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In the supplementary material, we first introduce the pseudo algorithm of DAW. Then we clarify the
E1-E2 trade-off for unlabeled data and perform more analysis for Figures 1, 3, 4 and 5. Furthermore,
we analyze the reason for choosing the Gaussian distribution. Next, we present the detailed derivations
in Table 1. Then, we formulate the optimal weighting function by solving the optimization problem
through functional analysis. Finally, we show more qualitative results for DAW compared to other
competitors.

6 Algorithm

In this section, we present the pseudo algorithm of DAW to clearly summarize the method of the main
paper (Section 2). DAW formalizes the selection criteria for reliable pseudo-labels from unlabeled
data in a dynamic manner at each training iteration, encapsulating distribution-aware weighting
function (DAWF) for minimizing the negative equivalence impact raised by the trade-off (E1-E2),
and distribution alignment (DA) for alleviating the gap in confidence distribution caused by the
discrepancy in prediction distribution between labeled and unlabeled data. Please refer to Section 2
of the main paper for detailed elaboration.

7 E1-E2 Trade-off for Unlabeled Data and More for Figures 1, 2, 4 and 5

In this section, we describe in detail how to calculate the E1 and E2 which reflect the trade-off for
unlabeled data, considering that the calculated weighting function f∗(p) is based on positive and
negative confidence distributions g+(p)/g−(p), which are determined by the labeled data and their
corresponding ground truth. Then, we provide a more detailed explanation of Figures 1, 2, 4, and 5,
which are slightly abbreviated due to the limited space of the main paper.

7.1 E1-E2 Trade-off for Unlabeled Data and More for Figure 5

To verify the effectiveness of our distribution-aware weighting function (DAWF) on unlabeled
data, we formalize the trade-off for unlabeled data, including inaccurate yet utilized pseudo-labels
(E1), and correct yet discarded pseudo-labels (E2). In practice, E1 is the proportion of inaccurate
yet utilized pseudo-labels in all inaccurate pseudo-labels; E2 equals the proportion of correct yet
discarded pseudo-labels in all correct pseudo-labels, assuming that the ground truth for unlabeled
data is available, which can determine the correctness of the pseudo-labels, solely for theoretical
analysis purposes.
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Algorithm 1 Pseudo algorithms of DAW.

1: Input: Labeled set Dl =
{
xl
i,y

l
i

}NL

i=1
, Unlabeled set Du = {xu

i }
NU

i=1 (NU ≫ NL).

2: Define: Prediction q(xij), ŷl
ij = argmax(q(xl

ij)), y
u
ij = q(Aw(xu

ij))

3: for each batch (training iteration t) of
{
xl
i,y

l
i

}Nl

i=1
, {xu

i }
Nu

i=1 in Dl, Du (Nl = Nu) do

4: # Labeled Data:

5: Calculate Ls by Equation 1 ▷ Supervised loss

6: Select correct prediction from labeled data: ŷl
ij = yl

ij

7: Select inaccurate prediction from labeled data: ŷl
ij ̸= yl

ij

8: Calculate µ̂+, σ̂+ and µ̂−, σ̂− from correct and inaccurate prediction by Equation 5

9: EMA update the µ̂+
t , σ̂

+
t and µ̂−

t , σ̂
−
t to fit g+(p) and g−(p) by Equation 6

10: Determine the f∗(p) based on the updated g+(p) and g−(p) by Equation 11 ▷ DAWF

11: # Unlabeled Data:

12: Modulate yu
ij by Equation 12 ▷ DA

13: Calculate Lu based on f∗(p) by Equation 13 ▷ Unsupervised loss

14: Gradient backward Ls + Lu ▷ Update Model

15: end for

Note that there may exist a gap between the prediction distribution of labeled and unlabeled data,
which hinders the generalization of the generated weighting function f∗(p). Therefore, we propose
distribution alignment (DA) to alleviate this gap, aiming to further unlock the potential of the
weighting function, that is, realizing the effective discrimination of the reliable pseudo-labels (see
Section 2.4 and Figure 5).

7.2 More Analysis of Figures 1, 2 and 4

Based on the definitions of E1 and E2 on unlabeled data, we can easily compare DAW with other
methods. Specifically, Figure 4 showcases the variations in the positive and negative confidence
distributions of different methods as the training progresses, where the overlapping region of the
distributions (indicated as the gray solid region) reflects the separation of the two distributions. We
can clearly observe that at the beginning of the training, the distributions of different methods are
almost identical. However, as the training progresses, benefiting from the proposed distribution-
aware weighting function that minimizes the negative equivalence impact of the trade-off, the model
improves. And in turn, DAW exhibits the maximum separation between the positive and negative
confidence distributions compared to other methods (Figure 4), leading to a simultaneous decrease in
both E1 and E2, which is consistent with the observation of Figure 1.

To vividly present the working mechanism of the distribution-aware weighting function (DAWF), we
visualize the variations in positive and negative confidence distribution (3σ statistical rule) as well
as the jump point of the f∗(p) as the training progresses, as illustrated in Figure 2. We can observe
that f∗(p) strives to filter out as many negative samples while recruiting as many positive samples
as possible, which is conducive to model training. This is the fundamental reason behind that our
method outperforms other methods (Please refer to the “Comparison of Distribution paragraph" of
the main paper in Section 3.3).

8 Reason for Choosing Gaussian

In this section, we explain why we choose Gaussian distribution from the perspective of the principle
of maximum entropy. Since there is no prior about the positive/negative distribution, we should
choose the distribution with the maximum entropy to minimize risk, which is stated by the principle
of maximum entropy. Given the mean µ and variance σ2 estimated from the observed samples of
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distribution p(x), searching the distribution with maximum entropy are equivalent to the following
optimization problem:

max
p(x)

H(p) = −
∫ ∞

−∞
p(x) log p(x) dx,

s.t.



p(x) ≥ 0∫∞
−∞ p(x) dx = 1∫∞
−∞ xp(x) dx = µ∫∞
−∞(x− µ)2p(x) dx = σ2

(14)

To solve the above optimization problem, the following Lagrangian equation is constructed:

J(p) = −
∫

p(x) log p(x) dx+ λ0

∫
p(x) dx+ λ1

∫
xp(x) dx+ λ2

∫
(x− µ)2p(x) dx. (15)

The constrained optimization problem 14 is converted into maxp J(p), which can be solved by
calculating variations.

We take the derivative of J(p) with respect to p(x) and the derivative should be 0:

∂J(p)

∂p
= − log p(x)− 1 + λ0 + λ1x+ λ2(x− µ)2 = 0. (16)

Therefore, we can get p(x) as:

p(x) = e−1+λ0+λ1x+λ2(x−µ)2 . (17)

Substituting Equation 17 back into the constraints, we get:

∫∞
−∞ e−1+λ0+λ1x+λ2(x−µ)2 dx = 1∫∞
−∞ xe−1+λ0+λ1x+λ2(x−µ)2 dx = µ∫∞
−∞(x− µ)2e−1+λ0+λ1x+λ2(x−µ)2 dx = σ2

=⇒ p(x) =
1√
2πσ

e−
(x−µ)2

2σ2 . (18)

It can be seen that the distribution of the maximum entropy that satisfies the constraints is a Gaussian
distribution, whose mean is µ and variance is σ.

9 Derivations of Table 1

In this section, we present the detailed derivations for E1, E2, E1 + E2 of different methods in
Table 1. In the main paper, we formally define the trade-off between inaccurate yet utilized pseudo-
labels (E1), and correct yet discarded pseudo-labels (E2) by explicitly modeling the confidence
distribution of correct (g+(p), positive distribution) and inaccurate (g−(p), negative distribution)
pseudo-labels, equipped with a unified weighting function (f(p)), formulated as follows:

g+(p) =


α√

2πσ+
exp

[
− (p−µ+)

2

2(σ+)2

]
, 1

C ⩽ p ⩽ 1

0, otherwise
, (19)

g−(p) =


β√

2πσ− exp

[
− (p−µ−)

2

2(σ−)2

]
, 1

C ⩽ p ⩽ 1

0, otherwise
, (20)
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E1 = Eg− [f(p)] =

∫ 1

1
C

f(p) · g−(p) dp, (21)

E2 = 1− Eg+ [f(p)] = 1−
∫ 1

1
C

f(p) · g+(p) dp, (22)

E1 + E2 = 1 +

∫ 1

1
C

f(p) · [g−(p)− g+(p)] dp. (23)

In practice, there must exist one intersection t∗ of g+(p) and g−(p) between
[
1
C , 1

]
, where satisfies: g−(p) > g+(p), 1

C < p < t∗

g−(p) < g+(p), t∗ < p < 1

. (24)

Thus we can decompose Equation 23 into two integrals:

E1 + E2 = 1 +

∫ t∗

1
C

f(p) ·
[
g−(p)− g+(p)

]
dp+

∫ 1

t∗
f(p) ·

[
g−(p)− g+(p)

]
dp. (25)

In the following, we instantiate the above formulas for each relevant method.

9.1 Pseudo-Label

In the naive pseudo-labeling method, all pseudo labels are enrolled into training, i.e., f(p) = u(p).
Thus we have:

E1 =

∫ 1

1
C

u(p) · g−(p) dp

=

∫ 1

1
C

g−(p) dp

= 1

(26)

E2 = 1−
∫ 1

1
C

u(p) · g+(p) dp

= 1−
∫ 1

1
C

g+(p) dp

= 1− 1

= 0

(27)

which demonstrates that maximizing the utilization of correct pseudo-labels (E2 = 0) inevitably
absorbs a lot of inaccurate pseudo-labels (E1 = 1) in training, leading to confirmation bias.

E1 + E2

= 1 +

∫ t∗

1
C

u(p) ·
[
g−(p)− g+(p)

]
dp+

∫ 1

t∗
u(p) ·

[
g−(p)− g+(p)

]
dp

= 1 +

∫ t∗

1
C

[
g−(p)− g+(p)

]
dp+

∫ 1

t∗

[
g−(p)− g+(p)

]
dp

= 1 + β

[
Φ(

1− µ−

σ− )− Φ(
t∗ − µ−

σ− )

]
−α

[
Φ(

1− µ+

σ+
)− Φ(

t∗ − µ+

σ+
)

]
+

∫ t∗

1
C

[
g−(p)− g+(p)

]
dp

= 1
(28)
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Since g−(p) > g+(p) when 1
C < p < t∗, we have:

∫ t∗

1
C

[
g−(p)− g+(p)

]
dp > 0. (29)

9.2 FixMatch

For threshold-based pseudo-labeling methods such as FixMatch, which attempts to set a high threshold
(t = 0.95), i.e., f(p) = u(p− t). Thus we have:

E1 =

∫ 1

1
C

u(p− t) · g−(p) dp

=

∫ 1

t

g−(p) dp

= β

[
Φ(

1− µ−

σ− )− Φ(
t− µ−

σ− )

] (30)

E2 = 1−
∫ 1

1
C

u(p− t) · g+(p) dp

= 1−
∫ 1

t

g+(p) dp

= 1− α

[
Φ(

1− µ+

σ+
)− Φ(

t− µ+

σ+
)

] (31)

It can be seen that although setting a high threshold can filter out most inaccurate pixel-level pseudo-
labels with low confidence (small value of E1 caused by the proximity of t = 0.95 to 1), the strict
criteria inevitably lead to the contempt of numerous unconfident yet correct pseudo-labels (large
value of E2 caused by the proximity of t = 0.95 to 1).

E1 + E2

= 1 +

∫ t∗

1
C

u(p− t) ·
[
g−(p)− g+(p)

]
dp+

∫ 1

t∗
u(p− t) ·

[
g−(p)− g+(p)

]
dp

= 1 +

∫ 1

t

[
g−(p)− g+(p)

]
dp

= 1 +

∫ 1

t∗

[
g−(p)− g+(p)

]
dp−

∫ t

t∗

[
g−(p)− g+(p)

]
dp

= 1 + β

[
Φ(

1− µ−

σ− )− Φ(
t∗ − µ−

σ− )

]
−α

[
Φ(

1− µ+

σ+
)− Φ(

t∗ − µ+

σ+
)

]
−
∫ t

t∗

[
g−(p)− g+(p)

]
dp

= 1 + β

[
Φ(

1− µ−

σ− )− Φ(
t− µ−

σ− )

]
− α

[
Φ(

1− µ+

σ+
)− Φ(

t− µ+

σ+
)

]
(32)

Since g−(p) < g+(p) when t∗ < p < t, we have:

−
∫ t

t∗

[
g−(p)− g+(p)

]
dp ⩾ 0, (33)

where equality is obtained at t = t∗.
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9.3 AEL

As a compromise, AEL ad hoc defines the weighting function as a power function, which assigns
weights conditioned on confidence, i.e., f(p) = p2. Thus we have:

E1 =

∫ 1

1
C

p2 · g−(p) dp

=

∫ 1

1
C

(p− µ−)2 · g−(p) dp+ 2µ−
∫ 1

1
C

p · g−(p) dp− (µ−)2
∫ 1

1
C

g−(p) dp

= −(σ−)2
∫ 1

1
C

(p− µ−) dg−(p) + 2µ−

[∫ 1

1
C

(p− µ−) · g−(p) dp+ µ−
∫ 1

1
C

g−(p) dp

]
− (µ−)2

= −(σ−)2

[
(p− µ−)g−(p)

∣∣∣1
1
C

−
∫ 1

1
C

g−(p) dp

]
+ 2µ−

[
−(σ−)2

∫ 1

1
C

dg−(p) + µ−

]
− (µ−)2

= −(σ−)2
[
(1− µ−)g−(1)− (

1

C
− µ−)g−(

1

C
)− 1

]
+ 2µ−

[
−(σ−)2g−(p)

∣∣∣1
1
C

+ µ−
]
− (µ−)2

= (µ−)2 + (σ−)2 + µ−(σ−)2g−(
1

C
)− (1 + µ−)(σ−)2g−(1)

(34)

E2 = 1−
∫ 1

1
C

p2 · g+(p) dp

= 1−
∫ 1

1
C

(p− µ+)2 · g+(p) dp− 2µ+

∫ 1

1
C

p · g+(p) dp+ (µ+)2
∫ 1

1
C

g+(p) dp

= 1− (σ+)2
∫ 1

1
C

(p− µ+) dg+(p)− 2µ+

[∫ 1

1
C

(p− µ+) · g+(p) dp+ µ+

∫ 1

1
C

g+(p) dp

]
+ (µ+)2

= 1− (σ+)2

[
(p− µ+)g+(p)

∣∣∣1
1
C

−
∫ 1

1
C

g−(p) dp

]
− 2µ+

[
−(σ+)2

∫ 1

1
C

dg+(p) + µ+

]
+ (µ+)2

= 1− (σ+)2
[
(1− µ+)g+(1)− (

1

C
− µ+)g+(

1

C
)− 1

]
− 2µ+

[
−(σ+)2g+(p)

∣∣∣1
1
C

+ µ+

]
+ (µ+)2

= 1− (µ+)2 − (σ+)2 − µ+(σ+)2g+(
1

C
) + (1− µ+)(σ+)2g+(1)

(35)
E1 + E2

= 1 +

∫ t∗

1
C

p2 ·
[
g−(p)− g+(p)

]
dp+

∫ 1

t∗
p2 ·

[
g−(p)− g+(p)

]
dp

= 1 +

∫ 1

t∗

[
g−(p)− g+(p)

]
dp+

∫ t∗

1
C

p2 ·
[
g−(p)− g+(p)

]
dp+

∫ 1

t∗
(p2 − 1) ·

[
g−(p)− g+(p)

]
dp

= 1 + β

[
Φ(

1− µ−

σ− )− Φ(
t∗ − µ−

σ− )

]
−α

[
Φ(

1− µ+

σ+
)− Φ(

t∗ − µ+

σ+
)

]
+

∫ t∗

1
C

p2 ·
[
g−(p)− g+(p)

]
dp+

∫ 1

t∗
(p2 − 1) ·

[
g−(p)− g+(p)

]
dp

= 1− (µ+)2 − (σ+)2 − µ+(σ+)2g+(
1

C
) + (1− µ+)(σ+)2g+(1)

+ (µ−)2 + (σ−)2 + µ−(σ−)2g−(
1

C
)− (1 + µ−)(σ−)2g−(1)

(36)
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Since g−(p) > g+(p) when 1
C < p < t∗ and g−(p) < g+(p), p2 < 1 when t∗ < p < 1, we have:∫ t∗

1
C

p2 ·
[
g−(p)− g+(p)

]
dp+

∫ 1

t∗
(p2 − 1) ·

[
g−(p)− g+(p)

]
dp > 0. (37)

The lack of sophisticated consideration and the arbitrary power for the weighting function inevitably
compromise its capability (not guaranteeing the lowest negative equivalence effect).

9.4 Ours

By leveraging functional analysis, we find that the optimal weighting function is a step function with
the jump point located at the intersection of positive and negative distributions, i.e., f∗(p) = u(p−t∗).
Thus we have:

E1 =

∫ 1

1
C

u(p− t∗) · g−(p) dp

=

∫ 1

t∗
g−(p) dp

= β

[
Φ(

1− µ−

σ− )− Φ(
t∗ − µ−

σ− )

] (38)

E2 = 1−
∫ 1

1
C

u(p− t∗) · g+(p) dp

= 1−
∫ 1

t∗
g+(p) dp

= 1− α

[
Φ(

1− µ+

σ+
)− Φ(

t∗ − µ+

σ+
)

] (39)

E1 + E2

= 1 +

∫ t∗

1
C

u(p− t∗) ·
[
g−(p)− g+(p)

]
dp+

∫ 1

t∗
u(p− t∗) ·

[
g−(p)− g+(p)

]
dp

= 1 +

∫ 1

t∗

[
g−(p)− g+(p)

]
dp

= 1 + β

[
Φ(

1− µ−

σ− )− Φ(
t∗ − µ−

σ− )

]
−α

[
Φ(

1− µ+

σ+
)− Φ(

t∗ − µ+

σ+
)

]
(40)

As shown in Equation 29, Equation 33 and Equation 37, our weighting function achieves the minimum
E1 + E2, which is guaranteed by theoretical functional analysis in the next section.

10 Proof of Optimal Weighting Function

In this section, we solve the optimization problem by the variational calculus derived from functional
analysis, providing a solid theoretical basis for our approach. To solve the optimization problem:

minf(p) E1 + E2 = 1 +
∫ 1

1
C
f(p) · [g−(p)− g+(p)] dp,

s.t. 0 ≤ f(p) ≤ 1.

(41)

We first define a functional J [f ] as:

J [f ] =

∫ 1

1
C

f(p) · g(p) dp, (42)
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where g(p) = g−(p)− g+(p). We use variational calculus to find the optimal f∗(p) minimizing the
J [f ] subject to the constraints that f(p) is bounded by [0, 1]. Considering an arbitrary integrable
function δf(p), we have:

J [f + εδf ] =

∫ 1

1
C

[f(p) + εδf(p)] · g(p) dp

=

∫ 1

1
C

f(p) · g(p) dp+ ε

∫ 1

1
C

δf(p) · g(p) dp,
(43)

where ε is a small quantity. We can derive the δJ [f ] by taking the limit:

δJ [f ] = lim
ε→0

J [f + εδf ]− J [f ]

ε

=

∫ 1

1
C

δf(p) · g(p) dp.
(44)

Assuming that we reach the minimum J [f ] at f∗(p), this requires δJ [f∗] to be always greater than
zero (δJ [f∗]>0) for arbitrary δf(p), i.e.,∫ 1

1
C

δf(p) · g(p) dp > 0. (45)

For a general f(x), due to the relaxed constraints (0 ≤ f(p) ≤ 1), δf(p) has almost no restrictions,
making it challenging to satisfy the above condition. Indeed, when there is a constraint on δf(p) that: δf(p) > 0, g(p) > 0

δf(p) < 0, g(p) < 0

, (46)

Inequality 45 holds true at all times. The analogous constraint for δf(p) can be obtained when the
f(p) stays at its bound (0/1); this is because there is a constraint that 0 ≤ f(p) + δf(p) ≤ 1. That is
to say:

f∗(p) =

 0, g−(p)− g+(p) > 0

1, g−(p)− g+(p) < 0

. (47)

In practice, it is observed that g−(p) and g+(p) intersect at a point t∗ within the range of
[
1
C , 1

]
,

satisfying equation 24. Thus the optimal weighting function f∗(p) is a step function jumping at t∗,
i.e., f∗(p) = u(p− t∗).

11 Exact Value of t∗

In this section, we get the exact value of t∗ by solving the quadratic equation. As proofed above,
the step function jumping at the intersection of the positive distribution g+(p) and the negative
distribution g−(p) is the optimal weighting function. In this section, we calculate the exact value of
t∗ (only considering the range of [ 1C , 1]):

g+(p) = g−(p)

α√
2πσ+

exp

[
− (p− µ+)

2

2 (σ+)
2

]
=

β√
2πσ−

exp

[
− (p− µ−)

2

2 (σ−)
2

]

ln
ασ−

βσ+
− (p− µ+)2

2(σ+)2
= − (p− µ−)2

2(σ−)2

(48)

The same type of term is combined to obtain:[
(σ+)2 − (σ−)2

]
p2 + 2

[
µ+(σ−)2 − µ−(σ+)2

]
p+

[
(σ+µ−)2 − (σ−µ+)2 + 2(σ+σ−)2 ln

ασ−

βσ+

]
= 0

(49)
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Let β1, β2 and β3 as followed:
β1 = (σ+)2 − (σ−)2, (50)

β2 = 2
[
µ+(σ−)2 − µ−(σ+)2

]
, (51)

β3 = (σ+µ−)2 − (σ−µ+)2 + 2(σ+σ−)2 ln
ασ−

βσ+
. (52)

In practice,
√
β2
2 − 4β1β3 > 0 and σ+ < σ−, so β1 < 0. To satisfy the requirement of t∗ ∈

[
1
C , 1

]
,

we have:

t∗ =
−β2 +

√
β2
2 − 4β1β3

2β1
, (53)

12 More Qualitative Result

In this section, we provide more qualitative results between ours and other competitors. As shown in
Figure 7, other methods are easily distracted by adjacent targets, resulting in confusing segmentation
errors, e.g., in the first row of Figure 7, other existing methods have difficulty distinguishing between
dog and cat that are close together, while our method can identify both in a relatively complete way,
which demonstrates the effectiveness of our method.

Pseudo-LabelImage Ground Truth FixMatch AEL Ours

Figure 7: More qualitative comparison with different methods. Note that significant improvements
are marked with yellow boxes.

9


