
Hierarchical Multi-Agent Skill Discovery

Mingyu Yang1, Yaodong Yang2†, Zhenbo Lu3†, Wengang Zhou1,3, Houqiang Li1,3
1University of Science and Technology of China, 2Institute for AI, Peking University
3Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

ymy@mail.ustc.edu.cn, yaodong.yang@pku.edu.cn
luzhenbo@iai.ustc.edu.cn, {zhwg,lihq}@ustc.edu.cn

Abstract

Skill discovery has shown significant progress in unsupervised reinforcement
learning. This approach enables the discovery of a wide range of skills without
any extrinsic reward, which can be effectively combined to tackle complex tasks.
However, such unsupervised skill learning has not been well applied to multi-agent
reinforcement learning (MARL) due to two primary challenges. One is how to
learn skills not only for the individual agents but also for the entire team, and
the other is how to coordinate the skills of different agents to accomplish multi-
agent tasks. To address these challenges, we present Hierarchical Multi-Agent
Skill Discovery (HMASD), a two-level hierarchical algorithm for discovering both
team and individual skills in MARL. The high-level policy employs a transformer
structure to realize sequential skill assignment, while the low-level policy learns to
discover valuable team and individual skills. We evaluate HMASD on sparse reward
multi-agent benchmarks, and the results show that HMASD achieves significant
performance improvements compared to strong MARL baselines.

1 Introduction

Multi-agent reinforcement learning (MARL) has recently demonstrated remarkable potential in
solving various real-world problems, such as unmanned aerial vehicles [1], autonomous driving [2]
and traffic light control [3]. Despite its broad applications, current MARL algorithms [4, 5] typically
require well-crafted team or individual rewards to guide the agents to learn policies for efficient
coordination. This limitation hinders the generalization of MARL to the sparse reward multi-agent
tasks, where agents receive a non-zero reward only when they coordinate to achieve a challenging goal.
Compared to single-agent tasks, the sparse reward problem in multi-agent tasks poses more challenges.
On the one hand, the joint state and action spaces of multi-agent tasks increase exponentially with the
number of agents, which exacerbates the difficulty for agents to explore those valuable but rare states.
On the other hand, we need to distribute the received sparse reward not only to different timesteps but
also to different agents [6].

To solve sparse reward multi-agent problems, a promising approach is to discover underlying skills
within the multi-agent task and effectively combine these skills to achieve the final goal. For example,
in a football game, there are various skills involved such as dribbling, passing, receiving and shooting.
A common training strategy for a football team is to let each player learn these fundamental skills
first and then train players together to cooperatively use these skills for scoring the goal, which is
more efficient than directly training players without any skills together. Similarly, in a sparse reward
multi-agent task, it’s difficult for agents to cooperatively achieve a challenging goal from scratch.
We can first try to discover the underlying useful skills within the task, which is much easier than
solving the entire task under the sparse reward setting [7, 8]. Although these discovered skills may

†Corresponding authors: Yaodong Yang and Zhenbo Lu

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

not independently achieve the goal or induce non-zero rewards, we can learn to effectively combine
them to accomplish the final task. In short, it is possible to decompose a sparse reward multi-agent
task into a combination of different skills, which greatly simplifies the task complexity.

Previous works mainly follow two paradigms to discover skills in MARL. One is to let all agents
learn a shared team skill [9, 10], which promotes team cooperation behaviors but suffers from high
complexity. The other does the opposite and learns skills only from the perspective of individual
agents [11, 12], which is more efficient since individual skills are usually easier to learn than team
skills. However, merely learning individual skills may be insufficient to achieve team objectives.

Individual skill

…
Dribbling

Passing

Shooting

Team skill

…

Wing-play

Tiki-taka

Counter-

attack

from a global perspective

from an individual perspective

joint behavior

Figure 1: Illustration of team skill and individual skill
in football.

Taking football as an example again, in-
dividual skills can refer to the technical
abilities of individual players, such as drib-
bling and passing, while team skills refer
to the ability of players to work together as
a whole, i.e., the overall team tactics, such
as wing-play and tiki-taka [13]. As shown
in Fig. 1, the goal of a football team is to
let all players coordinate to master useful
team skills from a global perspective. Di-
rectly learning the team skill is usually too
complex. A better way is to decompose the
team skill into different individual skills for
players from an individual perspective, and
ensure that the joint behavior of all players
can form the team tactic. Both team skills
and individual skills are important to a successful team. Therefore, a primary challenge for multi-
agent skill discovery is how to simultaneously learn the individual skill for each individual agent
and the team skill for the whole team, and the second challenge is how to combine these skills to
accomplish multi-agent tasks.

To this end, we present a new paradigm for discovering both team and individual skills in MARL.
Inspired by probabilistic inference in RL [14], we embed the multi-agent skill discovery problem into a
probabilistic graphical model (PGM). With the PGM, we can formulate multi-agent skill discovery as
an inference problem, allowing us to take advantage of various approximate inference tools. Then, we
derive a variational lower bound as our optimization objective by following the structured variational
inference [14], and propose Hierarchical Multi-Agent Skill Discovery (HMASD), a practical two-level
hierarchical MARL algorithm for optimizing the derived lower bound. Specifically, the high-level
policy employs a transformer [15] structure to assign skills to agents, with inputs consisting of the
sequence of global state and all agents’ observations, and outputs consisting of the sequence of team
skill and agents’ individual skills. In this way, an agent’s individual skill depends on the team skill
and all previous agents’ individual skills, allowing agents to choose complementary skills and achieve
better skill combination. The low-level policy chooses primitive actions for each agent to interact with
the environment conditioned on the assigned skills. Moreover, we introduce two skill discriminators
to generate intrinsic rewards for agents to learn diverse and distinguishable skills. Finally, we show
that HMASD achieves superior performance on sparse reward multi-agent benchmarks compared to
strong MARL baselines. To our best knowledge, our work is the first attempt to model both team
skills and individual skills with the probabilistic graphical model in MARL.

2 Preliminaries

In this section, we first introduce the problem formulation and notations for cooperative MARL.
Then, we describe the concept of skill and a mutual information based objective for skill discovery in
unsupervised RL. We finally present the framework of representing RL as a probabilistic graphical
model. More related works are discussed in Sec. 5.

2.1 Problem Formulation

In this work, we consider a fully cooperative MARL problem, which is usually described as a
decentralized partially observable markov decision process (Dec-POMDP) [16]. A Dec-POMDP is

2

𝑠𝑡+1𝒂𝑡

𝒪𝑡 𝑠𝑡 𝑍 𝑧𝑖

𝑜𝑡
𝑖𝑠𝑡+1𝒂𝑡

𝒪𝑡 𝑠𝑡

Agent 𝑔𝑖

(a) (b)

Figure 2: (a) RL can be cast as an inference problem by considering a basic probabilistic graphical
model consisting of states st, actions at and optimality variables Ot. (b) Similarly, we formulate
multi-agent skill discovery as an inference problem by augmenting the basic probabilistic graphical
model with team skills Z, individual skills zi and observations oit.

defined by a tuple G = ⟨N ,S,A, P, r,Ω, O, γ⟩, where N ≡ {g1, g2, · · · , gn} is the set of n agents
and S is the global state space of the environment. All agents share the same action space A and
the joint action space is An. At timestep t, each agent gi ∈ N chooses an action ait ∈ A, where
i ∈ {1, 2, · · · , n} is the agent identity. The actions of all agents form a joint action at ∈ An. By
executing at, the environment transitions to the next global state st+1 ∼ P (st+1|st,at), and all
agents receive a shared team reward r(st,at). Each agent gi can only observe a partial observation
oit ∈ Ω according to the observation probability function O(st, g

i). The joint observation of all
agents is denoted as ot. γ ∈ [0, 1) is the discount factor. The objective is to learn a joint policy π
that maximizes the expected global return E [

∑∞
t=0 γ

trt|π]. In particular, this paper focuses on the
sparse reward setting, where the team reward rt is zero for most timesteps.

2.2 Mutual Information based Skill Discovery

Skill discovery is a popular paradigm in unsupervised RL, which enables agents to discover diverse
skills without a reward function. A skill is represented by a latent variable z, which is used as an
additional input to the policy and results in a latent-conditioned policy π(a|s, z). The intention behind
skill discovery is to expect the skill to control which states the agent visits and different skills to visit
different states. This can be achieved by a simple objective of maximizing the mutual information
between state s and skill z, i.e., I(s; z) = H(z)−H(z|s). It’s challenging to directly optimize the
mutual information. Therefore, a majority of skill discovery methods [17–20] derive a variational
lower bound for the mutual information as follows:

I(s; z) = Es,z∼p(s,z) [log p(z|s)− log p(z)] ≥ Es,z∼p(s,z) [log qϕ(z|s)− log p(z)] , (1)

where qϕ(z|s) is a learned model parameterized by ϕ to approximate the intractable posterior p(z|s).
Then, we can treat log qϕ(z|s)− log p(z) as the intrinsic reward to optimize the latent-conditioned
policy π(a|s, z), where different z correspond to different skills.

2.3 Probabilistic Graphical Model for RL

The probabilistic graphical model (PGM) is a powerful tool for modeling complex and uncertain
systems. It provides a graphical representation of the relationship between variables in a system,
where nodes correspond to random variables and edges represent conditional dependencies. In
recent years, PGM has been widely used in RL to model complex decision-making tasks [14, 21–24].
In this work, we follow the basic PGM for RL [14], which embeds the control problem into a
graphical model and formulates it as an inference problem. As shown in Fig. 2(a), it first models
the relationship among states, actions, and next states based on the dynamics P (st+1|st,at). To
incorporate the reward function, it introduces a binary random variable Ot called optimality variable
into the model, where Ot = 1 denotes timestep t is optimal, and Ot = 0 indicates timestep t is not
optimal. The probability distribution over Ot is p(Ot = 1|st,at) = exp (r(st,at)). Refer to [14],
we then perform structured variational inference to derive the final objective, which is to optimize
a variational lower bound (also called evidence lower bound). The evidence is that Ot = 1 for all
t ∈ {0, · · · , T}. We will use Ot to denote Ot = 1 for conciseness in the remainder of this paper.

3

The variational lower bound is given by:

log p(O0:T) ≥ Es0:T ,a0:T∼q(s0:T ,a0:T)

[
T∑

t=0

r(st,at)− log q(at|st)

]
, (2)

where q(at|st) is the learned policy. Optimizing this lower bound corresponds to maximizing the
cumulative reward and the policy entropy at the visited states, which differs from the standard RL
objective that only maximizes reward. The entropy term can promote exploration and prevent the
policy from becoming too deterministic. This type of RL objective is sometimes known as maximum
entropy RL [25, 26].

3 Method

In this section, we present our solution for learning both team and individual skills in MARL. We
first model the multi-agent skill discovery problem with a PGM and derive a tractable variational
lower bound as the optimization objective. We then propose a practical MARL algorithm to optimize
the derived lower bound.

3.1 Multi-Agent Skill Discovery as an Inference Problem

In this work, we study the skill discovery problem in multi-agent tasks. One way for multi-agent skill
discovery is to treat all agents as one big virtual agent and directly learn skills from the perspective of
the whole team, which can improve teamwork but suffer from high complexity. Another way is to
learn skills from the perspective of each individual agent, which reduces the complexity but lacks
collaboration. To combine the advantages of two ways, we propose to learn skills not only from the
individual perspective but also from the team viewpoint.

Specifically, we utilize a latent variable denoted by Z ∈ Z to represent the skill of the entire team,
referred to as team skill. And we use a latent variable denoted by zi ∈ X to represent the skill of agent
gi, referred to as individual skill. The individual skills of all agents are represented by z1:n ∈ Xn. In
this work, both the team skill space Z and the individual skill space X are defined as discrete spaces
consisting of finite latent variables with one-hot encoding, where the number of team skills and
individual skills are denoted as nZ and nz , respectively. The team skill Z is acquired from the global
view and is expected to control the global states that the whole team visits, while the individual skill
zi is developed through an individual perspective and is intended to control the partial observations
accessed by agent gi. Besides, since individual behaviors are typically based on the overall team
strategy, the individual skill zi should depend on the team skill Z. According to these intuitions, we
employ a PGM illustrated in Fig. 2(b) to model the multi-agent skill discovery problem, where the
team skill Z is conditioned on the global state st and the individual skill zi is conditioned on both
the team skill Z and agent gi’s partial observation oit. With the PGM, we formulate multi-agent skill
discovery as an inference problem. Then, we perform structured variational inference to derive our
objective, which is to optimize a variational lower bound as follows:

log p(O0:T) ≥ Eτ∼q(τ)

[T∑
t=0

(
r(st,at) + log p(Z|st) +

∑n

i=1
log p(zi|oit, Z)︸ ︷︷ ︸

diversity term

− log q(Z|st)−
∑n

i=1
log q(zi|oit, Z)︸ ︷︷ ︸

skill entropy term

−
∑n

i=1
log q(ai

t|oit, zi)︸ ︷︷ ︸
action entropy term

)]
,

(3)

where τ =
(
s0:T ,o0:T ,a0:T , Z, z

1:n
)

is the joint trajectory containing states, observations, actions
and skills. The detailed derivation of Eq. 3 is shown in Appendix B.

Optimizing this lower bound is to maximize the team reward r(st,at) and three terms. The diversity
term shows the probability of skills on their corresponding states and observations, which can be
maximized to encourage different skills to visit different states and observations, and is a crucial
element for learning diverse skills. The skill entropy term and the action entropy term reflect the
entropy of skills and actions at the visited states and observations, respectively. Optimizing the two
entropy terms can enhance the exploration during skill learning.

4

Skill Coordinator

State Encoder

𝑠 𝑜1 𝑜𝑛…

Ƹ𝑠 ො𝑜1 ො𝑜𝑛…

𝑉ℎ(Ƹ𝑠) 𝑉ℎ(ො𝑜
1) 𝑉ℎ(ො𝑜

𝑛)…

MLP

Embedding

Skill Decoder

𝜋ℎ(𝑧
𝑖+1| Ƹ𝑠, ො𝑜1:𝑛, 𝑍0, 𝑍, 𝑧1:𝑖)

MLP

Embedding

𝑧𝑖+1

…𝑍0 𝑍 𝑧1 𝑧𝑖

sample

Skill Discriminator

Team

Discriminator

𝑞𝐷(𝑍|𝑠)

𝑠 𝑜𝑖

𝑞𝑑(𝑧
𝑖|𝑜𝑖 , 𝑍)

Individual

Discriminator

𝑍

Skill Discoverer

Actor

𝑜𝑖 𝑧𝑖

𝜋𝑙(𝑎
𝑖|𝑜𝑖 , 𝑧𝑖)

Critic

𝑠 𝑍

𝑉𝑙(𝑠, 𝑍)

Env

𝑠, 𝒐, 𝑟

𝑠, 𝒐

𝒂

𝑠, 𝒐, 𝑟

𝑟𝑖𝑛𝑍, 𝑧1:𝑛

Figure 3: The overall framework of HMASD. At the high level, the skill coordinator adopts a
transformer structure to assign team skill Z and individual skills z1:n to agents. At the low level,
the skill discoverer chooses primitive action ai for agent gi conditioned on the assigned skill zi
and forms a joint action a to interact with the environment. The environment returns global state
s, joint observation o and team reward r. To make the skills diverse and distinguishable, two skill
discriminators are employed to generate intrinsic rewards rin for the skill discoverer.

3.2 Hierarchical Multi-Agent Skill Discovery

In this subsection, we present Hierarchical Multi-Agent Skill Discovery (HMASD), a practical
two-level hierarchical MARL algorithm designed to optimize the derived lower bound in Eq. 3. To
estimate the probability distributions in the lower bound, we utilize four approximate functions.
Specifically, we first employ a team skill discriminator qD(Z|st) to approximate p(Z|st). Then,
we use an individual skill discriminator qd(zi|oit, Z) to approximate p(zi|oit, Z). Moreover, a skill
coordinator πh(Z, z

1:n|st,ot) is utilized to approximate both q(Z|st) and q(zi|oit, Z), while a skill
discoverer πl(a

i
t|oit, zi) is applied to approximate q(ait|oit, zi). As shown in Fig. 3, these approximate

functions are integrated into a two-level hierarchical structure for multi-agent skill discovery. At
the high level, the skill coordinator assigns team skill Z and individual skills z1:n to agents every k
timesteps, where k ∈ N+ is the number of timesteps between two consecutive skill assignments and
is called skill interval. At the low level, the skill discoverer employs a latent-conditioned policy for
each agent to explore the assigned skills using intrinsic rewards generated by the skill discriminators.
Below, we describe how to learn these approximate functions for optimizing the derived lower bound.

Skill Coordinator Transformer [15] has recently shown great potentials in MARL [27–31]. In
this work, we take inspiration from MAT [31], which applies a transformer structure to map the
agents’ observation sequence into the agents’ action sequence. Similar to MAT, we employ a
transformer structure for the skill coordinator in our method as shown in Fig. 3. Specifically, we
take the sequence of state and observations (s, o1, o2, · · · , on) as inputs and embed them into vectors
with the same dimension. Then, the embedded sequence is passed through a state encoder, which
contains several encoding blocks. Each encoding block consists of a self-attention mechanism, a
multi-layer perceptron (MLP) and residual connections. The state encoder outputs a sequence denoted
as (ŝ, ô1, ô2, · · · , ôn), which encodes (s, o1, o2, · · · , on) into informative representations and is used
to approximate the high-level value function Vh. After encoding the state and observations, we assign
skills in an auto-regressive way. We start with an arbitrary symbol Z0, which is embedded and then
fed into a skill decoder containing several decoding blocks. Each decoding block consists of two
masked self-attention mechanisms, an MLP and residual connections, where the query of the second
masked self-attention mechanism is the output of state encoder. The output of skill decoder is then
fed to an MLP to generate the high-level policy πh(Z|ŝ, ô1:n, Z0). We sample a team skill Z from
the policy and insert it back into the decoder to generate z1. By analogy, after n+1 decoding rounds,
we get team skill Z and all agents’ individual skills z1:n. In this way, agent gi’s individual skill zi

5

depends on team skill Z and all previous agents’ individual skills z1:i−1, which can prevent skill
duplication and allow agents to choose complementary individual skills based on the team skill.

Skill Discoverer After assigning skills sequentially, we learn a shared skill discoverer to explore
the assigned skills for agents. The skill discoverer consists of a decentralized actor and a centralized
critic as shown in Fig. 3. The decentralized actor takes the partial observation oi and individual skill
zi as inputs, and outputs the low-level policy πl(a

i|oi, zi) that chooses action ai for each agent gi.
All agents share a centralized critic to approximate the low-level value function Vl(s, Z) based on
the global state s and team skill Z. In our implementation, both the actor and the critic consist of an
MLP, a GRU [32] and another MLP. The actor aims to learn the assigned individual skill zi for each
agent gi, while the critic takes a global view and expects to guide the joint behavior of all agents to
discover the assigned team skill Z.

Skill Discriminator To make the learned skills diverse and distinguishable, we learn two skill
discriminators, a team discriminator and an individual discriminator. The team discriminator inputs
the global state s and outputs the probability of each team skill Z ∈ Z , denoted as qD(Z|s). In
addition, we employ an individual discriminator qd(zi|oi, Z), which takes the partial observation oi

and team skill Z as inputs and then outputs the probability of each individual skill zi ∈ X . Both
discriminators are composed of an MLP. The team discriminator aims to discriminate the team skill
based on the global state, while the individual discriminator is designed to discriminate the individual
skill given the observation and team skill. The two skill discriminators are utilized to generate
intrinsic rewards log qD(Z|s) and log qd(z

i|oi, Z), respectively. log qD(Z|s) is to reward all agents
to jointly explore global states that are easy to discriminate, while log qd(zi|oi, Z) rewards each agent
gi for visiting those easily distinguishable observations given the team skill Z. In other words, it
encourages different skills to explore different areas of the state-observation space. Since if two skills
explore the same state, this state will be hard to discriminate and then lead to low intrinsic rewards.
Therefore, the intrinsic rewards can guide agents to learn diverse and distinguishable skills.

Overall Training and Execution According to Eq. 3, we need to optimize the team reward, the
diversity term, the skill entropy term and the action entropy term. At each episode, the high-level
skill coordinator assigns skills to agents every k timesteps, then the low-level skill discoverer learns
to explore the assigned skills for agents during these k timesteps. We define the sum of team rewards
over these k timesteps as the single-step reward for the high-level policy, i.e., the high-level reward
can be written as rht =

∑k−1
p=0 rt+p. For the low-level policy, we use a combination of extrinsic team

reward and intrinsic rewards, i.e., the low-level reward for agent gi is:

rit = λert + λD log qD(Z|st+1) + λd log qd(z
i|oit+1, Z), (4)

where λe, λD and λd are three positive coefficients. The team reward ensures the learned skills are
useful for the team performance, while the intrinsic rewards are used to optimize the diversity term in
Eq. 3. We adopt the popular PPO [33] objective to optimize both the high-level skill coordinator and
the low-level skill discoverer. Given a policy π(a|x) with parameters θ, a value function V (y) with
parameters ϕ and a reward function r, we write a generic template for PPO objective as:

LPPO{π(a|x), V (y), r} = L(θ) + λcL(ϕ),

L(θ) = −Et

[
min

(
π(at|xt)

πold(at|xt)
Ât, clip

(
π(at|xt)

πold(at|xt)
, 1− ϵ, 1 + ϵ

)
Ât

)]
,

L(ϕ) = Et

[
max

{(
V (yt)− R̂t

)2

,
(
Vold(yt) + clip (V (yt)− Vold(yt),−ϵ, ϵ)− R̂t

)2 }]
,

(5)

where Ât is the advantage computed using GAE [34], R̂t = Ât + Vold(yt) and λc is the coefficient
of value loss. Then, we write the overall objective for the high-level skill coordinator as:

Lh(θh, ϕh) =LPPO{πh(Z|ŝ, ô1:n, Z0), Vh(ŝ), r
h
t }+

n∑
i=1

LPPO{πh(z
i|ŝ, ô1:n, Z0, Z, z1:i−1), Vh(ô

i), rht }

− λh

(
E
[
H(πh(Z|ŝ, ô1:n, Z0))

]
+

n∑
i=1

E
[
H(πh(z

i|ŝ, ô1:n, Z0, Z, z1:i−1))
])

, (6)

where H(πh(·)) is the entropy of the high-level policy that aims to optimize the skill entropy term in
Eq. 3, and λh is the high-level entropy coefficient. θh and ϕh denote the parameters of the policy and

6

Alice Bob Alice Bob Alice Bob

(a) Alice_and_Bob (c) 𝑍 = 1, 𝑧1 = 1, 𝑧2 = 0(b) 𝑍 = 0, 𝑧1 = 3, 𝑧2 = 2

Figure 4: (a) The Alice_and_Bob game. The objective is to collect both diamonds, where each
diamond is allowed to be collected only when an agent is standing on the button with the same color.
(b) At timestep t = 0, HMASD selects the team skill of collecting the blue diamond (Z = 0) and
two individual skills for reaching the blue button (z1 = 3) and blue diamond (z2 = 2). (c) After
collecting the blue diamond, the team skill transitions to collecting the red diamond (Z = 1) with
two individual skills of reaching the red button (z1 = 1) and red diamond (z2 = 0) at timestep t = k,
where k is the skill interval.

value function in the skill coordinator, respectively. Similarly, the overall objective for the low-level
skill discoverer is:

Ll(θl, ϕl) =

n∑
i=1

LPPO{πl(a
i|oi, zi), Vl(s, Z), rit} − λl

n∑
i=1

E
[
H(πl(a

i|oi, zi))
]
, (7)

where H(πl(·)) denotes low-level policy entropy and optimizes the action entropy term in Eq. 3, and
λl is the low-level entropy coefficient. θl and ϕl represent the parameters of the low-level policy
and value function, respectively. The skill discriminator is trained in a supervised manner with the
categorical cross-entropy loss:

Ld(ϕD, ϕd) = −E(s,Z)∼D [log qD(Z|s)]−
n∑

i=1

E(oi,Z,zi)∼D

[
log qd(z

i|oi, Z)
]
, (8)

where D = {(s, Z,o, z1:n)} is a dataset storing the state-skill pairs during training. ϕD and ϕd are
the parameters of team discriminator and individual discriminator, respectively. The pseudo code of
our method is shown in Appendix A.

During the execution phase, we only use the centralized high-level policy πh(Z, z
1:n|s,o) and the de-

centralized low-level policy πl(a
i|oi, zi). For every k timesteps, the high-level policy πh(Z, z

1:n|s,o)
first chooses a team skill Z (i.e., team strategy) from a global perspective and then sequentially assigns
complementary individual skills z1:n to agents based on the team strategy Z. With the assigned
individual skill zi, each agent gi selects an action ai according to the low-level policy πl(a

i|oi, zi) at
every timestep for execution. Therefore, our method performs one timestep of centralized execution
and k − 1 timesteps of decentralized execution in every k timesteps. Such periodic and spaced
centralized execution can coordinate agents more efficiently from a global view compared to the
fully decentralized execution, and a small amount of centralized execution is acceptable in many
multi-agent tasks. For example, during a basketball game, the coach can call a timeout and gather all
players to adjust the team strategy and each player’s individual strategy. In short, our method achieves
a balance between fully centralized execution [31, 35] and fully decentralized execution [4, 36–39].

4 Experiments

In this section, we evaluate the effectiveness of our method. We first conduct a case study to show
how HMASD effectively learns diverse useful skills and combines them to complete the task. Then,
we compare HMASD with strong MARL baselines on two challenging sparse reward multi-agent
benchmarks, i.e., SMAC [40] with 0-1 reward and Overcooked [41]. We further perform ablation
studies for HMASD to confirm the benefits of components in our method. We select MAPPO [5],
MAT [31] and MASER [42] as our baselines. MAPPO and MAT are two strong policy-based MARL
algorithms that achieve state-of-art performance on various multi-agent tasks [40, 43–45]. MASER

7

Figure 6: Performance comparison between HMASD and baselines on SMAC with 0-1 reward.

Figure 7: Performance comparison between HMASD and baselines on Overcooked.

presents a goal-conditioned method for solving sparse reward MARL. For all methods, we show
the mean and variance of the performance across five different random seeds. The hyperparameter
setting can be found in Appendix E.

4.1 Case Study

In this subsection, we design a toy game Alice_and_Bob to demonstrate how our method works.
As shown in Fig. 4(a), the Alice_and_Bob game is an 8 × 8 grid world environment surrounded
by walls. There are two agents Alice and Bob with random initial positions, two buttons at the top
and two diamonds at the bottom. The goal of the game is to collect both diamonds, where each
diamond is allowed to be collected only when an agent is standing on the button with the same color.

0.0 1.0 2.0 3.0
Timesteps(M)

0

20

40

60

80

100

M
ea

n
Te

st
 S

uc
ce

ss
 R

at
e(

%
)

HMASD
MAPPO
MAT
MASER

Figure 5: Performance comparison
between HMASD and baselines on
Alice_and_Bob.

Alice and Bob can receive a non-zero team reward only
after they cooperatively collect both diamonds. We set
the number of team skills nZ = 2 and the number of
individual skills nz = 4 for HMASD. Fig. 4(b) and (c)
show the learned skills of our method. We can observe
that the two team skills Z = 0, 1 correspond to collecting
the blue diamond and red diamond for the whole team,
respectively, and the four individual skills zi = 0, 1, 2, 3
guide the individual agent to reach the red diamond, red
button, blue diamond and blue button, respectively. We
observe similar skills for agents with different initial posi-
tions in Appendix C. By learning these diverse and useful
skills, our method achieves a higher success rate of task
completion than baselines as shown in Fig. 5. These re-
sults demonstrate that HMASD could discover significant
team and individual skills, and effectively combine them to accomplish the task.

4.2 Performance on Sparse Reward Multi-Agent Benchmarks

In this subsection, we first test our method on a widely-used MARL benchmark, SMAC [40], where
we learn to control a team of ally units against a team of enemy units controlled by a built-in strategy.
The ally team wins the game only if all enemy units are killed within the time limit of an episode. Our
objective is to maximize the win rate for the ally team. The default reward setting of SMAC contains
many dense rewards, such as the unit’s health and damage. These dense rewards enable many MARL
algorithms like MAT [31] and MAPPO [5] to attain almost 100% win rate on all scenarios. However,
designing useful dense rewards is usually expensive and adjusting the weights between rewards is

8

Figure 8: Ablation studies regarding components of HMASD.

time-consuming. In this work, we consider a more general reward setting, i.e., SMAC with 0-1
reward, which returns a non-zero team reward of 1 only at the last timestep if the ally team wins.
As shown in Fig. 6, HMASD significantly outperforms baselines on SMAC with 0-1 reward, where
MAT and MAPPO don’t work at all. MASER only works on the scenario 3m and fails on the other
two scenarios 2s_vs_1sc and 2m_vs_1z. This demonstrates the effectiveness of HMASD and the
high efficiency of skill discovery for solving sparse reward multi-agent tasks.

Next, we evaluate HMASD on another sparse reward multi-agent task called Overcooked, a popular
cooperative cooking simulation game. We follow a simplified version of the game proposed in [41],
the objective of which is to deliver the soup as fast as possible. Each soup requires agents to place 3
onions in a pot, cook them for 20 timesteps, put the cooked soup in a dish, and deliver it to the service
desk. All agents will receive a team reward of 20 after delivering a soup. In Fig. 7, we compare
HMASD with baselines on three Overcooked scenarios. It can be observed that HMASD could also
achieve a superior performance over baselines on Overcooked, which further confirms that HMASD
can discover useful skills to effectively complete the task.

Moreover, we visualize the learned skills and find that HMASD uses only a few skills to complete
the complex task after training. This is because HMASD will encourage different skills to explore
different state-observation spaces, but only a small part of the state-observation space can result in a
non-zero team reward in the complex sparse reward multi-agent task. For example, on the SMAC
scenario, there is usually a big map, we observe that most of the learned skills explore areas of the
map without enemies and thus don’t contribute to the team reward. These results indicate that when
the state-observation space is large, HMASD can discover diverse skills but maybe only some of
them are useful for the team reward. More fine-grained results can be found in Appendix F.

Additionally, we compare HMASD with an exploration bonus MARL baseline [46] in Appendix H.
The results show that the performance improvements of HMASD mainly come from diverse skill
discovery and effective skill combination, rather than implicit exploration.

4.3 Ablation Studies

In this subsection, we conduct ablation studies to investigate the impact of three main components
in HMASD: (1) discovering both team and individual skills, (2) using a combination of extrinsic
team reward and intrinsic rewards for the low-level reward and (3) employing the high-level skill
coordinator to assign skills to agents. To test component (1), we introduce two variants of HMASD,
denoted as HMASD_NoTeam and HMASD_NoIndi, respectively. HMASD_NoTeam only learns
individual skills for agents, while HMASD_NoIndi only lets all agents learn a shared team skill. To
evaluate component (2), we consider HMASD_NoExRew and HMASD_NoInRew, which set λe = 0
and λD = λd = 0 in Eq. 4, respectively. As for component (3), we adopt HMASD_NoHigh, which
removes the high-level policy and randomly assigns skills to agents at the start of each episode. As
shown in Fig. 8, HMASD performs better than both HMASD_NoTeam and HMASD_NoIndi, which
emphasizes the importance of discovering both team and individual skills in multi-agent tasks. After
removing the extrinsic team reward or intrinsic rewards in the low-level reward, the performance
of HMASD has a large drop. Especially without intrinsic rewards, HMASD can’t work on most
scenarios. This highlights the considerable contributions of optimizing the diversity term in Eq. 3.
Besides, the performance comparison between HMASD and HMASD_NoHigh reveals the necessity
of the high-level policy. More ablations for HMASD are shown in Appendix D.

9

5 Related Work

Skill Discovery in MARL Skill discovery is a promising approach to solving complex tasks for its
ability to discover diverse skills even without any extrinsic reward. Recently, this approach has been
extended to MARL. MASD [9] learns coordinating skills adversarially by setting an information
bottleneck. VMAPD [10] constructs a diverse Dec-POMDP to learn diverse skills as different
solutions for multi-agent tasks. However, these two methods focus on learning a shared team skill
for all agents, and use only one skill throughout an episode. To combine different skills to tackle
multi-agent tasks, HSD [11] employs a hierarchical structure, where the high-level policy selects
low-level skills for agents based on local observations. HSL [12] follows a similar hierarchical
structure and introduces a skill representation mechanism to enhance skill learning. Nevertheless,
these two methods only learn individual skills from each agent’s individual perspective, without
considering team skill learning. Besides, in these two methods, each agent selects skills only based on
its local observation, leading to potential skill duplication between agents with similar observations.
ODIS [47] applies skill discovery to offline MARL, which discovers generalizable individual skills
across different tasks from offline multi-task data, and trains a coordination policy to assign skills
to agents with the centralized training and decentralized execution paradigm [4]. However, this
decentralized skill assignment may also lead to skill duplication. Chen et al. [48, 49] learn joint
options (i.e., skills) by approximating the joint state space as the Kronecker product of the state
spaces of individual agents. In this work, we propose to discover both team skills and individual
skills. Moreover, we assign skills to agents from a global perspective to enable complementary skill
selection and prevent skill duplication effectively.

Sparse Reward MARL The issue of sparse reward poses a significant obstacle when applying RL
to solve real-world problems, which will be exacerbated in multi-agent tasks. Several approaches
have been proposed to address the sparse reward problem in MARL. SEAC [50] leverages experience
sharing among agents to enable efficient exploration. CMAE [51] promotes cooperative exploration
by selecting a shared goal for agents from state spaces. VACL [52] tackles the sparse reward problem
in MARL by utilizing an automatic curriculum learning algorithm that incrementally expands the
training tasks from easy to hard. More recently, MASER [42] introduces a goal-conditioned method
that generates subgoals for agents from the experience replay buffer. In this work, we present a
hierarchical MARL algorithm that discovers underlying skills and effectively combines these skills to
solve sparse reward multi-agent tasks.

6 Conclusion

It is an efficient way to learn a set of skills and combine them properly to tackle complex tasks. In
this study, we take advantage of skill discovery to address MARL problems. We propose to discover
latent team and individual skills by embedding them into a probabilistic graphical model. In this
way, we formulate multi-agent skill discovery as an inference problem, and derive a variational lower
bound as the optimization objective. We then design a practical MARL method called HMASD
to optimize the lower bound, where different team skills explore different global state spaces and
different individual skills explore different local observation spaces. The empirical results show
that HMASD significantly improves performance on challenging sparse reward multi-agent tasks by
learning diverse team and individual skills with efficient skill combination.

10

Acknowledgments

This work is supported by National Key R&D Program of China under Contract 2022ZD0119802,
and National Natural Science Foundation of China under Contract 61836011. It was also supported
by GPU cluster built by MCC Lab of Information Science and Technology Institution, USTC, and
the Supercomputing Center of the USTC. What’s more, it is funded by Collective Intelligence &
Collaboration Laboratory (Open Fund Project No. QXZ23014101) and by Young Elite Scientists
Sponsorship Program by CAST 2022QNRC001.

References
[1] D. Rizvi and D. Boyle, “Multi-agent reinforcement learning with action masking for uav-enabled mobile

communications,” arXiv preprint arXiv:2303.16737, 2023.

[2] B. Xiao, R. Li, F. Wang, C. Peng, J. Wu, Z. Zhao, and H. Zhang, “Stochastic graph neural network-based
value decomposition for marl in internet of vehicles,” arXiv preprint arXiv:2303.13213, 2023.

[3] T. Wu, P. Zhou, K. Liu, Y. Yuan, X. Wang, H. Huang, and D. O. Wu, “Multi-agent deep reinforcement
learning for urban traffic light control in vehicular networks,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 8, pp. 8243–8256, 2020.

[4] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S. Whiteson, “Qmix: Monotonic value
function factorisation for deep multi-agent reinforcement learning,” in Proceedings of the International
Conference on Machine Learning. PMLR, 2018, pp. 4295–4304.

[5] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu, “The surprising effectiveness of
ppo in cooperative multi-agent games,” Advances in Neural Information Processing Systems, vol. 35, pp.
24 611–24 624, 2022.

[6] J. She, J. K. Gupta, and M. J. Kochenderfer, “Agent-time attention for sparse rewards multi-agent rein-
forcement learning,” arXiv preprint arXiv:2210.17540, 2022.

[7] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Diversity is all you need: Learning skills without a
reward function,” arXiv preprint arXiv:1802.06070, 2018.

[8] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman, “Dynamics-aware unsupervised discovery of
skills,” arXiv preprint arXiv:1907.01657, 2019.

[9] S. He, J. Shao, and X. Ji, “Skill discovery of coordination in multi-agent reinforcement learning,” arXiv
preprint arXiv:2006.04021, 2020.

[10] S. Huang, C. Yu, B. Wang, D. Li, Y. Wang, T. Chen, and J. Zhu, “Vmapd: Generate diverse solutions for
multi-agent games with recurrent trajectory discriminators,” in IEEE Conference on Games. IEEE, 2022,
pp. 9–16.

[11] J. Yang, I. Borovikov, and H. Zha, “Hierarchical cooperative multi-agent reinforcement learning with skill
discovery,” arXiv preprint arXiv:1912.03558, 2019.

[12] Y. Liu, Y. Li, X. Xu, Y. Dou, and D. Liu, “Heterogeneous skill learning for multi-agent tasks,” Advances in
Neural Information Processing Systems, vol. 35, pp. 37 011–37 023, 2022.

[13] L. Gyarmati, H. Kwak, and P. Rodriguez, “Searching for a unique style in soccer,” arXiv preprint
arXiv:1409.0308, 2014.

[14] S. Levine, “Reinforcement learning and control as probabilistic inference: Tutorial and review,” arXiv
preprint arXiv:1805.00909, 2018.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” Advances in Neural Information Processing Systems, vol. 30, 2017.

[16] F. A. Oliehoek and C. Amato, A concise introduction to decentralized POMDPs. Springer, 2016.

[17] K. Gregor, D. J. Rezende, and D. Wierstra, “Variational intrinsic control,” arXiv preprint arXiv:1611.07507,
2016.

[18] J. Achiam, H. Edwards, D. Amodei, and P. Abbeel, “Variational option discovery algorithms,” arXiv
preprint arXiv:1807.10299, 2018.

11

[19] S. Hansen, W. Dabney, A. Barreto, T. Van de Wiele, D. Warde-Farley, and V. Mnih, “Fast task inference
with variational intrinsic successor features,” arXiv preprint arXiv:1906.05030, 2019.

[20] L. Lee, B. Eysenbach, E. Parisotto, E. Xing, S. Levine, and R. Salakhutdinov, “Efficient exploration via
state marginal matching,” arXiv preprint arXiv:1906.05274, 2019.

[21] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel
et al., “Soft actor-critic algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.

[22] T. Haarnoja, K. Hartikainen, P. Abbeel, and S. Levine, “Latent space policies for hierarchical reinforcement
learning,” in Proceedings of the International Conference on Machine Learning. PMLR, 2018, pp.
1851–1860.

[23] Y. Wen, Y. Yang, R. Luo, J. Wang, and W. Pan, “Probabilistic recursive reasoning for multi-agent
reinforcement learning,” arXiv preprint arXiv:1901.09207, 2019.

[24] M. Li, L. Wu, J. Wang, and H. Bou Ammar, “Multi-view reinforcement learning,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[25] B. D. Ziebart, Modeling purposeful adaptive behavior with the principle of maximum causal entropy.
Carnegie Mellon University, 2010.

[26] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor,” in Proceedings of the International Conference on Machine
Learning. PMLR, 2018, pp. 1861–1870.

[27] S. Hu, F. Zhu, X. Chang, and X. Liang, “Updet: Universal multi-agent reinforcement learning via policy
decoupling with transformers,” arXiv preprint arXiv:2101.08001, 2021.

[28] M. Wang, M. Feng, W. Zhou, and H. Li, “Stabilizing voltage in power distribution networks via multi-agent
reinforcement learning with transformer,” in Proceedings of ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2022, pp. 1899–1909.

[29] W.-C. Tseng, T.-H. J. Wang, Y.-C. Lin, and P. Isola, “Offline multi-agent reinforcement learning with
knowledge distillation,” Advances in Neural Information Processing Systems, vol. 35, pp. 226–237, 2022.

[30] L. Meng, M. Wen, Y. Yang, C. Le, X. Li, W. Zhang, Y. Wen, H. Zhang, J. Wang, and B. Xu, “Offline
pre-trained multi-agent decision transformer: One big sequence model conquers all starcraftii tasks,” arXiv
preprint arXiv:2112.02845, 2021.

[31] M. Wen, J. Kuba, R. Lin, W. Zhang, Y. Wen, J. Wang, and Y. Yang, “Multi-agent reinforcement learning
is a sequence modeling problem,” Advances in Neural Information Processing Systems, vol. 35, pp.
16 509–16 521, 2022.

[32] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning phrase representations using rnn encoder-decoder for statistical machine translation,” arXiv
preprint arXiv:1406.1078, 2014.

[33] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

[34] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional continuous control using
generalized advantage estimation,” arXiv preprint arXiv:1506.02438, 2015.

[35] J. G. Kuba, R. Chen, M. Wen, Y. Wen, F. Sun, J. Wang, and Y. Yang, “Trust region policy optimisation in
multi-agent reinforcement learning,” arXiv preprint arXiv:2109.11251, 2021.

[36] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot, N. Sonnerat,
J. Z. Leibo, K. Tuyls et al., “Value-decomposition networks for cooperative multi-agent learning,” arXiv
preprint arXiv:1706.05296, 2017.

[37] Y. Yang, J. Hao, B. Liao, K. Shao, G. Chen, W. Liu, and H. Tang, “Qatten: A general framework for
cooperative multiagent reinforcement learning,” arXiv preprint arXiv:2002.03939, 2020.

[38] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi, “Qtran: Learning to factorize with transformation
for cooperative multi-agent reinforcement learning,” in Proceedings of the International Conference on
Machine Learning. PMLR, 2019, pp. 5887–5896.

[39] J. Wang, Z. Ren, T. Liu, Y. Yu, and C. Zhang, “Qplex: Duplex dueling multi-agent q-learning,” in
Proceedings of the International Conference on Learning Representations, 2021.

12

[40] M. Samvelyan, T. Rashid, C. S. De Witt, G. Farquhar, N. Nardelli, T. G. Rudner, C.-M. Hung, P. H. Torr,
J. Foerster, and S. Whiteson, “The starcraft multi-agent challenge,” arXiv preprint arXiv:1902.04043, 2019.

[41] M. Carroll, R. Shah, M. K. Ho, T. Griffiths, S. Seshia, P. Abbeel, and A. Dragan, “On the utility of learning
about humans for human-ai coordination,” Advances in Neural Information Processing Systems, vol. 32,
2019.

[42] J. Jeon, W. Kim, W. Jung, and Y. Sung, “Maser: Multi-agent reinforcement learning with subgoals
generated from experience replay buffer,” in Proceedings of the International Conference on Machine
Learning. PMLR, 2022, pp. 10 041–10 052.

[43] C. S. de Witt, B. Peng, P.-A. Kamienny, P. Torr, W. Böhmer, and S. Whiteson, “Deep multi-agent
reinforcement learning for decentralized continuous cooperative control,” arXiv preprint arXiv:2003.06709,
vol. 19, 2020.

[44] Y. Chen, T. Wu, S. Wang, X. Feng, J. Jiang, Z. Lu, S. McAleer, H. Dong, S.-C. Zhu, and Y. Yang,
“Towards human-level bimanual dexterous manipulation with reinforcement learning,” Advances in Neural
Information Processing Systems, vol. 35, pp. 5150–5163, 2022.

[45] K. Kurach, A. Raichuk, P. Stańczyk, M. Zając, O. Bachem, L. Espeholt, C. Riquelme, D. Vincent,
M. Michalski, O. Bousquet et al., “Google research football: A novel reinforcement learning environment,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 4501–4510.

[46] T. Wang, J. Wang, Y. Wu, and C. Zhang, “Influence-based multi-agent exploration,” arXiv preprint
arXiv:1910.05512, 2019.

[47] F. Zhang, C. Jia, Y.-C. Li, L. Yuan, Y. Yu, and Z. Zhang, “Discovering generalizable multi-agent coordi-
nation skills from multi-task offline data,” in Proceedings of the International Conference on Learning
Representations, 2023.

[48] J. Chen, J. Chen, T. Lan, and V. Aggarwal, “Learning multi-agent options for tabular reinforcement learning
using factor graphs,” arXiv preprint arXiv:2201.08227, 2022.

[49] J. Chen, J. Chen, T. Lan, and V. Aggarwal, “Scalable multi-agent covering option discovery based on
kronecker graphs,” Advances in Neural Information Processing Systems, vol. 35, pp. 30 406–30 418, 2022.

[50] F. Christianos, L. Schäfer, and S. Albrecht, “Shared experience actor-critic for multi-agent reinforcement
learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 10 707–10 717, 2020.

[51] I.-J. Liu, U. Jain, R. A. Yeh, and A. Schwing, “Cooperative exploration for multi-agent deep reinforcement
learning,” in Proceedings of the International Conference on Machine Learning. PMLR, 2021, pp.
6826–6836.

[52] J. Chen, Y. Zhang, Y. Xu, H. Ma, H. Yang, J. Song, Y. Wang, and Y. Wu, “Variational automatic curriculum
learning for sparse-reward cooperative multi-agent problems,” Advances in Neural Information Processing
Systems, vol. 34, pp. 9681–9693, 2021.

13

A Pseudo Code of Hierarchical Multi-Agent Skill Discovery

Algorithm 1: Hierarchical Multi-Agent Skill Discovery
Initialize: Skill coordinator parameters θh and ϕh, Skill discoverer parameters θl and ϕl, Skill

discriminator parameters ϕD and ϕd, High-level replay buffer Bh, Low-level replay buffer Bl,
State-skill pair dataset D.

for episode = 0, 1, · · · ,K do
The inference phase
for t = 0, 1, · · · , T do

Collect global state st and agents’ partial observations ot = (o1t , · · · , ont) from
environments.

if t mod k = 0 then
Sample skills Z, z1:n ∼ πh(Z, z

1:n|st,ot).
end
for each agent gi ∈ N do

Sample action ait ∼ πl(a
i
t|oit, zi).

end
Execute joint actions at = (a1t , · · · , ant) in environments and collect the team reward rt,
next state st+1 and next observations ot+1.
for each agent gi ∈ N do

Compute low-level reward rit = λert + λD log qD(Z|st+1) + λd log qd(z
i|oit+1, Z).

Store
(
st, Z, o

i
t, z

i, ait, r
i
t

)
into Bl.

end
if t mod k = k − 1 then

Store
(
st−k−1,ot−k−1, Z, z

1:n,
∑k−1

p=0 rt−p

)
into Bh.

end
Store

(
st+1, Z,ot+1, z

1:n
)

into D.
end
The training phase
Sample a random minibatch of data from Bh to update θh and ϕh by minimizing Lh(θh, ϕh).
Sample a random minibatch of data from Bl to update θl and ϕl by minimizing Ll(θl, ϕl).
Sample a random minibatch of data from D to update ϕD and ϕd by minimizing Ld(ϕD, ϕd).

end

B Derivation of the Variational Lower Bound

In this section, we adopt the structured variational inference to formulate our objective based on
the PGM in Fig. 2(b). In structured variational inference, approximate inference is performed by
optimizing the variational lower bound [14]. Let τ =

(
s0:T ,o0:T ,a0:T , Z, z

1:n
)
, the variational

lower bound is given by:

log p(O0:T) = log

∫
p(O0:T , τ)dτ

= log

∫
p(O0:T , τ)

q(τ)

q(τ)
dτ

= logEτ∼q(τ)

[
p(O0:T , τ)

q(τ)

]
≥ Eτ∼q(τ) [log p(O0:T , τ)− log q(τ)] ,

14

Alice

Bob

Alice

Bob

Alice

Bob

Alice

Bob

(a) 𝑍 = 1, 𝑧1 = 1, 𝑧2 = 0

(b) 𝑍 = 0, 𝑧1 = 3, 𝑧2 = 2 (f) 𝑍 = 1, 𝑧1 = 1, 𝑧2 = 0(d) 𝑍 = 1, 𝑧1 = 1, 𝑧2 = 0

(c) 𝑍 = 0, 𝑧1 = 3, 𝑧2 = 2 (e) 𝑍 = 0, 𝑧1 = 2, 𝑧2 = 3

Alice

Bob

Alice

Bob

Figure 9: Visualization of learned team and individual skills on Alice_and_Bob. (a-b), (c-d), (e-f)
show the skills learned by the agents with three different initial positions, respectively.

where the inequality in the last line is derived using Jensen’s inequality. We assume that the action
prior distribution p(at) is a uniform distribution. Then, we have:

p(O0:T , τ) = p(s0)

T∏
t=0

p(ot)p(st+1|st,at)p(Ot|st,at)p(Z|st)p(z1|o1t , Z) · · · p(zn|ont , Z)

q(τ) = q(s0)

T∏
t=0

q(ot)q(st+1|st,at)q(Z|st)q(z1|o1t , Z) · · · q(zn|ont , Z)q(a1t |o1t , z1) · · · q(ant |ont , zn).

Similar to [14], we fix q(s0) = p(s0), q(ot) = p(ot), q(st+1|st,at) = p(st+1|st,at) and let
p(Ot|st,at) = exp(r(st,at)). The bound reduces to:

log p(O0:T) ≥ Eτ∼q(τ) [log p(O0:T , τ)− log q(τ)]

= Eτ∼q(τ)

[T∑
t=0

(
r(st,at) + log p(Z|st) +

∑n

i=1
log p(zi|oit, Z)

− log q(Z|st)−
∑n

i=1
log q(zi|oit, Z)−

∑n

i=1
log q(ait|oit, zi)

)]
.

C Visualization of skills on Alice_and_Bob

We visualize the learned team and individual skills on Alice_and_Bob by the agents with different
initial positions in Fig. 9. With different initial positions, agents can learn similar team and individual
skills. Specifically, team skills Z = 0 and Z = 1 guide the whole team to collect the blue diamond
and the red diamond, respectively. Individual skills zi = 0, zi = 1, zi = 2 and zi = 3 guide the
individual agent to reach the red diamond, red button, blue diamond and blue button, respectively.

15

(a) (b) (c)

Figure 10: More ablations for HMASD. (a) The performance of HMASD with different skill intervals.
(b) The performance of HMASD with different numbers of team skills. (c) The performance of
HMASD with different numbers of individual skills.

D More Ablations

We conduct more ablations about the skill interval k, the number of team skills nZ and the number of
individual skills nz in Fig. 10. Results reveal that HMASD performs poorly with too short or too
long skill intervals, which demonstrates that an appropriate number of timesteps is necessary for
each skill to be learned effectively. Furthermore, it can be observed that the performance of HMASD
varies greatly with different numbers of team skills and individual skills, which shows that HMASD
is not very stable on sparse reward multi-agent tasks. The limitations of our work are discussed in
Appendix G.

E Hyperparameter Setting

For all baselines, we use the open source code of the original paper. We implement HMASD based
on the codebase of MAT and MAPPO. The hyperparameters for different tasks are presented in
Table 1- 3. In particular, we want to emphasize the setting of λe, i.e., the weight of team reward
in the low-level reward. It guides the skills to be useful for the team performance. On the simple
Alice_and_Bob, the state-observation space is small, and it’s easy for skills to explore those states
that contribute to the team reward. So we set λe = 0. On the complex SMAC with 0-1 reward and
Overcooked, the state-observation space is large, and it’s very difficult to explore those rare states
that induce positive team reward. We set λe = 100, which is much larger than the weights of intrinsic
rewards λD and λd. In this way, the team reward can dominate the low-level reward when agents
encounter positive team reward, which guides the agents to learn to complete the task more quickly.

Table 1: Common hyperparameters used for HMASD, MAT and MAPPO across all tasks.
hyperparameters value hyperparameters value hyperparameters value

training threads 16 rollout threads 32 hidden size 64
use valuenorm True use orthogonal True gain 0.01

optimizer Adam optimizer epsilon 1e-5 weight decay 0
ppo epoch 15 clip param 0.2 num mini batch 1

value loss coef 1 use gae True gae lambda 0.95
gamma 0.99 use huber loss True huber delta 10

Table 2: Common hyperparameters used for HMASD, MAT and MAPPO in different tasks.
task lr episode length num env steps eval episodes eval rollout threads

Alice_and_Bob 5e-4 100 3e6 100 1
SMAC with 0-1 reward 1e-4 100 2e6 100 4

Overcooked 1e-4 400 1e7 32 8

16

Table 3: Different hyperparameters used for HMASD in different scenarios.
scenario k nZ nz λh λl λe λD λd

Alice_and_Bob 50 2 4 0.1 0.01 0 0.1 0.2
3m 25 3 3 0.001 0.01 100 0.1 0.5

2s_and_1sc 25 2 5 0.03 0.01 100 0.1 1
2m_and_1z 50 3 2 0.005 0.01 100 0.1 1

cramped_room 25 3 3 0.01 0.01 100 1 0.5
asymmetric_advantages 25 3 3 0.01 0.01 100 0.1 0.1

coordination_ring 10 3 3 0.1 0.01 100 0.15 0.1

(a) Individual skill 0 (b) Individual skill 1 (c) Individual skill 2

Figure 11: Visualizations of 3 learned individual skills on the SMAC scenario 3m. To visualize
the ith individual skill, we set all agents’ individual skills to be i, i.e., z1 = z2 = z3 = i, where
i = 0, 1, · · · , nz − 1. (a) For individual skill 0, agents learn to spread out to both sides to form an arc
formation and focus fire on the same enemy at the same time, which can quickly reduce the number
of enemies and win the game. (b) For individual skill 1, agents learn to explore the bottom left area
of the map, where there are no enemies. In the end, agents lose the game for not killing all enemies
within the time limit. (c) For individual skill 2, agents learn to move right to approach enemies but
not attack them in time, which leads to losing the game.

(a) Individual skill 0 (b) Individual skill 1

Figure 12: Visualizations of 2 learned individual skills on the SMAC scenario 2m_vs_1z. (a) For
individual skill 0, agents learn to take advantage of attack range to kite the enemy. The agent closer
to the enemy will run away, and the other agent will attack the enemy. In this kiting way, the two
agents take turns attacking the enemy and ultimately win the game. (b) For individual skill 1, agents
learn to explore the bottom area of the map, while the enemy is in the upper area. Finally, agents fail
to find the enemy and lose the game.

F More Fine-grained Results

Percentage of skills useful for the team reward We count the average percentage of useful
individual skills among all learned individual skills on the SMAC. For each SMAC scenario, we
conduct 5 different runs with different random seeds. We learn 3, 5, 2 individual skills for each run on
3m, 2s_vs_1sc, 2m_vs_1z, respectively. Therefore, we learn 3 ∗ 5 + 5 ∗ 5 + 2 ∗ 5 = 50 individual
skills on three SMAC scenarios. After our test, only 12 individual skills are useful for the team
performance. In other words, only 24% of the learned individual skills are useful for completing the
task on average after training.

Percentage of runs that learn meaningful behavior For every scenario, we conduct 5 runs. For
each run on the SMAC scenario, once agents discover useful skills, the performance will quickly

17

increase to 1. So the final performance is either 1 or 0, which leads to a large variance among 5
runs. There are 7 scenarios in this work. Among 5 ∗ 7 = 35 runs, 26 runs could learn meaningful
behavior. Therefore, the percentage of the model to learn meaningful behavior among all trials is
26/35 = 74.3%. One of our future goals is to increase this percentage and reduce the variances of
our method.

Visualization of the learned skills We visualize the learned individual skills on SMAC as shown
in Fig. 11 and Fig. 12. We can observe that only one skill can result in a non-zero team reward on
both scenarios, and the remaining skills explore the state-observation spaces that don’t contribute to
the team reward. As for the learned skills on Overcooked, we find that in those high-performance
runs, all skills are useful and each of them can perform well individually. This may be because
Overcooked is a grid world task and has a smaller state-observation space than SMAC. Thus those
states with positive rewards are easier to be explored by all skills. These visualizations reflect the
potential inefficiency of HMASD in solving complex tasks with large state-observation space.

G Limitations

In this section, we discuss three potential limitations of HMASD. Firstly, when the state-observation
space is large, HMASD can discover diverse skills but maybe only some of them (about 24% on
SMAC) are useful for the team reward. There are a large percentage of skills are assigned to explore
those zero-reward states. Secondly, the number of team skills and individual skills should be carefully
adjusted. When applying HMASD to a new task, it requires to adjust several hyperparameters as
shown in Table 3. Thirdly, HMASD can only learn team skills for the entire team, which lacks
flexibility in multi-agent tasks that require team skills within sub-teams. Our future work aims to
improve these limitations and make HMASD better at solving sparse-reward multi-agent tasks.

H Comparison of HMASD with the Multi-Agent Exploration Baseline

In this section, we compare HMASD with an exploration bonus MARL baseline, EITI/EDTI [46],
on Overcooked. EITI/EDTI proposes exploration strategies where agents start with decentralized
exploration driven by their individual curiosity (i.e., individual exploration), and are also encouraged
to coordinate their exploration (i.e., joint exploration). The final reward for each agent is the sum
of team reward, individual exploration bonus and joint exploration bonus. EITI and EDTI provide
2 ways to calculate the joint exploration bonus. The comparison of HMASD with EITI/EDTI on
Overcooked is shown in Table 4.

We can see that HMASD outperforms EITI and EDTI on all Overcooked scenarios. Although
EITI/EDTI encourages both individual exploration and joint exploration, it doesn’t formulate the
relationship between individual exploration and joint exploration. These two explorations may have
conflicts, causing neither exploration to work well. In our work, we propose to discover both team
and individual skills for solving sparse-reward multi-agent tasks. Importantly, we build a probabilistic
graphical model to formulate the relationship between team skill and individual skill, and then derive
a lower bound as our objective. The results show that our method could discover significant team and
individual skills, and effectively combine them to accomplish the sparse-reward multi-agent task.

Table 4: The final episode reward of HMASD and EITI/EDTI on Overcooked.
Scenario EITI EDTI HMASD

cramped_room 0.122 ± 0.013 0.119 ± 0.015 236.0 ± 8.0
asymmetric_advantages 0.008 ± 0.002 0.004 ± 0.002 295.1 ± 84.5

coordination_ring 0.0 ± 0.0 0.0 ± 0.0 80.0 ± 97.9

18

	Introduction
	Preliminaries
	Problem Formulation
	Mutual Information based Skill Discovery
	Probabilistic Graphical Model for RL

	Method
	Multi-Agent Skill Discovery as an Inference Problem
	Hierarchical Multi-Agent Skill Discovery

	Experiments
	Case Study
	Performance on Sparse Reward Multi-Agent Benchmarks
	Ablation Studies

	Related Work
	Conclusion
	Pseudo Code of Hierarchical Multi-Agent Skill Discovery
	Derivation of the Variational Lower Bound
	Visualization of skills on Alice_and_Bob
	More Ablations
	Hyperparameter Setting
	More Fine-grained Results
	Limitations
	Comparison of HMASD with the Multi-Agent Exploration Baseline

