
Unleashing the Full Potential of Product Quantization
for Large-Scale Image Retrieval

Yu Liang1,4∗ Shiliang Zhang2 Kenli Li1† Xiaoyu Wang3†

1College of Computer Science and Electronic Engineering, Hunan University
2National Key Laboratory for Multimedia Information Processing,

School of Computer Science, Peking University
3The Hong Kong University of Science and Technology(Guangzhou)

4Intellifusion Inc.
{leungyu, lkl}@hnu.edu.cn, slzhang.jdl@pku.edu.cn, fanghuaxue@gmail.com

Abstract

Due to its promising performance, deep hashing has become a prevalent method
for approximate nearest neighbors search (ANNs). However, most of current
deep hashing methods are validated on relatively small-scale datasets, leaving
potential threats when are applied to large-scale real-world scenarios. Specifically,
they can be constrained either by the computational cost due to the large number
of training categories and samples, or unsatisfactory accuracy. To tackle those
issues, we propose a novel deep hashing framework based on product quanti-
zation (PQ). It uses a softmax-based differentiable PQ branch to learn a set of
predefined PQ codes of the classes. Our method is easy to implement, does not
involve large-scale matrix operations, and learns highly discriminate compact
codes. We validate our method on multiple large-scaled datasets, including Ima-
geNet100, ImageNet1K, and Glint360K, where the category size scales from 100
to 360K and sample number scales from 10K to 17 million, respectively. Exten-
sive experiments demonstrate the superiority of our method. Code is available at
https://github.com/yuleung/FPPQ.

1 Introduction

Approximate Nearest Neighbors Search (ANNs) aims to quickly find necessary information within
vast amounts of data. It is commonly used in image and video search [49, 37, 4], recommendation
systems [44, 8], and anomaly detection [34, 1] tasks. Hashing [18, 7, 16, 37], which is a key
component of ANNs, has been continuously and rapidly developed over time. Hashing enables the
efficient mapping of high-dimensional floating-point data into binary code, with the main objective
of minimizing storage space and retrieval time while maintaining satisfactory retrieval accuracy.

In the past decade, researchers have been exploring the use of deep learning to optimize hash tech-
nology for improved retrieval performance [18, 23, 7, 27, 12, 48]. Compared to traditional methods,
deep hashing has shown significant improvement. Nevertheless, to the best of our knowledge, existing
deep hash or deep quantization methods have not been comprehensively tested in large-scale data
retrieval scenarios, which are commonly encountered in real-world applications. For example, in
face recognition [9, 2, 52, 39, 29], where the underlying databases may contain millions of categories
and hundreds of millions of samples. The large-scale datasets pose higher requirements to the

*Work done as an intern at Intellifusion.
†Corresponding authors.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/yuleung/FPPQ


efficiency of learning and inference, as well as the accuracy of deep hashing algorithms. As shown
in our experiments, when tested on large-scale dataset, the classic product quantization (PQ) [20]
outperforms many deep hashing methods.

As the one of the most popular methods for quantization retrieval, PQ, however, as shown in Fig. 2,
its retrieval performance rapidly declines as the encoding length decreases, rendering it impractical
in some applications. Shorter PQ codes can improve retrieval speed and reduce storage overhead,
greatly expanding its use, for example, making it a more viable option for edge devices. Due to PQ’s
widespread use in various industrial applications and its advantages in large-scale data compared to
other hash methods, we hope to further unlock the potential of PQ and use it for real-world large-scale
image retrieval scenarios. Our objective is to address the challenge that PQ’s performance rapidly
decays with code length by obtaining a feature representation of the database that is better suited
for cluster assignment in multiple sub-spaces. We hold the view that the poor performance of short
PQ codes stems from insufficient clustering conditions in the subspace of the original feature vector,
resulting in excessively large quantization errors and high error rates during retrieval.

Building on the aforementioned discussion, we propose an end-to-end deep product quantization
method called FPPQ(Full Potential Product Quantization). Our approach is simple and intuitive: for
the large-scale dataset, we generate a PQ code for each class, which is then utilized as a label for
learning via a differentiable multi-segment fully connected branch. Upon completing training, the
retrieval process is precisely the same as that of traditional PQ, allowing for easy integration into
current mature retrieval modules.

The contribution of this paper can be summarized as three fold. Firstly, for the first time, we
investigate the retrieval performance of current popular or advanced deep hash methods under
extremely large datasets with an extensive number of categories and demonstrate that they may not
be suitable for such scenarios. Secondly, we propose a simple yet effective end-to-end deep feature
quantization compression method, based on class-level product quantization coding supervision. Our
method achieves a low-slope decay of retrieval performance with decreasing code lengths and can be
used for retrieval in the same way as the traditional PQ. Finally, we conducted extensive experiments
on Glint360K [2], a large-scale datasets with 360k classes and 17 million images, as well as two
relatively smaller scale datasets, Imagenet1K [35] and Imagenet100 [7, 35]. The results demonstrated
the effectiveness of our method.

2 Related Works

Hash technology is widely used for compressing data and speeding up retrieval processes in computer
vision. The goal is typically to ensure that samples that are similar in their original space remain
similar when they are mapped to the new hash space. Researchers have conducted extensive research
on hash technology in recent years, and hash methods can be classified in several ways.

For example, hash methods can be categorized according to the calculation method of hash distance.
Hamming distance-based methods aim to learn a binary code and calculate the distance between
samples using the Hamming distance metric [16, 19, 32, 42, 46, 18, 37, 12, 25, 24, 40, 7, 36, 26].
Conversely, dictionary-based methods calculate distance by looking up a table through a codebook
[20, 51, 15, 28, 13, 27, 23, 49, 45].

In an alternative way, hash methods can be categorized into non-deep and deep methods. Non-deep
methods such as LSH [16], Composite Quantization (CQ) [50], Additive Quantization (AQ) [3], PQ
[20], OPQ [14], LOPQ [21] are widely used for efficient retrieval. LSH is a data-independent random
locality sensitive hash algorithm that can use a variety of methods such as random projection or
buckets to directly perform hashing. PQ clusters the sub-vectors and represents original vectors by
the cluster categories. OPQ and LOPQ improve upon PQ by transforming the original data to reduce
quantization error and considering the local relationships of the vectors, respectively. Non-deep
hashing methods have higher efficiency but lower performance, while deep hash methods leverage
the powerful representation learning abilities of neural networks to learn hash codes and feature
representations simultaneously, reducing quantization error for better performance [18, 49, 7, 37, 23,
45, 27, 47, 48, 51]. Since the quantization process is not differentiable, researchers often employ
the sigmoid function or tanh function to fit the sign function [7], or use the straight-through (ST)
estimator [5] to avoid gradient non-transfer, as in the case of DPQ [23] and GreedyHash [37]. For
more detailed information on deep hashing, please refer to [30].

2



Limitation: Despite the existence of many hashing methods with their own unique advantages, they
unfortunately have limitations when applied to large-scale datasets. For example, in the face of
large-scale data, the Gini Impurity related penalty constraint item designed by DPQ [23] is difficult to
apply and can easily cause network collapse, leading to a large number of data being mapped to the
same code. In terms of computing resources, PQN [45] and DTQ [27] are computationally expensive
due to the construction of triples, despite DTQ proposal to reduce the amount of calculation by
dividing the dataset into multiple groups. DQN [47] requires frequent clustering of the entire training
data to update the hash code center. Recent works attempt to apply deep hashing to large-scale
datasets with thousands of classes, such as OPQN [49], ADSVQ [51], DCDH [48], etc. However,
ADSVQ and DCDH need to calculate a square matrix of the number of categories in the training
process, which limits the further expansion of the number of categories in the dataset. The number of
bits in OPQN is limited to the feature dimension, resulting in significant training overhead when a
longer bit number is needed to ensure retrieval performance. In contrast, our method does not involve
large-scale matrix operations, converges quickly, and overcomes the limitations of previous methods
for large-scale datasets.

3 Preliminaries

Denoting the input images set as I and the deep features set extracted by the backbone as
F = {F | F ∈ RD}, Product Quantization divides the feature F into M segments, i.e.,
F = [F1, · · · ,Fm, · · · ,FM ], where Fm ∈ RD/M . Within each segment, all sub-vectors {Fm} are
clustered into K categories using the k-means algorithm. Consequently, each feature can be repre-
sented as an M -tuple: PQ(F) = [k1, · · · , km, · · · , kM ], where each km represents the clustering
category(index) of the m-th sub-vector and ranges from 0 to 2b−1. The codebook C ∈ RM×K×(D/M)

consist of the clustering centers in each of the M segments, which are used to reconstruct the original
features from the M -tuple representation PQ(F):

quant(F) =
[
c1k1

, · · · , cmkm
, · · · , cMkM

]
, (1)

where quant(F) is the quantized vector that approximates the original feature F , and cmkm
denotes

the km-th codeword in the m-th part of the codebook. Finally, the feature is compressed into M × b
bits.

In retrieval phase, a Lookup Tables (LUTs) will be calculated, which stroed the distances between
the query and the codebook elements. Then, the distances between the query and all samples in the
gallery set can be efficiently computed by looking up the LUTs.

4 Method

4.1 Overview

The original PQ method is designed to minimize quantization error using clustering algorithms.
However, when we increase the compression strength to reduce the encoding bits in PQ, the number
of segments M decreases, and the sub-vector dimension increases, which brings problems: 1) The
impact of misallocation of segment increases: the quantization error will increases with the sub-vector
dimension increases, and also the importance of a single segment will increases with the number of
segments decreases. 2) As the number of segments decreases and the sub-vector dimension increases,
the sub-vectors become more like complete features, usually with stronger discriminative. Therefore,
the sub-vector distribution becomes more uniform. Since we need to assign N classes to K clustering
centers, where N ≫ K = 2b, this makes it more likely for features of different classes to be assigned
to the same PQ codes, or for the same class to be assigned to different PQ codes. These problems
will significantly affect PQ performance.

To mitigate those issues, we train a backbone to generate features that are better suited for a short
PQ encoding, Our aim is to assign features of the same class to the same PQ code and cluster the
sub-vectors that belong to the same encoding within each sub-space. To achieve these goals, we
undertook these two actions: 1) learning a backbone to generate features that better suited for short
PQ encoding based on a set of pre-defined class-level PQ code supervision, and 2) using the learned
adaptable codebook to guide the PQ encoding process.

3



Feature

PQ 
 Label

Backbone

Class
Label

Devide

Learning
CodeBookTraining

Phase
Retrieval
Phase

Database Learned
CodeBook Gallery Set

Query

Learned
CodeBook

Search

Result

Database
Learned

CodeBook

Backbone

Figure 1: The overall flow of our framework. It consists two branches during the training phase: a
one-hot classification branch for the entire feature and another PQ classification branch that constrains
sub-vectors of the feature. We use the predefined class-level PQ labels to guide the learning of the PQ
branch and improve feature separation in sub-spaces. During the retrieval phase, the only difference
with traditional PQ is that our framework does not require clustering for the codebook. Instead, we
directly use the learned codebook obtained from the PQ branch, which comprises the fully connected
weights of multiple sub-branches in the PQ branch.

Fig. 1 illustrates the overall flow of our framework. We incorporate a PQ branch at the end of the
backbone and run it in parallel with the classifier. To learn the PQ code targets for each class, we
divide the features F into M segments refer to the PQ encoding process. For each PQ sub-branch,
we maximize the posterior probability of the ground-truth:

Lpq = − 1

BM

B∑
b=1

M∑
m=1

log
ezmkl∑K
k=1 e

zmk

, (2)

where B is the batch size, M is the number of PQ code segments, and K is the number of clusters in
each segment. zmk is the output of the k-th unit in the m-th PQ sub-branch. kl is the ground-truth
value, which is the code value of a unit in the PQ label.

Optimizing Sub-branches with Angle: Let us consider the Euclidean distance between the sub-
vector Fm in the m-th segment and K classification weights {wmk; k ∈ [1,K]} belonging to the
m-th PQ sub-branch:

DEuclidean

〈
Fm, wmk

〉
=

√
∥Fm∥2 + ∥wmk∥2 − 2 ∥Fm∥ ∥wmk∥ cos θmk, (3)

where θmk is the angle between wmk and the sub-vector Fm. We normalize {wmk} by setting
∥wmk∥ = 1, Then, Eq. (3) can be interpreted as:

DEuclidean

〈
Fm, wmk

〉
=

√
∥Fm∥2 + 1− 2 ∥Fm∥ cos θmk. (4)

Now, the ranking of the Euclidean distance between the sub-vectorFm in the m-th segment and all the
weights {wmk} in the corresponding PQ sub-branch depends solely on the angles {θmk; θ ∈ [0, π]}.
This is because the norm of Fm, denoted ∥Fm∥, is invariant to changes in the magnitude of the
weights {wmk}. Exploiting this property, we can optimize M softmax sub-branches based on the
angles. To further stabilize the training process and accelerate model convergence, we omit the bias
term in the FC layer. Additionally, we normalize Fm and set ∥Fm∥ = 1. This get:

zmk = ∥Fm∥ ∥wmk∥ cos θmk = cos θmk. (5)

Retrieval tasks typically demand a higher degree of discriminability than classification tasks. A
simple softmax cross-entropy loss may fall short of achieving the desired results. To enhance the
discriminability of each sub-branch, a margin can be added to the loss. Fortunately, we can utilize
existing metric learning losses [39, 9, 29] such as CosFace [39] to successfully achieve our objectives:

Lpq = − 1

BM

B∑
b=1

M∑
m=1

log
es(cos(θmkl+margin))

es(cos(θmkl+margin)) +
∑K

k=1,k ̸=kl es cos(θmk)
, (6)

4



where margin ≥ 0 is a fixed parameter to control the magnitude of the cosine margin, and s is a
scaling factor.

Apart from the PQ branch, the classification branch is also utilized to enhance the discriminability of
the full features. The final optimization objective is defined as:

L = Lcls + Lpq, (7)

where Lcls denotes any classification loss used to learn the backbone, and we can achieve the
optimization objective in an end-to-end manner.

4.2 Predefined Class-Level PQ Label

Earlier works have utilized predefined hash codes as labels for guiding model learning, such as
DPN [12], CSQ [46], and OrthoHash [18]. They constructed hash codes via Hadamard matrix
[41] or Bernoulli sampling to uniformly distribute the hash codes in the target space and maximize
the distance between the hash codes. However, as the number of data categories increases, the
large dimensions of Hadamard matrix make it impractical to use, and achieving near-uniformity
of compressed hash codes based on Bernoulli sampling as a supervised target can be difficult to
converge.

In our approach, we get the class average featurew {Favg} for each class by averaging the output
features of a pre-trained model. Here, we assume that the classifier of the pre-trained model has
been discarded and is not usable, as this is a common scenario, particularly in retrieval tasks. We
then execute the PQ encoding process on {Favg} by performing k-means [31] clustering in each
sub-space to generate the corresponding class-level PQ encoding. These PQ codes implicitly capture
inter-class relationships:

PQlabel = PQ({Favg})
= {[k1, · · · , km, · · · , kM ]cls ; cls ∈ [1, class_num]} . (8)

In situations with a lot of data categories and low encoding bits, there is a risk of PQ code duplication.
To remove duplication and ensure meaningful inter-class relationships, we remove such duplicates by
assigning them to the position with the lowest quantization error, provided that the position is not
already occupied by another PQ code.

4.3 Encode and Retrieval

After completing the training phase of our framework, we utilize the backbone to extract the feature
representation of the input images I. The PQ branch weights, which consist of M FC layers, are
used as the codebook in the PQ algorithm to obtain the PQ code of the gallery set and calculate the
quantized distance. Specifically, we extract the weights of the PQ branch and perform normalization
on them as follows: w̃mk ← wmk/ ∥wmk∥ ; w̃mk ∈ RD/M . All w̃mk of the M ×K items in the M
branches are combined to a codebook, denoted as C ∈ RM×K×(D/M), where Cmk = w̃mk. At this
point, the PQ algorithm no longer requires training, and the codebook C learned during the training
phase will be used to initialize the PQ algorithm. We can encode the samples of the gallery set as
PQ(FG) = {[k1, · · · , km, · · · , kM ]i ; i ∈ [1, num_images]}.
There are two methods of utilizing PQ for retrieval: symmetric retrieval and asymmetric retrieval.
When apply symmetric retrieval, the distance between samples in the query set and the gallery set is
calculated as follows:

Dsym =

M∑
m=1

〈
Cmk∗ , Cmki

〉
, (9)

where k∗ is the index of the closest codeword to sub-vector Fm among the K codewords in the m-th
part of the codebook, and Cmk∗ and Cmki represent the quantized representation of the m-th segment
of the query sample and the gallery sample , respectively. When apply asymmetric retrieval, the
distance between samples in the query set and gallery set is calculated as follows:

Dasym =

M∑
m=1

〈
Fquery

m , Cmki

〉
, (10)

5



where Fquery
m is the sub-vector of the m-th segment of the query sample. Considering the discussion

about Eq. (4), we have:
k∗ = argmin

k∈[0,K−1]

〈
Fm, Cmk

〉
= argmin

k∈[0,K−1]

〈
F̃m, Cmk

〉
,

(11)

where F̃m is the normalized vector of Fm and ⟨•⟩ can be either the cosine distance or the Euclidean
distance. Referring to Eq. (11), for symmetric retrieval, no additional feature operations are necessary
for encoding, even though we perform segment normalization on the features during training phase.
When apply asymmetric retrieval,

∑M
m=1

〈
Fquery

m , Cmki

〉
̸=

∑M
m=1

〈
F̃query

m , Cmki

〉
, the retrieved

results may be different. However, as Cmki is a certain value and the classification loss with margin
of PQ branch increases the compactness of the encoding, we found in our experiments that whether
applying segment normalization operations for the feature had little impact on the ultimate retrieval
performance. The same conclusion holds for the normalization of full features, despite the intuition
that normalizing the complete features can enhance the stability of asymmetric retrieval results by
fixing the magnitude of ∥Fm∥. Overall, whether applying symmetric or asymmetric retrieval, we do
not need to perform any additional processing on the features compared with PQ algorithm.

5 Experiment

5.1 Datasets and Evaluation

Although our primary focus is to evaluate the performance of the proposed hash method on large-scale
datasets, we will validate our approach on datasets of various scales, including a large-scale datasets
Glint360K, as well as two relatively smaller scale datasets, ImageNet100 and ImageNet1K.

Glint360K [2]: Glint360K is one of the largest publicly available face datasets, with over 360K IDs
and 17 million images. We use all available data to train hash methods and test for convergence by
evaluating the unseen retrieval performance on two other datasets, MegaFace [22] and FaceScrub
[33], which are non-intersecting with Glint360K.

MageFace and FaceScrub: MegaFace is a dataset of one million images that capture over 690K
different individuals and will be used as the gallery set. FaceScrub comprises over 100K photos of
530 celebrities. Following [22], the evaluation was performed on a subset of FaceScrub that includes
80 individuals (40 females and 40 males) from individuals with more than 50 images each. We
followed the recommendations from insightface project1 to remove noise and duplicate samples. The
final query set consists of 3529 face images from 80 different individuals.

ImageNet1K [35] and ImageNet100: ImageNet1K is a widely-used large-scale visual recognition
challenge dataset, which contains 1000 classes and over 1.2 million images. We employed the training
set of ImageNet1K to train the hash methods and used the validation set, which consists of 50,000
images, to evaluate hash retrieval performance. Specifically, we selected the top 5 images from each
class in the validation set, totalling 5000 images, to construct the query set, while the remaining
45,000 images comprised the gallery set. ImageNet100 has been popularly used in previous deep
hashing methods [46, 18, 7], and it is the subset of ImageNet1K, consisting of 100 classes.

Evaluation: In the following experiments, we will use asymmetric retrieval and our method will
not perform any feature preprocessing during retrieval. We will assess the retrieval performance
using Top-1, Top-5, and Top-20 accuracies on the Glint360K datasets. Specifically, the query set
consists of N individuals, and for each individual, we have M images. We will test each image by
incorporating it into the gallery set and employing each of the other M-1 images as the query set.
Regarding ImageNet1K and ImageNet100, we will assess the retrieval performance by using the
mean average precision(mAP) of the top 1000 result: mAP@1000.

5.2 Implementation Details

All experiments were conducted using the PyTorch framework and 8 NVIDIA 2080Ti or 3090Ti
GPUs for training. We employed a pre-trained model to get features so that we could acquire

1https://github.com/deepinsight/insightface

6

https://github.com/deepinsight/insightface


Table 1: On the large-scale dataset Glint360K, the performance comparison of multiple methods
under multiple code lengths, it should be noted that some methods were not listed due to ineffective
performance or requiring unrealistic computational resources.

Glint360K iResnet50

Method 32 bits 64 bits 128 bits
Top-1 Top-5 Top-20 Top-1 Top-5 Top-20 Top-1 Top-5 Top-20

PQ [20] 0.1724 0.2999 0.4254 0.6665 0.7749 0.8404 0.9184 0.9492 0.9610
HHF [42] 0.0001 0.0014 0.0054 0.0773 0.1646 0.2661 0 0 0
CSQ [46] 0.0061 0.0113 0.0183 0.0124 0.0197 0.0269 0.0283 0.0372 0.0451

OrthoHash [18] 0.3098 0.3706 0.4171 0.5526 0.6007 0.6351 0.6626 0.7104 0.7454
GreedyHash [37] 0.3688 0.5220 0.6323 0.6102 0.7452 0.8251 0.8259 0.9003 0.9338

FPPQ(Ours) 0.9343 0.9601 0.9652 0.9467 0.9571 0.9628 0.9568 0.9690 0.9731

class-level PQ labels. It is worth noting that this operation is fair since other comparative methods
also use this pre-trained model to initialize their model parameters. In all experiments, we set the
hyperparameters s to 64 and margin to 0.2. Moreover, we set 8 bits per segment, which is the
commonly used setting in practical applications. This implies that the number of categories K per
sub-branch was set to 256, while the number of segments varied depending on the target bits. For
example, the bits [16-bits, 32-bits, 64-bits, 128-bits] corresponded to the segments [2, 4, 8, 16]. We
compared various hashing methods [20, 7, 46, 12, 25, 48, 36, 37, 18, 23, 42, 43], and we implemented
these methods based on the cisip-FIRe project2 and integrated some public projects provided by
the specific author. For a fair comparison, we use the default settings in the cisip-FIRe project or
used the default hyperparameters specified in their papers, and we trained all methods with the same
backbone, same epochs, and same batch sizes, among others. In general, unless otherwise specified,
these methods we compare are trained using fine-tuning based on the pre-trained model, and the hash
layer had an initial learning rate of 0.0001 that decreased to 0.00001 after training 0.8 times number
of epochs. The backbone learning rate was always 0.1 times that of the hash layer. In the following
experiments, we will provide more specific explanations regarding implementation details.

5.3 Results on Large-Scale Dataset Glint360K

Implementation Details Supplement: We employed iResnet [11] as the backbone and adopted
the default training settings from the insightface project. The dimension of features output by the
backbone was set to 512. We employed SGD as the optimizer with a weight decay of 0.0001. The
batch size was set to 128 × 8, and the model was trained for a total of 20 epochs. The initial learning
rate was set to 0.1 and linearly decreased it to 0 based on the number of training steps.

Comparison: We explored and tested various advanced methods, including PQ [20], HHF [42],
CSQ [46], OrthoHash [18], GreedyHash [37], JMLH [36], DPQ [23], DCDH [48], DWDM [10], etc.
These methods can be considered as encompassing the current most competitive hashing methods.
However, DCDH and DWDM were abandoned due to exceeding computational resource limitations
with large-scale matrix multiplication, JMLH and DPQ did not achieve effective performance. The
further restricted methods are explained in Sec. 2. It should be noted that OrthoHash also applies a
similar angular loss function for model optimization. To enhance its feasibility on large-scale data,
we set its hyperparameters s to 64 and margin to 0.2, the reason please refer to [39]. For methods
that used predefined hash centers [46, 18], we used Bernoulli sampling and ensure that hash centers
were non-redundant. This approach is chosen due to the inefficiency and infeasibility of generating
hundreds of thousands, or even millions, of hash centers using the technique proposed in OrthoHash.
We only demonstrate methods that achieved a certain level of performance in Tab. 1.

As it is apparent, currently available methods fail to achieve satisfactory performance on large-scale
datasets under multiple bit settings. The hyperparameters in HHF change depending on the minimum
distance bound tables proposed in [6] for different code lengths, which hinders its efficacy to converge
in 128 bits. While OrthoHash and GreedyHash have achieved a certain level of performance, they
have exhibited inferiority to the original PQ method in both 64 bits and 128 bits. In contrast, our
proposed method has displayed significant performance improvement under multiple bit settings.

2https://github.com/CISiPLab/cisip-FIRe

7

https://github.com/CISiPLab/cisip-FIRe


Table 2: Under different network structure and bits settings, our method achieved consistent and
significant improvements.

Glint360K
Backbone iResnet18 iResnet50 iResnet100

Method Metric 128 bits 64 bits 32 bits 128 bits 64 bits 32 bits 128 bits 64 bits 32 bits
Top-1 0.8005 0.4588 0.0973 0.9184 0.6665 0.1724 0.9465 0.7380 0.2074

PQ [20] Top-5 0.8659 0.5958 0.1940 0.9492 0.7749 0.2999 0.9658 0.8378 0.3569
Top-20 0.9025 0.6903 0.3031 0.9610 0.8404 0.4254 0.9720 0.8878 0.4941
Top-1 0.8231 0.7019 0.6945 0.9568 0.9467 0.9342 0.9679 0.9578 0.9305

FPPQ(Ours) Top-5 0.8824 0.7890 0.7576 0.9690 0.9571 0.9601 0.9746 0.9728 0.9700
Top-20 0.9133 0.8414 0.8006 0.9731 0.9628 0.9652 0.9772 0.9753 0.9734

Figure 2: In Glint360K, comparison of
the asymmetric retrieval performance
trend of PQ with compression effi-
ciency and the results of our methods
for improving quality. ’L2’ represents
using the original features for L2 re-
trieval, while ‘M=256’ represents divid-
ing each feature into 256 segments for
PQ retrieval, and 8 bits per segment.

(a) PQ (b) FPPQ

Figure 3: The visualization of the sub-vectors and cluster-
ing centers for the 10k classes in the Glint360K dataset
of two approaches: (a) classification loss with PQ and
(b) our proposed method. The black dots represent sub-
features, while the red dots in (a) depict the clustering
centers obtained by performing k-means clustering on the
sub-features of all classes. In contrast, in (b), the red dots
represent the codewords trained by our proposed method.

Specifically, in the 32-bit setting, our method outperformed GreedyHash with a nearly 57% increase
in Top-1 performance. Additionally, we were able to achieve approximately 28% and nearly 4%
performance growth in the 64 bits and 128 bits settings, respectively.

Performance with Different Backbone Settings: We also tested the effectiveness of our method
under multiple network structures, and our method achieved significant advantages in all results, as
shown in Tab. 2. Noting that the large-scale datasets provided favorable conditions for PQ clustering,
making PQ a strong baseline, as evident in Tab. 1. Therefore, in this comparison, we focused on
comparing our method with PQ (additional results can be found in the supplementary material). We
can observe that larger backbones typically result in better performance. However, iResnet100 did
not consistent improvement in comparison to iResnet50 when encoded to 32 bits (Top-1↓, Top-5↑,
Top-20↑). we suspect that the performance limits of the 32 bits setting may be due to the intrinsic
constraint of compression strength.

Low-Slope Decay of Retrieval Performance: As the encoding bit-length decreases, the performance
of naive product quantization encoding experiences a significant decline. However, after being trained
using our proposed method, the performance degradation gradually occurs at a lower slope with
decreasing bit-lengths due to our approach’s performance improvement at low bit-lengths. This trend
is illustrated in Fig. 2.

t-SNE Visualization: To better illustrate the effectiveness of our proposed method, we utilize t-SNE
[38] to visualize changes in sub-vectors when the feature are compressed to 32 bits. For visualization
purposes, We select the first segment of the average features of the first 10,000 classes in Glint360K,
denoted as {F1} ∈ R10000×(D/M), and their corresponding codewords for the first part, represented
by C1 ∈ RK×(D/M). As we can see in Fig. 3, the sub-vectors of the original features tend to be

8



Query Target

PQ4-F

PQ4-Fnor

PQ4-F

PQ4-Fnor

L2

L2

PQ4-SegFnor

Query Target

PQ4-F

PQ4-Fnor

PQ4-F

PQ4-Fnor

L2

L2

PQ4-SegFnor

Ours

Ours

Figure 4: Visualization of the Top-20 retrieval samples using FaceScrub as the query set and MegaFace
as the gallery set.

evenly distributed throughout the subspace, hindering sub-vectors compression. In contrast, our
method effectively learns class-level PQ labels, leading the sub-vectors to cluster into K clusters in
the subspace.

Retrieval Result Visualization: Moreover, we provide visualizations of the Top-20 retrieval results
on the MegaFace and FaceScrub datasets in Fig. 4. This encompasses comparisons between various
ways: 1) our method, which includes L2 retrieval and PQ4 retrieval (without feature processing,
normalization, or segment normalization), and 2) the original L2 retrieval and naive PQ4 retrieval
(with or without feature normalization). It can be observed that our method generates similar top-20
results under different feature preprocessing settings, further validating the insensitivity of our method
to feature preprocessing.

5.4 Results on Smaller Scale Datasets

In addition to conducting experiments on large-scale datasets, we evaluated our proposed method
on relatively small datasets such as ImageNet1K and ImageNet100. We utilized ResNet50 [17] as
the backbone and employed parameters pre-trained on ImageNet1K to initialize the model. The
dimension of the features output by the backbone is 2048. Our experiments on these datasets not
only demonstrated the effectiveness of our proposed method but also allowed us to make preliminary
attempts at addressing two special scenarios.

Results on ImageNet100: The experiment on ImageNet100 highlights a scenario where the data
scale is small and has fewer categories compared to the number of clusters required for k-means
clustering. As k-means clustering cannot be executed in this scenario, we overcame this limitation by
training the PQ using all instance features and subsequently encoding the class average features. To
prevent overfitting due to the limited data, we fixed the backbone and added a linear layer of 2048 to
128 at the end of the backbone for learning. We fine-tuned our model for 100 epochs with a learning
rate of 0.0001. The results presented in Tab. 3, and the performances of other methods were obtained
either by replicating the results using the cisip-FIRe project or citing their respective papers. Our
method achieved the best performance on ImageNet100, indicating its efficacy in scenarios involving
limited dataset scale.

Results on ImageNet1K: The experiments on ImageNet1K reveal another scenario: the inability to
obtain a good class-level PQ label due to limitations in the number of training samples or low feature
discrimination. With only 1000 classes in ImageNet1K, training PQ effectively becomes challenging
given the limited number of categories available. Moreover, the low discriminability between classes
in the features generated by a pre-trained model leads to a significant amount of duplicate PQ codes

9



Table 3: mAP@R1000 on ImageNet100

ImageNet100 mAP@R1000Method 16 bits 32 bits 64 bits
HashNet [7] 0.5101 0.7059 0.7997

CSQ [46] 0.8379 0.8750 0.8874
DPN [12] 0.8543 0.8799 0.8927
DFH [25] 0.8352 0.8781 0.8849

DCDH [48] 0.7856 0.8158 0.8400
JMLH [36] 0.8366 0.8671 0.8799

GreedyHash [37] 0.8544 0.8796 0.8886
HBS-RL [43] 0.8465 0.8702 0.8851

DPQ [23] 0.8860 0.8770 0.8660
HHF [42] 0.8710 0.8910 0.8960

OrthoHash [18] 0.8693 0.8869 0.8994
FPPQ(Ours) 0.8956 0.9128 0.9154

after PQ training and encoding. For instance, duplicate rates can exceed 50% for the PQ codes of
1000 class average features when compressed to 32 bits. To tackle this issue, we adopt the method
proposed by OrthoHash, which involves generating hash codes using repeated Bernoulli sampling
to achieve binary encodings with sufficient hamming distance. These binary encodings are then
segmented and converted into decimal codes to serve as PQ labels. We adopts the default training
strategy from the cisip-FIRe project, fine-tuning for 90 epochs. we compared several of the most
competitive methods and the experimental results are presented in Tab. 4. As shown in the results,
our method achieved competitive results, particularly when the encoding length was relatively short.

Table 4: mAP@R1000 on ImageNet1K

ImageNet1K mAP@R1000Method 16 bits 32 bits 64 bits
HHF [42] 0.2961 0.5979 0.6121

DCDH [48] 0.3666 0.4764 0.5299
CSQ [46] 0.5040 0.6061 0.6093

JMLH [36] 0.5286 0.5876 0.6098
GreedyHash [37] 0.5424 0.5896 0.5952
OrthoHash [18] 0.5936 0.6514 0.6761

FPPQ(Ours) 0.6207 0.6543 0.6649

6 Conclusion

This study explored and evaluated several advanced deep hashing methods for large-scale image
retrieval, identifying their limitations. In addition, we proposed a product quantization-based frame-
work that employs multiple softmax branches to learn specific class-level PQ labels. Our proposed
method effectively performs during the retrieval stage and aligns well with the traditional product
quantization methods. Notably, our method is independent of the number of classes and data samples
required, requiring only an additional parameter quantity of D ×K and a relatively small amount of
computational resources. Therefore, our proposed method offers promising prospects for large-scale
image retrieval tasks.

Ethics Statement

This paper primarily focuses on hash technology, aiming to enhance data compression and retrieval
while extending current deep hash methods to large-scale scenarios. The datasets we utilize are
publicly available, and we ensure strict adherence to their respective open licenses.

10



Acknowledgement

This work is supported in part by the National Key Research and Development Program of China
under Grant No. 2021ZD40303; in part by the Natural Science Foundation of China under Grant No.
U20B2052, 61936011; in part by the National Key Research and Development Program of China
under Grant No. 2018YFE0118400; in part by the National Natural Science Foundation Innovation
Research Group Project under Grant No. 62321003.

References
[1] Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based anomaly detection and description: a

survey. Data mining and knowledge discovery, 29:626–688, 2015. 1

[2] Xiang An, Xuhan Zhu, Yuan Gao, Yang Xiao, Yongle Zhao, Ziyong Feng, Lan Wu, Bin Qin, Ming Zhang,
Debing Zhang, et al. Partial fc: Training 10 million identities on a single machine. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 1445–1449, 2021. 1, 2, 6

[3] Artem Babenko and Victor Lempitsky. Additive quantization for extreme vector compression. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 931–938, 2014.
2

[4] Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. Frozen in time: A joint video and image
encoder for end-to-end retrieval. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 1728–1738, 2021. 1

[5] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013. 2

[6] Andries E Brouwer and Tom Verhoeff. An updated table of minimum-distance bounds for binary linear
codes. IEEE Transactions on Information Theory, 39(2):662–677, 1993. 7

[7] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S Yu. Hashnet: Deep learning to hash by
continuation. In Proceedings of the IEEE international conference on computer vision, pages 5608–5617,
2017. 1, 2, 6, 7, 10

[8] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations. In
Proceedings of the 10th ACM conference on recommender systems, pages 191–198, 2016. 1

[9] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin loss
for deep face recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4690–4699, 2019. 1, 4

[10] Khoa D Doan, Peng Yang, and Ping Li. One loss for quantization: Deep hashing with discrete wasserstein
distributional matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9447–9457, 2022. 7

[11] Ionut Cosmin Duta, Li Liu, Fan Zhu, and Ling Shao. Improved residual networks for image and video
recognition. In 2020 25th International Conference on Pattern Recognition (ICPR), pages 9415–9422.
IEEE, 2021. 7

[12] Lixin Fan, Kam Woh Ng, Ce Ju, Tianyu Zhang, and Chee Seng Chan. Deep polarized network for
supervised learning of accurate binary hashing codes. In IJCAI, pages 825–831, 2020. 1, 2, 5, 7, 10

[13] Lianli Gao, Xiaosu Zhu, Jingkuan Song, Zhou Zhao, and Heng Tao Shen. Beyond product quantization:
Deep progressive quantization for image retrieval. arXiv preprint arXiv:1906.06698, 2019. 2

[14] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization. IEEE transactions on
pattern analysis and machine intelligence, 36(4):744–755, 2013. 2

[15] Allen Gersho and Robert M Gray. Vector quantization and signal compression, volume 159. Springer
Science & Business Media, 2012. 2

[16] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high dimensions via hashing. In
Vldb, volume 99, pages 518–529, 1999. 1, 2

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
9

11



[18] Jiun Tian Hoe, Kam Woh Ng, Tianyu Zhang, Chee Seng Chan, Yi-Zhe Song, and Tao Xiang. One loss for
all: Deep hashing with a single cosine similarity based learning objective. Advances in Neural Information
Processing Systems, 34:24286–24298, 2021. 1, 2, 5, 6, 7, 10

[19] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of dimen-
sionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages 604–613,
1998. 2

[20] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010. 2, 7, 8

[21] Yannis Kalantidis and Yannis Avrithis. Locally optimized product quantization for approximate nearest
neighbor search. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2321–2328, 2014. 2

[22] Ira Kemelmacher-Shlizerman, Steven M Seitz, Daniel Miller, and Evan Brossard. The megaface benchmark:
1 million faces for recognition at scale. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4873–4882, 2016. 6

[23] Benjamin Klein and Lior Wolf. End-to-end supervised product quantization for image search and retrieval.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5041–
5050, 2019. 1, 2, 3, 7, 10

[24] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. Feature learning based deep supervised hashing with
pairwise labels. arXiv preprint arXiv:1511.03855, 2015. 2

[25] Yunqiang Li, Wenjie Pei, Jan van Gemert, et al. Push for quantization: Deep fisher hashing. arXiv preprint
arXiv:1909.00206, 2019. 2, 7, 10

[26] Yunqiang Li and Jan van Gemert. Deep unsupervised image hashing by maximizing bit entropy. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 2002–2010, 2021. 2

[27] Bin Liu, Yue Cao, Mingsheng Long, Jianmin Wang, and Jingdong Wang. Deep triplet quantization. In
Proceedings of the 26th ACM international conference on Multimedia, pages 755–763, 2018. 1, 2, 3

[28] Meihan Liu, Yongxing Dai, Yan Bai, and Ling-Yu Duan. Deep product quantization module for efficient
image retrieval. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4382–4386. IEEE, 2020. 2

[29] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface: Deep
hypersphere embedding for face recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 212–220, 2017. 1, 4

[30] Xiao Luo, Haixin Wang, Daqing Wu, Chong Chen, Minghua Deng, Jianqiang Huang, and Xian-Sheng Hua.
A survey on deep hashing methods. ACM Transactions on Knowledge Discovery from Data, 17(1):1–50,
2023. 2

[31] J MacQueen. Some methods for classification and analysis of multivariate observations. In Proc. 5th
Berkeley Symposium on Math., Stat., and Prob, page 281, 1965. 5

[32] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. Detecting near-duplicates for web crawling.
In Proceedings of the 16th international conference on World Wide Web, pages 141–150, 2007. 2

[33] Hong-Wei Ng and Stefan Winkler. A data-driven approach to cleaning large face datasets. In 2014 IEEE
international conference on image processing (ICIP), pages 343–347. IEEE, 2014. 6

[34] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep learning for anomaly
detection: A review. ACM computing surveys (CSUR), 54(2):1–38, 2021. 1

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge.
International journal of computer vision, 115:211–252, 2015. 2, 6

[36] Yuming Shen, Jie Qin, Jiaxin Chen, Li Liu, Fan Zhu, and Ziyi Shen. Embarrassingly simple binary
representation learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision
Workshops, pages 0–0, 2019. 2, 7, 10

[37] Shupeng Su, Chao Zhang, Kai Han, and Yonghong Tian. Greedy hash: Towards fast optimization for
accurate hash coding in cnn. Advances in neural information processing systems, 31, 2018. 1, 2, 7, 10

12



[38] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008. 8

[39] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu.
Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5265–5274, 2018. 1, 4, 7

[40] Xiaofang Wang, Yi Shi, and Kris M Kitani. Deep supervised hashing with triplet labels. In Computer
Vision–ACCV 2016: 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016,
Revised Selected Papers, Part I 13, pages 70–84. Springer, 2017. 2

[41] Eric W Weisstein. Hadamard matrix. https://mathworld. wolfram. com/, 2002. 5

[42] Chengyin Xu, Zenghao Chai, Zhengzhuo Xu, Hongjia Li, Qiruyi Zuo, Lingyu Yang, and Chun Yuan. Hhf:
Hashing-guided hinge function for deep hashing retrieval. IEEE Transactions on Multimedia, 2022. 2, 7,
10

[43] Xin Yao, Min Wang, Wengang Zhou, and Houqiang Li. Hash bit selection with reinforcement learning for
image retrieval. IEEE Transactions on Multimedia, 2022. 7, 10

[44] Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Aditee Kumthekar, Zhe Zhao,
Li Wei, and Ed Chi. Sampling-bias-corrected neural modeling for large corpus item recommendations. In
Proceedings of the 13th ACM Conference on Recommender Systems, pages 269–277, 2019. 1

[45] Tan Yu, Junsong Yuan, Chen Fang, and Hailin Jin. Product quantization network for fast image retrieval.
In Proceedings of the European Conference on Computer Vision (ECCV), pages 186–201, 2018. 2, 3

[46] Li Yuan, Tao Wang, Xiaopeng Zhang, Francis EH Tay, Zequn Jie, Wei Liu, and Jiashi Feng. Central
similarity quantization for efficient image and video retrieval. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 3083–3092, 2020. 2, 5, 6, 7, 10

[47] Cao Yue, M Long, J Wang, Zhu Han, and Q Wen. Deep quantization network for efficient image retrieval.
In Proc. 13th AAAI Conf. Artif. Intell, pages 3457–3463, 2016. 2, 3

[48] Ming Zhang, Xuefei Zhe, Shifeng Chen, and Hong Yan. Deep center-based dual-constrained hashing for
discriminative face image retrieval. Pattern Recognition, 117:107976, 2021. 1, 2, 3, 7, 10

[49] Ming Zhang, Xuefei Zhe, and Hong Yan. Orthonormal product quantization network for scalable face
image retrieval. Pattern Recognition, page 109671, 2023. 1, 2, 3

[50] Ting Zhang, Chao Du, and Jingdong Wang. Composite quantization for approximate nearest neighbor
search. In International Conference on Machine Learning, pages 838–846. PMLR, 2014. 2

[51] Chang Zhou, Lai Man Po, and Weifeng Ou. Angular deep supervised vector quantization for image
retrieval. IEEE Transactions on Neural Networks and Learning Systems, 33(4):1638–1649, 2020. 2, 3

[52] Zheng Zhu, Guan Huang, Jiankang Deng, Yun Ye, Junjie Huang, Xinze Chen, Jiagang Zhu, Tian Yang,
Jiwen Lu, Dalong Du, et al. Webface260m: A benchmark unveiling the power of million-scale deep face
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10492–10502, 2021. 1

13


