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Abstract

Imitation Learning (IL) is a widely used framework for learning imitative behavior
from demonstrations. It is especially appealing for solving complex real-world
tasks where handcrafting reward function is difficult, or when the goal is to mimic
human expert behavior. However, the learned imitative policy can only follow
the behavior in the demonstration. When applying the imitative policy, we may
need to customize the policy behavior to meet different requirements coming from
diverse downstream tasks. Meanwhile, we still want the customized policy to
maintain its imitative nature. To this end, we formulate a new problem setting
called policy customization. It defines the learning task as training a policy that
inherits the characteristics of the prior policy while satisfying some additional
requirements imposed by a target downstream task. We propose a novel and
principled approach to interpret and determine the trade-off between the two task
objectives. Specifically, we formulate the customization problem as a Markov
Decision Process (MDP) with a reward function that combines 1) the inherent
reward of the demonstration; and 2) the add-on reward specified by the downstream
task. We propose a novel framework, Residual Q-learning (RQL), which can solve
the formulated MDP by leveraging the prior policy without knowing the inherent
reward or value function of the prior policy. We derive a family of residual Q-
learning algorithms that can realize offline and online policy customization, and
show that the proposed algorithms can effectively accomplish policy customization
tasks in various environments. Demo videos and code are available on our website:
https://sites.google.com/view/residualq-learning.

1 Introduction

Imitation learning (IL) is a widely used framework for learning imitative behavior from demonstra-
tions. It is especially appealing for solving complicated real-world tasks where handcrafting reward
function is difficult, or when the goal is to mimic expert behavior. For instance, IL has been widely
studied for synthesizing human-like agents from large-scale human demonstrations on challenging
real-world tasks, such as autonomous driving [4, 7, 2] and robot manipulation [59, 37, 39]. However,
when applying the imitative policy in open real-world scenarios, we may encounter different circum-
stances that impose diverse requirements beyond merely following the behavior in the demonstration,
such as reaching particular goals [45], enforcing safety [36], or complying with certain behavior
preferences [61]. In this case, we need to customize the imitative policy to meet those task-specific
objectives. Meanwhile, in many applications, we may still want the customized policy to possess
some inherent characteristics of the expert demonstration (e.g., human-like).
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To this end, we formulate a new problem setting we refer to as policy customization. In the policy
customization problem, we are given a pre-trained policy, and the task is to train a new policy that 1)
inherits the properties of the prior policy; 2) satisfies some additional requirements imposed by a given
downstream task. At first glance, this newly formulated problem may seem to be seamlessly solved
by existing reinforcement learning (RL) fine-tuning algorithms [44, 40, 61, 51], where RL is applied
to fine-tune a pre-trained policy obtained from behavior cloning (BC) or offline RL [31, 29, 34].
In particular, some RL fine-tuning methods combine different forms of IL objectives with RL to
accelerate policy training, e.g., maximizing the policy likelihood on demonstration [44], regularizing
the KL-divergence between the fine-tuned and prior policies [40, 61]. Different from the policy
customization problem we consider, the IL objectives are introduced heuristically as regularization in
RL fine-tuning. Solving policy customization instead requires a principled way to design the learning
objective to jointly optimize the policy’s performance on the imitative and downstream tasks, which
has not been well-studied in the RL fine-tuning literature.

In this work, we propose such a principled approach to interpret and design the policy customization
objective with a solid theoretical basis. Formally, we formulate policy customization as a Markov
decision process (MDP) whose reward function is a linear combination of 1) the inherent reward of
the demonstration; and 2) an add-on reward specified by the downstream task. The reward weight
directly determines the trade-off between the imitative and downstream tasks for policy optimization.
However, we cannot solve this MDP with existing RL algorithms, since we can only access the
imitative policy without knowing its underlying reward.

To tackle this challenge, we propose a novel Residual Q-Learning (RQL) framework that can
solve the formulated MDP without knowing the inherent reward or value function of the prior
policy. Specifically, we define a residual Q-function that, together with the log-likelihood of the
prior policy, can conveniently construct the maximum-entropy policy solving the target MDP. We
show that the residual Q-function can be iteratively learned with an update rule derived from soft
Bellman equation [17]. Hence, the proposed RQL method can be applied on top of any value-based
maximum-entropy RL algorithms. In particular, we derive residual soft Q-learning and residual soft
actor-critic—two model-free policy customization algorithms through RL fine-tuning—which are
adapted from soft Q-learning [17] and soft actor-critic [18] respectively. In addition, we introduce
a model-based policy customization algorithm adapted from maximum-entropy Monte Carlo Tree
Search (MCTS) [55], which enables zero-shot online policy customization when a dynamics model is
available. In our experiments, we show that the proposed RQL algorithms can effectively customize
the policies toward the additional task objective while maintaining their performance on the basic
tasks for which the prior policies are trained.

2 Policy Customization with Residual Q-Learning

2.1 Problem Formulation: Policy Customization

We consider a MDP defined by the tupleM = (S,A, r, p), where S is the state space, A is the
action space, and r : S × A → R is the reward function. Without loss of generality, we introduce
the formulation under continuous state and action spaces. The state transition probability function
p : S × A × S → [0,∞) represents the probability density of the next state st+1 ∈ S given the
current state st ∈ S and action at ∈ A. While the following formulation applies whether the
reward function r is given or not, we are primarily interested in the case when r remains unknown
and, instead, expert demonstrations are available to indicate desirable behaviors. We assume that
we have access to a prior policy π : S × A → [0,∞) pre-trained with imitation learning [15, 22]
methods. In particular, we follow the common practice and model π as a maximum-entropy policy to
account for sub-optimal demonstration [60], which is especially important for human demonstration.
Specifically, the policy π maximizes the entropy-augmented cumulative reward that is inherent in the
demonstrations. The resulting optimal policy follows a Boltzmann distribution [17] as follows:

π (a|s) = 1

Zs
exp

(
1

α
Q∗(s,a)

)
, (1)

where Q∗(s,a) is the soft Q-function as defined in [17] and it satisfies the soft Bellman equation:

Q∗(s,a) = r(s,a) + γEs′∼p(·|s,a)

[
α log

∫
A
exp

(
1

α
Q∗(s′,a′)

)
da′

]
, (2)
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and Zs is the normalization factor defined as
∫
A exp

(
1
αQ

∗(s,a)
)
da. The temperature coefficient α

determines the relative importance of entropy and reward in the maximum-entropy policy [17]. It is
straightforward to derive from Eqn. (1) that:

Q∗(s,a) = α log π (a|s) + α logZs. (3)
Instead of directly deploying the policy π, we aim to customize it to satisfy some additional re-
quirements for a given downstream task, specified by an add-on reward function rR : S ×A → R.
Meanwhile, we want the customized policy to inherit the characteristics of the original policy. For-
mally, we aim to leverage the pre-trained prior policy π to train a new policy for the MDP defined
by M̂ = (S,A, ωr + rR, p). The new reward function is defined as a weighted sum of the basic
reward r and the add-on reward rR so that the customized policy meets both requirements. Under this
setting, the main challenge lies in how to find the optimal policy for the new task without knowing
the prior reward r but only the imitative policy π.

2.2 Residual Q-Learning

Since the reward r is unknown, we cannot directly train the new policy to maximize the total reward
through RL. One plausible solution is to learn the inherent reward via inverse RL [12] and then
combine the inferred reward with the add-on reward for RL training. However, practical inverse RL
algorithms require jointly optimizing the policy and reward function, which could be challenging to
yield good performance in certain environments when compared to imitation learning [16]. Instead,
we aim to explore a solution without the need to explicitly infer the underlying reward to derive a
more flexible policy customization framework. It turns out that we can leverage the imitative policy π
to construct the new policy without knowing π’s underlying reward or value function. The proposed
method can be applied on top of any value-based maximum-entropy RL algorithms [17, 18, 55],
which rely on the soft Bellman update operator defined as:

Q̂t+1(s,a) = rR(s,a) + ωr(s,a) + γEs′∼p(·|s,a)

[
α̂ log

∫
A
exp

(
1

α̂
Q̂t(s

′,a′)

)
da′

]
, (4)

where Q̂t is the estimated soft Q-function for M̂ at the tth iteration. Instead of directly applying the
soft Bellman update operator to iterate Q̂t during policy learning, we define a residual Q-function as
QR,t := Q̂t − ωQ∗ and attempt to iterate this residual Q-function during policy learning. We then
derive an update rule for QR,t that does not depend on the reward or value function of π:

QR,t+1(s,a)

= rR(s,a) + ωr(s,a) + γEs′

[
α̂ log

∫
A
exp

(
1

α̂
Q̂t(s

′,a′)

)
da′

]
− ωQ∗(s,a), (5a)

= rR(s,a) + ωQ∗(s,a)− ωγEs′

[
α log

∫
A
exp

(
1

α
Q∗(s′,a′)

)
da′

]
+ γEs′

[
α̂ log

∫
A
exp

(
1

α̂
Q̂t(s

′,a′)

)
da′

]
− ωQ∗(s,a), (5b)

= rR(s,a)− ωαγEs′ logZs′

+ γEs′

[
α̂ log

∫
A
exp

(
1

α̂
(QR,t(s

′,a′) + ωα log π (a′|s′) + ωα logZs′)

)
da′

]
, (5c)

= rR(s,a)− ωαγEs′ logZs′ + ωαγEs′ logZs′

+ γEs′

[
α̂ log

∫
A
exp

(
1

α̂
(QR,t(s

′,a′) + ωα log π (a′|s′))
)
da′

]
, (5d)

= rR(s,a) + γEs′

[
α̂ log

∫
A
exp

(
1

α̂
(QR,t(s

′,a′) + ωα log π (a′|s′))
)
da′

]
, (5e)

where Eqn. (5b) results from expressing the reward r with the soft Q-function Q∗ based on Eqn. (2).
Eqn. (5c) results from the definition of the residual Q-function and Eqn. (3). Please refer to Ap-
pendix A for a step-by-step breakdown of the derivation process. In each iteration, we can then define
the policy corresponding to the current estimated Q̂t without computing Q̂t:

π̂t(a|s) ∝ exp

(
1

α̂
(QR,t(s,a) + ωα log π(a|s))

)
. (6)
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One remaining issue is that we do not have access to the underlying temperature coefficient α of
the prior policy π. Note that α is multiplied upon the reward weight ω in Eqn. (5) and Eqn. (6). In
practice, the reward weight is a hyperparameter to tune. Hence, we can define ω′ = ωα and directly
treat ω′ as the hyperparameter without the need to know the true α.

3 Practical Algorithms

In this section, we present three practical algorithms for policy customization under different settings
based on the update rule of residual Q-function in Eqn. (5) and the maximum-entropy policy defined
in Eqn. (6). In these algorithms, the goal is to find a policy that solves the MDP M̂ given a prior
policy π and the add-on reward function rR. We first introduce two model-free algorithms to learn
the residual Q-function and customize the policy through additional RL steps, which are adapted
from soft Q-learning [17] and soft actor-critic [18] respectively. Then we introduce a model-based
policy customization algorithm adapted from maximum-entropy MCTS [55], which enables zero-shot
online policy customization when a dynamics model is available.

Residual Soft Q-Learning. We adapt the soft Q-learning [17] algorithm to a residual soft Q-learning
algorithm for offline policy customization (i.e., policy customization via additional RL training
steps) when the action space is discrete. The residual algorithm is essentially the same as the soft
Q-learning. The only difference is that we use a function approximator parameterized by θ to model
the residual Q-function instead of the soft Q-function and denote it as QR,θ(s,a). At each iteration,
the parameters are updated by taking gradient steps to minimize the temporal-difference (TD) error:

JQR
(θ) = E(st,at,rR,t,st+1)∼D

[
1

2

(
Qtarget

R,θ̄
(st,at)−QR,θ(st,at)

)2
]
, (7)

where D is the replay buffer and the target residual Q-value Qtarget

R,θ̄
(st,at) is computed as:

Qtarget

R,θ̄
(st,at) = rR,t + γα̂ log

∑
a′∈A

exp

(
1

α̂

(
QR,θ̄(st+1,a

′) + ω′ log π(a′|st+1)
))

, (8)

with θ̄ being the target parameters. The above objective function can be derived straightforwardly from
the original objective function of soft Q-learning. We provide the detailed derivation in Appendix B
for completeness. With a discrete action space, we can compute the policy distribution exactly given
the residual Q-function and the prior policy as in Eqn. (6).

Residual Soft Actor-Critic. For tasks with continuous action spaces, we adapt the soft actor-
critic [18] algorithm to a residual soft actor-critic algorithm. We aim to train a parameterized residual
Q-function QR,θ(s,a) and a policy network π̂ϕ(a|s) by alternating between policy evaluation and
improvement. In the policy evaluation step, we update the residual Q-function for evaluating the
current policy. The loss function is essentially the one in Eqn. (7) but with the target residual Q-value
computed with respect to the current policy π̂ϕ:

Qtarget

R,θ̄
(st,at) = rR,t + γEa′∼π̂ϕ

[
QR,θ̄(st+1,a

′) + ω′ log π(a′|st+1)− α̂ log π̂ϕ(a
′|st+1)

]
(9)

The formula for the residual Q-value is derived from the modified Bellman update operator of soft
actor-critic [18] following a similar procedure as in Eqn. (5). The detailed derivation is attached to
Appendix C for completeness. In the policy improvement step, we improve the policy π̂ϕ leveraging
the current estimated residual Q-value QR,θ(s,a) and the prior policy π by minimizing the expected
KL-divergence between π̂ϕ and the desired maximum-entropy policy given the current QR,θ(s,a),
which is equivalent to minimizing the loss function below:

Jπ̂(ϕ) = Est∼D
[
Ea∼π̂ϕ

[α̂ log π̂ϕ(a|st)−QR,θ(st,a)− ω′ log π(a|st)]
]
. (10)

In our experiments, we implement the algorithm based on the practical soft actor-critic algorithm
presented in [19], which incorporates auto entropy adjustment and double residual Q-functions [14].

Residual Maximum-Entropy MCTS. The last algorithm we introduce is a model-based policy
customization algorithm adapted from the maximum-entropy MCTS [55] algorithm, which we refer
to as residual maximum-entropy MCTS. Our primary interest is in applying this algorithm in the
online setting with an offline learned dynamics model. MCTS essentially solves an online planning
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problem leveraging the prior policy and add-on reward function, which enables zero-shot online
policy customization. Such a paradigm is particularly useful for problem domains like autonomous
driving, where large-scale human driving datasets [11, 58, 53] are available for learning good imitative
policies [1, 46] as well as accurate traffic predictive models for online planning [10, 33]. Note that
MCTS-based methods inherently assume a discrete action space. In practice, we may extend it to
tasks with continuous action space by discretizing the action space [47, 57].

To solve the online planning problem, maximum-entropy MCTS constructs a look-ahead tree T
incrementally via Monte Carlo simulation. In the tree T , each node n(s) ∈ T corresponds to a state
s. For each action a ∈ A, the node n(s) stores an estimated soft Q-value Q̂(s,a) and a visit count
N(s,a). At each iteration, simulations are conducted starting from the root node of the search tree,
which consists of two stages: 1) querying a tree policy to select actions and traversing the tree until a
leaf node is reached; 2) querying an evaluation function (e.g., Monte Carlo simulations leveraging a
roll-out policy) at the leaf node to estimate the return-to-go. After simulation, the estimated returns
are propagated backward to update all the nodes along the simulated paths. Afterward, the tree is
grown by expanding the leaf nodes reached during the simulations. Different from a typical MCTS
algorithm [8], maximum-entropy MCTS exploits maximum-entropy policy optimization. Hence, the
tree policy used in maximum-entropy MCTS is defined as:

π̂(a|s) = (1− λs)
exp( 1

α̂ Q̂(s,a))∑
a′∈A exp( 1

α̂ Q̂(s,a))
+ λs

1

|A|
, (11)

where λs = ϵ|A|/log(
∑

a N(s,a)+1) with ϵ as a hyperparameter. Given a simulated trajectory from the
root node to a leaf node, i.e., {s0,a0, · · · , sT ,aT }, the Q-values of all the visited nodes are updated
with a softmax backup:

Q̂(st,at) =

{
rR(st,at) + ωr(st,at) + γR̂ t = T − 1,

rR(st,at) + ωr(st,at) + γα̂ log
∑

a′∈A exp
(

1
α̂ Q̂(st+1,a

′)
)

t < T − 1,
(12)

where R̂ is the return-to-go estimated by querying an evaluation function on the leaf node n(sT ).
To adapt the algorithm to residual maximum-entropy MCTS, we instead have each node store an
estimated residual Q-value QR(s,a). The tree policy is revised as:

π̂(a|s) = (1− λs)
exp( 1

α̂ (QR(s,a) + ω′ log π(a|s)))∑
a′∈A exp( 1

α̂ (QR(s,a) + ω′ log π(a|s)))
+ λs

1

|A|
. (13)

During backward propagation, the residual Q-value is updated as follows:

QR(st,at) =

{
rR(st,at) + γR t = T − 1,

rR(st,at) + γVR(st+1) t < T − 1,
(14)

with VR(st+1) = α̂ log
∑

a′∈A exp
(
1
α̂ (QR(st+1,a

′) + ω′ log π(a′|st+1))
)
. In particular, we use

Monte Carlo simulations to estimate the return-to-go R. The roll-out policy is set as the prior policy
π, and R is computed as the cumulative return of the add-on reward rR over the roll-out trajectories.
While the estimated R is biased, it serves as a heuristic to guide the tree search to select nodes with
future trajectories collecting high add-on rewards while staying close to the prior policy. The effect of
this biased estimation will gradually be mitigated as the search tree expands to the terminal time step.

4 Related Work

Our residual Q-learning framework can be considered a principled approach to combine the objectives
of IL and RL. Prior works have proposed different approaches for this purpose. In the IL literature,
reward augmentation [9] has been introduced as a general framework to provide additional incentives
from prior knowledge into the imitation learning process. Under the Generative Adversarial Imitation
Learning (GAIL) framework, a surrogate reward can be conveniently incorporated to augment the
learned discriminator for policy optimization [35, 3]. The augmented imitative reward is essentially
the same as the total reward in our framework. The difference is that ours aims to further customize a
trained imitative policy for downstream tasks, instead of regularizing IL with prior knowledge.

There are also a variety of works that directly design the objective function as a weighted mixture of
IL and RL objectives. In some methods, like DQfD [21], a supervised classification loss is combined

5



with a TD loss to train the Q-function. It regularizes the learned Q-function to assign higher values to
demonstrated actions. Other methods, such as DAPG [44] and BC-SAC [36], use a weighted mixture
of behavior cloning loss and RL objectives in their loss function. SHAIL [25] formulates the imitation
problem as a constrained RL problem with a constraint on the lower bound of policy likelihood on
demonstrations. These approaches have shown that IL can help accelerate RL learning, especially
under sparse rewards [21, 44], and vice versa [25]. As discussed in Sec. 1, similar objectives are
also adopted in some RL fine-tuning algorithms [44, 40, 61, 51]. The pre-trained policy is not only
used to initialize RL but also leveraged consistently over the fine-tuning stage as regularization. The
introduction of RL has also been shown to effectively robustify behavior cloning [36] for challenging
and safety-critical autonomous driving tasks. Conversely, IL regularization is used in offline RL
approaches, such as TD3+BC [13] and CQL [31], to prevent overestimating the values on out-of-
distribution actions and improve the robustness of offline RL policies. Different from these works,
where the additional objective is treated as regularization, our framework formulates the learning task
as a new MDP and provides a principled way to interpret and design the combined objective.

TS2C [56] is similar to ours from the perspective of having an imperfect expert—the prior policy in
RQL can be considered as an imperfect expert for the overall task—and fusing knowledge extracted
from this imperfect expert and RL exploration. The difference is that TS2C aims to train a policy
towards a known reward; Thus, a value function can be trained to assert if the expert is reliable. In
our case, since we rely on the prior policy to encode the basic task reward implicitly, we cannot use
such a value function to govern the fusion between imitation and RL. One work in the literature that
aligns with our motivation behind MCTS online customization is Deep Imitative Model [45], which
aims to direct an imitative policy to arbitrary goals during online usage. It is formulated as a planning
problem solved online to find the trajectory that maximizes its posterior likelihood conditioned on
the goal. In contrast, we formulate the additional requirements as rewards instead of goals, which are
more flexible to specify. Also, RQL is a unified framework for both offline and online customization.

In curriculum RL, the concept of learning the residuals of Q-functions has been adopted in boosted
curriculum RL (BCRL) [28, 24]. Under the BCRL framework, a task curriculum is constructed
by decomposing a complex task into a sequence of subtasks with increasing difficulty. For each
task of the curriculum, its Q-function is modeled and learned as the sum of residuals, with each
residual corresponding to a previous task of the curriculum, which was shown to outperform fitting a
single function approximator [50, 28]. Similar to RL fine-tuning, BCRL focuses on expediting RL
learning on a target task with the Q-functions learned on the previous tasks. The residual is learned to
construct the Q-function for the target task with a known reward. Conversely, RQL aims at learning
the residual to construct the Q-function for a new task whose reward function combines the unknown
underlying reward of the expert and the known add-on reward.

5 Experiments

We evaluate the proposed algorithms on four environments selected from different domains: CartPole
and Continuous Mountain Car environments from the OpenAI gym classic control suite [5], and
Highway and Parking from the highway-env environments [32]. In our experiments, we implemented
our algorithms upon Stable-Baselines3 [43] and its imitation library [16]. In Sec. 5.1, we provide the
configurations of our experiments, including the settings of policy customization tasks in different
environments, baselines, and evaluation metrics. In Sec. 5.2, we present and analyze the experimental
results of RL offline policy customization. In Sec. 5.3, we demonstrate an example of zero-shot
online customization leveraging the residual maximum-entropy MCTS algorithm. In Sec. 5.4, we
investigate two representative RL fine-tuning methods under the context of policy customization and
compare them with the proposed algorithms. Please refer to the appendices for detailed experiment
configurations, implementation details, ablation studies, and additional experiments in MuJoCo [49].

5.1 Experiment Setup

Environments. The detailed configurations of the environments can be found in Appendix D. We
mainly describe the policy customization task settings here. In each environment, we design the basic
and add-on rewards to illustrate a practical application scenario, where the basic reward corresponds
to some basic task requirements and the add-on reward reflects customized specifications such as
behavior preference or additional task objectives.
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• CartPole balancing: In the cartpole environment, the basic task is to balance the pole as
long as possible. During policy customization, we demand an additional task that requires
the cart to stay at the center of the rack. To validate if the additional objective is satisfied, we
monitor the average absolute position error of the cart which is defined as ēx =

∑T
t=1 |xt|/T ,

where xt is the coordinate of the cart with respect to the center of the rack.

• Continuous mountain car: In the mountain car environment, the basic task is to climb the
mountain with the least energy consumption. During policy customization, we enforce an
additional preference to avoid negative actions whenever possible. This corresponds to use
cases where certain actions are less favorable. To monitor the change in action distribution,
we count the number of negative actions executed during each episode, denoted as nneg.

• Highway navigation: In the highway environment, the basic task is to navigate the vehicle
safely and efficiently through the traffic. The vehicle can switch to arbitrary lanes to overtake
the other vehicles. During policy customization, we enforce an additional preference to
stay on the rightmost lane whenever possible. This reproduces driving habits that human
drivers may have in real life. For example, drivers may prefer to drive on the rightmost
lane to avoid missing the exits or when they want to drive the car slowly. We compute the
average normalized lane index over an episode to validate if the desired behavior emerges,
which is defined as Īlane =

∑T
t=1 Ilane,t/2T , where Ilane,t ∈ {0, 1, 2} is the lane index with

the leftmost lane as the lane 0 and the rightmost lane as the lane 2.

• Parking: In the parking environment, the basic task is to park the car in the target parking
slot. During policy customization, we add an additional requirement to avoid touching
the boundaries of the parking slots during parking, which is considered good practice to
avoid scratching other cars and to leave sufficient space for neighboring parking slots. We
compute the non-violation rate to monitor if the requirement is met, which is defined as the
percentage of episodes where the constraint is not violated, denoted as γno-violation.

Baselines. In our experiments, we mainly compare the performance of four categories of policies:

• RL prior policy: We train an RL policy optimizing the basic reward. It serves as the prior
policy for policy customization. For environments with discrete action space (i.e., CartPole
and Highway), we train the RL prior policy using soft Q-learning. For environments with
continuous action space (i.e., Continuous Mountain Car and Parking), soft actor-critic is
used. At test time, we also evaluate its performance on the overall task without customization,
which serves as a baseline to show the effectiveness of the proposed algorithms.

• IL prior policy: We train another IL prior policy that imitates the RL prior with GAIL [22].
As discussed in Sec. 2, the proposed RQL algorithms are primarily motivated to customize
imitative policy without knowledge of its inherent reward. The IL prior policy serves as
a baseline for comparison with the residual-Q policy customized from the IL prior policy.
In GAIL, we use soft Q-learning as the policy learning algorithm when the action space is
discrete, and use soft actor-critic when the action space is continuous.

• Residual-Q customized policies (Ours): In each environment, we train two residual-Q
customized policies leveraging the RL and IL prior policies respectively. They are mainly
compared against the corresponding prior policies to validate the effectiveness of policy
customization. We apply residual soft Q-learning for environments with discrete action
space and apply the residual soft actor-critic for environments with continuous action
space. Besides, we evaluate the zero-shot customization ability of the proposed residual
maximum-entropy MCTS algorithm in the Highway environment.

• RL with total reward: We also train an RL policy with the total reward (i.e., r + ωrR).
Note that we do not intend to treat it as a baseline for fair comparison under the policy
customization setting. We aim to compare the residual-Q policies with it to validate that the
customized policies indeed solve the overall task M̂.

Metric. We are mainly interested in validating the performance of the proposed policy customization
methods from two perspectives: 1) whether the policy is customized toward the add-on reward; 2)
whether the customized policy still possesses the characteristics of the prior policy, in other words,
maintains the same level of performance on the basic task. Hence, we use the average basic reward
and the success rate of completing the basic task as metrics to evaluate the policies’ performance on
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the basic task. Meanwhile, we use the average add-on reward and task-specific metrics introduced
above as the metrics for evaluating the policies’ performance with respect to the customized objective.

5.2 RL Offline Customization

The experimental results of RL offline customization are summarized in Table 1. In all the envi-
ronments and with either RL or IL prior policies, the customized policies significantly outperform
the prior policies on the add-on task objectives. Meanwhile, the customized policies maintain the
same level of performance as the prior policies on the basic tasks. It validates that the proposed
residual-Q algorithms can tailor the policies for customized requirements while maintaining their
original characteristics. One interesting observation is that the policy customization improves the
performance of the IL policy on the basic task in the Parking environment. One factor is that GAIL
does not perform well in the first place. The Parking environment is indeed more challenging than
the other environments given the continuous action space and, more importantly, the nature of the
task—navigation in tight space under the non-holonomic constraint. Another aspect we think can
explain this phenomenon is that the add-on reward implicitly guides the policy to improve its basic
task performance. As shown in Appendix G, it is difficult for the imitative policy to stop the vehicle
accurately at the target parking slot. Since GAIL merely learns to match the trajectory distributions
under the expert and learned policies without the knowledge of the actual task objective, it is chal-
lenging for the imitative policy to precisely localize such a narrow parking space. In contrast, the
add-on boundary violation constraint confines the vehicle trajectory within the parking space once
the vehicle approaches the target parking slot. Hence, the policy is able to reach the goal point faster
and receives higher returns even on the basic parking task.

In Table 1, we also compare the customized policies against the RL policies trained with the total
reward function, named RL Full Policy in the table. In environments with discrete action spaces,
the residual soft-Q learning policies behave very similarly to the RL full policies. Meanwhile, the
residual soft actor-critic agents have different reward patterns compared to the RL full policies. We
think the behavior difference is mainly due to the approximation errors in value and policy networks.
The proposed residual-Q framework relies on the prior policy to acquire knowledge of the basic task.
Thus, a suboptimal prior will affect the performance of the customized policy, especially on the basic
task. It also explains the performance difference between the policies customized from RL and IL
priors. Inspired by the observation mentioned above on IL policy customization, we think a practical
solution to mitigate this issue is partially incorporating some basic task objectives into the add-on
reward if available. It is reasonable for many practical use cases even with an imitative prior. While it
is difficult to precisely describe the underlying reward function of human experts, we can comfortably
assume that they follow some obvious commonsense objectives (e.g., collision avoidance). In this
way, our method can be considered a more principled framework for the general synergy between IL
and RL beyond policy customization where the reward functions are completely decomposed.

5.3 MCTS Online Customization

We choose the Highway environment to demonstrate the zero-shot online customization ability of
residual maximum-entropy MCTS. We implement residual maximum-entropy MCTS based on the
MCTS planner provided by the highway-env environment. The planner leverages the ground-truth
dynamics model of the environment for roll-out simulation. The results are summarized in Table 1.
MCTS online customization is able to achieve similar performance as the RL offline counterpart.

5.4 Ablation Study: Comparison with RL Fine-tuning

In our RQL framework, we formulate policy customization as an MDP whose reward function
balances the utilities of the imitative and add-on tasks. It provides the theoretical foundation to
determine the synergy between the IL and RL objectives in a principled manner. As discussed
in Sec. 1 and Sec. 4, different approaches have been proposed in the RL fine-tuning literature to
combine IL and RL objectives. We investigate two representative methods under the context of
policy customization. We compare them against RQL and summarize the experimental results in this
subsection. Please refer to Appendix F for the complete ablation study.

Greedy Reward Decomposition. One common approach is regularizing the divergence between the
trained RL and prior policies during policy updates. It has been widely used in offline RL algorithms
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to address the distributional shift issue [30, 54], and Advantage Weighted Actor-Critic (AWAC) [40]
demonstrates the benefits of such policy regularization in stabilizing and accelerating RL fine-tuning.
As shown in AWAC [40], when using KL-divergence to measure the distance between policies, the
regularized optimal policy becomes a maximum-entropy policy with the advantage weighted by the
prior policy. If we directly adapt it to solve the policy customization problem, the customized policy
is essentially defined as the solution to the following optimization problem at each policy update step:

π̃t = argmax
π̃∈Π

Ea∼π̃(·|s)

[
Q̃R,t(s,a)− α̂ log π̃(a|s)

]
− λDKL(π̃(·|s)∥π(·|s)), (15)

where Q̃R,t is the soft Q-function of the MDP with only the add-on reward rR(s,a), which is defined
iteratively with the following update rule:

Q̃R,t+1(s,a) = rR(s,a) + γEs′∼p(s′|a)

[
Ea′∼π̂t

[
Q̃R,t(s

′,a′)− α̂ log π̃t(a
′|s′)

]]
. (16)

The closed-form solution to the optimization problem is given as:

π̃t(a|s) ∝ exp

(
1

α̂+ λ

(
Q̃R,t(s,a) + λ log π(a|s)

))
. (17)

We can reduce our RQL policy to the same form by simply replacing the residual Q-function in
Eqn. (6) with the soft Q-function Q̃R,t. The resulting policy solves the optimization problem in
Eqn. (15) but with an entropy weight of α̂−λ in the objective function. If we consider it for the policy
customization problem, it is essentially equivalent to heuristically estimating the optimal Q-function
as the sum of the optimal Q-functions corresponding to the basic and add-on rewards. Hence, the
synthesized policy is not the optimal solution to the target MDP but a greedy approximation [52, 26].
We compare RQL with this greedily customized policy on the Continuous Mountain Car and Parking
environments. The results can be found in Appendix F.1. We found that this greedy customized
policy performed much worse than RQL in the most challenging Parking environment. Compared to
the prior policy, greedy customization compromises the policy’s success rate on the basic parking
task to customize them towards satisfying the add-on objective. However, the greedy policy still has
a significantly lower non-violation rate compared to the RQL policy. It validates that our framework
is a more principled method to jointly optimize the IL and RL objectives for policy customization
than divergence-based regularization.

Augmenting Reward with Policy KL-Divergence. Alternatively, some works [54, 61] have explored
adding the policy divergence to the reward function. It has been shown to outperform policy
regularization in offline RL setting [54]. To adopt this line of approaches for policy customization,
we formulate the reward function of the target MDP as the sum of the add-on reward and a policy
divergence regularization term. In particular, we follow [61] to augment the add-on reward with a
penalty whose expectation regularizes the KL-divergence between the customized and prior policies.
Formally, the reward function is defined as:

řt(s,a) = rR(s,a)− β log
π̌t (a|s)
π (a|s)

, (18)

where π̌t denotes the customized policy after the tth iteration of policy update, and β is a hyperparam-
eter to balance the add-on reward and the policy regularization term. We can then apply standard RL
algorithms to customize the policy toward this reward function. However, we found that it made the
learning task much more difficult in our policy customization problem—as shown in Appendix F.2,
soft actor-critic, for example, failed to find a customized policy that at least performed well on the
basic parking task. We believe that one crucial factor contributing to the failure of divergence-based
regularization is that the basic and add-on rewards are mostly orthogonal in our setting. The add-on
reward only encodes additional task requirements; thus, we heavily rely on the prior policy to embed
the desirable behavior on the basic task. Merely regularizing the KL-divergence is therefore insuffi-
cient—being close to the prior policy in terms of probabilistic distance does not necessarily imply
behavior that accomplishes the basic task objective. Besides, incorporating the policy likelihood into
the reward function makes it more challenging to update the Q-function in practice. For example,
in Appendix F.3, we show that our RQL algorithm is theoretically equivalent to directly solving an
MDP whose reward function is a weighted sum of the add-on reward and the log-likelihood of the
prior policy. However, similar to the case of divergence-augmented reward, soft actor-critic failed to
find a solution in Parking environment.
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Table 1: Experimental Results of Residual-Q Policy Customization

Env. Policy Basic Task Add-on Task

Succ. Rate Basic Reward ēx Add-on Reward

CartPole

RL Prior Policy 100% 427.21± 2.25 0.15± 0.11 −31.11± 22.82
RL Customized 100% 425.73± 2.74 0.05± 0.05 −11.18± 10.12

IL Prior Policy 100% 422.17± 4.19 0.19± 0.12 −38.57± 24.26
IL Customized 100% 423.37± 4.28 0.07± 0.06 −14.12± 12.09

RL Full Policy 100% 425.27± 3.10 0.05± 0.04 −10.72± 7.43

Env. Policy Succ. Rate Basic Reward nneg Add-on Reward

Cont.
Mt. Car

RL Prior Policy 100% 95.78± 0.64 42.26± 1.29 −4.23± 0.13
RL Customized 100% 95.61± 0.43 37.90± 0.75 −3.79± 0.07

IL Prior Policy 100% 92.84± 2.35 64.40± 21.03 −6.44± 2.10
IL Customized 100% 94.41± 0.06 41.08± 1.01 −4.11± 0.10

RL Full Policy 100% 95.14± 0.21 27.86± 3.87 −2.79± 0.39

Env. Policy Succ. Rate Basic Reward Īlane Add-on Reward

Highway

RL Prior Policy 97.22% 44.67± 2.43 0.46± 0.28 9.17± 5.54
RL Customized 97.19% 42.23± 1.55 0.97± 0.05 19.42± 0.99
RL ME-MCTS 98.00% 42.71± 1.65 0.96± 0.07 19.19± 1.38

IL Prior Policy 96.04% 40.03± 0.02 0.50± 0.40 10.06± 8.07
IL Customized 93.00% 40.36± 0.34 0.99± 0.01 19.88± 0.24
IL ME-MCTS 97.00% 40.68± 0.46 0.99± 0.01 19.85± 0.30

RL Full Policy 96.35% 41.98± 1.53 0.97± 0.01 19.49± 1.24

Env Policy Succ. Rate Basic Reward γno-violation Add-on Reward

Parking

RL Prior Policy 99.09% −7.08± 2.65 57.61% −1.55± 3.71
RL Customized 98.73% −7.60± 3.07 96.09% −0.03± 0.20

IL Prior Policy 70.91% −12.37± 9.05 11.27% −4.94± 5.52
IL Customized 83.59% −7.93± 4.84 66.07% −0.32± 0.73

RL Full Policy 99.34% −6.81± 2.39 74.24% −0.38± 0.72

The evaluation results are computed over 4000 episodes for model-free policies and 100 episodes for maximum-
entropy MCTS (ME-MCTS). The statistics with ± are in the format of mean± std.

6 Limitations

As discussed in Sec. 5.2, one limitation of our current algorithms is that the performance of policy
customization is bottlenecked by the imitative prior policy. Policy customization not only requires
it to perform well on the trajectory distribution under the imitative prior policy itself but, more
importantly, we need the imitative policy to accurately indicate desired behavior with respect to
the basic task objective on the trajectory distribution under the customized policy. Hence, without
careful design, our algorithms would suffer from the distributional shift issue. While, in practice, this
issue can be mitigated by partially incorporating some basic task objectives into the add-on reward
if available, a more principled and fundamental solution is to obtain a diverse imitative prior that is
best suited for customization. Generative models, such as normalizing flows [48] and, more recently,
diffusion models [23, 6, 20], have been shown promising in constructing such a diverse behavior prior.
Besides, incorporating human experts in the loop has also been shown to be effective in improving
the generalizability of imitation learning [27, 38, 41, 33]. We will investigate their applications in the
policy customization problem in future work. Also, we only demonstrate MCTS online customization
with an ideal perfect dynamics model in our current experiments. In future work, we will combine
residual maximum-entropy MCTS with offline learned predictive models to achieve zero-shot online
customization in more practical scenarios.
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