
A Residual Q-Function Derivation

In this section, we provide a detailed breakdown of the derivation process of the residual Q-function,
i.e., Eqn. (5). First, we can write r(s,a) as a function of the soft Q-function according to Eqn. (2):

r(s,a) = γEs′∼p(·|s,a)

[
α log

∫
A
exp

(
1

α
Q∗(s′,a′)

)
da′

]
−Q∗(s,a). (19)

Eqn. (5b) results from substituting r(s,a) with the right-hand side of the above equation. To
derive Eqn. (5c), we first write

∫
A exp

(
1
αQ

∗(s′,a′)
)
da as the normalization factor Zs′ based on

its definition. Then note that, according to the definition of the residual Q-function QR,t, we can
substitute Q̂t(s

′,a′) in Eqn. (5b) with:

Q̂t(s
′,a′) = QR,t(s

′,a′) + ωQ∗(s′,a′)

= QR,t(s
′,a′) + ωα log π (a′|s′) + ωα logZs′ ,

(20)

where the second step comes from Eqn. (3). To obtain Eqn. (5d), note that Zs′ is not a function of a′,
so we can write the last term of Eqn. (5c) as:

Es′

[
α̂ log

∫
A
exp

(
1

α̂
(QR,t(s

′,a′) + ωα log π (a′|s′) + ωα logZs′)

)
da′

]
=Es′

[
α̂ logZ

ωα/α̂
s′

∫
A
exp

(
1

α̂
(QR,t(s

′,a′) + ωα log π (a′|s′))
)
da′

]
(21a)

=Es′

[
α̂ log

∫
A
exp

(
1

α̂
(QR,t(s

′,a′) + ωα log π (a′|s′))
)
da′

]
+ ωαγEs′ logZs′ . (21b)

B Residual Soft Q-learning Derivation

In this section, we provide the detailed derivation of residual soft Q-learning’s objective function, i.e.,
Eqn (7). The original objective of soft Q-learning is to minimize the TD error of the soft Q-function:

JQ(θ) = E(st,at)

[
1

2

(
Q̂target

θ̄
(st,at)− Q̂θ(st,at)

)2
]
, (22)

where the target Q-value is defined as:

Q̂target

θ̄
(st,at) = rR(st,at) + ωr(st,at) + γEs′∼p(·|st,at)

[
α̂ log

∫
A
exp

(
1

α̂
Q̂θ(s

′,a′)

)
da′

]
.

(23)
Given a parameterized residual Q-function, we can write the parameterized soft Q-function as
Q̂θ(s,a) = QR,θ(s,a) + ωQ∗(s,a). Following steps similar to Eqn. (5), we can express the target
Q-value with the residual Q-function as:

Q̂target

θ̄
(st,at) =rR(st,at) + ωQ∗(st,at)

+γEs′∼p(·|st,at)

[
α̂ log

∫
A
exp

(
1

α̂
(QR,θ(s

′,a′) + ω′ log π(a′|s′))
)
da′

]
.

(24)

Thus, if we define the target residual Q-value as:

Q̂target

R,θ̄
(st,at) =rR(st,at)

+γEs′∼p(·|st,at)

[
α̂ log

∫
A
exp

(
1

α̂
(QR,θ(s

′,a′) + ω′ log π(a′|s′))
)
da′

]
,

(25)

it is then straightforward to see that the TD error of the soft Q-function equals the TD error of the
residual Q-function. It leads to Eqn. (7) and (8) when we use the data in the replay buffer to estimate
the target residual Q-value and the TD error.

14

C Policy Evaluation for Residual Soft Actor-Critic

In this section, we derive the policy evaluation step of the residual soft actor-critic algorithm in-
troduced in Sec. 3. In the soft actor-critic algorithm, the policy evaluation step aims to iteratively
compute the soft Q-value of a policy π̂, which relies on repeatedly applying a modified soft Bellman
backup operator given by:

Q̂t+1(s,a) = rR(s,a) + ωr(s,a) + γEs′∼p(s′|a)

[
Ea′∼π̂

[
Q̂t(s

′,a′)− α̂ log π̂(a′|s′)
]]

. (26)

We can then derive an update rule for the residual Q-function from the modified soft Bellman backup
operator following a similar procedure as in Eqn. (5):

QR,t+1(s,a)

= rR(s,a) + ωr(s,a) + γEs′

[
Ea′∼π̂

[
Q̂t(s

′,a′)− α̂ log π̂(a′|s′)
]]
− ωQ∗(s,a), (27a)

= rR(s,a) + ωQ∗(s,a)− ω′γEs′ logZs′ − ωQ∗(s,a)

+ γEs′ [Ea′∼π̂ [QR,t(s
′,a′) + ω′ log π(a′|s′) + ω′ logZs′ − α̂ log π̂(a′|s′)]] , (27b)

= rR(s,a)− ω′γEs′ logZs′ + ω′γEs′ logZs′

+ γEs′ [Ea′∼π̂ [QR,t(s
′,a′) + ω′ log π(a′|s′)− α̂ log π̂(a′|s′)]] , (27c)

= rR(s,a) + γEs′ [Ea′∼π̂ [QR,t(s
′,a′) + ω′ log π(a′|s′)− α̂ log π̂(a′|s′)]] . (27d)

D Environment Configuration

In this section, we introduce the detailed configurations of the selected environments, including the
definitions of the state and action spaces, observations, and reward functions.

CartPole balancing. In the cartpole environment, a pole is attached to a cart by an unactuated joint.
The cart is moving along a track. The states are defined as the coordinate of the cart along the track, x,
the angle of the pole, δ, the velocity of the cart, v, and the angular velocity of the pole, δ̇. The action
is a binary variable indicating the direction of the force exerted on the cart, i.e., A = {"left", "right"}.
The goal of the basic task is to balance the pole by exerting forces on the cart, which is considered to
be successful if the pole does not fall down for 500 steps. The basic reward function is a sum of two
components, which are:

Survival Reward : rsurvival(s,a) = 1, (28)

Balancing Reward : rbalance(s,a) = −
10|δ|
0.2095

. (29)

During policy customization, we demand an additional task that requires the cart to stay at the center
of the rack. The corresponding add-on reward is defined as rR(s,a) = −|x|/2.4, which penalizes the
deviation from the center of the rack at each time step.

Continuous mountain car. In the mountain car environment, the car is placed at the bottom of a
sinusoidal valley with a randomized initial position. The states are defined as the horizontal coordinate
of the car, x, and the velocity of the car, v. The action is the directional force f applied to the car.
The goal of the basic task is to accelerate the car to reach the goal state on top of the right hill with
the least energy consumption. It is considered successful if the car reaches the goal within 999 steps.
The basic reward function is designed as a sum of the following two components:

Goal Reward : rgoal(s,a) = 100× 1(s = sg), (30)

Energy Cost : renergy(s,a) = −0.1f2. (31)

During policy customization, we enforce an additional preference to avoid negative actions whenever
possible. The add-on reward is defined as rR(s,a) = −0.5× 1(f < 0) to penalize negative force.

Highway navigation. In the highway environment, we navigate the vehicle on a three-lane highway

around other vehicles. The state vector of the i-th vehicle is defined as si =
[
xi, yi, vx,i, vy,i, θi, θ̇i

]⊺
,

where xi, yi are the xy-coordinates, vx,i, vy,i are the velocities along the x- and y-axes, θi is the yaw

15

angle, and θ̇ is the yaw rate. The ego vehicle controlled by the policy is indexed with i = 0. The
observation collects the normalized states of all the vehicles. The discrete action space consists of five
meta-actions that govern the corresponding built-in controllers provided as part of the environment.
The meta-actions define different high-level behaviors in the highway environment, referred to as
"switch left", "switch right", "faster", "idle", and "slower" [30]. The goal of the basic task is to drive
the vehicle through the traffic safely and efficiently. The task is considered successful if the car is
driven without collision over 40 steps. The basic reward function consists of three components:

Survival Reward : rsurvival(s,a) = 1, (32)
Velocity Reward : rvelocity(s,a) = 0.4vnorm, (33)

Collision Cost : rcollision(s,a) = −0.5× 1(isCollision(s) = 1), (34)

where vnorm is defined as (
√

v2
x,0+v2

y,0−20)/10 and clipped into [0, 1], and isCollision is a built-in
function to determine if the ego collides with the other vehicles. During policy customization, we
enforce an additional preference to stay on the rightmost lane whenever possible, which is formulated
as an add-on reward function defined as:

rR(s,a) = 0.5
Ilane(s)

num of lanes− 1
, (35)

where the function Ilane gives the index of the lane where the car is driving, with the leftmost lane
indexed with 0.

Parking. In the parking environment, we control a vehicle in the parking lot. The states of the vehicle
are defined the same as in the highway environment. The observation consists of the current state,
s, and the target parking state, sg. The actions are the longitudinal acceleration command, a, and
the steering angle command, δ. The goal of the basic task is to park the vehicle at the target parking
space within a minimal number of time steps, the task is considered successful if the error between
the vehicle state and the target parking state becomes smaller than a threshold value within 100 steps.
Hence, the basic reward is simply defined as r(s,a) = −wT ∥s− sg∥. During policy customization,
we add an additional requirement to avoid touching the boundaries of the parking slots during parking,
the add-on reward is defined as rR(s,a) = −1(Violation(s) = 1), where Violation is a function
detecting whether the vehicle violates the enforced boundary constraint.

E Implementation Details and Hyperparameters

In this section, we introduce the detailed implementation of the proposed algorithms and the hyperpa-
rameters we used in our experiments for each environment. We implemented the proposed algorithms
and all the baseline methods upon Stable-Baselines3 [41] and its imitation library [16]. In addition,
we implemented the residual maximum-entropy MCTS based on the MCTS planner provided by the
highway-env environment. All the experiments were conducted on Ubuntu 16.04 with Intel Core
i7-7700 CPU @ 3.60GHz × 8, GeForce GTX 1070/PCIe/SSE2, and 32 GB RAM.

E.1 Algorithm Implementation

Residual Soft Q-Learning was implemented upon the standard deep Q-network (DQN) from Stable-
Baselines3 [41]. In specific, we substituted the target Q-value with the target residual Q-value defined
in Eqn. (8) when computing the TD error for the loss function.

Residual Soft Actor-Critic was implemented upon the standard soft actor-critic (SAC) from Stable-
Baselines3 [41]. Similar to the case of residual soft Q-learning, we substituted the target Q-value
with the target residual Q-value defined in Eqn. (9) when computing the TD error for the critic loss.
In addition, we added the log-likelihood of the prior policy into the actor loss as in Eqn. (10).

Residual Maximum-Entropy MCTS was implemented upon the MCTS planner provided by the
highway-env environment. We first adapted it to the maximum-entropy MCTS proposed in [52] and
then implemented the residual maximum-entropy MCTS upon it. The pseudo-code of the proposed
algorithm is presented in the Algorithm 1.

E.2 Hyperparameters

RL prior policy. We adopted the hyperparameters from RL Baselines3 Zoo [40] for the Cart Pole,
Continuous Mountain Car and Highway environments. For the Parking environment, we adopted

16

the hyperparameter provided in Stable-Baselines3’s document [41]. We further adjusted the learning
rate and increase the number of training steps for better performance. The final learning rate and the
number of training steps for each environment are summarized in Table 2.

IL prior policy. The IL prior policies were trained by imitating the RL prior policies with GAIL.
The same RL algorithms used to train the RL experts were used as the policy learning algorithms in
GAIL. Thus, we adopted the same hyperparameters for the policy learners. For each environment, we
further tuned the following hyperparameters specified in the Stable-Baselines3 imitation library [16]:

• expert_min_episodes: The minimum number of episodes of expert demonstration.

• demo_batch_size: The number of samples contained in each batch of expert data.

• gen_replay_buffer_capacity: The capacity of the generator replay buffer, i.e., the
maximum number of state-action pairs sampled from the generator that can be stored.

• n_disc_updates_per_round: The number of discriminator update steps after each itera-
tion of generator update.

The final values of these hyperparameters for each environment are summarized in Table 3.

Residual Q-learning policies. The model-free residual Q-learning policies were trained with the
same hyperparameters of their corresponding RL prior policy. The additional hyperparameters are
summarized in Table 4. For the Parking environment, we scaled ω′ by 10 times at the first 105 training
steps, so that the residual Q-learning policy was trained to copy the prior policy. We found that it
could accelerate the exploration at the early stage and stabilize the training process. For residual
maximum-entropy MCTS, the hyperparameters include ω′, maximum iterations Itermax, planning
horizon H , and the exploration coefficient ϵ. The final values of hyperparameters we used in the
Parking experiment are summarized in Table 5.

Table 2: Learning Rate and Training Steps of RL Policies

Hyperparameter Cart Pole Mountain Car Highway ParkingContinuous

Learning Rate 2.3× 10−3 3× 10−4 10−4 10−3

Number of Training Steps 105 105 5× 105 8× 105

Table 3: Hyperparameters of GAIL Imitated Policies

Hyperparameter Cart Pole Mountain Car Highway ParkingContinuous

expert_min_episodes 103 104 103 104

demo_batch_size 1024 1024 1024 1024
gen_replay_buffer_capacity 2048 2048 2048 2048
n_disc_updates_per_round 4 4 4 4

Table 4: Hyperparameters of Residual Q Policies

Hyperparameter Prior Policy Cart Pole Mountain Car Highway ParkingContinuous

α
RL 1 0.1 1 0.0097
IL 1 0.1 1 auto

α̂
RL 1 0.1 1 auto
IL 1 0.1 1 0.0611

ω′ RL 1 0.1 1 0.0097
IL 1 0.1 1 0.0611

17

Table 5: Hyperparameters of Residual Maximum-Entropy MCTS

Hyperparameter Prior Policy Value

ω′ RL 1
IL 1

Itermax
RL 150
IL 150

H
RL 6
IL 6

ϵ
RL 0.1
IL 1

F Ablation Study

In this section, we investigate three alternative algorithm designs for policy customization to illustrate
the advantages of the proposed residual Q-learning framework. In Sec. F.1 and F.2, we study two
alternatives where the KL-divergence between the customized and prior policies is used to incorporate
the behavior prior into the customized policy. In Sec. F.3, we study a theoretically equivalent form of
residual Q-learning that can be directly solved with off-the-shelf RL algorithms.

F.1 Greedy Reward Decomposition

One common method to infuse IL objectives into RL is directly regularizing the divergence between
the trained RL and prior policies during policy updates. As shown in AWAC [38], when using
KL-divergence to measure the distance between policies, the regularized optimal policy becomes a
maximum-entropy policy with the advantage weighted by the prior policy. If we directly adapt it to
solve the policy customization problem, the customized policy is essentially defined as the solution
to the following optimization problem at each policy update step:

π̃t = argmax
π̃∈Π

Ea∼π̃(·|s)

[
Q̃R,t(s,a)− α̂ log π̃(a|s)

]
− λDKL(π̃(·|s)∥π(·|s)), (36)

where Q̃R,t is the soft Q-function of the MDP with only the add-on reward rR(s,a), which is defined
iteratively with the following update rule:

Q̃R,t+1(s,a) = rR(s,a) + γEs′∼p(s′|a)

[
Ea′∼π̂t

[
Q̃R,t(s

′,a′)− α̂ log π̃t(a
′|s′)

]]
. (37)

The closed-form solution to the optimization problem is given as:

π̃t(a|s) ∝ exp

(
1

α̂+ λ

(
Q̃R,t(s,a) + λ log π(a|s)

))
. (38)

We can reduce our residual Q-learning policy to the same form by simply replacing the residual
Q-function in Eqn. (6) with the soft Q-function Q̃R,t. The resulting policy solves the optimization
problem in AWAC but with an entropy weight of α̂ − λ in the objective function. If we consider
it for the policy customization problem, it is essentially equivalent to heuristically estimating the
optimal Q-function as the sum of the optimal Q-functions corresponding to the basic and add-on
rewards. Hence, the synthesized policy is not the optimal solution to the target MDP but a greedy
approximation [49, 25]. We compare residual Q-learning with this greedily customized policy on
the Continuous Mountain Car and Parking environments. As shown in Table 6, residual Q-learning
outperforms the greedy policies on both the basic and add-on objectives, especially on the challenging
Parking environment. Compared to the prior policy, greedy customization compromises the policy’s
success rate on the basic parking task to customize them towards satisfying the add-on objective.
However, the greedy policy still has a significantly lower non-violation rate compared to the residual
Q-learning policy. It validates that our framework is a more principled method to jointly optimize the
IL and RL objectives for policy customization than divergence-based regularization.

18

Table 6: Greedy Reward Decomposition Experimental Results

Env. Policy Basic Task Add-on Task

Succ. Rate Basic Reward nneg Add-on Reward

Cont.
Mt. Car

RL Greedy 100% 95.59± 0.51 39.47± 0.77 −3.95± 0.08
RL Residual-Q 100% 95.61± 0.43 37.90± 0.75 −3.79± 0.07

IL Greedy 100% 93.96± 0.08 46.10± 1.53 −4.61± 0.15
IL Residual-Q 100% 94.41± 0.06 41.08± 1.01 −4.11± 0.10

Env Policy Succ. Rate Basic Reward γno-violation Add-on Reward

Parking

RL Greedy 84.07% −7.38± 2.90 70.39% −0.26± 0.64
RL Residual-Q 98.73% −7.60± 3.07 96.09% −0.03± 0.20

IL Greedy 69.06% −7.63± 4.96 48.79% −0.49± 0.87
IL Residual-Q 83.59% −7.93± 4.84 66.07% −0.32± 0.73

F.2 Augmenting Reward with Policy KL-Divergence

Alternatively, some works [51, 58] have explored adding the policy divergence to the reward function
as an IL objective. In this subsection, we investigate this line of approaches for policy customization.
We formulate the reward function of the target MDP to solve as the sum of the add-on reward and a
policy divergence regularization term. In particular, we follow [58] to augment the add-on reward
with a penalty whose expectation regularizes the KL-divergence between the customized and prior
policies. Formally, the reward function is defined as:

řt(s,a) = rR(s,a)− β log
π̌t (a|s)
π (a|s)

, (39)

where π̌t denotes the customized policy after the tth iteration of policy update, and β is a hyperpa-
rameter to balance the add-on reward and the policy regularization term. We can then apply standard
RL algorithms to customize the policy toward this reward function. We evaluated this method in
the Parking environment with soft actor-critic as the learning algorithm. As shown in Figure 2, It
failed to find a customized policy that at least perform well on the basic parking task—The success
rate was persistently close to zero during the learning procedure. We believe that one crucial factor
contributing to its failure is that the basic and add-on rewards are mostly orthogonal in our setting.
The add-on reward only encodes additional task requirements; thus, we heavily rely on the prior
policy to embed the desirable behavior on the basic task. Merely regularizing the policy divergence
is therefore insufficient—being close to the prior policy in terms of probabilistic distance does not
necessarily imply behavior that accomplishes the basic task objective.

F.3 Augmenting Reward with Policy Log Likelihood

The last alternative algorithm we investigate is a theoretically equivalent form of residual Q-learning.
Observe that if we add ω′ log π(s,a) to both sides of Eqn. (5), we obtain:

Qaug
R,t+1(s,a) = rR(s,a) + ω′ log π(s,a) + γEs′

[
α̂ log

∫
A
exp

(
1

α̂
Qaug

R,t (s
′,a′)

)
da′

]
, (40)

where Qaug
R,t (s,a) = QR,t(s,a) + ω′ log π(s,a). It is then straightforward to see that Qaug

R,t is the
soft Q-function corresponding to the reward function rR(s,a) + ω′ log π(s,a), which means that
we can find a policy equivalent to the residual Q-learning one, simply through solving the MDP
Maug = (S,A, rR + ω′ log π, p) with off-the-shell RL algorithms. We test this equivalent algorithm
in the Parking environment. As shown in Figure 2, similar to the case with divergence-augmented
reward, soft actor-critic failed to find a customized policy that can complete the basic parking task.
We think it is because estimating Qaug

R,t is inherently difficult since the complex policy log-likelihood
function is embedded into the reward. In contrast, when estimating Qaug

R,t , our residual Q-learning
framework fully leverages our prior knowledge on log π and only estimates the residual part during
policy customization. Thus, residual Q-learning can more efficiently explore and optimize the policy.

19

(a) (b)

Figure 2: Learning curves in the Parking environment for different algorithms, including residual soft
actor-critic, soft actor-critic with divergence-augmented reward (Appendix F.2), and soft actor-critic
with likelihood-augmented reward (Appendix F.3). We plot the curves of the non-violation rate and
success rate over the number of episodic steps in subplots (a) and (b) respectively. The error bands
indicate standard deviations computed over four trials with different random seeds.

(a) IL Prior Policy

(b) IL Residual-Q

Time

Figure 3: Representative examples from the Parking environment comparing the results of executing
the IL prior and the residual Q-learning policy customized from the IL prior.

G Visualization

In this section, we visualize some representative examples from the Parking environment. As shown
in Figure 3, the IL policy fails to stop the car within the target parking slot, while the customized
policy is able to do so with the guidance of the boundary violation constraint. As shown in Figure 4,
compared to the RL prior policy, the proposed residual Q-learning policy finds a very different and
violation-free parking route, whereas the greedily customized policy gets stuck and fails to reach
the target parking slot. Also, it is worth noting that the customized policy behaves differently from
the RL full policy. As discussed in Sec. 5.2, we think the behavior difference is mainly due to the
approximation errors in value and policy networks, which results in an imperfect prior policy.

H Additional Experiments

In this section, we present the additional experiments conducted in the MuJoCo environments [47].
The selected environments are Ant-v3, Humanoid-v3, and Hopper-v3. The basic task is to control
the robot to move along the positive x-direction. During policy customization, we added an add-on
reward to encourage the robot to also move along the positive y-direction for Ant and Humanoid.
For Hopper, we added an add-on reward to encourage the robot to jump higher. The results are
summarized in Table 7 and Fig. 5. In all the environments, the policies customized by residual
Q-learning achieved 1) higher add-on rewards than the prior policies; and 2) a trade-off between
the basic and add-on tasks similar to the RL full policies. In contrast, the RL fine-tuning baseline

20

(a) RL Prior Policy (b) RL Full Policy (c) RL Greedy (d) RL Residual-Q

T
im

e

Figure 4: Representative examples from the Parking environment comparing the results of executing
RL prior, RL full policy, and policies customized from RL prior with different approaches.

(i.e., the one described in Sec. 5.4 and Appendix F.1) tends to achieve higher add-on rewards but
lower basic rewards compared to the residual-Q and RL full policies. The total rewards of the RL
fine-tuning baseline are also always lower than the residual-Q policies. The results further validate
that the proposed residual Q-learning method outperforms RL fine-tuning in policy customization
problems. The only exception is Humanoid with IL prior. Note that this IL prior was trained by
BC since we did not find hyperparameters to let GAIL succeed. The BC prior is not an ideal prior
suitable for residual Q-learning, as it does not follow the maximum-entropy policy distribution. It is
reasonable that residual-Q performs worse than RL fine-tuning given the less diverse BC prior, since
residual Q-learning relies on the prior policy to encode the basic task reward, whereas RL fine-tuning
only uses the prior policy as a regularization.

21

Table 7: Experimental Results of Residual-Q Policy Customization in Mujoco

Env. Policy Full Task Basic Task Add-on Task

Total Reward Basic Reward v̄y Add-on Reward

Ant

RL Prior Policy 5586.71± 1098.17 5527.94± 1075.61 0.06± 0.14 58.77± 135.27
RL Greedy 6373.46± 689.80 2528.59± 350.13 3.86± 0.32 3844.87± 355.00
RL Residual-Q 6913.15± 587.86 3080.87± 284.93 3.86± 0.11 3832.28± 324.68

IL Prior Policy 5280.65± 1854.30 4673.23± 1665.73 0.64± 0.22 607.42± 221.39
IL Greedy 6050.26± 1403.14 1962.40± 531.23 4.28± 0.62 4087.87± 896.79
IL Residual-Q 6760.40± 755.71 3105.70± 367.35 3.72± 0.18 3654.70± 402.45

RL Full Policy 6642.35± 1607.73 3546.07± 858.64 3.27± 0.49 3096.29± 761.58

Env. Policy Total Reward Basic Reward v̄y Add-on Reward

Humanoid

RL Prior Policy 5514.65± 59.25 5472.68± 32.19 0.04± 0.08 41.97± 79.92
RL Greedy 6209.65± 1660.55 4513.35± 1186.40 1.74± 0.33 1696.30± 474.79
RL Residual-Q 6126.81± 18.73 5363.79± 17.21 0.76± 0.01 763.02± 9.79

IL Prior Policy* 4848.65± 2278.13 4874.01± 2297.02 −0.01± 0.09 −25.35± 41.45
IL Greedy 9306.88± 21.17 6586.47± 21.01 2.72± 0.02 2720.41± 19.16
IL Residual-Q 7610.38± 515.08 5206.52± 347.90 2.41± 0.11 2403.87± 167.26

RL Full Policy 5771.79± 273.83 5403.25± 257.07 0.37± 0.01 368.55± 19.85

Env Policy Total Reward Basic Reward z̄ Add-on Reward

Hopper

RL Prior Policy 4439.13± 805.73 3217.66± 568.79 1.33± 0.01 1221.47± 237.53
RL Greedy 4661.77± 14.30 3266.62± 14.39 1.40± 0.00 1395.15± 4.35
RL Residual-Q 4798.23± 21.92 3428.70± 18.62 1.37± 0.00 1369.52± 4.49

IL Prior Policy 3828.48± 796.73 2754.69± 568.38 1.32± 0.01 1073.79± 228.62
IL Greedy 4619.94± 13.50 3236.77± 13.41 1.38± 0.00 1383.17± 0.51
IL Residual-Q 4704.97± 48.77 3335.57± 35.53 1.37± 0.01 1369.40± 17.96

RL Full Policy 4698.78± 7.23 3242.15± 5.71 1.46± 0.00 1456.63± 4.83

The results are computed over 200 episodes. The statistics are in the format of mean± std.
* The IL prior was trained by BC in Humanoid since we did not find hyperparameters to let GAIL succeed.

(a) Ant (c) Hopper(b) Humanoid

Figure 5: (a) The trajectory of the Ant robot on the x and y axis. (b) The trajectory of the Humanoid
robot on the x and y axis. (c) The trajectory of the top of the Hopper robot on the x and z axis.

22

Algorithm 1 Residual Maximum-Entropy MCTS
Input: Current state s0; Prior policy π; Hyperparameter ω′; Maximum iterations Itermax; Planning
horizon H; Exploration coefficient ϵ.
Output: Root node n0 of the built tree.

1: Initialize the root node n0(s0).
2: Initialize iteration counter Iter = 0.
3: while Iter < Itermax do
4: nT−1 ← SELECTION(n0)
5: nT ← EXPANSION(nT−1)
6: R← SIMULATION&EVALUATION(nT)
7: BACK-PROPAGATION(nT , R)
8: end while
9: return n0

10: function SELECTION(n0)
11: nT−1 ← n0

12: while nT−1 is non-terminal do
13: if nT−1 is not fully expanded then
14: return nT−1

15: else
16: nT−1 ← child node of nT−1 with action sampling from Eqn. 13.
17: end if
18: end while
19: return nT−1

20: end function

21: function EXPANSION(nT−1)
22: if nT−1 is non-terminal and T ̸= H then
23: nT ← expand nT−1 with an untried action.
24: return nT

25: else
26: return nT−1

27: end if
28: end function

29: function SIMULATION&EVALUATION(nT)
30: if nT is non-terminal and T ̸= H then
31: nterminal ← Roll-out(nT)
32: else
33: nterminal ← nT

34: end if
35: {sT ,aT , · · · , sterminal,aterminal} ← extract from nterminal.
36: R←

∑terminal
t=T γt−T rR(st,at)

37: return R
38: end function

39: function BACK-PROPAGATION(nT , R)
40: t← T − 1
41: while t ≥ 0 do
42: QR(st,at)← Eqn. 14
43: N(st,at)← N(st,at) + 1
44: t← t− 1
45: end while
46: end function

23

