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Abstract

The knowledge gradient (KG) algorithm is a popular policy for the best arm
identification (BAI) problem. It is built on the simple idea of always choosing
the measurement that yields the greatest expected one-step improvement in the
estimate of the best mean of the arms. In this research, we show that this policy
has limitations, causing the algorithm not asymptotically optimal. We next provide
a remedy for it, by following the manner of one-step look ahead of KG, but instead
choosing the measurement that yields the greatest one-step improvement in the
probability of selecting the best arm. The new policy is called improved knowledge
gradient (iKG). iKG can be shown to be asymptotically optimal. In addition, we
show that compared to KG, it is easier to extend iKG to variant problems of BAI,
with the ϵ-good arm identification and feasible arm identification as two examples.
The superior performances of iKG on these problems are further demonstrated
using numerical examples.

1 Introduction

The best arm identification (BAI) is a sequential decision problem where in each stage, the agent pulls
one out of k given arms and observes a noisy sample of the chosen arm. At the end of the sampling
stage, the agent needs to select the arm that is believed to be the best according to the samples. In
this research, we let the best arm be the one with the largest mean. BAI is a useful abstraction of
issues faced in many practical settings [1, 2] and has been widely studied in the machine learning
community [3, 4]. Since in practical problems, the target arm(s) (to be identified) is not necessarily
the best arm, some variant models of BAI have also been proposed in the literature, e.g., top-m
arm identification [5, 6], Pareto front identification [7], ϵ-good arm identification [8], feasible arm
identification [9, 10], etc.

In this research, we focus on the fixed-budget BAI, in which the total number of samples (budget)
is fixed and known by the agent. The goal is to correctly identify the best arm when the budget is
used up. To solve this problem, many methods have been proposed, e.g., successive rejects (SR)
[4], expected improvements (EI) [11], top-two sampling [12, 13], knowledge gradient (KG) [14, 15],
optimal computing budget allocation (OCBA)[16, 17, 18], etc. Among these methods, KG has been
prevailing. It was first proposed in [19] and further analyzed in [20, 21]. It is built on the simple
idea of always pulling the arm that yields the greatest expected one-step improvement in the estimate
of the best mean of the arms. This improvement measure is analytical, making the algorithm easily
implementable. KG often offers reasonable empirical performances and has been successfully applied
in a number of real applications [22, 23].
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However, we observe that this definition of KG has limitations, causing the algorithm not asymptoti-
cally optimal. Here by not being asymptotically optimal, we mean that the KG algorithm is not rate
optimal, in the sense that the probability of the best arm being falsely selected based on the posterior
means of the k arms does not converge to zero at the fastest possible rate. This is resulted from KG
allocating too few samples to the best arm and excessive samples to the remaining arms. Note that
Frazier et al. [20] claimed that KG is “asymptotically optimal”, but in their context, “asymptotically
optimal” is consistent, i.e., all the arms will be infinitely sampled as the round n → ∞, so that the
best arm will be correctly selected eventually. This is a relatively weak result for BAI algorithms (the
simple equal allocation is also consistent). In this paper, asymptotically optimal refers to rate optimal.

Contributions. We propose a new policy that can overcome this limitation of KG. The new policy
follows the manner of one-step look ahead of KG, but pulls the arm that yields the greatest one-step
improvement in the probability of selecting the best arm. We call it improved knowledge gradient
(iKG) and show that it is asymptotically optimal. This policy is originated from the thought of looking
at whether the best arm has been selected at the end of sampling, instead of looking at the extent that
the mean of the selected arm has been maximized. Although both ways can identify the best arm, it
turns out that the algorithms developed from them are significantly different in the rates of posterior
convergence. Another advantage of iKG over KG is that iKG is more general and can be more easily
extended to variant problems of BAI. We use ϵ-good arm identification and feasible arm identification
as examples, develop algorithms for them using the idea of iKG and establish asymptotic optimality
for the algorithms.

This paper is conceptually similar to [12] which improves the EI algorithm for BAI. However, for
EI, sampling ratios of any two arms in the non-best set are already asymptotically optimal. One
only needs to introduce a parameter β to balance the probabilities of sampling the best arm and the
non-best set without changing the sampling policy within the non-best set to further improve EI.
For KG, sampling ratios are not asymptotically optimal for any two out of the k arms. It requires
a fundamental change on the sampling policy that influences the sampling rates of all the arms to
improve KG. Moreover, the improved rate of posterior convergence of EI in [12] still depends on β
which is not necessarily optimal, while we can show that this rate of iKG is optimal.

2 Knowledge Gradient and its Limitations

In this section, we review KG and discuss its limitations. Suppose there are k arms in BAI. In each
round t, the agent chooses any arm i to pull and obtains a noisy sample Xt+1,i. After n rounds, the
agent needs to select an arm that he/she believes to be the best. Under the framework of the KG
algorithm, Xt+1,i’s are assumed to be independent across different rounds t and arms i and following
the normal distribution N (µi, σ

2
i ) with unknown means µi and known variances σ2

i . The best arm is
assumed to be unique. Without loss of generality, let µ⟨1⟩ > µ⟨2⟩ ≥ . . . ≥ µ⟨k⟩, where ⟨i⟩ indicates
the arm with i-th largest mean.

The KG algorithm can be derived from a dynamic programming (DP) formulation of BAI. The
state space S consists of all the possible posterior means and variances of the arms, denoted as S ≜
Rk × (0,∞)k. State St in round t can be written as St = (µt,1, µt,2, . . . , µt,k, σ

2
t,1, σ

2
t,2, . . . , σ

2
t,k)

⊤.
In the Bayesian model, the unknown mean µi is treated as random and let θi be the random variable
following its posterior distribution. We adopt normal distribution priors N (µ0,i, σ

2
0,i). With samples

of the arms, we can compute their posterior distributions, which are still normal N (µt,i, σ
2
t,i) in

round t by conjugacy. The posterior mean and variance of arm i are

µt+1,i =


σ−2
t,i µt,i + σ−2

i Xt+1,i

σ−2
t,i + σ−2

i

if It = i,

µt,i if It ̸= i,

and σ2
t+1,i =


1

σ−2
t,i + σ−2

i

if It = i,

σ2
t,i if It ̸= i.

(1)

In this paper, we adopt a non-informative prior for each arm i ∈ A, i.e., µ0,i = 0 and σ0,i = ∞.
Denote the action space as A ≜ {1, 2, . . . , k} and transition function as T ≜ S × A × S → S.
Suppose θt,i is a random variable following the posterior distribution N (µt,i, σ

2
i ) of arm i. Then, the

state transition can be written as St+1 = T (St, i, θt,i). Let π be the sampling policy that guides the
agent to pull arm It in round t and Π be the set of sampling policies π = (I0, I1, . . . , In−1) adapted
to the filtration I0, X1,I0 , . . . , It−1, Xt,It−1

. After n rounds, the estimated best arm I∗n is selected
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and a terminal reward vn(Sn) is received. We can write our objective as

sup
π∈Π

Eπvn(Sn). (2)

The DP principle implies that the value function in round 0 ≤ t < n can be computed recursively by

vt(S) ≜ max
i∈A

E[vt+1(T (S, i, θt,i))], S ∈ S.

We define the Q-factors as

Qt(S, i) ≜ E[vt+1(T (S, i, θt,i))], S ∈ S,

and the DP principle tells us that any policy satisfying

It(S) ∈ argmax
i∈A

Qt(S, i), S ∈ S

is optimal. However, the optimal policy is basically intractable unless for problems with very small
scales, known as the “curse of dimensionality”.

On the other hand, note that except the terminal reward vn(Sn), this problem has no rewards in the
other rounds, so we can restructure vn(Sn) as a telescoping sequence

vn(Sn) = [vn(Sn)− vn(Sn−1)] + . . .+ [vn(St+1)− vn(St)] + vn(St).

Thus, vn(Sn) can be treated as the cumulation of multiple one-step improvements vn(Sl)−vn(Sl−1),
l = t+ 1, . . . , n. A class of one-step look ahead algorithms iteratively pull the arm that maximizes
the expectation of the one-step improvement on the value function

E[vn(T (St, i, θt,i))− vn(St)]. (3)

These algorithms are not optimal in general unless there is only one round left, i.e., n = t+ 1.

The KG algorithm falls in this class. It sets the terminal reward as vn(Sn) = µI∗
n

. With this reward,
the one-step improvement in (3) becomes

KGt,i = E[max{T (µt,i, i, θt,i),max
i′ ̸=i

µt,i′} −max
i∈A

µt,i],

and in each round, the KG algorithm pulls the arm It(St) ∈ argmaxi∈A KGt,i.

Algorithm 1: KG Algorithm
Input: k ≥ 2, n

1 Collect n0 samples for each arm i;
2 while t < n do
3 Compute KGt,i and set It = argmaxi∈AKGt,i;
4 Play It;
5 Update µt+1,i and σt+1,i;

Output: I∗n

We next characterize for the KG algorithm the rate of posterior convergence of 1− P{I∗n = I∗}, the
probability that the best arm is falsely selected.

Proposition 1. Let c⟨i⟩ =
(µ⟨1⟩−µ⟨i⟩)/σ⟨i⟩
(µ⟨1⟩−µ⟨2⟩)/σ⟨2⟩

, i = 2, ..., k. For the KG algorithm,

lim
n→∞

− 1

n
log(1− P{I∗n = I∗}) = ΓKG,

where

ΓKG = min
i ̸=1

(
(µ⟨i⟩ − µ⟨1⟩)

2

2((
∑

i ̸=1 σ⟨2⟩/c⟨i⟩ + σ⟨1⟩)σ⟨1⟩ + c⟨i⟩σ
2
⟨i⟩(
∑

i ̸=1 1/c⟨i⟩ + σ⟨1⟩/σ⟨2⟩))

)
.

We observe that ΓKG is not optimal. To make this point, Proposition 2 gives an example that ΓKG is
no better than this rate of the TTEI algorithm [12] when the parameter β (probability of sampling the
best arm) of TTEI is set to some suboptimal value.
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Proposition 2. For the TTEI algorithm [12], the rate of posterior convergence of 1−P{I∗n = I∗} ex-
ists and is denoted as ΓTTEI. Let its probability of sampling the best arm β = (σ⟨2⟩/σ⟨1⟩

∑
i̸=1 1/c⟨i⟩+

1)−1. We have ΓKG ≤ ΓTTEI.

According to the proof of Proposition 2, there are configurations of the BAI problem leading to
ΓKG < ΓTTEI, i.e., ΓKG is not optimal. In fact, with β = (σ⟨2⟩/σ⟨1⟩

∑
i ̸=1 1/c⟨i⟩+1)−1, ΓKG = ΓTTEI

is achieved only in some special cases, e.g., when k = 2.

3 Improved Knowledge Gradient

In this section, we propose an improved knowledge gradient (iKG) algorithm. We still follow the
manner of one-step look ahead of KG, but set the terminal reward of problem (2) as vn(Sn) =
1{I∗n = I∗}. That is, for the goal of identifying the best arm, we reward the selected arm by a 0-1
quantity showing whether this arm is the best arm, instead of the mean of this arm (as in KG).

In this case, E[vn(Sn)] = P{I∗n = I∗}, where

P{I∗n = I∗} = P
{ ⋂

i̸=I∗
n

(θI∗
n
> θi)

}
= 1− P

{ ⋃
i ̸=I∗

n

(θi > θI∗
n
)

}
. (4)

However, the probability P
{ ⋃

i ̸=I∗
n

(θi > θI∗
n
)

}
in (4) does not have an analytical expression. To

facilitate the algorithm implementation and analysis, we adopt an approximation to it using the
Bonferroni inequality [24]:

P
{ ⋃

i ̸=I∗
n

(θi > θI∗
n
)

}
≤
∑
i ̸=I∗

n

P(θi > θI∗
n
),

and E[vn(Sn)] can be approximately computed as

E[vn(Sn)] ≈ 1−
∑
i ̸=I∗

n

P(θi > θI∗
n
) = 1−

∑
i̸=I∗

n

exp

(
−
(µn,i − µn,I∗

n
)2

2(σ2
n,i + σ2

n,I∗
n
)

)
. (5)

Note that the Bonferroni inequality has been adopted as an approximation of the probability of correct
selection in the literature for development of BAI algorithms [16]. For our purpose, we can show
that the use of this approximation still makes the resulting algorithm asymptotically optimal and
empirically superior.

Algorithm 2: iKG Algorithm
Input: k ≥ 2, n

1 Collect n0 samples for each arm i;
2 while t < n do
3 Compute iKGt,i and set It = argmaxi∈AiKGt,i;
4 Play It;
5 Update µt+1,i, σt+1,i and I∗t+1;

Output: I∗n

Let iKGt,i be the one-step improvement in (3) with I∗t treated as unchanged after one more sample
and E[vn(Sn)] approximated by (5). We have the following proposition to compute iKGt,i. The iKG
algorithm pulls the arm with the largest iKGt,i in each round.
Proposition 3. With the definition of iKGt,i above, we have

iKGt,i =


exp

(
−
(µt,i − µt,I∗

t
)2

2(σ2
t,i + σ2

t,I∗
t
)

)
− exp

(
−

(µt,i − µt,I∗
t
)2

2(σ2
t+1,i + σ2

t,I∗
t
+ σ2

i (σ
2
t+1,i/σ

2
i )

2)

)
, if i ̸= I∗t ,

∑
i′ ̸=I∗

t

exp

(
−
(µt,i′ − µt,I∗

t
)2

2(σ2
t,i′ + σ2

t,I∗
t
)

)
−
∑
i′ ̸=I∗

t

exp

(
−

(µt,i′ − µt,I∗
t
)2

2(σ2
t,i′ + σ2

t+1,I∗
t
+ σ2

I∗
t
(σ2

t+1,I∗
t
/σ2

I∗
t
)2)

)
, if i = I∗t .

(6)
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Both KG and iKG are greedy algorithms that look at the improvement only one-step ahead. The
essential difference between them is on the reward they use for the event of best arm identification.
For KG, it is the mean of the arm selected, while for iKG, it is a 0-1 quantity showing whether the best
arm is selected. It is interesting to note that the choice between these two rewards has been discussed
in the control community for optimization of complex systems, known as cardinal optimization
(similar to KG) vs. ordinal optimization (similar to iKG) [25], with the discussion result in line with
this research, indicating that ordinal optimization has advantages over cardinal optimization in the
convergence rates of the optimization algorithms [26].
Theorem 1. For the iKG algorithm, limn→∞ − 1

n log(1− P{I∗n = I∗}) = ΓiKG, where

ΓiKG =
(µ⟨i⟩ − µ⟨1⟩)

2

2(σ2
⟨i⟩/w⟨i⟩ + σ2

⟨1⟩/w⟨1⟩)
, (7)

and wi is the sampling rate of arm i satisfying
k∑

i=1

wi = 1,
w2

⟨1⟩

σ2
⟨1⟩

=

k∑
i=2

w2
⟨i⟩

σ2
⟨i⟩

and
(µ⟨i⟩ − µ⟨1⟩)

2

2(σ2
⟨i⟩/w⟨i⟩ + σ2

⟨1⟩/w⟨1⟩)
=

(µ⟨i′⟩ − µ⟨1⟩)
2

2(σ2
⟨i′⟩/w⟨i′⟩ + σ2

⟨1⟩/w⟨1⟩)
, i ̸= i′ ̸= 1.

(8)
In addition, for any BAI algorithms,

lim sup
n→∞

− 1

n
log(1− P{I∗n = I∗}) ≤ ΓiKG.

Theorem 1 shows that the rate of posterior convergence ΓiKG of the iKG algorithm is the fastest
possible. We still use TTEI as an example. This theorem indicates that ΓTTEI ≤ ΓiKG for any
β ∈ (0, 1) and the equality holds only when β is set to β∗, where β∗ is the optimal value of β and is
typically unknown.

4 Variant Problems of BAI

Another advantage of iKG over KG is that iKG is more general, in the sense that it can be easily
extended to solve variant problems of BAI. In the variants, the target arms to be identified are not
the single best arm, but no matter how the target arms are defined, one can always look at the event
that whether these arms are correctly identified at the end of sampling and investigate the probability
of this event to develop iKG and the algorithm. In contrast, it is difficult to extend KG to identify
arms that cannot be found through optimizing means of these (and/or other) arms. In this section, we
extend iKG to two BAI variants: ϵ-good arm identification [8] and feasible arm identification [10].
We develop algorithms for them and establish their asymptotic optimality. Note that in these two
variant problems, the target arms need to be found by comparing their means with some fixed values.
In such cases, the idea of KG is not straightforward.

4.1 ϵ-Good Arm Identification

We follow the notation in Sections 2 and 3. For the k arms, suppose µ⟨1⟩ ≥ µ⟨2⟩ ≥ . . . ≥ µ⟨k⟩.
Given ϵ > 0, the ϵ-good arm identification problem aims to find all the arms i with µ⟨i⟩ > µ⟨1⟩ − ϵ,
i.e., all the arms whose means are close enough to the best (ϵ-good). Assume that no arms have
means lying on µ⟨1⟩ − ϵ. Denote the set of ϵ-good arms as Gϵ and the estimated set of ϵ-good arms
after n rounds as Gϵ

n. We set the terminal reward vn(Sn) = 1{Gϵ
n = Gϵ}, i.e., whether the set Gϵ is

correctly selected. Then, E[vn(Sn)] = P{Gϵ
n = Gϵ}, where

P{Gϵ
n = Gϵ} = P

{ ⋂
i∈Gϵ

n

(θi > max
i′∈A

θi′ − ϵ) ∩
⋂

i∈A\Gϵ
n

(θi < max
i′∈A

θi′ − ϵ)

}

= 1− P
{ ⋃

i∈Gϵ
n

(θi < max
i′∈A

θi′ − ϵ) ∪
⋃

i∈A\Gϵ
n

(θi > max
i′∈A

θi′ − ϵ)

}
.

Again, applying the Bonferroni inequality,

P{Gϵ
n = Gϵ} ≥ 1−

∑
i∈Gϵ

n

P(θi < max
i′∈A

θi′ − ϵ)−
∑

i∈A\Gϵ
n

P(θi > max
i′∈A

θi′ − ϵ). (9)
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Let iKGϵ
t,i be the one-step improvement in (3) with I∗t treated as unchanged after one more sample

and E[vn(Sn)] approximated by the right-hand side of (9). We have the following proposition to
compute iKGϵ

t,i .

Proposition 4. With the definition of iKGϵ
t,i above, we have

iKGϵ
t,i =


exp

(
−
(µt,i − µt,I∗

t
+ ϵ)2

2(σ2
t,i + σ2

t,I∗
t
)

)
− exp

(
−

(µt,i − µt,I∗
t
+ ϵ)2

2(σ2
t+1,i + σ2

t,I∗
t
+ σ2

i (σ
2
t+1,i/σ

2
i )

2)

)
, if i ̸= I∗t ,

∑
i′ ̸=I∗

t

exp

(
−
(µt,i′ − µt,I∗

t
+ ϵ)2

2(σ2
t,i′ + σ2

t,I∗
t
)

)
−
∑
i′ ̸=I∗

t

exp

(
−

(µt,i′ − µt,I∗
t
+ ϵ)2

2(σ2
t,i′ + σ2

t+1,I∗
t
+ σ2

I∗
t
(σ2

t+1,I∗
t
/σ2

I∗
t
)2)

)
, if i = I∗t .

(10)

Algorithm 3: iKG-ϵ Algorithm (ϵ-good Arm Identification)
Input: k ≥ 2, n

1 Collect n0 samples for each arm i;
2 while t < n do
3 Compute iKGϵ

t,i and set It = argmaxi∈AiKGϵ
t,i;

4 Play It;
5 Update µt+1,i, σt+1,i and I∗t+1;

Output: Gϵ
n

To identify the ϵ-good arms, the iKG-ϵ algorithm pulls the arm with the largest iKGϵ
t,i in each round.

For this algorithm, we can show that the rate of posterior convergence of 1 − P{Gϵ
n = Gϵ} is the

fastest possible.

Theorem 2. For the iKG-ϵ algorithm, limn→∞ − 1
n log(1− P{Gϵ

n = Gϵ}) = Γϵ, where

Γϵ =
(µ⟨i⟩ − µ⟨1⟩ + ϵ)2

2(σ2
⟨i⟩/w⟨i⟩ + σ2

⟨1⟩/w⟨1⟩)
, (11)

and wi is the sampling rate of arm i satisfying

k∑
i=1

wi = 1,
w2

⟨1⟩

σ2
⟨1⟩

=

k∑
i=2

w2
⟨i⟩

σ2
⟨i⟩

and
(µ⟨i⟩ − µ⟨1⟩ + ϵ)2

2(σ2
⟨i⟩/w⟨i⟩ + σ2

⟨1⟩/w⟨1⟩)
=

(µ⟨i′⟩ − µ⟨1⟩ + ϵ)2

2(σ2
⟨i′⟩/w⟨i′⟩ + σ2

⟨1⟩/w⟨1⟩)
, i ̸= i′ ̸= 1.

(12)
In addition, for any ϵ-good arm identification algorithms,

lim sup
n→∞

− 1

n
log(1− P{Gϵ

n = Gϵ}) ≤ Γϵ.

4.2 Feasible Arm Identification

In the feasible arm identification, samples from pulling arms i are m-dimensional vectors Xt+1,i =
[Xt+1,i1, . . . , Xt+1,im] instead of scalars, where each dimension of the vector corresponds to some
measure of the system performance and Xt+1,ij is the observation associated with arm i and measure
j. Suppose Xt+1,ij’s follow the normal distribution with unknown means µij and known variances
σ2
ij . We impose constraints µij ≤ γj on arms i = 1, 2, . . . , k and measures j = 1, 2, . . . ,m. The

goal of this problem is to find the set of feasible arms S1. Let the estimated set of feasible arms
after n rounds be S1

n and S2 = A \ S1. We assume that Xt+1,ij’s are independent across different
rounds t and measures j, and µij’s do not lie on the constraint limits γj . To facilitate the analysis, we
also define for round t the set of measures E1

t,i ≜ {j : µt,ij ≤ γj} satisfied by arm i and the set of
measures E2

t,i ≜ {j : µt,ij > γj} violated by arm i.
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Set the terminal reward vn(Sn) = 1{S1
n = S1}, i.e., whether the set S1 is correctly selected. Then,

E[vn(Sn)] = P{S1
n = S1}, where

P{S1
n = S1} = P

{ ⋂
i∈S1

n

( m⋂
j=1

(θij ≤ γj)

)
∩
⋂
i∈S2

n

( m⋃
j=1

(θij > γj)

)}

= 1− P
{ ⋃

i∈S1
n

( m⋃
j=1

(θij > γj)

)
∪
⋃
i∈S2

n

( m⋂
j=1

(θij ≤ γj)

)}
.

Applying the Bonferroni inequality,

P{S1
n = S1} ≥ 1−

∑
i∈S1

n

m∑
j=1

P(θij > γj)−
∑
i∈S2

n

∏
j∈E2

t,i

P(θij ≤ γj). (13)

The inequality holds because 0 <
∏

j∈E1
n,i

P(θij ≤ γj) ≤ 1.

Let iKGF
t,i be the one-step improvement in (3) with S1

t , S2
t and E2

t,i treated as unchanged after one
more sample and E[vn(Sn)] approximated by the right-hand side of (13). We have the following
proposition to compute iKGF

t,i .

Proposition 5. With the definition of iKGF
t,i above, we have

iKGF
t,i =

m∑
j=1

(
exp

(
− (γj − µt,ij)

2

2σ2
t,ij

1{i ∈ S1
t }

)
− exp

(
− (γj − µt,ij)

2

2(σ2
t+1,ij + σ2

ij(σ
2
t+1,ij/σ

2
ij)

2)
1{i ∈ S1

t }

))

+ exp

(
−
∑

j∈E2
t,i

(γj − µt,ij)
2

2σ2
t,ij

1{i ∈ S2
t }

)
− exp

(
−
∑

j∈E2
t,i

(γj − µt,ij)
2

2(σ2
t+1,ij + σ2

ij(σ
2
t+1,ij/σ

2
ij)

2)
1{i ∈ S2

t }

)
.

(14)

Algorithm 4: iKG-F Algorithm (Feasible Arm Identification)
Input: k ≥ 2, n

1 Collect n0 samples for each arm i;
2 while t < n do
3 Compute iKGF

t,i and set It = argmaxi∈AiKGF
t,i;

4 Play It;
5 Update µt+1,i, σt+1,i, S1

t+1, S2
t+1, E1

t+1,i and E2
t+1,i;

Output: S1
n

To identify the feasible arms, the iKG-F algorithm pulls the arm with the largest iKGF
t,i in each round.

For this algorithm, we can show that the rate of posterior convergence of 1− P{S1
n = S1} is also the

fastest possible.
Theorem 3. For the iKG-F algorithm, limn→∞ − 1

n log(1− P{S1
n = S1}) = ΓF, where

ΓF = wi min
j∈E1

i

(γj − µij)
2

2σ2
ij

1{i ∈ S1}+ wi

∑
j∈E2

i

(γj − µij)
2

2σ2
ij

1{i ∈ S2}, (15)

and wi is the sampling rate of arm i satisfying
k∑

i=1

wi = 1,

wi min
j∈E1

i

(γj − µij)
2

2σ2
ij

1{i ∈ S1}+ wi

∑
j∈E2

i

(γj − µij)
2

2σ2
ij

1{i ∈ S2}

= wi′ min
j∈E1

i′

(γj − µi′j)
2

2σ2
i′j

1{i′ ∈ S1}+ wi′

∑
j∈E2

i′

(γj − µi′j)
2

2σ2
i′j

1{i′ ∈ S2}, i ̸= i′.

(16)
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In addition, for any feasible arm identification algorithms

lim sup
n→∞

− 1

n
log(1− P{S1

n = S1}) ≤ ΓF.

5 Numerical Experiments

In this section, we show empirical performances of the iKG, iKG-ϵ and iKG-F algorithms on synthetic
and real-world examples. For the best arm identification problem, we compare iKG with the following
algorithms.

• Expected Improvement (EI) [11]. This is another common strategy for BAI. In each round,
it pulls the arm offering the maximal expected improvement over the current estimate of the
best mean of the arms.

• Top-Two Expected Improvement (TTEI) [12]. This is a modification of the EI algorithm
by introducing a parameter β to control the probabilities of sampling the best arm and the
non-best set. We set the parameter β in TTEI as its default value 1/2.

• Knowledge Gradient. This is the algorithm under study in this research.

For the ϵ-good arm identification problem, we compare iKG-ϵ with the following algorithms.

• APT Algorithm [27]. It is a fixed-budget algorithm for identifying the arms whose means are
above a given threshold. We set the input tolerance parameter as 0.0001 and the threshold
as the posterior mean of the estimated best arm minus ϵ.

• (ST)2 Algorithm [8]. It is a fixed-confidence algorithm for ϵ-good arm identification. It
pulls three arms in each round, the estimated best arm, one arm above the threshold and one
arm below the threshold. We set the input tolerance parameter as 0.0001 and γ = 0.

For the feasible arm identification problem, we compare iKG-F with the following algorithms.

• MD-UCBE Algorithm [10]. This is a fixed-budget algorithm for feasible arm identification
based on the upper confidence bound. We set the input tolerance parameter as 0.0001 and
hyperparameter a = 25

36
n−k
H , where H is a constant that can be computed. Katz-Samuels

and Scott [10] showed that with a = 25
36

n−k
H , the performance of MD-UCBE is nearly

optimal.
• MD-SAR Algorithm [10]. This is a fixed-budget algorithm for feasible arm identification

based on successive accepts and rejects. We set the input tolerance parameter as 0.0001.

In addition, iKG, iKG-ϵ and iKG-F will be compared with the equal allocation, where each arm is
simply played with the same number of rounds. It is a naive method and is often used as a benchmark
against which improvements might be measured.

The examples for testing include three synthetic examples, called Examples 1-3, and three real
examples, namely the Dose-Finding Problem, Drug Selection Problem, and Caption Selection
Problem. For Example 1-3 and the Dose-Finding problem, samples of the arms are two-dimensional.
We call the measures of them measures 1 and 2. When the examples are tested for the best arm
identification and ϵ-good identification, only measure 1 will be used for identifying good/best arms.
When the examples are tested for the feasible arm identification, both measures will be used for
feasibility detection. For the Drug Selection and Caption Selection problems, samples of the arms are
one-dimensional. They are tested for the best arm identification, ϵ-good identification and feasible
arm identification.

Synthetic Datasets. We consider three examples, all containing ten arms.

Example 1. The means in measure 1 of the ten arms are 0.1927, 0.6438, 3.0594, 3.0220, 1.3753,
1.4215, 0.9108, 1.0126, 0.1119 and 1.8808, and the means in measure 2 of the ten arms are 0.4350,
0.7240, 1.1566, 0.8560, 3.4712, 0.8248, 3.8797,1.9819, 3.2431 and 1.4315, all of which are uni-
formly generated in (0, 4). Samples of the arms are corrupted by normal noises N (0, 1). The best
arm is arm 3 and 0.1-good arms are arms 3 and 4. For the feasible arm identification, we choose arms
with means in both measures less than 2. Then the feasible arms are arms 1, 2, 6, 8 and 10.
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Example 2. We keep the setting of Example 1. Distributions of the noises for arms 1-5 are changed
to N (0, 4).

Example 3. Consider functions y1(x) = −0.05x2, y2(x) = −0.06(7− x) and y3(x) = 0.06(x− 6).
The means in measure 1 of the ten arms are y1(x) with x = 1, 2, . . . , 10. The means in measure 2 of
the ten arms are y2(x) with x = 1, . . . , 6 and y3(x) with x = 7, . . . , 10. Noises follow the normal
distribution N (0, 1). The best arm is arm 1 and 0.5-good arms are arms 1-3. For the feasible arm
identification, we choose arms with means in measure 1 greater than −0.5 and means in measure 2
less than 0. The feasible arms are arms 1-3.

Dose-Finding Problem. We use the data in [28] (see ACR50 in week 16) for treating rheumatoid
arthritis by the drug secukinumab. There are four dosage levels, 25mg, 75mg, 150mg, and 300mg,
and a placebo, which are treated as five arms. We develop a simulation model based on the dataset.
Each arm is associated with two performance measures: the probability of the drug being effective and
the probability of the drug causing infections. The means of the five arms are µ1 = (0.151, 0.259),
µ2 = (0.184, 0.184), µ3 = (0.209, 0.209), µ4 = (0.171, 0.293) and µ5 = (0.06, 0.16). Samples
of each arm are corrupted by normal noises N (0, 0.25). The best arm is arm 3 and the 0.03-good
arms are arms 2 and 3. For the feasible arm identification, we find the arms whose probability of
being effective is larger than 0.18 and the probability of causing infections is less than 0.25. The
feasible arms are arms 2 and 3.

Drug Selection Problem. We consider five contraceptive alternatives based on the Drug Re-
view Dataset (https://doi.org/10.24432/C5SK5S): Ethinyl estradiol / levonorgest, Ethinyl estradiol /
norethindro, Ethinyl estradiol / norgestimat, Etonogestrel and Nexplanon, which can be treated as five
arms. The dataset provides user reviews on the five drugs along with related conditions and ratings
reflecting overall user satisfaction. We set the means of the five arms as µ1 = 5.8676, µ2 = 5.6469,
µ3 = 5.8765, µ4 = 5.8298 and µ5 = 5.6332, and the variances of the five arms as σ2

1 = 3.2756,
σ2
2 = 3.4171, σ2

3 = 3.2727, σ2
4 = 3.3198 and σ2

5 = 3.3251, all calculated by the data. When this
example is used for the best arm identification and ϵ-good arm identification, the best arm (with
the highest user satisfaction) and 0.003-good arm are both arm 3 (Ethinyl estradiol / norgestimat).
When this example is used for feasible arm identification, we will select the drugs whose ratings are
over 5.6, and the feasible arms are arm 1 (Ethinyl estradiol / levonorgest), arm 2 (Ethinyl estradiol /
norethindro), arm 3 (Ethinyl estradiol / norgestimat), arm 4 (Etonogestrel) and arm 5 (Nexplanon).

Caption Selection Problem. We aim to select good captions based on the New Yorker Cartoon
Caption Contest Dataset (https://nextml.github.io/caption-contest-data/). In the contests, each caption
can be treated as an arm. The dataset provides the mean and variance of each arm, which can be used
to set up our experiments. We will test contests 853 (Caption 853) and 854 (Caption 854).

In Caption 853, we randomly select ten captions as arms. We set the means of the ten arms as
µ1 = 1.1400, µ2 = 1.0779, µ3 = 1.4160, µ4 = 1.0779, µ5 = 1.1081, µ6 = 1.1467, µ7 = 1.1333,
µ8 = 1.1075, µ9 = 1.1026 and µ10 = 1.4900, and the variances of the arms as σ2

1 = 0.1418,
σ2
2 = 0.0991, σ2

3 = 0.4871, σ2
4 = 0.0728, σ2

5 = 0.0977, σ2
6 = 0.1809, σ2

7 = 0.1843, σ2
8 = 0.0970,

σ2
9 = 0.0932 and σ2

10 = 0.4843, which are all calculated by the data. When this example is used
for the best arm identification, the best arm (with the highest funniness score) is arm 10. When
this example is used for ϵ-good arm identification, the 0.1-good arms are arms 3 and 10. When this
example is used for feasible arm identification, we will select the captions whose funniness scores
are over 1.4, and the feasible arms are arms 3 and 10.

In Caption 854, we also randomly select ten captions as arms. We set the means of the ten arms as
µ1 = 1.1986, µ2 = 1.1890, µ3 = 1.1400, µ4 = 1.2621, µ5 = 1.1544, µ6 = 1.0339, µ7 = 1.1349,
µ8 = 1.2786, µ9 = 1.1765 and µ10 = 1.1367, and the variances of the arms as σ2

1 = 0.1879,

Table 1: Probabilities of false selection for the tested algorithms in best arm identification problem.

Example Example 1 Example 2 Example 3 Dose-finding Drug Selection Caption 853 Caption 854

Algorithms
Sample size 1000 5000 4400 18000 400 1000 1200 13000 2400 98000 1600 3000 12000 18000

BAI

Equal Allocation 0.38 0.22 0.44 0.31 0.25 0.13 0.35 0.05 0.43 0.27 0.17 0.11 0.26 0.18
EI 0.36 0.21 0.40 0.28 0.28 0.22 0.46 0.21 0.46 0.37 0.14 0.12 0.26 0.23

TTEI 0.25 0.07 0.32 0.09 0.13 0.02 0.31 0.03 0.55 0.28 0.04 0.01 0.10 0.06
KG 0.29 0.14 0.32 0.13 0.14 0.03 0.40 0.03 0.44 0.28 0.04 0.01 0.11 0.05
iKG 0.21 0.03 0.23 0.03 0.09 0.01 0.29 0.01 0.38 0.23 0.02 0.00 0.07 0.04
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Table 2: Probabilities of false selection for the tested algorithms in ϵ-good arm identification problem.

Example Example 1 Example 2 Example 3 Dose-finding Drug Selection Caption 853 Caption 854

Algorithms
Sample size 1000 4000 2400 12000 400 4000 1600 6000 2600 90000 4000 10000 9400 15000

ϵ-good

Equal Allocation 0.54 0.20 0.65 0.28 0.61 0.26 0.46 0.18 0.62 0.37 0.28 0.19 0.14 0.05
APT 0.28 0.17 0.52 0.25 0.72 0.49 0.56 0.53 0.74 0.70 0.41 0.35 0.48 0.49
(ST)2 0.29 0.07 0.35 0.11 0.51 0.06 0.38 0.17 0.64 0.34 0.21 0.10 0.12 0.04
iKG-ϵ 0.17 0.03 0.29 0.00 0.48 0.03 0.34 0.06 0.60 0.27 0.10 0.02 0.11 0.03

Table 3: Probabilities of false selection for the tested algorithms in feasible arm identification problem.

Example Example 1 Example 2 Example 3 Dose-finding Drug Selection Caption 853 Caption 854

Algorithms
Sample size 3400 11000 4800 14000 2200 4800 2000 4000 100000 140000 4000 10000 30600 44000

feasible arm

Equal Allocation 0.34 0.26 0.33 0.23 0.22 0.14 0.22 0.18 0.03 0.03 0.36 0.29 0.18 0.07
MD-UCBE 0.27 0.16 0.33 0.26 0.05 0.01 0.20 0.17 0.06 0.06 0.32 0.15 0.06 0.04
MD-SAR 0.74 0.33 0.68 0.22 0.30 0.03 0.79 0.55 0.06 0.02 0.58 0.19 0.08 0.05

iKG-F 0.23 0.02 0.24 0.01 0.04 0.00 0.14 0.01 0.01 0.01 0.20 0.07 0.05 0.00

σ2
2 = 0.2279, σ2

3 = 0.1346, σ2
4 = 0.3186, σ2

5 = 0.1314, σ2
6 = 0.0330, σ2

7 = 0.1337, σ2
8 = 0.3167,

σ2
9 = 0.1858 and σ2

10 = 0.1478, all calculated by the data. When this example is used for the best
arm identification, the best arm is arm 8. When this example is used for ϵ-good arm identification,
the 0.05-good arms are arms 4 and 8. When this example is used for feasible arm identification, we
will select the captions whose funniness scores are over 1.25, and the feasible arms are arms 4 and 8.

For the tested algorithms, probabilities of false selection (PFS) are obtained based on the average
of 100 macro-replications. Tables 1-3 show the PFS of the algorithms under some fixed sample
sizes (additional numerical results about the PFS and sampling rates of the tested algorithms are
provided in the Supplement). The proposed iKG, iKG-ϵ and iKG-F perform the best. For the best arm
identification, EI tends to allocate too many samples to the estimated best arm, leading to insufficient
exploration in the remaining arms, while KG tends to allocate too few samples to the estimated best
arm, leading to excessive exploration in the remaining arms. TTEI always allocates approximately
one-half budget to the estimated best arm when β = 1/2, leading to the budget not being the best
utilized. For the ϵ-good identification, APT and (ST)2 are inferior because the former insufficiently
pulls the estimate best arm, leading to inaccurate estimates of the threshold, while the latter falls in
the fixed-confidence regime that focuses on making guarantees on the probability of false selection
instead of minimizing it. For the feasible arm identification, both MD-UCBE and MD-SAR allocate
too many samples to the arms near the constraint limits. For the three problems, equal allocation
performs the worst in general, because it does not have any efficient sampling mechanisms for
identifying the target arms in these problems.

6 Conclusion

This paper studies the knowledge gradient (KG), a popular policy for the best arm identification
(BAI). We observe that the KG algorithm is not asymptotically optimal, and then propose a remedy
for it. The new policy follows KG’s manner of one-step look ahead, but utilizes different evidence to
identify the best arm. We call it improved knowledge gradient (iKG) and show that it is asymptotically
optimal. Another advantage of iKG is that it can be easily extended to variant problems of BAI.
We use ϵ-good arm identification and feasible arm identification as two examples for algorithm
development and analysis. The superior performances of iKG on BAI and the two variants are further
demonstrated using numerical examples.
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