have the effect of a translation by
v/2 ∈ Z on the output. However for shifts in the input via vectors v that do not have two
even coordinates, we may not have have an explicit corresponding action on the output, and
in [11] a solution via adaptive polyphase sampling is proposed. A possibility for studying
the best polyphase sampling strategy via almost equivariance, would be to include a bound
for equivariance error ϵ > 0 and consider the optimization problem of finding the polyphase
approximation that minimizes theoretical or empirical quantifications of ϵ. As a benchmark
(modelled on the case of infinite images without boundary effects) one could compare the
above to the action via Stab0 = (2Z) × (2Z) which has λ = 1/4 within the ambient group
G = Z × Z. Our Theorem 6.1 can be used to compare the effects of increasing or decreasing
ϵ, λ, in terms of data symmetry.

B.2.2 Partial equivariance in GCNNs

In this section, we connect the main results from [40] to our setup. In [40], one of the main
motivating examples was to consider rotations applied to a handwritten digit and revert
them. The underlying group action was via SO(2) and only rotations of angles between
[−60◦, 60◦] were permitted in one case, which allowed to not confound rotated digits “3” and
“9” for example.
The above task can be formulated on a space of functions f : X → Y in which X represents
the space of possible images and Y the labels. Elements (Yd, Yθ) ∈ Y include a digit
classification label Yd and a rotation angle value Yθ.
We consider actions by group G = SO(2) = {Rϕ : ϕ ∈ R/360Z}, where Rϕ is the rotation
matrix by angle ϕ, and the group operation corresponds to summing the angles, modulo
360◦ (or in radians, modulo 2π). The action of Rϕ over X would be by rotation as usual
(Rθ sends image x ∈ X to Rθ · x, now rotated by θ), and over Y we consider the action by

Rϕ(Yd, Yθ) = (Yd, Yθ + ϕ),
i.e. the restriction of the action on the digit label leaves it invariant and the restriction of
the action on the angle label is non-trivial, giving a shift on the label.
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The optimum labelling assigns to x a label y∗(x) enjoying precise equivariance under the
above definitions of the actions, and thus we are allowed to permit equivariance error ϵ = 0.
However as mentioned above, applying rotations outside the range θ ∈ [−60◦, 60◦] to the
data would surely bring us outside the labelled data distribution, thus we are led to take

ϵ = 0, Stab0 = {Rθ : θ ∈ [−60◦, 60◦]}.

We then have that |Stab0|/|SO(2)| = 1/3, with respect to the natural Haar measure on
rotations. It is natural to think of the set of Stab0-action representatives of images X 0

0 given
as the "unrotated" images. If we take a digit image that is rotated, say by 20◦, from its
“base” version, and we apply a rotation of 50◦ to it (i.e. an element of Stab0), then we reach
the version of the image now excessively rotated by 70◦. This means that without further
modification, considering model symmetries with Stab0 taken to be independent of the point,
would automatically generate some error when tested on the data. While decreasing the
threshold angle in the definition of Stab0 from 60◦ would limit this effect, it will also decrease
generalization error in the model. The study of point-dependent invariance sets Stabϵ is
interesting in view of this example application, but it is outside the scope of the current
approximation/generalization bounds and is left for future work.

B.2.3 Possible applications to partial equivariance in Reinforcement Learning

The use of approximate invariances for RL applications was considered in [23, Sec. 6] via soft
equivariance constraints allowing better generalization for an agent moving in a geometric
environment. While imposing approximate equivariance for memoryless G-action for groups
such as G = SO(2),Z2 has produced positive results, it may be interesting, in analogy to
the previous section, to include memory, and thus restrict the choices of group actions across
time steps. Note that for a temporal evolution of T steps, the group action by G acting
independently at each step would produce a T -interval action via the product group GT ,
and allowing for a partial action via Stabϵ, with possibly increased fitness to evolving data.
More precise time-dependence prescriptions and consequences within Q-learnig are left to
future work.

C Discussion of [20]

In section 2 we mentioned [20], which considers PAC-style bounds under model symmetry.
[20] works with compact groups and argues how the learning problem in such a setup reduces
to only working with a set of reduced orbit representatives, which leads to a generalization
gain. This message of [20] is similar to ours, although we work with a more general setup.
However, we noted that the main theorem in [20] has an error. Here, we briefly sketch the
issue with the proof.
One of the main quantities of interest in the main theorem of [20] is Dτ (X , H) (notation
from their paper), which directly comes from the following bound, and is claimed to have a
linear dependence on Cov(X , ρ, δ). Again, for the sake of easier verification, we follow their
notation. Crucially, note that [20] uses the notation Cov as analogous to our N :

Cov(H, ∥ · ∥L∞ , 2Cδ + κ) ≤ Cov(X , ρ, δ) sup
x∈X

Cov(H(x), ∥ · ∥∞, κ)

However, the correct application of the Kolmogorov-Tikhomirov estimate shows that the
reasoning in the proof should yield a dependence which is exponential in Cov(X , ρ, δ), not
linear. To see this, set s = 2 (sufficient for our purposes) in equation 238 in [54] (page 186).
In other words, it is not possible to cover Lipschitz functions in infinity norm by only using
constant functions.
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