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Abstract

In this paper, we propose a novel extra-gradient difference acceleration algorithm
for solving constrained nonconvex-nonconcave (NC-NC) minimax problems. In
particular, we design a new extra-gradient difference step to obtain an important
quasi-cocoercivity property, which plays a key role to significantly improve the
convergence rate in the constrained NC-NC setting without additional structural
assumption. Then momentum acceleration is also introduced into our dual ac-
celerating update step. Moreover, we prove that, to find an ε-stationary point
of the function f , the proposed algorithm attains the complexity O(ε−2) in the
constrained NC-NC setting, while the best-known complexity bound is Õ(ε−4),
where Õ(·) hides logarithmic factors compared to O(·). As the special cases of the
constrained NC-NC setting, the proposed algorithm can also obtain the same com-
plexity O(ε−2) for both the nonconvex-concave (NC-C) and convex-nonconcave
(C-NC) cases, while the best-known complexity bounds are Õ(ε−2.5) for the NC-C
case and Õ(ε−4) for the C-NC case. For fair comparison with existing algorithms,
we also analyze the complexity bound to find ε-stationary point of the primal
function φ for the constrained NC-C problem, which shows that our algorithm can
improve the complexity bound from Õ(ε−3) to O(ε−2). To the best of our knowl-
edge, this is the first time that the proposed algorithm improves the best-known
complexity bounds from Õ(ε−4) and Õ(ε−3) to O(ε−2) in both the NC-NC and
NC-C settings.

1 Introduction

This paper considers the following smooth minimax optimization problem,

min
x∈X

max
y∈Y

f(x, y), (1)
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where X ⊆ Rm and Y ⊆ Rn are nonempty closed and convex feasible sets, and f : Rm ×
Rn → R is a smooth function. In recent years, this problem has drawn considerable interest from
machine learning and other engineering communities such as generative adversarial networks [14],
adversarial machine learning [15, 28], game theory [3], reinforcement learning [12, 41], empirical
risk minimization [54, 39], and robust optimization [36, 13, 5]. While there is an extensive body
of literature on minimax optimization, most prior works such as [54, 39, 42, 33, 50] focus on the
convex-concave setting, where f(x, y) is convex in x and concave in y. However, in many nonconvex
minimax machine learning problems as in [35, 6], f(x, y) is nonconvex in x and (strongly) concave
in y, or f(x, y) is (strongly) convex in x and nonconcave in y. For nonconvex-strongly-concave
(NC-SC) minimax problems, a number of efficient algorithms such as [34, 25, 27] were proposed,
and their complexity can be Õ(κ2

yε
−2) for achieving an ε-stationary point x̂ (e.g., ‖∇φ(x̂)‖ ≤ ε) of

the primal function φ(·) := maxy∈Y f(·, y), where κy is the condition number for f(x, ·), and Õ
hides logarithmic factors. More recently, [24] proposed an accelerated algorithm, which improves the
gradient complexity to Õ(√κyε−2), which exactly matches the lower complexity bound in [52, 23].
Therefore, we mainly consider the problem (1) in nonconvex-nonconcave (NC-NC), nonconvex-
concave (NC-C) and convex-nonconcave (C-NC) settings.

1.1 Algorithms in NC-C and C-NC Settings

For nonconvex-concave (NC-C, but not strongly concave) and convex-nonconcave (C-NC) problems,
there are two types of algorithms (i.e., multi-loop (including double-loop and triple-loop) and
single-loop algorithms), and most of them are multi-loop algorithms such as [18, 31, 40, 24]. [31]
proposed a multi-step framework that finds an ε-first order Nash equilibrium of f(x, y) with the
complexity Õ(ε−3.5). [40] designed a proximal dual implicit accelerated algorithm and proved that
their algorithm finds an ε-stationary point of φ with the complexity Õ(ε−3). More recently, [24]
proposed an accelerated algorithm, which achieves the complexity Õ(ε−2.5) to find an ε-stationary
point of f . These multi-loop algorithms require at least O(ε−2) outer iterations, and thus their
complexities are more than O(ε−2). Even though single-loop methods are more popular in practice
due to their simplicity, few single-loop algorithms have been proposed for NC-C setting. The most
natural approach is the gradient descent-ascent (GDA) method, which performs a gradient descent
step on x and a gradient ascent step on y at each iteration. However, GDA fails to converge even
for simple bilinear zero-sum games [22]. Subsequently, several improved GDA algorithms such as
[8, 25, 27, 44] were proposed. For instance, [25] proved that the complexity of their two-time-scale
GDA to find an ε-stationary point of φ is O(ε−6) for NC-C problems. Moreover, [27] presented an
efficient algorithm, which obtains an ε-stationary point of f with the complexity O(ε−4). In fact, the
complexity only counts the number of times the maximization subproblem is solved, and does not
consider the complexity of solving this subproblem. [44] proposed a unified algorithm, and proved
that the complexity of their algorithm to find an ε-stationary point of f is O(ε−4) for both NC-C
and C-NC problems. More recently, [51] presented a smoothed-GDA algorithm and proved that
the complexity can be improved to O(ε−2) for optimizing a special case of NC-C problems (i.e.,
minimizing the pointwise maximum of a finite collection of nonconvex functions). However, its
complexity is still O(ε−4) for both NC-C and C-NC problems. One natural question is: can we
design a single-loop accelerated algorithm with the optimal complexity boundO(ε−2) for both NC-C
and C-NC problems?

1.2 Algorithms in NC-NC Settings

This paper mainly considers constrained NC-NC minimax problems, i.e., f(x, y) is nonconvex
in x and nonconcave in y in the constrained setting (called constrained NC-NC). In recent years,
some works such as [7, 31, 46, 38, 20] focus on structured NC-NC problems. That is, the saddle
gradient operator of such minimax problems or their objectives must satisfy one of the structured
assumptions: the minty variational inequality (MVI) condition, the weak MVI condition, or negative
comonotone condition and the Polyak-Łojasiewicz condition. However, structured NC-NC problems
have limited practical applications because they are required to satisfy strong structural assumptions.
For more practical constrained NC-NC problems or more general NC-NC problems, the convergence
guarantee of the algorithms is still a challenge. In this paper, we also focus on convergence analysis
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Table 1: Comparison of complexities of the minimax algorithms to find an ε-stationary point of f(·, ·)
in the NC-C, C-NC and NC-NC settings. Note that Smoothed-GDA [51] can find an ε-stationary
point for a special problem of (1) with O(ε−2), and Õ hides logarithmic factors compared to O(·).

Optimality Criteria References NC-C C-NC NC-NC Simplicity

Lu et al. [27] Õ(ε−4) - - Single-Loop
Stationarity of f Nouiehed et al. [31] Õ(ε−3.5) - - Multi-Loop
with smoothness Lin et al. [24] Õ(ε−2.5) - - Multi-Loop
and compact sets Zhang et al. [51] O(ε−4) - - Single-Loop

assumptions Xu et al. [44] O(ε−4) O(ε−4) - Single-Loop
This work (Theorem 1) O(ε−2) O(ε−2) O(ε−2) Single-Loop

Table 2: Comparison of complexities of existing minimax algorithms and the proposed algorithm to
find an φ(·) := maxy∈Y f(·, y) in the nonconvex-concave (NC-C) setting. This table only highlights
the dependence of ε, and compared with O(·), Õ(·) hides logarithmic factors.

NC-C Settings References Compact set Complexity Simplicity

Rafique et al. [34], Jin et al. [17] X,Y Õ(ε−6) Multi-Loop
NC-C Lin et al. [25] X,Y Õ(ε−6) Single-Loop

(Stationarity of φ) Thekumprampil et al. [40] X,Y Õ(ε−3) Multi-Loop
Zhao [55], Lin et al. [24] X,Y Õ(ε−3) Multi-Loop
This work (Theorem 2) Y O(ε−2) Single-Loop

for solving more practical constrained NC-NC problems. Another natural question is: can we design
a single-loop accelerated algorithm to further improve the bound in the constrained NC-NC setting?

1.3 Motivations and Our Contributions

Motivations: For NC-C minimax problems, can we design a single-loop directly accelerated algorith-
m with the gradient complexity lower than the best-known result Õ(ε−2.5)? Though Smoothed-GDA
[51] can obtain the complexity O(ε−2) for a special case of Problem (1), it only attains the complex-
ity O(ε−4) for NC-C minimax problems. For C-NC minimax problems, for any given x, to solve
the nonconcave maximization subproblem with respect to y is NP-hard. As a result, all existing
multi-loop algorithms will lose their theoretical guarantees as discussed in [44]. Can we propose
a single-loop directly accelerated algorithm with the complexity lower than the best-known result
O(ε−4) for C-NC and NC-NC minimax problems?

Our Contributions: This paper proposes a novel single-loop extra-gradient difference acceleration
algorithm to push towards optimal gradient complexities for constrained NC-NC minimax problems
(1), and answer the above-mentioned problems.

We summarize the major contributions of this paper.

•We design a new single-loop accelerating algorithm for solving constrained NC-NC problems. In
the proposed algorithm, we design a new extra-gradient difference scheme, and combine the gradient
ascent and momentum acceleration steps for the dual variable update. In our algorithm, we present
an important quasi-cocoercivity property. By leveraging the quasi-cocoercivity property, we can
improve the complexity bound in our theoretical analysis.

• We analyze the convergence properties of the proposed algorithm for constrained NC-NC
problems. Theorem 1 shows that to find an ε-stationary point of f , the proposed algorithm can obtain
the gradient complexityO(ε−2), which is the first time to attains the complexity bound in constrained
NC-NC setting. The constrained NC-C and C-NC problems can be viewed as two special cases of
the constrained NC-NC problem, and the proposed algorithm is also applicable to these two special
problems. And its complexity is still O(ε−2) for both NC-C and C-NC problems, which significantly
improves the gradient complexity from O(ε−4) of existing single-loop algorithms or Õ(ε−2.5) of
existing multi-loop algorithms to O(ε−2). The complexities of some recently proposed algorithms
are listed in Table 1.
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• In order to make a comprehensive comparison with existing algorithms, we also provide the
theoretical analysis of our algorithm in terms of another convergence criteria (i.e., an ε-stationary
point of φ) for constrained NC-C problems. The result shows that our algorithm improves the
best-known result as in [40, 24, 55] from Õ(ε−3) to O(ε−2), as shown in Table 2.

2 Preliminaries and Related Works

Notation: Throughout this paper, we use lower-case letters to denote vectors such as x, y, and
calligraphic upper-case letters to denote sets such as X ,Y . For a differentiable function f , ∇f(x) is
the gradient of f at x. For a function f(·, ·) of two variables,∇xf(x, y) (or∇yf(x, y)) is the partial
gradient of f with respect to the first variable (or the second variable) at (x, y). For a vector x, ‖x‖
denotes its `2-norm. We use PX and PY to denote projections onto the sets X and Y .
Assumption 1 (Smoothness). f(·, ·) is continuously differentiable, and there exists a positive constant
L such that

‖∇xf(x1, y1)−∇xf(x2, y2)‖ ≤ L‖x1−x2‖, ‖∇yf(x1, y1)−∇yf(x2, y2)‖ ≤ L‖y1−y2‖

holds for all x1, x2 ∈ Rm, y1, y2 ∈ Rn.

Definitions of the monotone operators: A operator F (·) : Rn → Rn is monotone, if [F (s) −
F (t)]T (s− t) ≥ 0, ∀s, t ∈ Rn. If [F (s)− F (t)]T (s− t) ≤ 0, F is negative monotone.

A mapping F (·) is co-coercive if there is a positive constant α, such that

[F (s)− F (t)]T (s− t) ≥ α‖F (s)− F (t)‖2, ∀s, t ∈ Rn.

Nonconvex-Concave Minimax Optimization: Due to the nonconvex nature of these minimax
problems, finding the global solution is NP-hard in general. The recently proposed algorithms aim to
find stationary solutions to such problems. For instance, the first-order Nash equilibrium condition
(called game stationary) is used as an optimality condition in [31]. Besides game stationary, there are
two main optimality criteria (i.e., an ε-stationary point of f(·, ·) or φ(·) := maxy∈Y f(·, y)) for the
convergence analysis of the algorithms such as [4, 44, 24].

For solving NC-C minimax problems, there exist a number of efficient multi-loop and single-loop
algorithms such as [31, 25, 4, 44, 24]. Most of them are multi-loop algorithms, which either employ
an accelerated update rule of x by adding regularization terms to its subproblem, or use multiple
gradient ascent steps for the update of y to solve the subproblem exactly or inexactly. Compared
with multi-loop algorithms, single-loop algorithms are easier to implement. One of the most popular
single-loop algorithms is GDA. However, GDA with a constant stepsize can fail to converge even for
a simple bilinear minimax problem [29].

To address this issue, only a few single-loop algorithms such as [25, 27, 44] were proposed, and
most of them employed a smoothing or proximal point technique. For instance, Smoothed-GDA [51]
introduces a smooth function ϕ(x, y, z)=f(x, y) + a

2‖x−z‖
2 for the update of the primal variable

x, where z is an auxiliary variable and a is a constant, and its main update steps are

xt+1=PX (xt−ηx∇xϕ(xt, zt, yt)), yt+1=PY(yt+ηy∇yf(xt+1, yt)), zt+1=zt+β(xt+1−zt),
where ηx, ηy>0 are two stepsizes, and 0<β≤1. Smoothed-GDA can obtain the gradient complexity,
O(ε−4), for nonconvex-concave minimax problems.

Extra-Gradient Methods: There are some extra-gradient methods such as [48] for solving minimax
problems. Let η0 > 0 and ut be the t-th iterate, the extra-gradient method [53] has the following
projection-type prediction-correction step:

Prediction : ut+1/2 = PΩ (ut − ηtF (ut)) , Correction : ut+1 = PΩ

(
ut − ηtF (ut+1/2)

)
.

In this paper, we call ut+1/2 as the prediction point at the t-iteration.

3 Single-Loop Extra-Gradient Difference Acceleration Algorithm

In this section, we propose a single-loop Extra-Gradient Difference Acceleration algorithm (EGDA)
for solving constrained NC-NC minimax problems.
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Algorithm 1 EGDA for NC-NC minimax problems
1: Initialize: x0, y0, u0, u−1/2, y−1, u−1/2 6= y−1, τ ≥ 0.75, ηx, δ, β.
2: for t = 0, 1, . . . , T − 1 do
3: xt+1= PX [xt−ηx∇xf(xt, yt)]; ut+1/2=yt+β[∇yf(xt, ut−1/2)−∇yf(xt, yt−1)];
4: ut+1=PY

[
yt+η

t
y∇yf(xt, ut−1/2)

]
; yt+1 = τyt + (1−τ)ut+1;

5: end for
6: Output: (xT , yT ).

3.1 Extra-Gradient Difference Acceleration

In recent years, many algorithms such as [27, 31, 32, 24, 51, 44] have been proposed for solving
NC-C minimax problems. In essence, most of them are “indirect” acceleration algorithms, which
are used to optimize the surrogate functions with a smoothing or proximal point term instead of the
original function. However, this may hurt the performance of these algorithms both in theory and in
practice [2, 1]. To address this issue, we propose a single-loop directly accelerating algorithm to find
an ε-stationary points of f and φ with a significantly improved complexity O(ε−2). The main update
steps of our EGDA algorithm are designed as follows.

• Gradient descent:

xt+1 = argmin
x∈X

{
〈∇xf(xt, yt), x〉+ ‖x− xt‖2/ηx

}
. (2)

• Extra-gradient difference prediction:

ut+1/2= yt + β
[
∇yf(xt, ut−1/2)−∇yf(xt, yt−1)

]
. (3)

• Gradient ascent correction:

ut+1 = argmax
u∈Y

{
〈∇yf(xt, ut−1/2), u〉 − ‖u− yt‖2/ηty

}
. (4)

•Momentum acceleration:

yt+1 = τyt + (1− τ)ut+1. (5)

Here, 0<β< 1
L , ηx, ηty are two stepsizes, ut+1/2 and ut+1 are two auxiliary variables, ut+1/2 is a

prediction point, and 0<τ≤1 is a momentum parameter. Our EGDA algorithm is formally presented
in Algorithm 1. Our EGDA algorithm first performs one proximal gradient descent step on the primal
variable x, and then we design a new dual-accelerating scheme in Eqs. (3), (4) and (5) for the dual
variable y.

3.2 Advantages of Our Algorithm and Comparison to Related Work

In our EGDA algorithm, we first design a new prediction point ut+1/2 in Eq. (3). Compared with
existing extra-gradient-type methods such as [7, 16, 20], one of the main differences is that the
proposed prediction point ut+1/2 in (3) is updated by the gradient difference (i.e.,∇yf(xt, ut−1/2)−
∇yf(xt, yt−1)), while the prediction point in other extra-gradient-type algorithms is updated only by
using the gradient information at the correction point ut. Then the gradient at the new prediction point
ut+1/2 is used in the gradient ascent step (4). And the dual variable y is update by the momentum
acceleration step in (5).

• Prediction Point: The monotonicity and co-coercivity properties of gradient operators play a
crucial role for convergence analysis. However, these important properties do not always hold for
nonconvex problems. Some researchers have made great progress in some special nonconvex settings,
such as structured nonconvex and weakly convex settings, which require a weaker condition such as
weakly monotone [26], pseudo-monotone [16], and MVI [7]. However, such conditions seriously
limit the application scope of Problem (1).

To address this challenge, we design a new prediction point scheme in (3), which can help us obtain
a useful quasi-cocoercivity property. As a result, it does not require any monotone or structural
assumption. Specifically, we find that we only require a weaker property in our theoretical analysis,
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that is, the weaker co-coercivity is required at some special points {ut+1/2, yt} (〈∇yf(xt, ut+1/2)−
∇yf(xt, yt), ut+1/2−yt〉 ≥ β‖∇yf(xt, ut+1/2)−∇yf(xt, yt)‖2 with β > 0). Thus, we develop a
decoupling idea to construct the prediction point ut+1/2. That is, we use the gradients with respect
to y at ut−1/2, yt−1 instead of those at the points ut+1/2, yt. We can obtain a property (called the
quasi-co-coercivity) in Section 4.2, which plays a key role in the theoretical analysis for the proposed
algorithm.

• Gradient Difference: We also briefly discuss the underlying intuition of the proposed gradient
difference in (3). We find that the proposed update in (3) is similar to the forms in [43] (see Eqs.
(12) and (14) in [43]). [43] proposed a first-order procedure (i.e., difference of gradients) to achieve
the negative curvature of a Hessian matrix. Therefore, our algorithm has a similar procedure, which
contains second-order information. Moreover, we use the difference of gradients in the gradient
ascent procedure for the dual update. But our EGDA algorithm only requires the Lipschitz gradient
assumption for minimax problems to find first-order stationary points, while [43] requires both the
Lipschitz gradient and Lipschitz Hessian assumptions for solving second-order stationary points of
nonconvex minimization problems.

•Momentum Acceleration: We design a dual-accelerating update rule in (4) for the dual variable
y in our EGDA algorithm, which is different from standard momentum acceleration schemes as in
[31, 40, 24]. That is, the accelerated rules of existing algorithms are for the primal variable x, while
our accelerated rule is designed for the dual variable y.

Therefore, the proposed new dual-accelerating step (including the gradient different prediction step
in (3), the gradient ascent correction in (4) and momentum acceleration in (5)) is a key accelerated
technique for our EGDA algorithm, and can help to improve the complexity bound from O(ε−4)
to O(ε−2). In particular, our EGDA algorithm performs both gradient descent and ascent steps to
the original function f . In contrast, many existing algorithms such as [51, 47, 44, 18] optimize
their surrogate functions with smoothing terms instead of the original function. In particular, their
smoothing parameters need to tune by repeatedly executing the algorithms, which may make them
impractical [1]. As in our theoretical guarantees below, the proposed single-loop algorithm is able to
significantly improve the best-known gradient complexity,O(ε−4), of existing single-loop algorithms
such as [27, 51, 44] to O(ε−2).

4 Convergence Guarantees

In this section, we provide the convergence guarantees of our EGDA algorithm (i.e., Algorithm 1) for
solving constrained NC-NC and NC-C problems. We first present the definitions of the two optimality
criteria (i.e., an ε-stationary point of f or φ). All the proofs of the lemmas, properties and theorems
below are included in the Supplementary Material.

4.1 Optimality Criteria and Key Property

Since finding a global minimum of a nonconvex optimization problem is NP-hard, finding a global
saddle point (or Nash equilibrium) of a NC-NC function f is intractable [30]. As in the literature
in the NC-NC setting, we introduce the local surrogates (i.e., the stationary point of f ) and in
the NC-C setting, we introduce the local surrogates (i.e., the stationary point of f or φ), whose
gradient mappings are equal to zero. Below we define the following two optimality measures (i.e., an
ε-stationary points of f or φ) for our theoretical analysis.
Definition 1 (An ε-stationary point of f [27]). A point (x, y) ∈ X × Y is an ε-stationary point of
f(·, ·) if ‖π(x, y)‖ ≤ ε, where ηx and ηy are two constants, and

π(x, y) :=

[
(1/ηx)(x− PX (x− ηx∇xf(x, y)))
(1/ηy)(y − PY(y + ηy∇yf(x, y)))

]
. (6)

If ε = 0, then (x, y) is a stationary point of f .

For the NC-C setting, we also present another convergence criterion used in [40, 24]. Let φ(x) :=
maxy∈Y f(x, y), x̂ is called an ε-stationary point of a smooth primal function φ : Rm → R, if
‖∇φ(x̂)‖ ≤ ε. However, the function φ is not necessarily differentiable for minimax problems.
Following [9, 40, 24], we introduce the Moreau envelope of φ for the optimality criterion, especially
when φ is a weakly convex function, i.e., φ is L-weakly convex if the function φ(·) + L

2 ‖ · ‖
2 is

convex. We refer readers to [9, 24] for the comparison of these two criteria.
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Definition 2 (An ε-stationary point of L-weakly convex function φ). x̂ is an ε-stationary point of an
L-weakly convex function φ : Rm→R, if ‖∇φ1/(2L)(x̂)‖≤ε, where φ1/(2L) is the Moreau envelope
of φ and is defined as: φρ(x) :=minz φ(z)+(1/2ρ)‖z−x‖2. If ε = 0, then x̂ is a stationary point.

Then we give the following important property for the analysis of the proposed algorithm. By
leveraging the property, we can obtain the complexity bound of the proposed algorithm.
Property 1 (Quasi-Cocoercivity). Let ut+1/2 be updated in Eq. (3), then〈

∇yf(xt, ut−1/2)−∇yf(xt, yt−1), ut+1/2−yt
〉
=β‖∇yf(xt, ut−1/2)−∇yf(xt, yt−1)‖2.

4.2 Core Lemma

Our theoretical results mainly rely on Lemma 1 below, which plays a key role in the proofs of
Theorems 1 and 2. Let {(xt, yt, ut, ut−1/2)} be a sequence generated by Algorithm 1, and we define
the potential function

Gt := f(xt, yt)+9L‖ut−yt−1‖2+8Lβ2‖∇yf(xt−1, ut−3/2)−∇yf(xt−1, yt−2)‖2.
Next we need to prove that our defined potential function can make sufficient decrease at each
iteration, i.e., Gt −Gt+1>0 as in Lemma 1 below. To prove Lemma 1, we will provide and prove
the following upper bounds.
Proposition 1 (Upper bound of primal updates). Suppose Assumption 1 holds. Let {(xt, yt, ut)} be

generated by Algorithm 1 with ηty=min{β‖∇yf(xt,ut−1/2)−∇yf(xt,yt−1)‖2

4‖∇yf(xt,ut−1/2)‖2 , 1
28L , ηx}+ δ and 0 < δ ≤

1
28L is a constant.

f(xt+1, ut+1/2)−f(xt, yt)

≤−
(

1

ηx
− L

2

)
‖xt+1−xt‖2+L‖ut+1/2−yt‖2+L‖yt−yt−1‖2+

〈
∇yf(xt, yt−1), ut+1/2−yt

〉︸ ︷︷ ︸
A1

.

Proposition 2 (Upper bound of dual updates). Suppose Assumption 1 holds. Let {(xt, yt, ut)} be a
sequence generated by Algorithm 1, then

f(xt+1, yt+1)−f(xt+1, ut+1/2)

≤ τ〈∇yf(xt, ut−1/2), yt−ut+1〉︸ ︷︷ ︸
A2

+ 〈∇yf(xt, ut−1/2), ut+1− ut+1/2〉︸ ︷︷ ︸
A3

+at,

where at := 2L‖xt+1 − xt‖2 + 6Lβ2‖∇yf(xt, ut−1/2)−∇yf(xt, yt−1)‖2 + 8L‖ut − yt−1‖2 +

8Lβ2‖∇yf(xt−1, ut−3/2)−∇yf(xt−1, yt−2)‖2 + 3L‖ut+1−yt‖2.

Using the optimal condition of Problem (4) and our quasi-cocoercivity in Property 1, we can further
bound A1 +A2 +A3. The proof sketch of Lemma 1 is listed as follows:

Gt+1−Gt :=f(xt+1, yt+1)−f(xt+1, ut+1/2)︸ ︷︷ ︸
Proposition 1

+ f(xt+1, ut+1/2)−f(xt, yt)︸ ︷︷ ︸
Proposition 2

+other terms

= A1 +A2 +A3︸ ︷︷ ︸
Quasi-Cocoercivity in Property 1

+ other terms.

Combining the above results and the definition of Gt, we can get the descent estimate of the potential
function in Lemma 1, which is a main lemma for Theorems 1 and 2 below.
Lemma 1 (Descent estimate of G). Suppose Assumption 1 holds. Let {(xt, yt, ut)} be a sequence
generated by Algorithm 1, then

G0 −GT =

T−1∑
t=0

(Gt −Gt+1)

≥
T−1∑
t=0

(
L‖ut+1−yt‖2+

β−30Lβ2

2
‖∇yf(xt, ut−1/2)−∇yf(xt, yt−1)‖2+

‖xt+1−xt‖2

2ηx

)
.
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4.3 Convergence Results

In this subsection, by using the optimality measures in Definitions 1 and 2, we present the follow-
ing theoretical results in Theorems 1 and 2 for the constrained NC-NC setting and NC-C setting,
respectively.
Assumption 2. Y is a closed, convex and compact set with a diameter DY > 0, and X is a closed
and convex set.

Furthermore, using Lemma 1 and the optimality measure in Definition 1, we will study the relation
between π(xt, ut) and the difference (i.e., Gt−Gt+1) to obtain the gradient complexity in Theorem 1
by computing the number of iterations to achieve an ε-stationary point of f .
Theorem 1 (Stationarity of f in constrained NC-NC settings). Suppose Assumptions 1 and 2 hold.

Let the two stepsizes ηx ≤ 1
4L , ηty=min{β‖∇yf(xt,ut−1/2)−∇yf(xt,yt−1)‖2

4‖∇yf(xt,ut−1/2)‖2 , 1
28L , ηx} + δ, β ≤ 1

60L ,

τ ≥ 3/4 and δ ≤ 1
28L , then the complexity of Algorithm 1 to find an ε-stationary point of f is

bounded by

O
(G0 −G+ 2LD2

Y
ε2

)
,

where G0 := G(x0, y0), and G := minx∈X φ(x).

Remark 1. For constrained NC-NC problems, the gradient complexity of our EGDA algorithm to
find an ε-stationary point of f is O(ε−2). That is, our EGDA algorithm is first to obtain the gradient
complexity in constrained NC-NC setting. In addition, our method can achieve the same complexity,
O(ε−2), as the algorithm with an additional structured assumption for NC-NC problems. However,
different from existing algorithms, our algorithm is more practical. That is, it only requires that
Y is a compact set, while existing algorithms need some stronger structured assumptions in the
structured NC-NC setting. The detailed comparison is shown in Table 1. As two special cases of the
constrained NC-NC problem, this theoretical result in Theorem 1 can be extended to the constrained
NC-C and C-NC settings. For NC-C problems, the gradient complexity of our EGDA algorithm to find
an ε-stationary point of f is O(ε−2), while the best-known result of single-loop algorithms such as
[27, 51, 44] is O(ε−4), and the best-known result of multi-loop algorithms such as [24] is Õ(ε−2.5).
That is, our EGDA algorithm improves the best-known gradient complexity from Õ(ε−2.5) to O(ε−2).
Smoothed-GDA [51] can also obtain the complexity O(ε−2) for a special case of Problem (1) and
O(ε−4) for general NC-C minimax problems, while our algorithm attains the optimal result O(ε−2)
for all NC-C minimax problems. Existing algorithms such as HiBSA [27] and AGP [44] require
the compactness of the domain X in the NC-C setting, while our EGDA algorithm does not, which
significantly extends its applicability. For C-NC minimax problems, the proposed algorithm can
obtain the complexity,O(ε−2), while the best-known complexity as in [44] isO(ε−4). In other words,
the proposed algorithm can improve the best-known result from O(ε−4) to O(ε−2).

By using the criterion in Definition 2 as the optimality measure, we use the definition of φ1/2L and
introduce the property of ∇φ1/2L as in [24]. With a similar setting for varying stepsizes as in [24],
we study the relation between ∇φ1/2L and the basic descent estimation of the potential function
in Lemma 1 by using the property of ∇φ1/2L, and compute the number of iterations to achieve an
ε-stationary point of φ. We provide the following theoretical result and its detailed proof in the
Supplementary Material.
Theorem 2 (Stationarity of φ for constrained NC-C settings). Using the same notation as in Theo-
rem 1, and f is concave with respect to y. Let {(xt, yt, ut)} be a sequence generated by Algorithm 1

with the stepsizes ηty=min{β‖∇yf(xt,ut−1/2)−∇yf(xt,yt−1)‖2

4‖∇yf(xt,ut−1/2)‖2 , 1
28L , ηx} + δ, β ≤ 1

60L , τ ≥ 3/4 and

δ ≤ 1
28L . Then the gradient complexity of Algorithm 1 to find an ε-stationary point of φ is bounded

by

O
(DY(G0 −G+ 2LD2

Y)

ε2

)
.

Remark 2. From Theorem 2, it is clear that the gradient complexity of the proposed algorithm is
O(ε−2). That is, Algorithm 1 can improve the best-known gradient complexity from Õ(ε−3) as in
[24] to O(ε−2). Therefore, Algorithm 1 is the first algorithm, which attains the gradient complexity
O(ε−2) to find an ε-stationary point of φ for NC-C minimax problems.
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Figure 1: Comparison of all the methods for solving the NC-NC problem, f(x, y) = x2 +
3 sin2x sin2y − 4y2 − 10 sin2y. Left: Convergence in terms of ‖xt − x∗‖2 + ‖yt − y∗‖2, where
(x∗, y∗) is the global saddle point; Right: Convergence in terms of ‖∇xf‖2 + ‖∇yf‖2.

5 Numerical Results

We conduct many experiments to illustrate the performance of the proposed algorithm for solving
NC-NC, NC-C and convex-concave problems.

NC-NC Problems. We conduct some experiments to illustrate the performance of the proposed
algorithm, EGDA, for solving NC-NC problems. Moreover, we compare it against existing methods
such as GDA [46], EG [10], EAG [49] and FEG [20].

We compare EGDA with GDA, EG and FEG for solving a simple NC-NC minimax problem (i.e.,
f(x, y)=x2+3 sin2x sin2y−4y2−10 sin2y), which satisfies the Polyak-Łojasiewicz condition, as
shown in Fig. 1. All the results show that EGDA indeed converges to the global saddle point and is
significantly faster than other methods including GDA and FEG in terms of both ‖xt − x∗‖2 + ‖yt −
y∗‖2 and ‖∇xf‖2 + ‖∇yf‖2. Although FEG has a fast theoretical rate, O(1/t2), with a negative
monotone assumption, it converges much slower than EGDA in practice.

0 100 200 300 400 500

Number of iterations

10-2

100

GDA
EAG
EGDA

Figure 2: Comparison of all the methods for solving the convex-concave problem, f(x, y) =
log(1+ex) + 3xy − log(1+ey). Left: Trajectories of the three algorithms; Right: Convergence in
terms of ‖xt − x∗‖2 + ‖yt − y∗‖2.

Convex-Concave Problems. Fig. 2 shows the convergence results of the methods including GDA,
EAG [49] and EGDA for solving the convex-concave problem, f(x, y) = log(1 + ex) + 3xy −
log(1 + ey). It is clear that EGDA converges much faster than other methods such as EAG. We
also observe empirically when the same step-size is used, even if small, GDA may not converge to
stationary points, and it is proven to always have bounded iterates.

NC-C Problems. We also apply our EGDA algorithm to train robust neural networks against
adversarial attacks on Fashion MNIST and MNIST, and verify our theoretical results. In [15, 28, 31],

9



Figure 3: Convergence speed of all the algorithms on Fashion MNIST (left) and MNIST (right).

the robust training procedure can be formulated into a NC-C minimax optimization problem. It is
clear that the minimax problem is nonconvex in x, but concave in y.

FGSM [15] and PGD [19] are two popular methods for generating adversarial examples. To obtain
the targeted attack x̂ij , we use the same procedure as in [31, 51] as follows. The perturbation level ε
is chosen from {0.0, 0.1, 0.2, 0.3, 0.4}, and the stepsize is 0.01. Note that the number of iterations
is set to 40 for FGSM and 10 for PGD, respectively. We compare our EGDA method with GDA
[25], MGDA [31] and Smoothed-GDA [51], and illustrate the convergence of all the algorithms on
the loss function in Fig. 3. The results show that Smoothed-GDA and EGDA converge significantly
faster than other algorithms. This verifies that they have a faster convergence rate,O(ε−2). Moreover,
EGDA converges much faster than Smoothed-GDA.

6 Conclusions and Future Work

In this paper, we proposed a new single-loop accelerated algorithm for solving various constrained
NC-NC minimax problems. In the proposed algorithm, we designed a novel extra-gradient difference
scheme for dual updates. Moreover, we provided the convergence guarantees for the proposed
algorithm, and the theoretical results show that to find an ε-stationary point of f , the proposed
algorithm obtains the complexity bound O(ε−2) for constrained NC-NC problems. That is, this
is the first time that the proposed algorithm attains the complexity bound O(ε−2) in constrained
NC-NC settings (including constrained NC-C and C-NC). For NC-C problems, we provided the
theoretical guarantees of the proposed algorithm under the stationarity of φ, which show that our
algorithm improves the complexity bound from Õ(ε−3) to O(ε−2). Experimental results also verified
the theoretical results of the proposed algorithm, which have the factors of ε−1 and ε−2 faster
than existing algorithms, respectively. For further work, we will extend our directly accelerating
algorithm to stochastic, non-smooth, nonconvex-nonconcave and federated learning settings as in
[47, 11, 4, 55, 45, 21, 37].
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