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Abstract

We propose to solve inverse problems involving the temporal evolution of physics
systems by leveraging recent advances from diffusion models. Our method moves
the system’s current state backward in time step by step by combining an ap-
proximate inverse physics simulator and a learned correction function. A central
insight of our work is that training the learned correction with a single-step loss
is equivalent to a score matching objective, while recursively predicting longer
parts of the trajectory during training relates to maximum likelihood training of a
corresponding probability flow. We highlight the advantages of our algorithm com-
pared to standard denoising score matching and implicit score matching, as well as
fully learned baselines for a wide range of inverse physics problems. The resulting
inverse solver has excellent accuracy and temporal stability and, in contrast to other
learned inverse solvers, allows for sampling the posterior of the solutions. Code
and experiments are available at https://github.com/tum-pbs/SMDP.

1 Introduction

Many physical systems are time-reversible on a microscopic scale. For example, a continuous
material can be represented by a collection of interacting particles [Gur82; BLL02] based on which
we can predict future states. We can also compute earlier states, meaning we can evolve the
simulation backward in time [Mar+96]. When taking a macroscopic perspective, we only know
average quantities within specific regions [Far93], which constitutes a loss of information, and as a
consequence, time is no longer reversible. In the following, we target inverse problems to reconstruct
the distribution of initial macroscopic states for a given end state. This problem is genuinely tough
[ZDG96; Góm+18; Del+18; LP22], and existing methods lack tractable approaches to represent and
sample the distribution of states.

Our method builds on recent advances from the field of diffusion-based approaches [Soh+15; HJA20;
Son+21b]: Data samples x ∈ RD are gradually corrupted into Gaussian white noise via a stochastic
differential equation (SDE) dx = f(x, t)dt + g(t)dW , where the deterministic component of the
SDE f : RD ×R≥0 → RD is called drift and the coefficient of the D-dimensional Brownian motion
W denoted by g : R≥0 → R≥0 is called diffusion. If the score ∇x log pt(x) of the data distribution
pt(x) of corrupted samples at time t is known, then the dynamics of the SDE can be reversed in time,
allowing for the sampling of data from noise. Diffusion models are trained to approximate the score
with a neural network sθ, which can then be used as a plug-in estimate for the reverse-time SDE.

However, in our physics-based approach, we consider an SDE that describes the physics system as
dx = P(x)dt+ g(t)dW , where P : RD → RD is a physics simulator that replaces the drift term of
diffusion models. Instead of transforming the data distribution to noise, we transform a simulation
state at t = 0 to a simulation state at t = T with Gaussian noise as a perturbation. Based on a given
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end state of the system at t = T , we predict a previous state by taking a small time step backward
in time and repeating this multiple times. Similar to the reverse-time SDE of diffusion models, the
prediction of the previous state depends on an approximate inverse of the physics simulator, a learned
update sθ, and a small Gaussian perturbation.

The training of sθ is similar to learned correction approaches for numerical simulations [Um+20;
Koc+21; LCT22]: The network sθ learns corrections to simulation states that evolve over time
according to a physics simulator so that the corrected trajectory matches a target trajectory. In our
method, we target learning corrections for the "reverse" simulation. Training can either be based
on single simulation steps, which only predict a single previous state, or be extended to rollouts for
multiple steps. The latter requires the differentiability of the inverse physics step [Thu+21].

Importantly, we show that under mild conditions, learning sθ is equivalent to matching the score
∇x log pt(x) of the training data set distribution at time t. Therefore, sampling from the reverse-time
SDE of our physical system SDE constitutes a theoretically justified method to sample from the
correct posterior.

While the training with single steps directly minimizes a score matching objective, we show that the
extension to multiple steps corresponds to maximum likelihood training of a related neural ordinary
differential equation (ODE). Considering multiple steps is important for the stability of the produced
trajectories. Feedback from physics and neural network interactions at training time leads to more
robust results.

In contrast to previous diffusion methods, we include domain knowledge about the physical process
in the form of an approximate inverse simulator that replaces the drift term of diffusion models
[Son+21b; ZC21]. In practice, the learned component sθ corrects any errors that occur due to
numerical issues, e.g., the time discretization, and breaks ambiguities due to a loss of information in
the simulation over time.

Figure 1 gives an overview of our method. Our central aim is to show that the combination of
diffusion-based techniques and differentiable simulations has merit for solving inverse problems and
to provide a theoretical foundation for combining PDEs and diffusion modeling. In the following,
we refer to methods using this combination as score matching via differentiable physics (SMDP).
The main contributions of our work are: (1) We introduce a reverse physics simulation step into
diffusion models to develop a probabilistic framework for solving inverse problems. (2) We provide
the theoretical foundation that this combination yields learned corrections representing the score of
the underlying data distribution. (3) We highlight the effectiveness of SMDP with a set of challenging
inverse problems and show the superior performance of SMDP compared to a range of stochastic and
deterministic baselines.

2 Related Work

Diffusion models and generative modeling with SDEs Diffusion models [Soh+15; HJA20]
have been considered for a wide range of generative applications, most notably for image [DN21],
video [Ho+22; Höp+22; YSM22], audio synthesis [Che+21], uncertainty quantification [CSY22;
Chu+22; Son+22; KVE21; Ram+20], and as autoregressive PDE-solvers [KCT23]. However, most
approaches either focus on the denoising objective common for tasks involving natural images or the
synthesis process of solutions does not directly consider the underlying physics. Models based on
Langevin dynamics [Vin11; SE19] or discrete Markov chains [Soh+15; HJA20] can be unified in
a time-continuous framework using SDEs [Son+21b]. Synthesizing data by sampling from neural
SDEs has been considered by, e.g., [Kid+21; Son+21b]. Contrary to existing approaches, the drift in
our method is an actual physics step, and the underlying SDE does not transform a data distribution
to noise but models the temporal evolution of a physics system with stochastic perturbations.

Methods for solving inverse problems for (stochastic) PDEs Differentiable solvers for physics
dynamics can be used to optimize solutions of inverse problems with gradient-based methods by
backpropagating gradients through the solver steps [Thu+21]. Learning-based approaches directly
learn solution operators for PDEs and stochastic PDEs, i.e., mappings between spaces of functions,
such as Fourier neural operators [Li+21], DeepONets [Lu+21], or generalizations thereof that include
stochastic forcing for stochastic PDEs, e.g., neural stochastic PDEs [SLG22]. Recently, there
have been several approaches that leverage the learned scores from diffusion models as data-driven
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(a) Training and inference overview. (b) Sliding window and optimizing sθ .

Figure 1: Overview of our method. For training, we fit a neural ODE, the probability flow, to the
set of perturbed training trajectories (a, top). The probability flow is comprised of a reverse physics
simulator P̃−1 that is an approximate inverse of the forward solver P as well as a correction function
sθ. In many cases, we can obtain P̃−1 from P by using a negative step size ∆t or by learning a
surrogate model from data. For inference, we simulate the system backward in time from xT to x0 by
combining P̃−1, the trained sθ and Gaussian noise in each step (a, bottom). For optimizing sθ, our
approach moves a sliding window of size S along the training trajectories and reconstructs the current
window (b). Gradients for θ are accumulated and backpropagated through all prediction steps.

regularizations for linear inverse problems [Ram+20; Son+22; KVE21; CSY22; Chu+22] and general
noisy inverse problems [Chu+23]. Our method can be applied to general non-linear inverse physics
problems with temporal evolution, and we do not require to backpropagate gradients through all
solver steps during inference. This makes inference significantly faster and more stable.

Learned corrections for numerical errors Numerical simulations benefit greatly from machine
learning models [Tom+17; Mor+18; Pfa+20; Li+21]. By integrating a neural network into differential
equation solvers, it is possible to learn to reduce numerical errors [Um+20; Koc+21; BWW22] or
guide the simulation towards a desired target state [HTK20; Li+22]. The optimization of sθ with
the 1-step and multi-step loss we propose in section 3.1 is conceptually similar to learned correction
approaches. However, this method has, to our knowledge, not been applied to correcting the "reverse"
simulation and solving inverse problems.

Maximum likelihood training and continuous normalizing flows Continuous normalizing flows
(CNFs) are invertible generative models based on neural ODEs [Che+18a; KPB20; Pap+21], which
are similar to our proposed physics-based neural ODE. The evolution of the marginal probability
density of the SDE underlying the physics system is described by Kolmogorov’s forward equation
[Øks03], and there is a corresponding probability flow ODE [MRO20; Son+21b]. When the score
is represented by sθ, this constitutes a CNF and can typically be trained with standard methods
[Che+18b] and maximum likelihood training [Son+21a]. Huang et al. [HLC21] show that minimizing
the score-matching loss is equivalent to maximizing a lower bound of the likelihood obtained by
sampling from the reverse-time SDE. A recent variant combines score matching with CNFs [ZC21]
and employs joint learning of drift and corresponding score for generative modeling. To the best
of our knowledge, training with rollouts of multiple steps and its relation to maximum likelihood
training have not been considered so far.

3 Method Overview

Problem formulation Let (Ω,F , P ) be a probability space and W (t) = (W1(t), ...,WD(t))T be a
D-dimensional Brownian motion. Moreover, let x0 be a F0-measurable RD-valued random variable
that is distributed as p0 and represents the initial simulation state. We consider the time evolution of
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the physical system for 0 ≤ t ≤ T modeled by the stochastic differential equation (SDE)

dx = P(x)dt+ g(t)dW (1)

with initial value x0 and Borel measurable drift P : RD → RD and diffusion g : [0, T ] → R≥0.
This SDE transforms the marginal distribution p0 of initial states at time 0 to the marginal distribution
pT of end states at time T . We include additional assumptions in appendix A.

Moreover, we assume that we have sampled N trajectories of length M from the above SDE with a
fixed time discretization 0 ≤ t0 < t1 < ... < tM ≤ T for the interval [0, T ] and collected them in a
training data set {(x(n)

tm )Mi=0}Nn=0. For simplicity, we assume that all time steps are equally spaced,
i.e., tm+1 − tm := ∆t. Moreover, in the following we use the notation xℓ:m for 0 ≤ ℓ < m ≤M to
refer to the trajectory (xtℓ ,xtℓ+1

, ...,xtm). We include additional assumptions in appendix A.

Our goal is to infer an initial state x0 given a simulation end state xM , i.e., we want to sample from
the distribution p0( · |xM ), or obtain a maximum likelihood solution.

3.1 Learned Corrections for Reverse Simulation

In the following, we furthermore assume that we have access to a reverse physics simulator P̃−1 :
RD → RD, which moves the simulation state backward in time and is an approximate inverse of the
forward simulator P [HKT22]. In our experiments, we either obtain the reverse physics simulator
from the forward simulator by using a negative step size ∆t or by learning a surrogate model from
the training data. We train a neural network sθ(x, t) parameterized by θ such that

xm ≈ xm+1 +∆t
[
P̃−1(xm+1) + sθ(xm+1, tm+1)

]
. (2)

In this equation, the term sθ(xm+1, tm+1) corrects approximation errors and resolves uncertainties
from the Gaussian perturbation g(t)dW . Below, we explain our proposed 1-step training loss and its
multi-step extension before connecting this formulation to diffusion models in the next section.

1-step loss For a pair of adjacent samples (xm,xm+1) on a data trajectory, the 1-step loss for
optimizing sθ is the L2 distance between xm and the prediction via (2). For the entire training data
set, the loss becomes

Lsingle(θ) :=
1

M
Ex0:M

[
M−1∑
m=0

[∣∣∣∣∣∣xm − xm+1 −∆t
[
P̃−1(xm+1) + sθ(xm+1, tm+1)

]∣∣∣∣∣∣2
2

]]
. (3)

Computing the expectation can be thought of as moving a window of size two from the beginning of
each trajectory until the end and averaging the losses for individual pairs of adjacent points.

Multi-step loss As each simulation state depends only on its previous state, the 1-step loss should
be sufficient for training sθ. However, in practice, approaches that consider a loss based on predicting
longer parts of the trajectories are more successful for training learned corrections [Bar+19; Um+20;
Koc+21]. For that purpose, we define a hyperparameter S, called sliding window size, and write
xi:i+S ∈ RS×D to denote the trajectory starting at xi that is comprised of xi and the following S − 1
states. Then, we define the multi-step loss as

Lmulti(θ) :=
1

M
Ex0:M

[
M−S+1∑
m=0

[
||xm:m+S−1 − x̂m:m+S−1||22

]]
, (4)

where x̂i:i+S−1 is the predicted trajectory that is defined recursively by

x̂i+S = xi+S and x̂i+S−1−j = x̂i+S−j +∆t
[
P̃−1(x̂i+S−j) + sθ(x̂i+S−j , ti+S−j)

]
. (5)

3.2 Learning the Score

Denoising score matching Given a distribution of states pt for 0 < t < T , we follow [Son+21b]
and consider the score matching objective

JSM(θ) :=
1

2

∫ T

0

Ex∼pt

[
||sθ(x, t)−∇x log pt(x)||22

]
dt, (6)
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i.e., the network sθ is trained to approximate the score ∇x log pt(x). In denoising score matching
[Vin11; Soh+15; HJA20], the distributions pt are implicitly defined by a noising process that is given
by the forward SDE dx = f(x, t)dt + g(t)dW , where W is the standard Brownian motion. The
function f : RD × R≥0 → RD is called drift, and g : R≥0 → R≥0 is called diffusion. The process
transforms the training data distribution p0 to a noise distribution that is approximately Gaussian pT .
For affine functions f and g, the transition probabilities are available analytically, which allows for
efficient training of sθ. It can be shown that under mild conditions, for the forward SDE, there is
a corresponding reverse-time SDE dx = [f(x, t) − g(t)2∇x log pt(x)]dt + g(t)dW̃ [And82]. In
particular, this means that given a marginal distribution of states pT , which is approximately Gaussian,
we can sample from pT and simulate paths of the reverse-time SDE to obtain samples from the data
distribution p0.

Score matching, probability flow ODE and 1-step training There is a deterministic ODE
[Son+21b], called probability flow ODE, which yields the same transformation of marginal probabili-
ties from pT to p0 as the reverse-time SDE. For the physics-based SDE (1), it is given by

dx =

[
P(x)− 1

2
g(t)2∇x log pt(x)

]
dt. (7)

For ∆t→ 0, we can rewrite the update rule (2) of the training as

dx =
[
−P̃−1(x)− sθ(x, t)

]
dt. (8)

Therefore, we can identify P̃−1(x) with −P(x) and sθ(x, t) with 1
2g(t)∇x log pt(x). We show that

for the 1-step training and sufficiently small ∆t, we minimize the score matching objective (6).

Theorem 3.1. Consider a data set with trajectories sampled from SDE (1) and let P̃−1(x) = −P(x).
Then the 1-step loss (3) is equivalent to minimizing the score matching objective (6) as ∆t→ 0.
Proof. See appendix A.1

Maximum likelihood and multi-step training Extending the single step training to multiple
steps does not directly minimize the score matching objective, but we can still interpret the learned
correction in a probabilistic sense. For denoising score matching, it is possible to train sθ via
maximum likelihood training [Son+21a], which minimizes the KL-divergence between p0 and the
distribution obtained by sampling xT from pT and simulating the probability flow ODE (8) from
t = T to t = 0. We derive a similar result for the multi-step loss.

Theorem 3.2. Consider a data set with trajectories sampled from SDE (1) and let P̃−1(x) = −P(x).
Then the multi-step loss (4) maximizes a variational lower bound for maximum likelihood training of
the probability flow ODE (7) as ∆t→ 0.
Proof. See appendix A.2

To conclude, we have formulated a probabilistic multi-step training to solve inverse physics problems
and provided a theoretical basis to solve these problems with score matching. Next, we outline
additional details for implementing SMDP.

3.3 Training and Inference

We start training sθ with the multi-step loss and window size S = 2, which is equivalent to the
1-step loss. Then, we gradually increase the window size S until a maximum Smax. For S > 2,
the unrolling of the predicted trajectory includes interactions between sθ and the reverse physics
simulator P̃−1. For inference, we consider the neural SDE

dx =
[
−P̃−1(x)− C sθ(x, t)

]
dt+ g(t)dW, (9)

which we solve via the Euler-Maruyama method. For C = 2, we obtain the system’s reverse-time
SDE and sampling from this SDE yields the posterior distribution. Setting C = 1 and excluding
the noise gives the probability flow ODE (8). We denote the ODE variant by SMDP ODE and the
SDE variant by SMDP SDE. While the SDE can be used to obtain many samples and to explore
the posterior distribution, the ODE variant constitutes a unique and deterministic solution based on
maximum likelihood training.
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(a) Training (b) Inference (c) 1-step vs. multi-step

Figure 2: Overview of our 1D toy SDE. (a) Training with a data set of trajectories and known temporal
dynamics given by P(x) := −sign(x)x2 and g ≡ 0.1. We estimate the score ∇x log pt(x) with
our proposed method using an MLP network for sθ(x, t). Negative values (blue) push down the
trajectories, and positive ones (red) push them up. Together with the dynamics, this can be used to
reverse the system as shown in (b) either with the reverse-time SDE or the probability flow ODE. A
successful inversion of the dynamics requires the network sθ to be robust and extrapolate well (c).
Inference using GRID trained with the 1-step loss causes trajectories to explode, as the network does
not extrapolate well. Training GRID with the multi-step loss solves this issue.

4 Experiments

We show the capabilities of the proposed algorithm with a range of experiments. The first experiment
in section 4.1 uses a simple 1D process to compare our method to existing score matching baselines.
The underlying model has a known posterior distribution which allows for an accurate evaluation of
the performance, and we use it to analyze the role of the multi-step loss formulation. Secondly, in
section 4.2, we experiment with the stochastic heat equation. This is a particularly interesting test
case as the diffusive nature of the equation effectively destroys information over time. In section 4.3,
we apply our method to a scenario without stochastic perturbations in the form of a buoyancy-driven
Navier-Stokes flow with obstacles. This case highlights the usefulness of the ODE variant. Finally, in
section 4.4, we consider the situation where the reverse physics simulator P̃−1 is not known. Here,
we train a surrogate model P̃−1 for isotropic turbulence flows and evaluate how well SMDP works
with a learned reverse physics simulator.

4.1 1D Toy SDE

As a first experiment with a known posterior distribution we consider a simple quadratic SDE of
the form: dx = −

[
λ1 · sign(x)x2

]
dt + λ2dW , with λ1 = 7 and λ2 = 0.03. Throughout this

experiment, p0 is a categorical distribution, where we draw either 1 or −1 with the same probability.
The reverse-time SDE that transforms the distribution pT of values at T = 10 to p0 is given by

dx = −
[
λ1 · sign(x)x2 − λ2

2 · ∇x log pt(x)
]
dt+ λ2dw. (10)

In figure 2a, we show paths from this SDE simulated with the Euler-Maruyama method. The
trajectories approach 0 as t increases. Given the trajectory value at t = 10, it is no longer possible to
infer the origin of the trajectory at t = 0.

This experiment allows us to use an analytic reverse simulator: P̃−1(x) = λ1 · sign(x)x2. This is
a challenging problem because the reverse physics step increases quadratically with x, and sθ has
to control the reverse process accurately to stay within the training domain, or paths will explode
to infinity. We evaluate each model based on how well the predicted trajectories x̂0:T match the
posterior distribution. When drawing x̂T randomly from [−0.1, 0.1], we should obtain trajectories
with x̂0 being either −1 or 1 with the same likelihood. We assign the label −1 or 1 if the relative
distance of an endpoint is < 10% and denote the percentage in each class by ρ−1 and ρ1. As some
trajectories miss the target, typically ρ−1 + ρ1 < 1. Hence, we define the posterior metric Q as twice
the minimum of ρ−1 and ρ1, i.e., Q := 2 ·min(ρ−1, ρ1) so that values closer to one indicate a better
match with the correct posterior distribution.
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Training The training data set consists of 2500 simulated trajectories from 0 to T and ∆t = 0.02.
Therefore each training trajectory has a length of M = 500. For the network sθ(x, t), we consider a
multilayer perceptron (MLP) and, as a special case, a grid-based discretization (GRID). The latter
is not feasible for realistic use cases and high-dimensional data but provides means for an in-depth
analysis of different training variants. For GRID, we discretize the domain [0, T ]× [−1.25, 1.25] to
obtain a rectangular grid with 500× 250 cells and linearly interpolate the solution. The cell centers
are initialized with 0. We evaluate sθ trained via the 1-step and multi-step losses with Smax = 10.
Details of hyperparameters and model architectures are given in appendix C.

Better extrapolation and robustness from multi-step loss See figure 2c for an overview of the
differences between the learned score from MLP and GRID and the effects of the multi-step loss. For
the 1-step training with MLP, we observe a clear and smooth score field with two tubes that merge to
one at x = 0 as t increases. As a result, the trajectories of the probability flow ODE and reverse-time
SDE converge to the correct value. Training via GRID shows that most cells do not get any gradient
updates and remain 0. This is caused by a need for more training data in these regions. In addition,
the boundary of the trained region is jagged and diffuse. Trajectories traversing these regions can
quickly explode. In contrast, the multi-step loss leads to a consistent signal around the center line at
x = 0, effectively preventing exploding trajectories.

Evaluation and comparison with baselines As a baseline for learning the scores, we consider
implicit score matching [Hyv05, ISM]. Additionally, we consider sliced score matching with
variance reduction [Son+19, SSM-VR] as a variant of ISM. We train all methods with the same
network architecture using three different data set sizes. As can be seen in table 1, the 1-step loss,

Method Probability flow ODE Reverse-time SDE
Data set size Data set size

100% 10% 1% 100% 10% 1%
multi-step 0.97 0.91 0.81 0.99 0.94 0.85
1-step 0.78 0.44 0.41 0.93 0.71 0.75
ISM 0.19 0.15 0.01 0.92 0.94 0.52
SSM-VR 0.17 0.49 0.27 0.88 0.94 0.67

Table 1: Posterior metric Q for 1000 predicted trajecto-
ries averaged over three runs. For standard deviations,
see table 3 in the appendix.

which is conceptually similar to denois-
ing score matching, compares favorably
against ISM and SSM-VR. All methods
perform well for the reverse-time SDE,
even for very little training data. Using the
multi-step loss consistently gives signifi-
cant improvements at the cost of a slightly
increased training time. Our proposed
multi-step training performs best or is on
par with the baselines for all data set sizes
and inference types. Because the poste-
rior metric Q is very sensitive to the score
where the paths from both starting points
intersect, evaluations are slightly noisy.

Comparison with analytic scores We perform further experiments to empirically verify Theorem
3.1 by comparing the learned scores of our method with analytic scores in appendix C.

(a) Inference

Reconstruction MSE

10 4

10 3

10 2

Spectral error

100

ResNet
FNO
BNN
s  only ODE
s  only SDE
SMDP ODE
SMDP SDE

(b) Evaluation

Figure 3: Stochastic heat equation overview. While the ODE trajectories provide smooth solutions
with the lowest reconstruction MSE, the SDE solutions synthesize high-frequency content, signifi-
cantly improving spectral error. The "sθ only" version without the reverse physics step exhibits a
significantly larger spectral error. Metrics in (b) are averaged over three runs.
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4.2 Stochastic Heat Equation

The heat equation ∂u
∂t = α∆u plays a fundamental role in many physical systems. For this experiment,

we consider the stochastic heat equation, which slightly perturbs the heat diffusion process and
includes an additional term g(t) ξ, where ξ is space-time white noise, see Pardoux [Par21, Chapter
3.2]. For our experiments, we fix the diffusivity constant to α = 1 and sample initial conditions at
t = 0 from Gaussian random fields with n = 4 at resolution 32× 32. We simulate the heat diffusion
with noise from t = 0 until t = 0.2 using the Euler-Maruyama method and a spectral solver Ph

with a fixed step size ∆t = 6.25 × 10−3 and g ≡ 0.1. Given a simulation end state xT , we want
to recover a possible initial state x0. In this experiment, the forward solver cannot be used to infer
x0 directly in a single step or without corrections since high frequencies due to noise are amplified,
leading to physically implausible solutions. We implement the reverse physics simulator P̃−1 by
using the forward step of the solver Ph(x), i.e. P̃−1(x) ≈ −Ph(x).

Training and Baselines Our training data set consists of 2500 initial conditions with their corre-
sponding trajectories and end states at t = 0.2. We consider a small ResNet-like architecture based
on an encoder and decoder part as representation for the score function sθ(x, t). The spectral solver
is implemented via differentiable programming in JAX [SC20], see appendix D. As baseline methods,
we consider a supervised training of the same ResNet-like architecture as sθ(x, t), a Bayesian neural
network (BNN) as well as a Fourier neural operator (FNO) network [Li+21]. We adopt an L2 loss
for all these methods, i.e., the training data consists of pairs of initial state x0 and end state xT .

Additionally, we consider a variant of our proposed method for which we remove the reverse physics
step P̃−1 such that the inversion of the dynamics has to be learned entirely by sθ, denoted by "sθ
only". We do not compare to ISM and SSM-VR in the following as the data dimensions are too high
for both methods to train properly, and we did not obtain stable trajectories during inference.

2 4 8 16 32
(a) ODE trajectories
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(b) SDE trajectories

10−5

10−3

10−1

Figure 4: Multi-step Smax vs. reconstruction MSE
averaged over 5 runs.

Reconstruction accuracy vs. fitting the data
manifold We evaluate our method and the
baselines by considering the reconstruction
MSE on a test set of 500 initial conditions and
end states. For the reconstruction MSE, we sim-
ulate the prediction of the network forward in
time with the solver Ph to obtain a correspond-
ing end state, which we compare to the ground
truth via the L2 distance. This metric has the
disadvantage that it does not measure how well
the prediction matches the training data mani-
fold. I.e., for this case, whether the prediction
resembles the properties of the Gaussian random
field. For that reason, we additionally compare
the power spectral density of the states as the spectral loss. An evaluation and visualization of the
reconstructions are given in figure 3, which shows that our ODE inference performs best regarding the
reconstruction MSE. However, its solutions are smooth and do not contain the necessary small-scale
structures. This is reflected in a high spectral error. The SDE variant, on the other hand, performs
very well in terms of spectral error and yields visually convincing solutions with only a slight increase
in the reconstruction MSE. This highlights the role of noise as a source of entropy in the inference
process for SMDP SDE, which is essential for synthesizing small-scale structures. Note that there is
a natural tradeoff between both metrics, and the ODE and SDE inference perform best for each of the
cases while using an identical set of weights.

Multi-step loss is crucial for good performance We performed an ablation study on the maximum
window size Smax in figure 4 for the reconstruction MSE. For both ODE and SDE inference,
increasing Smax yields significant improvements at the cost of slightly increased training resources.
This also highlights the importance of using a multi-step loss instead of the 1-step loss (Smax = 2)
for inverse problems with poor conditioning.

We perform further experiments regarding test-time distribution shifts when modifying the noise
scale and diffusivity, see appendix D, which showcase the robustness of our methods.
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4.3 Buoyancy-driven Flow with Obstacles

Next, we test our methodology on a more challenging problem. For this purpose, we consider
deterministic simulations of buoyancy-driven flow within a fixed domain Ω ⊂ [0, 1] × [0, 1] and
randomly placed obstacles. Each simulation runs from time t = 0.0 to t = 0.65 with a step size of
∆t = 0.01. SMDP is trained with the objective of reconstructing a plausible initial state given an end
state of the marker density and velocity fields at time t = 0.65, as shown in figure 5a and figure 5b.
We place spheres and boxes with varying sizes at different positions within the simulation domain
that do not overlap with the marker inflow. For each simulation, we place one to two objects of each
category.

Score matching for deterministic systems During training, we add Gaussian noise to each
simulation state xt with σt =

√
∆t. In this experiment, no stochastic forcing is used to create the

data set, i.e., g ≡ 0. By adding noise to the simulation states, the 1-step loss still minimizes a
score matching objective in this situation, similar to denoising score matching; see appendix A.3
for a derivation. In the situation without stochastic forcing, during inference, our method effectively
alternates between the reverse physics step, a small perturbation, and the correction by sθ(x, t),
which projects the perturbed simulation state back to the distribution pt. We find that for the SDE
trajectories, C = 2 slightly overshoots, and C = 1 gives an improved performance. In this setting, the
"sθ only" version of our method closely resembles a denoiser that learns additional physics dynamics.

Training and comparison Our training data set consists of 250 simulations with corresponding
trajectories generated with phiflow [Hol+20]. Our neural network architecture for sθ(x, t) uses dilated
convolutions [Sta+21], see appendix E for details. The reverse physics step P̃−1 is implemented
directly in the solver by using a negative step size −∆t for time integration. For training, we consider
the multi-step formulation with Smax = 20. We additionally compare with solutions from directly
optimizing the initial smoke and velocity states at t = 0.35 using the differentiable forward simulation
and limited-memory BFGS [LN89, LBFGS]. Moreover, we compare with solutions obtained from
diffusion posterior sampling for general noisy inverse problems [Chu+23, DPS] with a pretrained
diffusion model on simulation states at t = 0.35. For the evaluation, we consider a reconstruction
MSE analogous to section 4.2 and the perceptual similarity metric LPIPS. The test set contains five
simulations. The SDE version yields good results for this experiment but is most likely constrained in
performance by the approximate reverse physics step and large step sizes. However, the ODE version
outperforms directly inverting the simulation numerically (P̃−1 only), and when training without the
reverse physics step (sθ only), as shown in 5c.

4.4 Navier-Stokes with Unknown Dynamics

As a fourth experiment, we aim to learn the time evolution of isotropic, forced turbulence with
a similar setup as Li et al. [Li+21]. The training data set consists of vorticity fields from 1000
simulation trajectories from t = 0 until T = 10 with ∆t = 1, a spatial resolution of 64 × 64 and

(a) Marker density (b) Velocity field (x) (c) Evaluation

Figure 5: Buoyancy flow case. Ground truth shows the marker density and velocity field in the
x-direction at different points of the simulation trajectory from the test set (a, b). We show recon-
structions given the simulation end state at t = 0.65 and provide an evaluation of the reconstructed
trajectories based on perceptual similarity (LPIPS) and the reconstruction MSE for three runs (c).
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(a) Reconstructed trajectories at t = 9.
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Figure 6: Turbulence case. Comparison of reconstructed trajectories (a) and evaluation of MSE and
spectral error for different training variants (b). Our proposed ODE and SDE inference outperforms
the learned surrogate model P̃−1. Metrics are averaged over three runs.

viscosity fixed at ν = 10−5. As before, our objective is to predict a trajectory x̂0:M that reconstructs
the true trajectory given an end state xM . In this experiment, we pretrain a surrogate for the reverse
physics step P̃−1 by employing the FNO architecture from [Li+21] trained on the reverse simulation.
For pretraining P̃−1 we use our proposed training setup with the multi-step loss and Smax = 10 but
freeze the score to sθ(x, t) ≡ 0. Then, we train the time-dependent score sθ(x, t) while freezing the
reverse physics step. This approach guarantees that any time-independent physics are captured by
P̃−1 and sθ(x, t) can focus on learning small improvements to P̃−1 as well as respond to possibly
time-dependent data biases. We give additional training details in appendix F.

Evaluation and training variants For evaluation, we consider the MSE and spectral error of the
reconstructed initial state x̂0 compared to the reference x0. As baselines, during inference, we employ
only the learned surrogate model P̃−1 without sθ. In addition to that, we evaluate a variant for which
we train both the surrogate model and sθ(x, t) at the same time. As the two components resemble
the drift and score of the reverse-time SDE, this approach is similar to DiffFlow [ZC21], which
learns both components in the context of generative modeling. We label this approach simultaneous
training. Results are shown in figure 6. Similar to the stochastic heat equation results in section 4.2,
the SDE achieves the best spectral error, while the ODE obtains the best MSE. Our proposed method
outperforms both the surrogate model and the simultaneous training of the two components.

5 Discussion and Conclusions

We presented a combination of learned corrections training and diffusion models in the context of
physical simulations and differentiable physics for solving inverse physics problems. We showed
its competitiveness, accuracy, and long-term stability in challenging and versatile experiments and
motivated our design choices. We considered two variants with complementary benefits for inference:
while the ODE variants achieve the best MSE, the SDE variants allow for sampling the posterior and
yield an improved coverage of the target data manifold. Additionally, we provided theoretical insights
that the 1-step is mathematically equivalent to optimizing the score matching objective. We showed
that its multi-step extension maximizes a variational lower bound for maximum likelihood training.

Despite the promising initial results, our work has limitations that open up exciting directions for
future work: Among others, it requires simulating the system backward in time step by step, which
can be costly and alleviated by reduced order methods. Additionally, we assume that ∆t is sufficiently
small and the reverse physics simulator is accurate enough. Determining a good balance between
accurate solutions with few time steps and diverse solutions with many time steps represents an
important area for future research.
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Appendix

A Proofs and Training Methodology

Below we summarize the problem formulation from the main paper and provide details about the
training procedure and the derivation of our methodology.

Problem setting Let (Ω,F , P ) be a probability space and W (t) = (W1(t), ...,WD(t))T be a
D-dimensional Brownian motion. Moreover, let x0 be a F0-measurable RD-valued random variable
that is distributed as p0 and represents the initial simulation state. We consider the time evolution of
the physical system for 0 ≤ t ≤ T modeled by the stochastic differential equation (SDE)

dx = P(x)dt+ g(t)dW (11)

with initial value x0 and Borel measurable drift P : RD → RD and diffusion g : [0, T ] → R≥0.
This SDE transforms the marginal distribution p0 of initial states at time 0 to the marginal distribution
pT of end states at time T .

Moreover, we assume that we have sampled N trajectories of length M from the above SDE with a
fixed time discretization 0 ≤ t0 < t1 < ... < tM ≤ T for the interval [0, T ] and collected them in a
training data set {(x(n)

tm )Mi=0}Nn=0. For simplicity, we assume that all time steps are equally spaced,
i.e., tm+1 − tm := ∆t. Moreover, in the following we use the notation xℓ:m for 0 ≤ ℓ < m ≤M to
refer to the trajectory (xtℓ ,xtℓ+1

, ...,xtm).

Assumptions Throughout this paper, we make some additional assumptions to ensure the existence
of a unique solution to the SDE (11) and the strong convergence of the Euler-Maruyama method. In
particular:

• Finite variance of samples from p0: Ex0∼p0
[||x0||22] <∞

• Lipschitz continuity of P: ∃K1 > 0 ∀x,y ∈ RD : ||P(x)− P(y)||2 ≤ K1||x− y||2
• Lipschitz continuity of g: ∃K2 > 0 ∀t, s ∈ [0, T ] : |g(t)− g(s)| ≤ K3|t− s|
• Linear growth condition: ∃K3 > 0 ∀x ∈ RD : ||P(x)||2 ≤ K3(1 + ||x||2)
• g is bounded: ∃K4 > 0 ∀t ∈ [0, T ] : |g(t)| ≤ K4

Euler-Maruyama Method Using Euler-Maruyama steps, we can simulate paths from SDE (11)
similar to ordinary differential equations (ODE). Given an initial state Xt0 , we let X̂∆t

t0 = Xt0 and
define recursively

X̂∆t
tm+1

← X̂∆t
tm +∆tP(X̂∆t

tm) +
√
∆t g(tm) ztm , (12)

where ztm are i.i.d. with ztm ∼ N (0, I). For ti ≤ t < ti+1, we define the piecewise constant
solution of the Euler-Maruyama Method as X̂∆t

t := X̂∆t
ti . Let Xt denote the solution of the SDE

(11). Then the Euler-Maruyama solution X̂∆t
t converges strongly to Xt.

Lemma A.1. [Strong convergence of Euler-Maruyama method] Consider the piecewise constant
solution X̂∆t

t of the Euler-Maruyama method. There is a constant C such that

sup
0≤t≤T

E[||Xt − X̂∆t
t ||2] ≤ C

√
∆t. (13)

Proof. See Kloeden et al. [Klo+92, p. 10.2.2]

A.1 1-step Loss and Score Matching Objective

Theorem A.2. Consider a data set {x(n)
0:m}Nn=1 with trajectories sampled from SDE (11). Then the

1-step loss

Lsingle(θ) :=
1

M
Ex0:M

[
M−1∑
m=0

[
||xm − {xm+1 +∆t [−P(xm+1) + sθ(xm+1, tm+1)]}||2

]]
(14)
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is equivalent to minimizing the score matching objective

J (θ) :=
∫ T

0

Ext [||∇x log pt(x)− s̃θ(x, t)||22]dt, (15)

where s̃θ(x, t) = sθ(x, t)/g
2(t) as ∆t→ 0.

Proof.

"⇐": Consider θ∗ such that s̃θ∗(x, t) ≡ ∇x log pt(x), which minimizes the score matching
objective J (θ). Then fix a time step t and sample xt and xt+∆t from the data set. The
probability flow solution xp

t based on equation (14) is
xp
t := xt+∆t +∆t [−P(xt+∆t) + sθ(xt+∆t, t+∆t)] . (16)

At the same time, we know that the transformation of marginal likelihoods from pt+∆t to pt
follows the reverse-time SDE [And82]

dx =
[
P(x) + g2(t)∇x log pt(x)

]
dt+ g(t)dW, (17)

which runs backward in time from T to 0. Denote by x̂∆t
t the solution of the Euler-Maruyama

method at time t initialized with xt+∆t at time t+∆t.

Using the triangle inequality for squared norms, we can write

lim
∆t→0

E
[
||xt − xp

t ||22
]
≤ 2 lim

∆t→0
E
[
||xt − x̂∆t

t ||22
]
+ 2 lim

∆t→0
E
[
||x̂∆t

t − xp
t ||22

]
. (18)

Because of the strong convergence of the Euler-Maruyama method, we have that for the first
term of the bound in equation (18)

lim
∆t→0

E
[
||xt − x̂∆t

t ||22
]
= 0 (19)

independent of θ. At the same time, for the Euler-Maruyama discretization, we can write

x̂∆t
t = xt+∆t +∆t

[
−P(xt+∆t) + g2(t+∆t)∇x log pt+∆t(xt+∆t)

]
(20)

+g(t+∆t)
√
∆tzt+∆t, (21)

where zt+∆t is a standard Gaussian distribution, i.e., zt+∆t ∼ N (0, I). Therefore, we can
simplify the second term of the bound in equation (18)

lim
∆t→0

E
[∣∣∣∣x̂∆t

t − xp
t

∣∣∣∣2
2

]
(22)

= lim
∆t→0

Ext+∆t∼pt+∆t,z∼N (0,I)

[∣∣∣∣∣∣∆t g(t+∆t)2 [∇x log pt+∆t(xt+∆t) (23)

−s̃θ(xt+∆t, t+∆t)] + g(t+∆t)
√
∆t z

∣∣∣∣∣∣2
2

]
. (24)

If θ∗ minimizes the score matching objective, then s̃θ∗(x, t) ≡ ∇x log pt(x), and therefore
the above is the same as

lim
∆t→0

Ez[||
√
∆t g(t+∆t) z||22] = 0. (25)

Combining equations (18), (19) and (25) yields
lim

∆t→0
E
[
||xt − xp

t ||22
]
= 0. (26)

Additionally, since g is bounded, we even have

E[||
√
∆t g(t+∆t) z||22] ≤ E[||

√
∆tK4 z||22] = E[||K4 z||22]∆t. (27)

For Lsingle(θ), using the above bound (27) and strong convergence of the Euler-Maruyama
method, we can therefore derive the following bound

Lsingle(θ) =
1

M
E

[
M−1∑
m=0

[
||xm +∆t [−P(xm+1) + sθ(xm+1, tm+1)]||2

]]
(28)

≤ 1

M
M 2

[
C
√
∆t+ Ez[||K4 z||22]∆t

]
, (29)

which implies that Lsingle(θ)→ 0 as ∆t→ 0.
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"⇒": With the definitions from "⇐", let θ∗ denote a minimizer such that Lsingle(θ) → 0 as
∆t → 0, i.e., we assume there is a sequence ∆t1,∆t2, ... with limn→∞ ∆tn = 0 and
a sequence θ1, θ2, ..., where θn is a global minimizer to the objective L∆tn

single(θ) that
depends on the step size ∆tn. If there is θ∗ such that sθ∗(x, t) ≡ ∇x log pt(x), then
L∆tn
single(θn) ≤ L

∆tn
single(θ

∗). From "⇐" we know that limn→∞ L∆tn
single(θ

∗) = 0 and therefore
limn→∞ L∆tn

single(θn) = 0. This implies that each summand of Lsingle(θ) also goes to zero as
∆t→ 0, i.e., lim∆t→0 E

[
||xt − xp

t ||22
]
= 0. Again, with the triangle inequality for squared

norms, we have that
lim

∆t→0
E
[
||x̂∆t

t − xp
t ||22

]
≤ 2 lim

∆t→0
E
[
||xt − x̂∆t

t ||22
]
+ 2 lim

∆t→0
E
[
||xt − xp

t ||22
]
. (30)

By the strong convergence of the Euler-Maruyama method and θ = θ∗, we obtain

lim
∆t→0

E
[
||x̂∆t

t − xp
t ||22

]
= 0. (31)

At the same time, for fixed ∆t > 0, we can compute

E
[
||x̂∆t

t − xp
t ||22

]
(32)

= Ext+∆t,z∼N (0,I)[||∆t g(t+∆t)2 [∇x log pt+∆t(xt+∆t) (33)

−sθ(xt+∆t, t+∆t)] +
√
∆t g(t+∆t) z||22] (34)

= ∆t g(t+∆t)Ext+∆t,z∼N (0,I)[||∆t3/2 g(t+∆t)5/2 [∇x log pt+∆t(xt+∆t) (35)

−sθ(xt+∆t, t+∆t)] + z||22]. (36)
For fixed xt+∆t, the distribution over z ∼ N (0, I) in equation (36) correspond to a non-
central chi-squared distribution [JKB95, Chapter 13.4], whose mean can be calculated
as

Ez∼N (0,I)

[∣∣∣∣∣∣∆t3/2 g(t+∆t)5/2 [∇x log pt+∆t(xt+∆t)− sθ(xt+∆t, t+∆t)] + z
∣∣∣∣∣∣2
2

]
(37)

=
∣∣∣∣∣∣∆t3/2 g(t+∆t)5/2 [∇x log pt+∆t(xt+∆t)− sθ(xt+∆t, t+∆t)]

∣∣∣∣∣∣2
2
+D.

(38)

For each ∆t > 0, the above is minimized if and only if ∇x log pt+∆t(xt+∆t) =
sθ(xt+∆t, t+∆t).

A.2 Multi-step Loss and Maximum Likelihood Training

We now extend the 1-step formulation from above to multiple steps and discuss its relation to
maximum likelihood training. For this, we consider our proposed probability flow ODE defined by

dx = [P(x) + sθ(x, t)] dt (39)

and for ti < tj define p
tj ,ODE
ti as the distribution obtained by sampling x ∼ ptj and integrating the

probability flow with network sθ(x, t) equation (7) backward in time until ti. We can choose two
arbitrary time points ti and tj with ti < tj because we do not require fixed start and end times of the
simulation.

The maximum likelihood training objective of the probability flow ODE (7) can be written as
maximizing

Exti
∼pti

[log p
ptj

,ODE

ti (xti)]. (40)
Our proposed multi-step loss is based on the sliding window size S, which is the length of the
sub-trajectory that we aim to reconstruct with the probability flow ODE (7). The multi-step loss is
defined as

Lmulti(θ) :=
1

M
Ex0:M

[
M−S+1∑
m=0

[
||xm:m+S−1 − x̂m:m+S−1||22

]]
, (41)
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where we compute the expectation by sampling x0:m from the training data set and x̂i:i+S−1 is the
predicted sub-trajectory that is defined recursively by

x̂i+S = xi+S and x̂i+S−1−j = x̂i+S−j +∆t [−P(x̂i+S−j) + sθ(x̂i+S−j , ti+S−j)] . (42)

In the following, we show that the multi-step loss (4) maximizes a variational lower bound for the
maximum likelihood training objective (40).

Theorem A.3. Consider a data set {x(n)
0:m}Nn=1 with trajectories sampled from SDE (11). Then

the multi-step loss (4) maximizes a variational lower bound for the maximum likelihood training
objective of the probability flow ODE (40) as ∆t→ 0.

Let µODE
ti (xtj ) denote the solution of the probability flow ODE (7) integrated backward from time tj

to ti with initial value xtj .

For the maximum likelihood objective, we can derive a variational lower bound

Exti

[
log p

tj ,ODE
ti (xti)

]
= Exti

[
log

(
Extj

[
p
tj ,ODE
ti (xti |xtj )

])]
(43)

= Exti

[
log

(
Extj

|xti

[
pti(xti)

ptj (xtj |xti)
p
tj ,ODE
ti (xti |xtj )

])]
(44)

≥ Exti
Extj

|xti

[
log

(
ptj (xtj )

ptj (xtj |xti)
p
tj ,ODE
ti (xti |xtj )

)]
(45)

= Exti
Extj

|xti

[
log

(
ptj (xtj )

ptj (xtj |xti)

)
+ log

(
p
tj ,ODE
ti (xti |xtj )

)]
, (46)

where the inequality is due to Jensen’s inequality. Since only p
tj ,ODE
ti (xti |xtj ) depends on θ, this is

the same as maximizing

Exti
Extj

|xti

[
log

(
p
tj ,ODE
ti (xti |xtj )

)]
. (47)

The probability flow ODE is likelihood-free, which makes it challenging to optimize. Therefore, we
relax the objective by perturbing the ODE distributions by convolving them with a Gaussian kernel
Gϵ with small ϵ > 0, see, e.g., Kersting et al. [Ker+20, Gaussian ODE filtering]. This allows us to
model the conditional distribution p

tj ,ODE
ti |xtj as a Gaussian distribution with mean µ

tj ,ODE
ti (xtj )

and variance σ2 = ϵ. Then maximizing (47) reduces to matching the mean of the distribution, i.e.,
minimizing

Exti
Extj

|xti

[
||xti − µODE

ti (xtj )||22
]

(48)

independent of ϵ > 0. Since this is true for any time step tj > ti and corresponding simulation state
xtj given xti , we can pick the pairs (xti ,xti+1), (xti ,xti+2), (xti ,xti+3) and so on. Then, we can
optimize them jointly by considering the sum of the individual objectives up to a maximum sliding
window size

Exi:j

[
j−1∑
k=i

||xtk − µODE
tk

(xtj )||22

]
. (49)

As ∆t → 0, we compute the terms µODE
tk

(xtj ) on a single trajectory starting at xti with sliding
window S covering the trajectory until xtj via the Euler method, i.e., we can define recursively

x̂i+S = xi+S and x̂i+S−1−j = x̂i+S−j +∆t [−P(xi+S−j) + sθ(xi+S−j , ti+S−j)] . (50)

By varying the starting points of the sliding window xti , this yields our proposed multi-step loss
Lmulti(θ).

A.3 Denoising Score Matching for Deterministic Simulations

So far, we have considered physical systems that can be modeled by an SDE, i.e., equation (11).
While this problem setup is suitable for many scenarios, we would also like to apply a similar
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Figure 7: Variants of training and inference for different physical systems. (a) shows the SDE and
reverse-time SDE setup with the Euler-Maruyama discretization when the system is modeled by an
SDE. The diffusion term g(t) is absorbed in the Gaussian random variable zt ∼ N (0, g(t)2I) and
network sθ(x, t). In (b), we assume that the temporal evolution of the training data is deterministic,
i.e., we model the physical system without the diffusion term. However, for inference, we consider
the reverse-time SDE of the same form as in (a), where the diffusion coefficient g(t) is chosen as a
hyperparameter that depends on the noise scale added to the data. Then, in (c), we split the Euler step
for the backward direction into a physics-only update, adding the Gaussian noise z and a denoising
step by sθ(x, t).

methodology when the system is deterministic, i.e., when we can write the problem as an ordinary
stochastic equation

dx = P(x)dt. (51)

In the case of chaotic dynamical systems, this still represents a hard inverse problem, especially when
information is lost due to noise added to the trajectories after their generation.

The training setup based on modeling the physics system with an SDE is shown in figure 7a. Figure
7b and 7c illustrate two additional data setup and inference variants for deterministic physical systems
modeled by the ODE (51). While for the experiments in sections 3.1 and 3.2 in the main paper, our
setup resembles (a), for the buoyancy-driven flow in section 3.3 and the forced isotropic turbulence in
section 3.4 in the main paper, we consider (c) as the system is deterministic.

For this variant, the update by−P(x) and sθ(x, t) is separated into two steps. The temporal evolution
from ti+1 to ti is then defined entirely by physics. We apply an additive noise to the system and
the update step by sθ(x, t), which can be interpreted as denoising for a now slightly perturbed state
x̃ti . In this case, we show that the network sθ(x, t) still learns the correct score∇x log pt(x) during
training using denoising score matching. We compare the performance of variants (b) and (c) for the
buoyancy-drive flow in appendix E.

When separating physics and score updates, we calculate the updates as

x̂ti = xti+1
−∆tP(xti+1

) (52)

x̂noise
ti = x̂ti +

√
∆t g(ti) zti (53)

xti = x̂noise
ti +∆t g2(ti) sθ(x̂

noise
ti , ti), (54)

where zti ∼ N (0, I). If the physics system is deterministic and ∆t is small enough, then we can
approximate xti ≈ x̂ti and for the moment, we assume that we can write

x̂noise
ti = xti +

√
∆t g(ti) zti . (55)

In this case, we can rewrite the 1-step loss Lsingle(θ) from (14) to obtain the denoising score matching
loss

LDSM(θ) := E(xti
,xti+1

)

[
||xti − x̂noise

ti −∆t g2(ti) sθ(x̂
noise
ti , ti)||22

]
, (56)

which is the same as minimizing

E(xti
,xti+1

)

[
||sθ(x̂noise

ti , ti)−
1

∆t g2(ti)
(xti − x̂noise

ti )||22
]
. (57)
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Now, the idea presented in Vincent [Vin11] is that for score matching, we can consider a joint
distribution pti(xti , x̃ti) of sample xti and corrupted sample x̃ti . Using Bayes’ rule, we can
write pti(xti , x̃ti) = pσ(x̃ti |xti)pti(xti). The conditional distribution pσ(·|xti) for the corrupted
sample is then modeled by a Gaussian with standard deviation σ =

√
∆t g(ti), i.e., we can write

x̃ = x +
√
∆t g(ti) z for z ∼ N (0, I) similar to equation (55). Moreover, we can define the

distribution of corrupted data qσ as

qσ(x̃) =

∫
pσ(x̃|x)pti(x)dx. (58)

If σ is small, then qσ ≈ pti and KL(qσ|| pti)→ 0 as σ → 0. Importantly, in this case, we can directly
compute the score for pσ(·|x) as

∇x̃ log pσ(x̃|x) =
1

σ2
(x− x̃). (59)

Moreover, the theorem proven by Vincent [Vin11] means that we can use the score of the conditional
distribution pσ(·|x) to train sθ(x, t) to learn the score of qσ(x), i.e.

argmin
θ

Ex̃∼qθ

[
||sθ(x, ti)−∇x̃ log qσ(x̃)||22

]
(60)

= argmin
θ

Ex∼pti
,x̃∼pσ(·|x)

[
||sθ(x, ti)−∇x̃ log pσ(x̃|x)||22

]
. (61)

By combining (61) and (59), this exactly equals the denoising loss LDSM(θ) in (57). As qσ ≈ pti ,
we also obtain that∇x log qσ(x) ≈ ∇x log pti(x), so the network sθ(x, ti) approximately learns the
correct score for pti .

We have assumed (55) that the only corruption for x̂noise
ti is the Gaussian noise. This is not true, as

we have

x̂noise
ti = xti +

√
∆t g(ti) zti + (xti+1

−∆tP(xti+1
)− xti), (62)

so there is an additional source of corruption, which comes from the numerical errors due to the term
xti+1

−∆tP(xti+1
) − xti . The conditional distribution pσ(·|x) is only approximately Gaussian.

Ideally, the effects of numerical errors are dominated by the Gaussian random noise. However,
even small errors may accumulate for longer sequences of inference steps. To account for this, we
argue that the multi-step loss Lmulti(θ) should be used. During training, with the separation of
physics update and denoising, the simulation state is first progressed from time ti+1 to time ti using
the reverse physics solver. This only yields a perturbed version of the simulation at time ti due to
numerical inaccuracies. Then a small Gaussian noise is added and, via the denoising network sθ(x, t),
the simulation state is projected back to the distribution pti , which should also resolve the numerical
errors. This is iterated, as discussed in section 2 in the main paper, depending on the sliding window
size and location.
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B Architectures

ResNet We employ a simple ResNet-like architecture, which is used for the score function sθ(x, t)
and the convolutional neural network baseline (ResNet) for the stochastic heat equation in section 3.2
as well as in section 3.4 again for the score sθ(x, t).

For experiments with periodic boundary conditions, we apply periodic padding with length 16, i.e., if
the underlying 2-dimensional data dimensions are N ×N , the dimensions after the periodic padding
are (N + 16)× (N + 16). We implement the periodic padding by tiling the input three times in x-
and y-direction and then cropping to the correct sizes. The time t is concatenated as an additional
constant channel to the 2-dimensional input data when this architecture represents the score sθ(x, t).

The encoder part of our network begins with a single 2D-convolution encoding layer with 32 filters,
kernel size 4, and no activation function. This is followed by four consecutive residual blocks, each
consisting of 2D-convolution, LeakyReLU, 2D-convolution, and Leaky ReLU. All 2D convolutions
have 32 filters with kernel size four and stride 1. The encoder part ends with a single 2D convolution
with one filter, kernel size 1, and no activation. Then, in the decoder part, we begin with a transposed
2D convolution, 32 filters, and kernel size 4. Afterward, there are four consecutive residual blocks,
analogous to the residual encoder blocks, but with the 2D convolution replaced by a transposed 2D
convolution. Finally, there is a final 2D convolution with one filter and kernel size of 5. Parameter
counts of this model and other models are given in table 2.

UNet We use the UNet architecture with spatial dropout as described in [Mue+22], Appendix A.1,
for the Bayesian neural network baseline of the stochastic heat equation experiment in section 3.2.
The dropout rate is set to 0.25. We do not include batch normalization and apply the same periodic
padding as done for our ResNet architecture.

FNO The FNO-2D architecture introduced in [Li+21] with kmax,j = 12 Fourier modes per channel
is used as a baseline for the stochastic heat equation experiment in section 3.2 and the learned physics
surrogate model in section 3.4.

Dil-ResNet The Dil-ResNet architecture is described in [Sta+21], Appendix A. This architecture
represents the score sθ(x, t) in the buoyancy-driven flow with obstacles experiment in section 3.3.
We concatenate the constant time channel analogously to the ResNet architecture. Additionally,
positional information is added to the network input by encoding the x-position and y-position inside
the domain in two separate channels.

Architecture Parameters

ResNet 330 754
UNet 706 035
Dil-ResNet 336 915
FNO 465 377

Table 2: Summary of architectures.
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C 1D Toy SDE

For the 1D toy SDE discussed in section 3.1, we consider the SDE given by

dx = −
[
λ1 · sign(x)x2

]
dt+ λ2dw, (63)

with λ1 = 7 and λ2 = 0.03. The corresponding reverse-time SDE is

dx = −
[
λ1 · sign(x)x2 − λ2

2 · ∇x log pt(x)
]
dt+ λ2dw. (64)

Throughout this experiment, p0 is a categorical distribution, where we draw either 1 or −1 with the
same probability. In figure 8, we show trajectories from this SDE simulated with the Euler-Maruyama
method. Trajectories start at 1 or −1 and approach 0 as t increases.

Neural network architecture We employ a neural network sθ(x, t) parameterized by θ to approx-
imate the score via the 1-step loss, the multi-step loss, implicit score matching [Hyv05, ISM] and
sliced score matching with variance reduction [Son+19, SSM-VR]. In all cases, the neural network is
a simple multilayer perceptron with elu activations and five hidden layers with 30, 30, 25, 20, and
then 10 neurons for the last hidden layer.

We use the Adam optimizer with standard hyperparameters as described in the original paper [KB15].
The learning rate, batch size, and the number of epochs depend on the data set size (100% with 2 500
trajectories, 10%, or 1%) and are chosen to ensure convergence of the training loss.

(a) λ2 = 0 (b) λ2 = 0.03

Figure 8: Trajectories from SDE (63) with λ2 = 0 (a) and λ2 = 0.03 (b).

Training - 1-step loss For the 1-step loss and all data set sizes, we train for 250 epochs with a
learning rate of 10e-3 and batch size of 256. In the first phase, we only keep every 5th point of a
trajectory and discard the rest. Then, we again train for 250 epochs with the same batch size and a
learning rate of 10e-4 but keep all points. Finally, we finetune the network with 750 training epochs
and a learning rate of 10e-5.

Training - multi-step loss For the multi-step loss and 100% of the data set, we first train with the
1-step loss, which resembles a sliding window size of 2. We initially train for 1 000 epochs with a
batch size of 512 and a learning rate of 10e-3, where we keep only every 5th point on a trajectory
and discard the rest. Then, with a decreased learning rate of 10e-4, we begin training with a sliding
window size of S = 2 and increment it every 1 000 epochs by one until Smax = 10. In this phase,
we train on all points without any removals.

Training - ISM For ISM, we compute the partial derivative ∂sθ(x)i/∂xi using reverse-mode
automatic differentiation in JAX (jax.jacrev). For 100% and 10% of the data set, we train for 2 000
epochs with a learning rate of 10e-3 and batch size of 10 000. Then we train for an additional 2 000
epochs with a learning rate 10e-4. For 1%, increase the number of epochs to 20 000.

Training - SSM-VR For sliced score matching with variance reduction [Son+19, SSM-VR], we
use the same training setup as for ISM.
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(a) ISM learned score. (b) Multi-step learned score.

(c) ISM reverse-time SDE trajectories. (d) Multi-step reverse-time SDE trajectories.

(e) ISM probability flow trajectories. (f) Multi-step probability flow trajectories.

Figure 9: Comparison of Implicit Score Matching (ISM, left) and our proposed training with the
multi-step loss (Multi-step, right). Colormap in (a) and (b) truncated to [-75, 75].

Method Probability flow ODE Reverse-time SDE
Data set size Data set size

100% 10% 1% 100% 10% 1%
multi-step 0.97±0.04 0.91±0.05 0.81±0.01 0.99±0.01 0.94±0.02 0.85±0.06
1-step 0.78±0.16 0.44±0.13 0.41±0.13 0.93±0.05 0.71±0.10 0.75±0.10
ISM 0.19±0.05 0.15±0.15 0.01±0.01 0.92±0.05 0.94±0.01 0.52±0.22
SSM-VR 0.17±0.16 0.49±0.24 0.27±0.47 0.88±0.06 0.94±0.06 0.67±0.23
Table 3: Posterior metric Q for 1 000 predicted trajectories averaged over three runs.

Comparison We directly compare the learned score for the reverse-time SDE trajectories and the
probability flow trajectories between ISM and the multi-step loss in figure 9 trained on the full data
set. The learned score of ISM and the multi-step loss in figure 9a and figure 9b are visually very
similar, showing that our method and loss learn the correct score. Overall, after finetuning both
ISM and the multi-step loss, the trajectories of the multi-step loss are more accurate compared to
ISM. For example, in figure 9e, a trajectory explodes to negative infinity. Also, trajectories from the
multi-step loss end in either −1 or 1, while ISM trajectories are attenuated and do not fully reach −1
or 1 exactly, particularly for the probability flow ODE.

Results of Table 1 in Main Paper We include the standard deviations of table 1 from the main
paper in table 3 above. The posterior metric Q is very sensitive to the learned score sθ(x, t). Overall,
our proposed multi-step loss gives the most consistent and reliable results.
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Empirical verification of Theorem 3.1 For the quadratic SDE equation 63, the analytic score
is non-trivial, therefore a direct comparison of the learned network sθ(x, t) and the true score
∇x log pt(x) is difficult. However, we can consider the SDE with affine drift given by

dx = −λxdx+ gdW (65)

with λ = 0.5 and g ≡ 0.04. Because this SDE is affine and there are only two starting points −1 and
1, we can write the distribution of states starting in x0 as a Gaussian with mean µ(t;x0) = x0e

−λt

and variance σ2(t;x0) = g2

2λ (1 − e−2λt), see [Øks03]. Then, the score at time t and position x

conditioned on the starting point x0 is (x − µ(t;x0))/σ
2(t;x0). See figure 10 for a visualization

of the analytic score and a comparison with the learned score. The learned score from the 1-step
training matches the analytic score very well in regions where the data density is sufficiently high.
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Figure 10: 1-step training score matches analytic score. (a) shows some paths sampled from
SDE equation (65) and a contour of the density. (b) is the analytic score field, and (c) and (d)
are visualizations of the learned score with 1-step and multi-step training. Scores from the multi-
step training correspond to more narrow high-density regions. This implies that during inference,
trajectories are pulled more strongly to modes of the training data set distribution than for the 1-step
training.
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D Stochastic Heat Equation

Spectral solver The physics of the 2-dimensional heat equation for x ∈ Rd×d can be computed
analytically. The solver P∆t

h (x) simulates the systems x forward in time by a fixed ∆t using the
(shifted) Fourier transformation F . In particular, we can implement the solver with

P∆t
h (x) = F−1 (A(∆t) ◦ F(x)) , (66)

where ◦ denotes element-wise multiplication and A(∆t)ij ∈ Rd×d is a matrix with entries
A(∆t)ij := exp (−∆t ·min(i, j, d− i, j − i)). The power spectrum of x is scaled down by A(∆t),
and higher frequencies are suppressed more than lower frequencies (for ∆t > 0). If noise is added to
x, then this means that especially higher frequencies are affected. Therefore the inverse transforma-
tion (when ∆t > 0) exponentially scales contributions by the noise, causing significant distortions
for the reconstruction of x.

Spectral loss We consider a spectral error based on the two-dimensional power spectral density.
The radially averaged power spectra s1 and s2 for two images are computed as the absolute values of
the 2D Fourier transform raised to the second power, which are then averaged based on their distance
(in pixels) to the center of the shifted power spectrum. We define the spectral error as the weighted
difference between the log of the spectral densities

L(s1, s2) =
∑
k

wk| log(s1,k)− log(s2,k)| (67)

with a weighting vector w ∈ Rd and wk = 1 for k ≤ 10 and wk = 0 otherwise.

Training For inference, we consider the linear time discretization tn = n∆t with ∆t = 0.2/32 and
t32 = 0.2. During training, we sample a random time discretization 0 ≤ t0 < t′2 < .... < t′31 < t32
for each batch based on tn via t′n ∼ U(tn − ∆t/2, tn + ∆t/2) for n = 1, ..., 31 and adjust the
reverse physics step based on the time difference ti − ti−1. In the first training phase, we consider
the multi-step loss with a sliding window size of S = 6, 8, ..., 32 steps, where we increase S every
two epochs. We use Adam to update the weights θ with learning rate 10−4. We finetune the network
weights for 80 epochs with an initial learning rate of 10−4, which we reduce by a factor of 0.5 every
20 epochs.

sθ only version For the 1-step loss, this method is similar to Rissanen et al. [RHS22], which
proposes a classical diffusion-like model that generates data from the dynamics of the heat equation.
Nonetheless, the implementation details and methodology are analogous to the multi-step loss training,
except that the reverse physics step P̃−1 is not explicitly defined but instead learned by the network
sθ(x, t) together with the score at the same time. We make use of the same ResNet architecture as
the default variant. Except for the reverse physics step, the training setup is identical. Although the
network sθ(x, t) is not trained with any noise for a larger sliding window with the multi-step loss,
we add noise to the simulation states for the SDE inference, while there is no noise for the ODE
inference.

Baseline methods All other baseline methods are trained for 80 epochs using the Adam optimizer
algorithm with an initial learning rate of 10−4, which is decreased by a factor of 0.5 every 20 epochs.
For the training data, we consider solutions to the heat equation consisting of initial state x0 and end
state xT .

Test-time distribution shifts We have tested the effects of test-time distribution shifts for the heat
equation experiment. We train the score network sθ for a specific combination of diffusivity α and
noise g and vary both parameters for testing. We modify both the simulator and test ground truth for
the updated diffusivity and noise. See figure 11. Overall, for small changes of the parameters, there is
very little overfitting. Changes in the reconstruction MSE and spectral error can mainly be explained
by making the task itself easier or harder to which our network generalizes nicely, e.g., less noise or
higher diffusivity leads to smaller reconstruction error.

Additional results We show visualizations for the predictions of different methods in figure 12 and
figure 13.
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Figure 11: Test-time distribution shifts for noise and diffusivity. The correction network sθ is trained
on diffusivity α = 1.0 and noise g ≡ 0.1. During testing, we vary the diffusivity of the test data set
and simulator as well as the noise for inference. Especially the low spectral errors indicate that the
network generalizes well to the new behavior of the physics.

E Buoyancy-driven Flow with Obstacles

We use semi-Lagrangian advection for the velocity and MacCormack advection for the hot marker
density within a fixed domain Ω ⊂ [0, 1]× [0, 1]. The temperature dynamics of the marker field are
modeled with a Boussinesq approximation.

Training We train all networks with Adam and learning rate 10−4 with batch size 16. We begin
training with a sliding window size of S = 2, which we increase every 30 epochs by 2 until
Smax = 20.

Separate vs. joint updates We compare a joint update of the reverse physics step and corrector
function sθ, see figure 7b, and a separate update of reverse physics step and corrector function, see
figure 7c. An evaluation regarding the reconstruction MSE and perceptual distance is shown in
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(a) Ground truth (b) Input (c) SMDP - ODE (d) ResNet (e) FNO

(f) sθ only - ODE (g) sθ(x, t) only - SDE (h) BNN

(i) SMDP - SDE

Figure 12: Predictions of different methods for the heat equation problem (example 1 of 2).

(a) Ground truth (b) Input (c) SMDP - ODE (d) ResNet (e) FNO

(f) sθ only - ODE (g) sθ only - SDE (h) BNN

(i) SMDP - SDE

Figure 13: Predictions of different methods for the heat equation problem (example 2 of 2). Neither
the BNN nor the "sθ only" model can produce small-scale structures.

figure 14. Both training and inference variants achieve advantages over "P̃−1 only" and "sθ only"
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approaches. Overall, there are no apparent differences for the ODE inference performance but slight
benefits for the SDE inference when separating physics and corrector update.

Limited-memory BFGS We use numerical optimization of the marker and velocity fields at
t = 0.35 to match the target smoke and velocity fields at t = 0.65 using limited-memory BFGS
[LN89, LBFGS] and the differentiable forward simulation implemented in phiflow [Hol+20]. Our
implementation directly uses the LBFGS implementation provided by torch.optim.LBFGS [Pas+19].
As arguments, we use history_size = 10, max_iter = 4 and line_search_fn = strong_wolfe.
Otherwise, we leave all other arguments to the default values. We optimize for 10 steps which takes
ca. 240 seconds per sample on a single NVIDIA RTX 2070 gpu.

Diffusion posterior sampling DPS An additional baseline for this problem is diffusion posterior
sampling for general noisy inverse problems [Chu+23, DPS]. As a first step, we pretrain a diffusion
model on the data set of marker and velocity fields at t = 0.35. We use the mask for obstacle positions
as an additional conditioning input to the network to which no noise is applied. Our architecture and
training closely resemble Denoising Diffusion Probabilistic Models [HJA20, DDPM]. Our network
consists of ca. 18.44 million parameters trained for 100k steps and learning rate 1 × 10−4 using
cosine annealing with warm restarts (T0 = 50000, ηmin = 5 × 10−6). The measurement operator
A is implemented using our differentiable forward simulation. We consider the Gaussian version
of DPS, i.e., Algorithm 1 in [Chu+23] with N = 1000. We fix the step size ζi at each iteration i to
1/||y−A(x̂0(xi))||. For each inference step, we are required to backpropagate gradients through the
diffusion model and the forward simulation. Inference for a single sample requires ca. 5000 seconds
on a single NVIDIA RTX 2070 gpu.

Additional results We provide more detailed visualizations for the buoyancy-driven flow case
in figure 16 and figure 17. These again highlight the difficulties of the reverse physics simulator
to recover the initial states by itself. Including the learned corrections significantly improves this
behavior.

In figure 15, we also show an example of the posterior sampling for the SDE. It becomes apparent
that the inferred small-scale structures of the different samples change. However, in contrast to cases
like the heat diffusion example, the physics simulation in this scenario leaves only little room for
substantial changes in the states.
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Figure 14: Comparison of separate and joint updates averaged over three runs.

Figure 15: Comparison of SMDP-SDE predictions and ground truth for buoyancy-driven flow at
t = 0.36.
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Figure 16: Predictions for buoyancy-driven flow with obstacles (example 1 of 2).
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Figure 17: Predictions for buoyancy-driven flow with obstacles (example 2 of 2).

31



Ground truth 100 steps 200 steps 300 steps

400 steps 500 steps 750 steps 1000 steps 2000 steps

Figure 18: Steps of Langevin dynamics for ϵ = 2× 10−5.

Ground truth 100 steps 200 steps 300 steps

400 steps 500 steps 750 steps 1000 steps 2000 steps

Figure 19: Steps with Langevin dynamics for ϵ = 2× 10−5 and an additional step with ∆t sθ(x, t)
which smoothes the images.

F Isotropic turbulence

Training For the physics surrogate model P̃−1, we employ an FNO neural network, see appendix
B, with batch size 20. We train the FNO for 500 epochs using Adam optimizer with learning rate
10−3, which we decrease every 100 epochs by a factor of 0.5. We train sθ(x, t) with the ResNet
architecture, see appendix B, for 250 epochs with learning rate 10−4, decreased every 50 epochs by a
factor of 0.5 and batch size 6.

Refinement with Langevin Dynamics Since the trained network sθ(x, t) approximates the score
∇x log pt(x), it can be used for post-processing strategies [WT11; SE19]. We do a fixed point
iteration at a single point in time based on Langevin Dynamics via:

xi+1
t = xi

t + ϵ · ∇x log pt(x
i
t) +
√
2ϵzt (68)

for a number of steps T and ϵ = 2× 10−5, cf. figure 18 and figure 19. For a prior distribution πt,
x0
t ∼ πt and by iterating (68), the distribution of xT

t equals pt for ϵ → 0 and T → ∞. There are
some theoretical caveats, i.e., a Metropolis-Hastings update needs to be added in (68), and there are
additional regularity conditions [SE19].

Additional results We show additional visualizations of the ground truth and reconstructed trajec-
tories in figure 20 and figure 21.
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Figure 20: Predictions for isotropic turbulence (example 1 of 2).
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Figure 21: Predictions for isotropic turbulence (example 2 of 2).
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