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Abstract

In the field of reinforcement learning (RL), representation learning is a proven tool
for complex image-based tasks, but is often overlooked for environments with low-
level states, such as physical control problems. This paper introduces SALE, a novel
approach for learning embeddings that model the nuanced interaction between state
and action, enabling effective representation learning from low-level states. We
extensively study the design space of these embeddings and highlight important
design considerations. We integrate SALE and an adaptation of checkpoints for
RL into TD3 to form the TD7 algorithm, which significantly outperforms existing
continuous control algorithms. On OpenAI gym benchmark tasks, TD7 has an
average performance gain of 276.7% and 50.7% over TD3 at 300k and 5M time
steps, respectively, and works in both the online and offline settings.

1 Introduction

Reinforcement learning (RL) is notoriously sample inefficient, particularly when compared to more
straightforward paradigms in machine learning, such as supervised learning. One possible expla-
nation is the usage of the Bellman equation in most off-policy RL algorithms [Mnih et al., 2015,
Lillicrap et al., 2015], which provides a weak learning signal due to an approximate and non-stationary
learning target [Fujimoto et al., 2022].

A near-universal solution to sample inefficiency in deep learning is representation learning, whereby
intermediate features are learned to capture the underlying structure and patterns of the data. These
features can be found independently from the downstream task and considerations such as the learning
horizon and dynamic programming. While feature learning of this type has found some success in
the RL setting, it has been mainly limited to vision-based environments [Jaderberg et al., 2017, Oord
et al., 2018, Anand et al., 2019, Laskin et al., 2020, Stooke et al., 2021, Yarats et al., 2022].

On the other hand, the application of representation learning to low-level states is much less common.
At first glance, it may seem unnecessary to learn a representation over an already-compact state vector.
However, we argue that the difficulty of a task is often defined by the complexity of the underlying
dynamical system, rather than the size of the observation space. This means that regardless of the
original observation space, there exists an opportunity to learn meaningful features by capturing the
interaction between state and action.

SALE. In this paper, we devise state-action learned embeddings (SALE), a method that learns
embeddings jointly over both state and action by modeling the dynamics of the environment in latent
space. Extending prior work [Ota et al., 2020], we introduce three important design considerations

Corresponding author: scott.fujimoto@mail.mcgill.ca

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



when learning a state-action representation online. Most importantly, we observe the surprising effect
of extrapolation error [Fujimoto et al., 2019] when significantly expanding the action-dependent input
and introduce a simple clipping technique to mitigate it.

Design study. Learning to model environment dynamics in latent space is a common approach for
feature learning which has been widely considered [Watter et al., 2015, Ha and Schmidhuber, 2018,
Hafner et al., 2019, Gelada et al., 2019, Schwarzer et al., 2020], with many possible variations in
design. Consequently, the optimal design decision is often unclear without considering empirical
performance. To this end, we perform an extensive empirical evaluation over the design space, with
the aim of discovering which choices are the most significant contributors to final performance.

Checkpoints. Next, we explore the usage of checkpoints in RL. Similar to representation learning,
early stopping and checkpoints are standard techniques used to enhance the performance of deep
learning models. A similar effect can be achieved in RL by fixing each policy for multiple training
episodes, and then at test time, using the highest-performing policy observed during training.

TD7. We combine TD3 with our state-action representation learning method SALE, the aforemen-
tioned checkpoints, prioritized experience replay [Fujimoto et al., 2020], and a behavior cloning term
(used only for offline RL) [Fujimoto and Gu, 2021] to form the TD7 (TD3+4 additions) algorithm.
We benchmark the TD7 algorithm in both the online and offline RL setting. TD7 significantly
outperforms existing methods without the additional complexity from competing methods such as
large ensembles, additional updates per time step, or per-environment hyperparameters. Our key
improvement, SALE, works in tandem with most RL methods and can be used to enhance existing
approaches in both the online and offline setting. Our code is open-sourced1.

2 Related Work

Representation learning. Representation learning has several related interpretations in RL. His-
torically, representation learning referred to abstraction, mapping an MDP to a smaller one via
bisimulation or other means [Li et al., 2006, Ferns et al., 2011, Zhang et al., 2020]. For higher-
dimensional spaces, the notion of true abstraction has been replaced with compression, where the
intent is to embed the observation space (such as images) into a smaller manageable latent vector [Wat-
ter et al., 2015, Finn et al., 2016, Gelada et al., 2019]. Representation learning can also refer to feature
learning, where the objective is to learn features that capture relevant aspects of the environment or
task, via auxiliary rewards or alternate training signals [Sutton et al., 2011, Jaderberg et al., 2017,
Riedmiller et al., 2018, Lin et al., 2019]. In recent years, representation learning in RL often refers to
both compression and feature learning, and is commonly employed in image-based tasks [Kostrikov
et al., 2020, Yarats et al., 2021, Liu et al., 2021, Cetin et al., 2022] where the observation space is
characterized by its high dimensionality and the presence of redundant information.

Representation learning by predicting future states draws inspiration from a rich history [Dayan, 1993,
Littman and Sutton, 2001], spanning many approaches in both model-free RL [Munk et al., 2016,
Van Hoof et al., 2016, Zhang et al., 2018, Gelada et al., 2019, Schwarzer et al., 2020, Fujimoto et al.,
2021, Ota et al., 2020, 2021] and model-based RL in latent space [Watter et al., 2015, Finn et al.,
2016, Karl et al., 2017, Ha and Schmidhuber, 2018, Hansen et al., 2022, Hafner et al., 2019, 2023].
Another related approach is representation learning over actions [Tennenholtz and Mannor, 2019,
Chandak et al., 2019, Whitney et al., 2020]. Our key distinction from many previous approaches is
the emphasis on learning joint representations of both state and action.

Methods which do learn state-action representations, by auxiliary rewards to the value function [Liu
et al., 2021], or MDP homomorphisms [Ravindran, 2004, van der Pol et al., 2020a,b, Rezaei-Shoshtari
et al., 2022] emphasize abstraction more than feature learning. Our approach can be viewed as an
extension of OFENet [Ota et al., 2020], which also learns a state-action embedding. We build off of
OFENet and other representation learning methods by highlighting crucial design considerations and
addressing the difficulties that arise when using decoupled state-action embeddings. Our resulting
improvements are reflected by significant performance gains in benchmark tasks.

Stability in RL. Stabilizing deep RL algorithms has been a longstanding challenge, indicated by
numerous empirical studies that highlight practical concerns associated with deep RL methods [Hen-
derson et al., 2017, Engstrom et al., 2019]. Our use of checkpoints is most closely related to stabilizing

1https://github.com/sfujim/TD7
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policy performance via safe policy improvement [Schulman et al., 2015, 2017, Laroche et al., 2019],
as well as the combination of evolutionary algorithms [Salimans et al., 2017, Mania et al., 2018]
with RL [Khadka and Tumer, 2018, Pourchot and Sigaud, 2018], where the checkpoint resembles the
fittest individual and the mutation is defined exclusively by the underlying RL algorithm.

3 Background

In Reinforcement learning (RL) problems are framed as a Markov decision process (MDP). An
MDP is a 5-tuple (S, A, R, p, γ) with state space S, action space A, reward function R, dynamics
model p, and discount factor γ, where the objective is to find a policy π : S → A, a mapping
from state s ∈ S to action a ∈ A, which maximizes the return

∑∞
t=1 γ

t−1rt, the discounted
sum of rewards r obtained when following the policy. RL algorithms commonly use a value
function Qπ(s, a) := E

[∑∞
t=1 γ

t−1rt|s0 = s, a0 = a
]
, which models the expected return, starting

from an initial state s and action a.

4 State-Action Representation Learning

In this section, we introduce state-action learned embeddings (SALE) (Figure 1). We begin with the
basic outline of SALE and then discuss three important considerations in how SALE is implemented.
We then perform an extensive empirical evaluation on the design space to highlight the critical choices
when learning embeddings from the dynamics of the environment.

4.1 State-Action Learned Embeddings

The objective of SALE is to discover learned embeddings (zsa, zs) which capture relevant structure
in the observation space, as well as the transition dynamics of the environment. To do so, SALE
utilizes a pair of encoders (f, g) where f(s) encodes the state s into the state embedding zs and
g(zs, a) jointly encodes both state s and action a into the state-action embedding zsa:

zs := f(s), zsa := g(zs, a). (1)

The embeddings are split into state and state-action components so that the encoders can be trained
with a dynamics prediction loss that solely relies on the next state s′, independent of the next action
or current policy. As a result, the encoders are jointly trained using the mean squared error (MSE)
between the state-action embedding zsa and the embedding of the next state zs

′
:

L(f, g) :=
(
g(f(s), a)− |f(s′)|×

)2
=
(
zsa − |zs

′
|×
)2

, (2)

where |·|× denotes the stop-gradient operation. The embeddings are designed to model the underlying
structure of the environment. However, they may not encompass all relevant information needed by
the value function and policy, such as features related to the reward, current policy, or task horizon.
Accordingly, we concatenate the embeddings with the original state and action, allowing the value
and policy networks to learn relevant internal representations for their respective tasks:

Q(s, a)→ Q(zsa, zs, s, a), π(s)→ π(zs, s). (3)

The encoders (f, g) are trained online and concurrently with the RL agent (updated at the same
frequency as the value function and policy), but are decoupled (gradients from the value function
and policy are not propagated to (f, g)). Although the embeddings are learned by considering the
dynamics of the environment, their purpose is solely to improve the input to the value function and
policy, and not to serve as a world model for planning or estimating rollouts.

There are three additional considerations in how SALE is implemented in practice.

Normalized embeddings. The minimization of distances in embedding space can result in instability
due to either monotonic growth or collapse to a redundant representation [Gelada et al., 2019]. To
combat this risk, we introduce AvgL1Norm, a normalization layer that divides the input vector by its
average absolute value in each dimension, thus keeping the relative scale of the embedding constant
throughout learning. Let xi be the i-th dimension of an N -dimensional vector x, then

AvgL1Norm(x) :=
x

1
N

∑
i |xi|

. (4)
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Figure 1: Diagram of State-Action Learned Embeddings (SALE). SALE uses encoders (f, g) to output
embeddings (zs, zsa) to enhance the input of the value function Q and policy π. ϕ denotes the output of the
corresponding linear layer. The encoders (f, g) are jointly trained to predict the next state embedding
(where | · |× denotes the stop-gradient operation), decoupled from the training of the value function and
policy (Equation 2). The end-to-end linear layers are trained with gradients from the corresponding network.
AvgL1Norm is used to keep the scale of each of the inputs to the value function and policy constant.

AvgL1Norm is applied to the state embedding zs. Similar to the normalized loss functions used by
SPR [Schwarzer et al., 2020] and BYOL [Grill et al., 2020], AvgL1Norm protects from monotonic
growth, but also keeps the scale of the downstream input constant without relying on updating
statistics (e.g. BatchNorm [Ioffe and Szegedy, 2015]). This is important for our approach as the
embeddings are trained independently from the value function and policy. AvgL1Norm is not applied
to the state-action embedding zsa, as it is trained to match the normalized next state embedding zs

′
.

We also apply AvgL1Norm to the state and action inputs (following a linear layer) to the value
function Q and policy π, to keep them at a similar scale to the learned embeddings. The input to the
value function and policy then becomes:

Q(zsa, zs,AvgL1Norm(Linear(s, a))), π(zs,AvgL1Norm(Linear(s))). (5)

Unlike the embeddings (zs, zsa), these linear layers are learned end-to-end, and can consequently be
viewed as an addition to the architecture of the value function or policy.

Fixed embeddings. Since an inconsistent input can cause instability, we freeze the embeddings used
to train the current value and policy networks. This means at the iteration t + 1, the input to the
current networks (Qt+1, πt+1) uses embeddings (zsat , zst ) from the encoders (ft, gt) at the previous
iteration t. The value function and policy are thus updated by:

Qt+1(z
sa
t , zst , s, a) ≈ r + γQt(z

s′a′

t−1 , z
s′

t−1, s
′, a′), where a′ ∼ πt(z

s′

t−1, s
′), (6)

πt+1(z
s
t , s) ≈ argmax

π
Qt+1(z

sa
t , zst , s, a), where a ∼ π(zst , s). (7)

The current value function Qt+1 is also trained with respect to the previous value function Qt, known
as a target network [Mnih et al., 2015]. The current embeddings zst+1 and zsat+1 are trained with
Equation 2, using a target zs

′

t+1 (hence, without a target network). Every n steps the iteration is
incremented and all target networks are updated simultaneously:

Qt ← Qt+1, πt ← πt+1, (ft−1, gt−1)← (ft, gt), (ft, gt)← (ft+1, gt+1). (8)

Clipped Values. Extrapolation error is the tendency for deep value functions to extrapolate to
unrealistic values on state-actions pairs which are rarely seen in the dataset [Fujimoto et al., 2019].
Extrapolation error has a significant impact in offline RL, where the RL agent learns from a given
dataset rather than collecting its own experience, as the lack of feedback on overestimated values can
result in divergence.

Surprisingly, we observe a similar phenomenon in online RL, when increasing the number of
dimensions in the state-action input to the value function, as illustrated in Figure 2. Our hypothesis
is that the state-action embedding zsa expands the action input and makes the value function more
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Figure 2: Extrapolation error can occur in online RL when using state-action representation learning.
All figures use the Ant environment. ϕsa corresponds to the output of the linear layer (Linear(s, a) = ϕsa)
(Equation 5). Both embeddings and ϕsa have a default dimension size of 256. Small ϕsa means that Dim(ϕsa)
is set to 16. No zsa means the value function input is Q(zs, s, a). The default performance and value
estimate of 10 individual seeds without value clipping. While the performance trends upwards there are large
dips in reward, which correspond with jumps in the estimated value. / / Varying the input dimension
can improve or harm stability of the value estimate. The severity is impacted by the replay buffer size (1M or
100k). The state embedding zs is left unchanged in all settings, showing that the state-action embedding zsa and
the linear layer over the state-action input ϕsa are the primary contributors to the extrapolation error. This shows
the potential negative impact from increasing the dimension size of an input which relies on a potentially unseen
action. Clipping stabilizes the value estimate, without modifying the input dimension size (Equation 9).

likely to over-extrapolate on unknown actions. We show in Figure 2 that the dimension size of zsa as
well as the state-action input plays an important role in the stability of value estimates.

Fortunately, extrapolation error can be combated in a straightforward manner in online RL, where
poor estimates are corrected by feedback from interacting with the environment. Consequently, we
only need to stabilize the value estimate until the correction occurs. This can be achieved in SALE by
tracking the range of values in the dataset D (estimated over sampled mini-batches during training),
and then bounding the target used in Equation 6 by the range:

Qt+1(s, a) ≈ r + γ clip
(
Qt(s

′, a′), min
(s,a)∈D

Qt(s, a), max
(s,a)∈D

Qt(s, a)

)
. (9)

Additional discussion of extrapolation error, experimental details, and ablation of the proposed value
clipping in SALE can be found in Appendix E & D.

4.2 Evaluating Design Choices

The effectiveness of learning embeddings by modeling the dynamics of the environment is a natural
consequence of the relationship between the value function and future states. However, there are
many design considerations for which all alternatives are potentially valid and the approach adopted
differs among related methods in the literature. In this section, we perform an extensive study over
the design space to (1) show SALE uses the correct and highest performing set of choices, and (2)
better understand which choices are the biggest contributors to performance when using SALE.

In Figure 3 we display the mean percent loss when modifying SALE in the TD7 algorithm (to be
fully introduced in Section 5.2). The percent loss is determined from the average performance at 1M
time steps, over 10 seeds and five benchmark environments (HalfCheetah, Hopper, Walker2d, Ant,
Humanoid) [Brockman et al., 2016]. A more detailed description of each variation and complete
learning curves can be found in Appendix D.

Learning target. TD7 trains the encoders by minimizing the MSE between the state-action embed-
ding zsa and a learning target of the next state embedding zs

′
(Equation 2). We test several alternate

learning targets. OFENet uses the next state s′ as the target [Ota et al., 2020] while SPR [Schwarzer
et al., 2020] uses the embedding zs

′

target from a target network obtained with an exponential moving
average with weight 0.01. Drawing inspiration from Bisimulation metrics [Ferns et al., 2011], Deep-
MDP [Gelada et al., 2019] use an objective that considers both the next state embedding zs

′
and the

5



s
′ z
s
′

ta
rg

et
z
s
′ an

d
r

z
s
′ a

′

20

15

10

5

0

5.0
(2.1)

2.6
(3.6)

0.9
(4.0)

21.0
(3.1)M

ea
n

Pe
rc

en
tL

os
s

Learning Target
Default: zs′

Q
(z

s ,
s
,a
)

Q
(z

s
a
,s
,a
)

Q
(z

s
a
,z

s )
Q
(z

s
a
)

Q
(s
,a
)

π
(s
)

π
(z

s )

N
o

fix
ed

8.0
(4.4)

4.8
(4.3)

10.1
(6.5)

13.8
(4.6) 20.3

(5.8)

5.7
(6.5)

6.2
(4.7) 7.6

(2.8)

Network Input
Default: Q(zsa, zs, s, a) and π(zs, s)

z
s

on
ly

N
on

e
N

or
m
z
s
a

Ba
tc

hN
or

m
La

ye
rN

or
m

Co
sin

e l
os

s

9.5
(7.9)

8.3
(5.1)

4.7
(4.7)

12.4
(5.4)

16.9
(10.8)

10.9
(4.9)

Normalization
Default: AvgL1Norm

0
.1

1 1
0

23.6
(7.6)

22.6
(7.3)

24.8
(3.7)

End-to-End
Default: Decoupled

Figure 3: The mean percent loss from using alternate design choices in TD7 at 1M time steps, over 10 seeds and
the five benchmark MuJoCo environments. Bracketed values describe the range of the 95% confidence interval
around the mean. Percent loss is computed against TD7 where the default choices correspond to a percent loss
of 0. See Section 4.2 for a description of each design choice and key observations. See the Appendix for further
implementation-level details.

reward r. We test including a prediction loss on the reward by having the encoder g output both zsa

and rpred where rpred is trained with the MSE to the reward r. Finally, we test the next state-action
embedding zs

′a′
as the target, where the action a′ is sampled from the target policy.

⇒ All learning targets based on the next state s′ perform similarly, although using the embed-
ding zs

′
further improves the performance. On the contrary, the next state-action embedding zs

′a′

performs much worse as a target, highlighting that signal based on the non-stationary policy can
harm learning. Including the reward as a signal has little impact on performance.

Network input. In our approach, the learned embeddings (zsa, zs) are appended to the state and
action input to the value function Q(zsa, zs, s, a) and policy π(zs, s) (Equation 3). We attempt
different combinations of input to both networks. We also evaluate replacing the fixed embed-
dings (Equations 6 & 7), with the non-static current embeddings (zsat+1, z

s
t+1).

⇒ The added features have a greater impact on the value function than the policy, but are beneficial
for both networks. All components of the value function input (zsa, zs, s, a), are necessary to
achieve the highest performance. While the state-action embedding zsa is a useful representation
for value learning, it is only trained to predict the next state and may overlook other relevant aspects
of the original state-action input (s, a). Solely using the state-action embedding zsa as input leads
to poor results, but combining it with the original input (s, a) significantly improves performance.

Normalization. TD7 uses AvgL1Norm (Equation 4) to normalize the scale of the state embedding zs,
as well as on the state-action input (s, a), following a linear layer (Equation 5). We attempt removing
AvgL1Norm on (s, a), removing it entirely, and adding it to the state-action embedding zsa. We
additionally test swapping AvgL1Norm for BatchNorm [Ioffe and Szegedy, 2015] and LayerNorm [Ba
et al., 2016]. Finally, instead of directly applying normalization to the embeddings, we replace the
MSE in the encoder loss (Equation 2) by the cosine loss from Schwarzer et al. [2020].

⇒ The usage of AvgL1Norm is beneficial and related alternate approaches do not achieve the same
performance.

End-to-end. Embeddings can be trained independently or end-to-end with the downstream task. We
test our approach as an auxiliary loss to the value function. The encoders and the value function are
trained end-to-end, thus allowing the value loss to affect the embeddings (zsa, zs), where the encoder
loss (Equation 2) is multiplied by a constant to weigh its importance versus the value loss.

⇒ Learning the embeddings end-to-end with the value function performs signficantly worse than
decoupled representation learning.
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5 Stabilizing RL with Decoupled Representation Learning

In this section, we present the TD7 algorithm (TD3+4 additions). We begin by introducing the use of
checkpoints in RL to improve the stability of RL agents. We then combine SALE with checkpoints
and various previous algorithmic modifications to TD3 [Fujimoto et al., 2018] to create a single RL
algorithm for both the online and offline setting.

5.1 Policy Checkpoints

Deep RL algorithms are notoriously unstable [Henderson et al., 2017]. The unreliable nature of
deep RL algorithms suggest a need for stabilizing techniques. While we can often directly address
the source of instability, some amount of instability is inherent to the combination of function
approximation and RL. In this section, we propose the use of checkpoints, to preserve evaluation
performance, irrespective of the quality of the current learned policy.

A checkpoint is a snapshot of the parameters of a model, captured at a specific time during training. In
supervised learning, checkpoints are often used to recall a previous set of high-performing parameters
based on validation error, and maintain a consistent performance across evaluations [Vaswani et al.,
2017, Kenton and Toutanova, 2019]. Yet this technique is surprisingly absent from the deep RL
toolkit for stabilizing policy performance.

In RL, using the checkpoint of a policy that obtained a high reward during training, instead of the
current policy, could improve the stability of the performance at test time.

For off-policy deep RL algorithms, the standard training paradigm is to train after each time step
(typically at a one-to-one ratio: one gradient step for one data point). However, this means that the
policy changes throughout each episode, making it hard to evaluate the performance. Similar to many
on-policy algorithms [Williams, 1992, Schulman et al., 2017], we propose to keep the policy fixed
for several assessment episodes, then batch the training that would have occurred.

• Standard off-policy RL: Collect a data point→ train once.
• Proposed: Collect N data points over several assessment episodes→ train N times.

In a similar manner to evolutionary approaches [Salimans et al., 2017], we can use these assessment
episodes to judge if the current policy outperforms the previous best policy and checkpoint accordingly.
At evaluation time, the checkpoint policy is used, rather than the current policy.

We make two additional modifications to this basic strategy.

Minimum over mean. Setting aside practical considerations, the optimal approach would be to
evaluate the average performance of each policy using as many trials as possible. However, to
preserve learning speed and sample efficiency, it is only sensible to use a handful of trials. As such,
to penalize unstable policies using a finite number of assessment episodes, we use the minimum
performance, rather than the mean performance. This approach also means that extra assessment
episodes do not need to be wasted on poorly performing policies, since training can resume early if
the performance of any episode falls below the checkpoint performance.

Variable assessment length. In Appendix F, we examine the caliber of policies trained with a
varied number of assessment episodes and observe that a surprisingly high number of episodes (20+)
can be used without compromising the performance of the final policy. However, the use of many
assessment episodes negatively impacts the early performance of the agent. Freezing training for
many episodes means that the environment is explored by a stale policy, reducing data diversity,
and delaying feedback from policy updates. To counteract this effect, we restrict the number of
assessment episodes used during the initial phase of training before increasing it.

Additional details of our approach to policy checkpoints can be found in Appendix F.

5.2 TD7

TD7 is based on TD3 [Fujimoto et al., 2018] with LAP [Fujimoto et al., 2020], a behavior cloning term
for offline RL [Fujimoto and Gu, 2021], SALE (Section 4.1), and policy checkpoints (Section 5.1).

LAP. Gathered experience is stored in a replay buffer [Lin, 1992] and sampled according to
LAP [Fujimoto et al., 2020], a prioritized replay buffer D [Schaul et al., 2016] where a transi-
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Algorithm 1 Online TD7

1: Initialize: ▷ Before training
· Policy πt+1, value function Qt+1, encoders (ft+1, gt+1).
· Target policy πt, target value function Qt, fixed encoders (ft, gt), target fixed encoders (ft−1, gt−1).
· Checkpoint policy πc, checkpoint encoder fc.

2: for episode = 1 to final_episode do ▷ Data collection
3: Using current policy πt+1, collect transitions and store in the LAP replay buffer.

4: if checkpoint_condition then ▷ Checkpointing
5: if actor πt+1 outperforms checkpoint policy πc then
6: Update checkpoint networks πc ← πt+1, fc ← ft.

7: for i = 1 to timesteps_since_training do ▷ Training
8: Sample transitions from LAP replay buffer (Equation 10).
9: Train encoder (Equation 2), value function (Equations 6 & 9), and policy (Equation 11).

10: if target_update_frequency steps have passed then
11: Update target networks (Equation 8).

▷ Detailed hyperparameter explanations found in the Appendix.

tion tuple i := (s, a, r, s′) is sampled with probability

p(i) =
max (|δ(i)|α, 1)∑

j∈D max (|δ(j)|α, 1)
, where δ(i) := Q(s, a)− y, (10)

where y is the learning target. The amount of prioritization used is controlled by a hyperparameter α.
Furthermore, the value function loss uses the Huber loss [Huber et al., 1964], rather than the MSE.

Offline RL. To make TD7 amenable to the offline RL setting, we add a behavior cloning loss to the
policy update [Silver et al., 2014], inspired by TD3+BC [Fujimoto and Gu, 2021]:

π ≈ argmax
π

E(s,a)∼D

[
Q(s, π(s))− λ|Es∼D [Q(s, π(s))]|× (π(s)− a)

2
]
. (11)

The same loss function is used for both offline and online RL, where λ = 0 for the online setting.
| · |× denotes the stop-gradient operation. Unlike TD3+BC, we do not normalize the state vectors.
Checkpoints are not used in the offline setting, as there is no interaction with the environment.

Both the value function and policy use the SALE embeddings as input, which we omit from the
equations above for simplicity. Pseudocode for TD7 is described in Algorithm 1.

6 Results

In this section, we evaluate the performance of TD7 in both the online and offline regimes. A detailed
description of the experimental setup, baselines, and hyperparameters can be found in the Appendix,
along with additional learning curves and ablation studies.

Online. Using OpenAI gym [Brockman et al., 2016], we benchmark TD7 against TD3 [Fujimoto
et al., 2018], SAC [Haarnoja et al., 2018], TQC [Kuznetsov et al., 2020], and TD3+OFE [Ota et al.,
2020] on the MuJoCo environments [Todorov et al., 2012]. SAC and TD3+OFE results are from
re-implementations based on author descriptions [Haarnoja et al., 2018, Ota et al., 2020]. TD3
and TQC results use author-provided code [Fujimoto et al., 2018, Kuznetsov et al., 2020], with a
consistent evaluation protocol for all methods. Learning curves are displayed in Figure 4 and final
and intermediate results are listed in Table 1.

Although TQC and TD3+OFE use per-environment hyperparameters along with larger and more
computationally expensive architectures, TD7 outperforms these baselines significantly in terms of
both early (300k time steps) and final performance (5M time steps). At 300k time steps, TD7 often
surpasses the performance of TD3 at 5M time steps, highlighting the considerable performance gains.

Offline. We benchmark TD7 against CQL [Kumar et al., 2020b], TD3+BC [Fujimoto and Gu,
2021], IQL [Kostrikov et al., 2021] and X -QL [Garg et al., 2023] using the MuJoCo datasets
in D4RL [Todorov et al., 2012, Fu et al., 2021]. While there are methods that use per-dataset
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Figure 4: Learning curves on
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dence interval around the average
performance.

Table 1: Average performance on the MuJoCo benchmark at 300k, 1M, and 5M time steps, over 10 trials, where
± captures a 95% confidence interval. The highest performance is highlighted. Any performance which is not
statistically significantly worse than the highest performance (according to a Welch’s t-test with significance
level 0.05) is highlighted.

Environment Time step TD3 SAC TQC TD3+OFE TD7

HalfCheetah
300k 7715 ± 633 8052 ± 515 7006 ± 891 11294 ± 247 15031 ± 401
1M 10574 ± 897 10484 ± 659 12349 ± 878 13758 ± 544 17434 ± 155
5M 14337 ± 1491 15526 ± 697 17459 ± 258 16596 ± 164 18165 ± 255

Hopper
300k 1289 ± 768 2370 ± 626 3251 ± 461 1581 ± 682 2948 ± 464
1M 3226 ± 315 2785 ± 634 3526 ± 244 3121 ± 506 3512 ± 315
5M 3682 ± 83 3167 ± 485 3462 ± 818 3423 ± 584 4075 ± 225

Walker2d
300k 1101 ± 386 1989 ± 500 2812 ± 838 4018 ± 570 5379 ± 328
1M 3946 ± 292 4314 ± 256 5321 ± 322 5195 ± 512 6097 ± 570
5M 5078 ± 343 5681 ± 329 6137 ± 1194 6379 ± 332 7397 ± 454

Ant
300k 1704 ± 655 1478 ± 354 1830 ± 572 6348 ± 441 6171 ± 831
1M 3942 ± 1030 3681 ± 506 3582 ± 1093 7398 ± 118 8509 ± 422
5M 5589 ± 758 4615 ± 2022 6329 ± 1510 8547 ± 84 10133 ± 966

Humanoid
300k 1344 ± 365 1997 ± 483 3117 ± 910 3181 ± 771 5332 ± 714
1M 5165 ± 145 4909 ± 364 6029 ± 531 6032 ± 334 7429 ± 153
5M 5433 ± 245 6555 ± 279 8361 ± 1364 8951 ± 246 10281 ± 588

hyperparameters to attain higher total results, we omit these methods because it makes it difficult to
directly compare. Baseline results are obtained by re-running author-provided code with a single set
of hyperparameters and a consistent evaluation protocol. Final performance is reported in Table 2.

TD7 outperforms all baselines. Since TD7 and TD3+BC employ the same approach to offline RL,
the significant performance gap highlights the effectiveness of SALE in the offline setting.

Ablation study. In Figure 5 we report the results of an ablation study over the components of TD7
(SALE, checkpoints, LAP). The interaction between components is explored further in Appendix G.

Run time. To understand the computational cost of using SALE and the TD7 algorithm, we
benchmark the run time of each of the online baselines with identical computational resources and
deep learning framework. The results are reported in Figure 6.
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Table 2: Average final performance on the D4RL benchmark after training for 1M time steps. over 10 trials,
where± captures a 95% confidence interval. The highest performance is highlighted. Any performance which is
not statistically significantly worse than the highest performance (according to a Welch’s t-test with significance
level 0.05) is highlighted.

Environment Dataset CQL TD3+BC IQL X -QL TD7

HalfCheetah
Medium 46.7 ± 0.3 48.1 ± 0.1 47.4 ± 0.2 47.4 ± 0.1 58.0 ± 0.4
Medium-Replay 45.5 ± 0.3 44.6 ± 0.4 43.9 ± 1.3 44.2 ± 0.7 53.8 ± 0.8
Medium-Expert 76.8 ± 7.4 93.7 ± 0.9 89.6 ± 3.5 90.2 ± 2.7 104.6 ± 1.6

Hopper
Medium 59.3 ± 3.3 59.1 ± 3.0 63.9 ± 4.9 67.7 ± 3.6 76.1 ± 5.1
Medium-Replay 78.8 ± 10.9 52.0 ± 10.6 93.4 ± 7.8 82.0 ± 14.9 91.1 ± 8.0
Medium-Expert 79.9 ± 19.8 98.1 ± 10.7 64.2 ± 32.0 92.0 ± 10.0 108.2 ± 4.8

Walker2d
Medium 81.4 ± 1.7 84.3 ± 0.8 84.2 ± 1.6 79.2 ± 4.0 91.1 ± 7.8
Medium-Replay 79.9 ± 3.6 81.0 ± 3.4 71.2 ± 8.3 61.8 ± 7.7 89.7 ± 4.7
Medium-Expert 108.5 ± 1.2 110.5 ± 0.4 108.9 ± 1.4 110.3 ± 0.2 111.8 ± 0.6

Total 656.7 ± 24.3 671.3 ± 15.7 666.7 ± 34.6 674.9 ± 20.4 784.4 ± 14.1

7 Conclusion

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1.0

Time steps (1M)

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

Ablation

TD7 TD3 No SALE
No checkpoints No LAP

Figure 5: Ablation study over the components of
TD7. The y-axis corresponds to the average per-
formance over all five MuJoCo tasks, normalized
with respect to the performance of TD7 at 5M time
steps. The shaded area captures a 95% confidence
interval. The impact can be ranked (1) SALE,
(2) LAP, (3) policy checkpoints.

TD3 SAC TQC TD3+OFE TD7

1

2

3

4

47m

1h 28m

3h 50m

3h 14m

1h 50m

H
ou

rs

Run Time

Figure 6: Run time of each method for 1M time
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same hardware and deep learning framework (Py-
Torch [Paszke et al., 2019]).

Representation learning has been typically reserved
for image-based tasks, where the observations are
large and unstructured. However, by learning embed-
dings which consider the interaction between state
and action, we make representation learning more
broadly applicable to low-level states. We introduce
SALE, a method for learning state-action embed-
dings by considering a latent space dynamics model.
Through an extensive empirical evaluation, we inves-
tigate various design choices in SALE.

We highlight the risk of extrapolation error [Fujimoto
et al., 2019] due to the increase in input dimensions
from using state-action embeddings, but show this
instability can be corrected by clipping the target
with seen values. We further introduce stability by
including policy checkpoints.

While both SALE and policy checkpoints are general-
purpose techniques that can be included with most
RL methods, we combine them with TD3 and sev-
eral other recent improvements [Fujimoto et al., 2020,
Fujimoto and Gu, 2021] to introduce the TD7 algo-
rithm. We find our TD7 algorithm is able to match
the performance of expensive offline algorithms and
significantly outperform the state-of-the-art continu-
ous control methods in both final performance and
early learning.
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A TD7 Additional Details

A.1 Algorithm

TD7 (TD3+4 additions) has several networks and sub-components:

• Two value functions (Qt+1,1, Qt+1,2).
• Two target value functions (Qt,1, Qt,2).
• A policy network πt+1.
• A target policy network πt.
• An encoder, with sub-components (ft+1, gt+1).
• A fixed encoder, with sub-components (ft, gt).
• A target fixed encoder with sub-components (ft−1, gt−1).
• A checkpoint policy πc and checkpoint encoder fc (g is not needed).

Encoder: The encoder is composed of two sub-networks (ft+1(s), gt+1)(z
s, a), where each network

outputs an embedding:

zs := f(s), zsa := g(zs, a). (12)

At each training step, the encoder is updated with the following loss:

L(ft+1, gt+1) :=
(
gt+1(ft+1(s), a)− |ft+1(s

′)|×
)2

(13)

=
(
zsat+1 − |zs

′

t+1|×
)2

, (14)

where | · |× is the stop-gradient operation.

Value function: TD7 uses a pair of value functions (as motivated by TD3 [Fujimoto et al., 2018])
(Qt+1,1, Qt+1,2), each taking input [zs

′a′

t−1 , z
s′

t−1, s
′, a′]. At each training step, both value functions

are updated with the following loss:

L(Qt+1) := Huber
(
target−Qt+1(z

sa
t , zst , s, a)

)
, (15)

target := r + γ clip
(
min (Qt,1(x), Qt,2(x)) , Qmin, Qmax

)
, (16)

x := [zs
′a′

t−1 , z
s′

t−1, s
′, a′], (17)

a′ := πt(z
s′

t−1, s
′) + ϵ, (18)

ϵ ∼ clip(N (0, σ2),−c, c). (19)

Taking the minimum of the value functions is from TD3’s Clipped Double Q-learning (CDQ) [Fu-
jimoto et al., 2018]). The use of Huber loss [Huber et al., 1964] is in accordance to TD3 with the
Loss-Adjusted Prioritized (LAP) experience replay [Fujimoto et al., 2020]. a′ is sampled and clipped
in the same manner as TD3 [Fujimoto et al., 2018]. The same embeddings (zsat , zst ) are used for each
value function. Qmin and Qmax are updated at each time step:

Qmin ← min (Qmin, target) , (20)
Qmax ← max (Qmax, target) , (21)

where target is defined by Equation 16.

Policy: TD7 uses a single policy network which takes input [zs, s]. On every second training step
(according to TD3’s delayed policy updates [Fujimoto et al., 2018]) the policy πt+1 is updated with
the following loss:

L(πt+1) := −Q+ λ|Es∼D [Q]|× (aπ − a)
2
, (22)

Q := 0.5 (Qt+1,1(x) +Qt+1,2(x)) (23)
x := [zsaπ

t , zst , s, aπ], (24)
aπ := πt+1(z

s
t , s). (25)

The policy loss is the deterministic policy gradient (DPG) [Silver et al., 2014] with a behavior cloning
term to regularize [Fujimoto and Gu, 2021]. λ is set to 0 for online RL.
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After every target_update_frequency (250) training steps, the iteration is updated and each target
(and fixed) network copies the network of the higher iteration:

(Qt,1, Qt,2)← (Qt+1,1, Qt+1,2), (26)
πt ← πt+1, (27)

(ft−1, gt−1)← (ft, gt), (28)
(ft, gt)← (ft+1, gt+1). (29)

The checkpoint policy and checkpoint encoder are only used at test time (see Appendix F).

LAP: Gathered experience is stored in a replay buffer [Lin, 1992] and sampled according to LAP [Fu-
jimoto et al., 2020], a prioritized replay buffer D [Schaul et al., 2016] where a transition tuple
i := (s, a, r, s′) is sampled with probability

p(i) =
max (|δ(i)|α, 1)∑

j∈D max (|δ(j)|α, 1)
, (30)

|δ(i)| := max
(
|Qt+1,1(z

sa
t , zst , s, a)− target| , |Qt+1,2(z

sa
t , zst , s, a)− target|

)
, (31)

where target is defined by Equation 16. As suggested by Fujimoto et al. [2020], |δ(i)| is defined by
the maximum absolute error of both value functions. The amount of prioritization used is controlled
by a hyperparameter α. New transitions are assigned the maximum priority of any sample in the
replay buffer.

We outline the train function of TD7 in Algorithm 2. There is no difference between the train function
of online TD7 and offline TD7 other than the value of λ, which is 0 for online and 0.1 for offline.

Algorithm 2 TD7 Train Function
1: Sample transition from LAP replay buffer with probability (Equation 30).
2: Train encoder (Equation 13).
3: Train value function (Equation 15).
4: Update (Qmin, Qmax) (Equations 20 & 21).
5: if i mod policy_update_frequency = 0 then
6: Train policy (Equation 22).
7: if i mod target_update_frequency = 0 then
8: Update target networks (Equation 26).

18



A.2 Hyperparameters

The action space is assumed to be in the range [−1, 1] (and is normalized if otherwise). Besides
a few exceptions mentioned below, hyperparameters (and architecture) are taken directly from
TD3 https://github.com/sfujim/TD3.

Table 3: TD7 Hyperparameters.

Hyperparameter Value

TD3
[Fujimoto et al., 2018]

Target policy noise σ N (0, 0.22)
Target policy noise clipping c (−0.5, 0.5)
Policy update frequency 2

LAP
[Fujimoto et al., 2020]

Probability smoothing α 0.4
Minimum priority 1

TD3+BC
[Fujimoto and Gu, 2021]

Behavior cloning weight λ (Online) 0.0
Behavior cloning weight λ (Offline) 0.1

Policy Checkpoints
(Appendix F)

Checkpoint criteria minimum
Early assessment episodes 1
Late assessment episodes 20
Early time steps 750k
Criteria reset weight 0.9

Exploration Initial random exploration time steps 25k
Exploration noise N (0, 0.12)

Common

Discount factor γ 0.99
Replay buffer capacity 1M
Mini-batch size 256
Target update frequency 250

Optimizer (Shared) Optimizer Adam [Kingma and Ba, 2014]
(Shared) Learning rate 3e− 4

Besides algorithmic difference from TD3, there are three implementation-level changes:

1. Rather than only using Q1, both value functions are used when updating the policy (Equa-
tion 22).

2. The value function uses ELU activation functions [Clevert et al., 2015] rather than ReLU
activation functions.

3. The target network is updated periodically (every 250 time steps) rather than using an
exponential moving average at every time step. This change is necessary due to the use of
fixed encoders.

We evaluate the importance of these changes in our ablation study (Appendix G). Network architecture
details are described in Pseudocode 1.
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Pseudocode 1. TD7 Network Details

Variables:
zs_dim = 256

Value Q Network:
▷ TD7 uses two value networks each with the same network and forward pass.
l0 = Linear(state_dim + action_dim, 256)
l1 = Linear(zs_dim * 2 + 256, 256)
l2 = Linear(256, 256)
l3 = Linear(256, 1)

Value Q Forward Pass:
input = concatenate([state, action])
x = AvgL1Norm(l0(inuput))
x = concatenate([zsa, zs, x])
x = ELU(l1(x))
x = ELU(l2(x))
value = l3(x)

Policy π Network:
l0 = Linear(state_dim, 256)
l1 = Linear(zs_dim + 256, 256)
l2 = Linear(256, 256)
l3 = Linear(256, action_dim)

Policy π Forward Pass:
input = state
x = AvgL1Norm(l0(input))
x = concatenate([zs, x])
x = ReLU(l1(x))
x = ReLU(l2(x))
action = tanh(l3(x))

State Encoder f Network:
l1 = Linear(state_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, zs_dim)

State Encoder f Forward Pass:
input = state
x = ELU(l1(input))
x = ELU(l2(x))
zs = AvgL1Norm(l3(x))

State-Action Encoder g Network:
l1 = Linear(action_dim + zs_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, zs_dim)

State-Action Encoder g Forward Pass:
input = concatenate([action, zs])
x = ELU(l1(input))
x = ELU(l2(x))
zsa = l3(x)
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B Experimental Details

Environment. Our experimental evaluation is based on the MuJoCo simulator [Todorov et al.,
2012] with tasks defined by OpenAI gym [Brockman et al., 2016] using the v4 environments. No
modification are made to the state, action, or reward space.

Terminal transitions. All methods use a discount factor γ = 0.99 for non-terminal transitions and
γ = 0 for terminal transitions. The final transition from an episode which ends due to a time limit is
not considered terminal.

Exploration. To fill the replay buffer before training, all methods initially collect data by following a
uniformly random policy for the first 25k time steps (256 for TQC). This initial data collection is
accounted for in all graphs and tables, meaning “time steps” refers to the number of environment
interactions, rather than the number of training steps. Methods based on the deterministic TD3 add
Gaussian noise to the policy. Methods based on the stochastic SAC do not add noise.

Evaluation. Agents are evaluated every 5000 time steps, taking the average undiscounted sum of
rewards over 10 episodes. Each experiment is repeated over 10 seeds. Evaluations use a deterministic
policy, meaning there is no noise added to the policy and stochastic methods use the mean action.
Methods with our proposed policy checkpoints use the checkpoint policy during evaluations. Evalua-
tions are considered entirely independent from training, meaning no data is saved, nor is any network
updated.

Visualization and tables. As aforementioned, time steps in figures and tables refers to the number of
environment interactions (all methods are trained once per environment interaction, other than the
initial random data collection phase). The value reported by the table corresponds to the average
evaluation over the 10 seeds, at the given time step (300k, 1M or 5M for online results and 1M for
offline results). The shaded area in figures and the ± term in tables refers to a 97.5% confidence
interval. Given that methods are evaluated over 10 seeds, this confidence interval CI is computed by

CI =
1.96√
10

σ, (32)

where σ is the sample standard deviation with Bessel’s correction at the corresponding evaluation.
Unless stated otherwise, all curves are smoothed uniformly over a window of 10 evaluations.

Offline Experiments. Offline results are based on the D4RL datasets [Fu et al., 2021], using the v2
version. No modification are made to the state, action, or reward space. The reported performance is
from a final evaluation occurring after 1M training steps, which uses the average D4RL score over 10
episodes. TD7 results are repeated over 10 seeds. Baseline results are taken from other papers, and
may not be based on an identical evaluation protocol in terms of number of episodes and seeds used.

Software. We use the following software versions:

• Python 3.9.13
• Pytorch 2.0.0 [Paszke et al., 2019]
• CUDA version 11.8
• Gym 0.25.0 [Brockman et al., 2016]
• MuJoCo 2.3.3 [Todorov et al., 2012]
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C Baselines

C.1 TD3 & TD3+OFE Hyperparameters

Our TD3 baseline [Fujimoto et al., 2018] uses the author implementation https://github.com/
sfujim/TD3. Our TD3+OFE baseline [Ota et al., 2020] uses the aforementioned TD3 code alongside
a re-implementation of OFENet. For hyperparameters, the action space is assumed to be in the
range [−1, 1].
Environment-specific hyperparameters. OFE uses a variable number of encoder layers depending
on the environment. However, the authors also provide an offline approach for hyperparameter
tuning based on the representation loss. Our choice of layers per environment is the outcome of their
hyperparameter tuning. Additionally, when training the state-action encoder, OFE drops certain state
dimensions which correspond to external forces which are hard to predict. In practice this only affects
Humanoid, which uses 292 out of a possible state 376 dimensions on Humanoid. All other tasks use
the full state space.

Hyperparameters of both methods are listed in Table 4. Network architecture details of TD3 are
described in Pseudocode 2. Network architecture details of TD3+OFE are described in Pseudocode 3
and Pseudocode 4.

Table 4: TD3 & TD3+OFE Hyperparameters.

Hyperparameter Value

OFE
[Ota et al., 2020]

Encoder layers

HalfCheetah 8
Hopper 6
Walker2d 6
Ant 6
Humanoid 8

TD3
[Fujimoto et al., 2018]

Target policy noise σ N (0, 0.22)
Target policy noise clipping c (−0.5, 0.5)
Policy update frequency 2

Exploration Initial random exploration time steps 25k
Exploration noise N (0, 0.12)

Common

Discount factor γ 0.99
Replay buffer capacity 1M
Mini-batch size 256
Target update rate τ 0.005

Optimizer (Shared) Optimizer Adam [Kingma and Ba, 2014]
(Shared) Learning rate 3e− 4
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Pseudocode 2. TD3 Network Details

Value Q Network:
▷ TD3 uses two value networks each with the same network and forward pass.
l1 = Linear(state_dim + action_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, 1)

Value Q Forward Pass:
input = concatenate([state, action])
x = ReLU(l1(input))
x = ReLU(l2(x))
value = l3(x)

Policy π Network:
l1 = Linear(state_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, action_dim)

Policy π Forward Pass:
input = state
x = ReLU(l1(input))
x = ReLU(l2(x))
action = tanh(l3(x))

Pseudocode 3. TD3+OFE Network Details (TD3)

Variables:
zs_dim = 240
zsa_dim = 240
num_layers = 6 (or 8)
zs_hdim = zs_dim/num_layers = 40 (or 30)
zsa_hdim = zsa_dim/num_layers = 40 (or 30)
target_dim = state_dim if not Humanoid else 292

Value Q Network:
▷ TD3+OFE uses two value networks each with the same network and forward pass.
l1 = Linear(state_dim + action_dim + zs_dim + zsa_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, 1)

Value Q Forward Pass:
input = zsa
x = ReLU(l1(input))
x = ReLU(l2(x))
value = l3(x)

Policy π Network:
l1 = Linear(state_dim + zs_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, action_dim)

Policy π Forward Pass:
input = zs
x = ReLU(l1(input))
x = ReLU(l2(x))
action = tanh(l3(x))
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Pseudocode 4. TD3+OFE Network Details (OFE)

State Encoder fs Network:
l1 = Linear(state_dim, zs_hdim)
l2 = Linear(state_dim + zs_hdim, zs_hdim)
l3 = Linear(state_dim + zs_hdim * 2, zs_hdim)
...
l_num_layers = Linear(state_dim + zs_hdim * (num_layers-1), zs_hdim)

State Encoder fs Forward Pass:
input = state
x = swish(batchnorm(l1(input)))
input = concatenate([input, x])
x = swish(batchnorm(l2(input)))
...
x = swish(batchnorm(l_num_layers(input)))
output = concatenate([input, x])

State-Action Encoder fsa Network:
l1 = Linear(state_dim + action_dim + zs_dim, zsa_hdim)
l2 = Linear(state_dim + action_dim + zs_dim + zsa_hdim, zsa_hdim)
l3 = Linear(state_dim + action_dim + zs_dim + zsa_hdim * 2, zsa_hdim)
...
l_num_layers = Linear(state_dim + action_dim

+ zs_dim + zsa_hdim * (num_layers-1), zsa_hdim)

final_layer = Linear(state_dim + action_dim + zs_dim + zsa_dim, target_dim)

State-Action Encoder fsa Forward Pass:
input = concatenate([action, zs])
x = swish(batchnorm(l1(input)))
input = concatenate([input, x])
x = swish(batchnorm(l2(input)))
...
x = swish(batchnorm(l_num_layers(input)))
output = concatenate([input, x])

Final Layer t Forward Pass:
input = zsa
output = final_layer(zsa)
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C.2 SAC & TQC Hyperparameters

Our SAC baseline [Haarnoja et al., 2018] is based on our TD3 implementation, keeping hyper-
parameters constant when possible. Remaining details are based on the author implementation
https://github.com/haarnoja/sac. Our TQC baseline [Kuznetsov et al., 2020] uses the author
PyTorch implementation https://github.com/SamsungLabs/tqc_pytorch (with evaluation code
kept consistent for all methods). For hyperparameters, the action space is assumed to be in the
range [−1, 1].
TQC is based on SAC and uses similar hyperparameters. One exception is the use of an ϵ offset.
As suggested in the appendix of Haarnoja et al. [2018], the log probability of the Tanh Normal
distribution is calculated as follows:

log π(a|s) = logN(u|s)− log(1− tanh(u)2 + ϵ), (33)

where u is the pre-activation value of the action, sampled from N , where N is distributed according
to N (µ, σ2), from the outputs µ and log σ of the actor network. Kuznetsov et al. [2020] use an
alternate calculation of the log of the Tanh Normal distribution which eliminates the need for an ϵ
offset:

log π(a|s) = logN(u|s)− (2 log(2) + log(sigmoid(2u)) + log(sigmoid(−2u))) . (34)

Environment-specific hyperparameters. TQC varies the number of dropped quantiles depending
on the environment. While it is possible to select this quantity based on heuristics [Kuznetsov et al.,
2021], we use the author suggested values for each environment.

Hyperparameters of SAC are listed in Table 5. Network architecture details of SAC are described in
Pseudocode 5.

Hyperparameters of TQC are listed in Table 6. Network architecture details of TQC are described in
Pseudocode 6.
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Table 5: SAC Hyperparameters.

Hyperparameter Value

SAC
[Haarnoja et al., 2018]

Target Entropy −action_dim
Policy log standard deviation clamp [−20, 2]
Numerical stability offset ϵ 1e− 6

Exploration Initial random exploration time steps 25k

Common

Discount factor γ 0.99
Replay buffer capacity 1M
Mini-batch size 256
Target update rate τ 0.005

Optimizer (Shared) Optimizer Adam [Kingma and Ba, 2014]
(Shared) Learning rate 3e− 4

Pseudocode 5. SAC Network Details

Value Q Network:
▷ SAC uses two value networks each with the same network and forward pass.
l1 = Linear(state_dim + action_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, 1)

Value Q Forward Pass:
input = concatenate([state, action])
x = ReLU(l1(input))
x = ReLU(l2(x))
value = l3(x)

Policy π Network:
l1 = Linear(state_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, action_dim * 2)

Policy π Forward Pass:
input = state
x = ReLU(l1(input))
x = ReLU(l2(x))
mean, log_std = l3(x)
x = Normal(mean, exp(log_std.clip(-20, 2))).sample()
action = tanh(x)
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Table 6: TQC Hyperparameters.

Hyperparameter Value

TQC
[Kuznetsov et al., 2020]

Number of networks 5
Quantiles per network 25

Quantiles dropped per network

HalfCheetah 0
Hopper 5
Walker2d 2
Ant 2
Humanoid 2

SAC
[Haarnoja et al., 2018]

Target Entropy −action_dim
Policy log standard deviation clamp [−20, 2]

Exploration Initial random exploration time steps 256

Common

Discount factor γ 0.99
Replay buffer capacity 1M
Mini-batch size 256
Target update rate τ 0.005

Optimizer (Shared) Optimizer Adam [Kingma and Ba, 2014]
(Shared) Learning rate 3e− 4

Pseudocode 6. TQC Network Details

Value Q Network:
▷ TQC uses five value networks each with the same network and forward pass.
l1 = Linear(state_dim + action_dim, 512)
l2 = Linear(512, 512)
l3 = Linear(512, 512)
l4 = Linear(512, 25)

Value Q Forward Pass:
input = concatenate([state, action])
x = ReLU(l1(input))
x = ReLU(l2(x))
x = ReLU(l3(x))
value = l4(x)

Policy π Network:
l1 = Linear(state_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, action_dim * 2)

Policy π Forward Pass:
input = state
x = ReLU(l1(input))
x = ReLU(l2(x))
mean, log_std = l3(x)
x = Normal(mean, exp(log_std.clip(-20, 2))).sample()
action = tanh(x)
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C.3 Offline RL Baselines

We use four offline RL baseline methods. The results of each method are obtained by re-running the
author-provided code with the following commands:

CQL [Kumar et al., 2020b]. https://github.com/aviralkumar2907/CQL commit d67dbe9

python examples/cql_mujoco_new.py --env=ENV \
--policy_lr=3e-5 --langrange_thresh=-1 --min_q_weight=10

Setting the Lagrange threshold below 0 means the Lagrange version of the code is not used (as
dictated by the settings defined in the CQL paper). Default hyperparameters in the GitHub performed
substantially worse (total normalized score: 221.3 ± 34.4). Some modifications were made to the
evaluation code to match the evaluation protocol used by TD7.

TD3+BC [Fujimoto and Gu, 2021]. https://github.com/sfujim/TD3_BC commit 8791ad7

python main.py --env=ENV

IQL [Kostrikov et al., 2021]. https://github.com/ikostrikov/implicit_q_learning commit
09d7002

python train_offline.py --env_name=ENV --config=configs/mujoco_config.py

X -QL [Garg et al., 2023]. https://github.com/Div99/XQL commit dff09af

python train_offline.py --env_name=ENV --config=configs/mujoco_config.py \
--max_clip=7 --double=True --temp=2 --batch_size=256

This setting corresponds to the X -QL-C version of the method where hyperparameters are fixed
across datasets.
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D Design Study

In this section we analyze the space of design choices for SALE. All results are based on modifying
TD7 without policy checkpoints. A summary of all results is contained in Table 7. Each choice is
described in detail in the subsections that follow.

Table 7: Average performance on the MuJoCo benchmark at 1M time steps. ± captures a 95% confidence
interval around the average performance. Results are over 10 seeds.

Algorithm HalfCheetah Hopper Walker2d Ant Humanoid

TD7 (no checkpoints) 17123 ± 296 3361 ± 429 5718 ± 308 8605 ± 1008 7381 ± 172
TD3 10574 ± 897 3226 ± 315 3946 ± 292 3942 ± 1030 5165 ± 145

Learning Target (Section D.1)

s′ 16438 ± 219 3507 ± 313 5882 ± 262 7415 ± 753 6337 ± 387
zs

′
target 17317 ± 65 3034 ± 647 6227 ± 218 7939 ± 334 6984 ± 578
zs and r 17089 ± 219 3264 ± 670 6255 ± 220 8300 ± 675 6841 ± 252
zs

′a′
12445 ± 417 3009 ± 528 4757 ± 352 6288 ± 570 5657 ± 110

Network Input (Section D.2)

Q, remove zsa 16948 ± 250 2914 ± 756 5746 ± 254 6911 ± 552 6907 ± 443
Q, remove zs 16856 ± 241 2783 ± 710 5987 ± 407 7954 ± 248 7196 ± 363
Q, remove s, a 17042 ± 208 2268 ± 723 5486 ± 466 8546 ± 655 6449 ± 478
Q, zsa only 15410 ± 691 2781 ± 585 5205 ± 409 7916 ± 976 5551 ± 1144
Q, s, a only 12776 ± 774 2929 ± 631 4938 ± 422 5695 ± 875 6209 ± 384
π, s only 16997 ± 265 3206 ± 419 5744 ± 430 7710 ± 593 6413 ± 1521
π, zs only 17283 ± 388 2429 ± 705 6319 ± 331 8378 ± 732 6507 ± 496
No fixed embeddings 17116 ± 149 2262 ± 590 5835 ± 481 8027 ± 551 7334 ± 153

Normalization (Section D.3)

No normalization on ϕ 17231 ± 246 2647 ± 466 5639 ± 1248 8191 ± 846 5862 ± 1471
No normalization 17275 ± 288 3359 ± 479 6168 ± 164 7274 ± 662 4803 ± 1706
Normalization on zsa 16947 ± 284 3383 ± 262 5502 ± 1142 8049 ± 538 6418 ± 302
BatchNorm 17299 ± 218 2318 ± 473 4839 ± 987 7636 ± 769 6979 ± 325
LayerNorm 17132 ± 360 2451 ± 902 4470 ± 1096 6331 ± 1024 6712 ± 1297
Cosine similarity loss 16897 ± 372 3324 ± 249 5566 ± 353 7873 ± 511 4370 ± 1573

End-to-end (Section D.4)

End-to-end, 0.1 16186 ± 360 1820 ± 674 5013 ± 729 6601 ± 1251 5076 ± 897
End-to-end, 1 15775 ± 658 1779 ± 537 4882 ± 710 6604 ± 1135 5880 ± 703
End-to-end, 10 16472 ± 365 1534 ± 341 4900 ± 760 6626 ± 1253 5279 ± 1095
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D.1 Learning Target

The encoder (ft+1, gt+1) in TD7 uses the following update:

L(ft+1, gt+1) :=
(
gt+1(ft+1(s), a)− |ft+1(s

′)|×
)2

(35)

=
(
zsat+1 − |zs

′

t+1|×
)2

. (36)

In this section, we vary the learning target (originally zs
′

t+1).

(Figure 7) Target 1: s′. Sets the learning target to the next state s′, making the encoder loss:

L(ft+1, gt+1) :=
(
zsat+1 − s′

)2
. (37)

This target is inspired by OFENet [Ota et al., 2020].

(Figure 7) Target 2: zs
′

target. Sets the learning target to the embedding of the next state zs
′

target taken
from a slow-moving target network. This makes the encoder loss:

L(ft+1, gt+1) :=
(
zsat+1 − |zsat+1|×

)2
. (38)

zs
′

target is taken from a target network ftarget where ft+1 has parameters θ and ftarget has parameters θ′,
and θ′ is updated at each time step by:

θ′ ← (0.99)θ′ + (0.01)θ. (39)

This target is inspired by SPR [Schwarzer et al., 2020].

(Figure 7) Target 3: zs and r. Sets the learning target to the embedding of the next state zst+1 (which
is the same as in the original loss) but adds a second loss towards the target r. This is achieved by
having the output of g be two dimensional, with the first dimension being zsat+1 and the second rpred

t+1,
making the encoder loss:

L(ft+1, gt+1) :=
(
gt+1(ft+1(s), a)[0]− |ft+1(s

′)|×
)2

+
(
gt+1(ft+1(s), a)[1]− r

)2
(40)

=
(
zsat+1 − |zs

′

t+1|×
)2

+
(
rpred
t+1 − r

)2
. (41)

This target is inspired by DeepMDP [Gelada et al., 2019].

(Figure 8) Target 4: zs
′a′

. Sets the learning target to the next state-action embedding zs
′a′

t+1 , where
the action a′ is sampled according to the target policy with added noise and clipping (as done in
TD3 [Fujimoto et al., 2018]). This makes the encoder loss:

L(ft+1, gt+1) :=
(
zsat+1 − |zs

′a′

t+1 |×
)2

, (42)

a′ := πt(z
s′

t−1, s
′) + ϵ, (43)

ϵ ∼ clip(N (0, σ2),−c, c). (44)
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Table 8: Average performance on the MuJoCo benchmark at 1M time steps. ± captures a 95% confidence
interval around the average performance. Results are over 10 seeds.

Algorithm HalfCheetah Hopper Walker2d Ant Humanoid

TD7 (no checkpoints) 17123 ± 296 3361 ± 429 5718 ± 308 8605 ± 1008 7381 ± 172
TD3 10574 ± 897 3226 ± 315 3946 ± 292 3942 ± 1030 5165 ± 145

s′ 16438 ± 219 3507 ± 313 5882 ± 262 7415 ± 753 6337 ± 387
zs

′
target 17317 ± 65 3034 ± 647 6227 ± 218 7939 ± 334 6984 ± 578
zs and r 17089 ± 219 3264 ± 670 6255 ± 220 8300 ± 675 6841 ± 252
zs

′a′
12445 ± 417 3009 ± 528 4757 ± 352 6288 ± 570 5657 ± 110
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Figure 7: Learning targets from baseline methods. Learning curves on the MuJoCo benchmark, using
learning targets inspired by baseline methods, the next state s′ from OFENet [Ota et al., 2020], the next state
embedding zs

′
target from a slow-moving target network from SPR [Schwarzer et al., 2020], and including the

reward term (zs
′

and r) as in DeepMDP [Gelada et al., 2019]. Note that this study only accounts for changes to
the learning target and does not encompass all aspects of the baseline algorithms. Results are averaged over 10
seeds. The shaded area captures a 95% confidence interval around the average performance.
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Figure 8: Alternate learning target. Learning curves on the MuJoCo benchmark, using a learning target of
the next state-action embedding zs

′a′
. Results are averaged over 10 seeds. The shaded area captures a 95%

confidence interval around the average performance.

31



D.2 Network Input

SALE modifies the value function and policy to take the embeddings as additional input:

Qt+1(s, a)→ Qt+1(z
sa
t , zst , s, a), πt+1(s)→ πt+1(z

s, s). (45)

In this section, we vary the input of the value function and policy. In all cases, changes are made
independently (i.e. we fix the policy to the above (using embeddings) and change the policy, or fix
the value function to the above (using embeddings) and change the policy).

(Figure 9) Input 1: Q, remove zsa. We remove zsa from the value function input. This makes the
input: Qt+1(z

s
t , s, a).

(Figure 9) Input 2: Q, remove zs. We remove zs from the value function input. This makes the
input: Qt+1(z

sa
t , s, a).

(Figure 9) Input 3: Q, remove s, a. We remove s, a from the value function input. This makes the
input: Qt+1(z

sa
t , zs).

(Figure 10) Input 4: Q, zsa only. We only use zsa in the value function input. This makes the input:
Qt+1(z

sa
t ).

(Figure 10) Input 5: Q, s, a only. We only use s, a in the value function input. This makes the input:
Qt+1(s, a). As for all cases, the policy still takes in the state embedding zs.

(Figure 11) Input 6: π, s only. We remove zs from the policy input, using only the state s as input.
This makes the input: πt+1(s). Note that the value function still uses the embeddings as input.

(Figure 11) Input 7: π, zs only. We remove s from the policy input, using only the embedding zs as
input. This makes the input: πt+1(z

s
t ).

(Figure 12) Input 8: No fixed embeddings. We remove the fixed embeddings from the value function
and the policy. This means that the networks use embeddings from the current encoder, rather than
the fixed encoder from the previous iteration. This makes the input: Qt+1(z

sa
t+1, z

s
t+1, s, a) and

πt+1(z
s
t+1, s).

Table 9: Average performance on the MuJoCo benchmark at 1M time steps. ± captures a 95% confidence
interval around the average performance. Results are over 10 seeds.

Algorithm HalfCheetah Hopper Walker2d Ant Humanoid

TD7 (no checkpoints) 17123 ± 296 3361 ± 429 5718 ± 308 8605 ± 1008 7381 ± 172
TD3 10574 ± 897 3226 ± 315 3946 ± 292 3942 ± 1030 5165 ± 145

Q, remove zsa 16948 ± 250 2914 ± 756 5746 ± 254 6911 ± 552 6907 ± 443
Q, remove zs 16856 ± 241 2783 ± 710 5987 ± 407 7954 ± 248 7196 ± 363
Q, remove s, a 17042 ± 208 2268 ± 723 5486 ± 466 8546 ± 655 6449 ± 478
Q, zsa only 15410 ± 691 2781 ± 585 5205 ± 409 7916 ± 976 5551 ± 1144
Q, s, a only 12776 ± 774 2929 ± 631 4938 ± 422 5695 ± 875 6209 ± 384
π, s only 16997 ± 265 3206 ± 419 5744 ± 430 7710 ± 593 6413 ± 1521
π, zs only 17283 ± 388 2429 ± 705 6319 ± 331 8378 ± 732 6507 ± 496
No fixed embeddings 17116 ± 149 2262 ± 590 5835 ± 481 8027 ± 551 7334 ± 153
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Figure 9: Removing terms from the value function input. Learning curves on the MuJoCo benchmark, when
removing components from the input to the value function. Results are averaged over 10 seeds. The shaded area
captures a 95% confidence interval around the average performance.
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Figure 10: Exclusive value function input. Learning curves on the MuJoCo benchmark, changing the value
function input to a single component. Results are averaged over 10 seeds. The shaded area captures a 95%
confidence interval around the average performance.
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Figure 11: Modified policy input. Learning curves on the MuJoCo benchmark, changing the policy input to
a single component. Results are averaged over 10 seeds. The shaded area captures a 95% confidence interval
around the average performance.
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Figure 12: Fixed embeddings. Learning curves on the MuJoCo benchmark, without fixed embeddings for the
value function and policy, so that the current encoder is used rather than the fixed encoder. Results are averaged
over 10 seeds. The shaded area captures a 95% confidence interval around the average performance.
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D.3 Normalization

SALE normalizes embeddings and input through our proposed AvgL1Norm:

AvgL1Norm(x) :=
x

1
N

∑
i |xi|

. (46)

AvgL1Norm is embedded into the architecture used by SALE (see Pseudocode 1), applied to the
output of the state encoder f to give the state embedding zs = AvgL1Norm(f(s)). It is also used
following a linear layer in the input of both the value function and policy. This makes the input to the
value function and policy:

Q(zsa,AvgL1Norm(f(s)),AvgL1Norm(ϕsa)), (47)
π(AvgL1Norm(f(s)),AvgL1Norm(ϕs)), (48)

where ϕsa is the output from a linear layer on the state-action input, Linear(s, a), and ϕs is the output
from a linear layer on the state input, Linear(s).

In this section, we vary how normalization is used, swapping which components it is used on and
what normalization function is used.

(Figure 13) Normalization 1: No normalization on ϕ. Normalization is not applied to either ϕ. This
makes the input to the value function and policy:

Q(zsa,AvgL1Norm(f(s)), ϕsa), (49)
π(AvgL1Norm(f(s)), ϕs). (50)

(Figure 13) Normalization 2: No normalization. Normalization is not applied anywhere. This makes
the input to the value function and policy:

Q(zsa, f(s), ϕsa), (51)
π(f(s), ϕs). (52)

(Figure 14) Normalization 3: Normalization used on zsa. Since zsa is trained to predict the next
state embedding zs

′
, which is normalized, normalization may not be needed for the output of the

state-action encoder g. We try also applying normalization to the output of g. This makes the input to
the value function and policy:

Q(AvgL1Norm(g(zs, a)),AvgL1Norm(f(s)),AvgL1Norm(ϕsa)), (53)
π(AvgL1Norm(f(s)),AvgL1Norm(ϕs)). (54)

(Figure 15) Normalization 4: BatchNorm. BatchNorm is used instead of AvgL1Norm. This makes
the input to the value function and policy:

Q(zsa,BatchNorm(f(s)),BatchNorm(ϕsa)), (55)
π(BatchNorm(f(s)),BatchNorm(ϕs)), (56)

(Figure 15) Normalization 5: LayerNorm. LayerNorm is used instead of AvgL1Norm. This makes
the input to the value function and policy:

Q(zsa,LayerNorm(f(s)),LayerNorm(ϕsa)), (57)
π(LayerNorm(f(s)),LayerNorm(ϕs)), (58)

(Figure 16) Normalization 3: Cosine similarity loss. This is inspired by SPR [Schwarzer et al., 2020],
where normalization is not used and a cosine similarity loss is used instead of MSE for updating the
encoder. This means the encoder loss function, which is originally:

L(f, g) :=
(
g(f(s), a)− |f(s′)|×

)2
=
(
zsa − |zs

′
|×
)2

, (59)

now becomes

L(f, g) := Cosine
(
zsa, |zs

′
|×
)
, (60)

Cosine
(
zsa, |zs

′
|×
)
:=

(
zsa

∥zsa∥2

)⊤
(
|zs′ |×
∥|zs′ |×∥2

)
. (61)

No normalization is used elsewhere.
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Table 10: Average performance on the MuJoCo benchmark at 1M time steps. ± captures a 95% confidence
interval around the average performance. Results are over 10 seeds.

Algorithm HalfCheetah Hopper Walker2d Ant Humanoid

TD7 (no checkpoints) 17123 ± 296 3361 ± 429 5718 ± 308 8605 ± 1008 7381 ± 172
TD3 10574 ± 897 3226 ± 315 3946 ± 292 3942 ± 1030 5165 ± 145

No normalization on ϕ 17231 ± 246 2647 ± 466 5639 ± 1248 8191 ± 846 5862 ± 1471
No normalization 17275 ± 288 3359 ± 479 6168 ± 164 7274 ± 662 4803 ± 1706
Normalization on zsa 16947 ± 284 3383 ± 262 5502 ± 1142 8049 ± 538 6418 ± 302
BatchNorm 17299 ± 218 2318 ± 473 4839 ± 987 7636 ± 769 6979 ± 325
LayerNorm 17132 ± 360 2451 ± 902 4470 ± 1096 6331 ± 1024 6712 ± 1297
Cosine similarity loss 16897 ± 372 3324 ± 249 5566 ± 353 7873 ± 511 4370 ± 1573
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Figure 13: Removing normalization. Learning curves on the MuJoCo benchmark, where normalization is
removed on certain components of the input to the value function and policy. Results are averaged over 10 seeds.
The shaded area captures a 95% confidence interval around the average performance.
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Figure 14: Normalization on zsa. Learning curves on the MuJoCo benchmark, where normalization is also
applied to the state-action embedding zsa. Results are averaged over 10 seeds. The shaded area captures a 95%
confidence interval around the average performance.
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Figure 15: Alternate normalization. Learning curves on the MuJoCo benchmark, where BatchNorm or
LayerNorm is used instead of AvgL1Norm. Results are averaged over 10 seeds. The shaded area captures a
95% confidence interval around the average performance.
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Figure 16: Cosine similarity instead of normalization. Learning curves on the MuJoCo benchmark, where
normalization is removed and replaced with a cosine similarity loss, as inspired by SPR [Schwarzer et al., 2020].
Results are averaged over 10 seeds. The shaded area captures a 95% confidence interval around the average
performance.
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D.4 End-to-end

The embeddings used in SALE are decoupled, meaning that the encoders used to output the embed-
dings are trained independently from the value function or policy. Instead, we might consider training
the encoders end-to-end with the value function. Doing so requires training the current embedding
with the value function loss (rather than using the fixed embedding). This means that the encoders
are trained with the following loss:

L(ft+1, gt+1) := Huber
(
target−Qt+1(z

sa
t+1, z

s
t+1, s, a)

)
+ β

(
zsat+1 − |zs

′

t+1|×
)2

, (62)

target := r + γ clip
(
min (Qt,1(x), Qt,2(x)) , Qmin, Qmax

)
, (63)

x := [zs
′a′

t , zs
′

t , s′, a′], (64)

a′ := πt(z
s′

t , s′) + ϵ, (65)

ϵ ∼ clip(N (0, σ2),−c, c). (66)

In Table 11 and Figure 17 we display the performance when varying the hyperparameter β.

Table 11: Average performance on the MuJoCo benchmark at 1M time steps. ± captures a 95% confidence
interval around the average performance. Results are over 10 seeds.

Algorithm HalfCheetah Hopper Walker2d Ant Humanoid

TD7 (no checkpoints) 17123 ± 296 3361 ± 429 5718 ± 308 8605 ± 1008 7381 ± 172
TD3 10574 ± 897 3226 ± 315 3946 ± 292 3942 ± 1030 5165 ± 145

End-to-end, 0.1 16186 ± 360 1820 ± 674 5013 ± 729 6601 ± 1251 5076 ± 897
End-to-end, 1 15775 ± 658 1779 ± 537 4882 ± 710 6604 ± 1135 5880 ± 703
End-to-end, 10 16472 ± 365 1534 ± 341 4900 ± 760 6626 ± 1253 5279 ± 1095
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Figure 17: End-to-end learning. Learning curves on the MuJoCo benchmark, when training the embeddings
end-to-end with the value function, where the encoder loss is weighted with respect to β. Results are averaged
over 10 seeds. The shaded area captures a 95% confidence interval around the average performance.
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E Extrapolation Error Study

E.1 Extrapolation Error

Extrapolation error is an issue with deep RL where the value function poorly estimates the value of
unseen or rare actions [Fujimoto et al., 2019]. If we assume that (s, a) is not contained in the dataset,
then Q(s, a) is effectively a guess generated by the value function Q. During training, s is always
sampled from the dataset, but a is often generated by the policy (a ∼ π(s)), resulting in a potentially
poor estimate.

Extrapolation error is typically considered a problem for offline RL, where the agent is given a fixed
dataset and cannot interact further with the environment, as actions sampled from the policy may not
be contained in the dataset. Extrapolation error is not considered a problem in online RL since the
policy interacts with the environment, collecting data for the corresponding actions it generates.

In our empirical analysis (Section E.2) we observe the presence of extrapolation error when using
SALE. Our hypothesis is that by significantly expanding the input dimension dependent on the action,
the network becomes more prone to erroneous extrapolations (for example, for the Ant environment,
the original action dimension size is 8, but the state-action embedding zsa has a dimension size of
256). This is because unseen actions can appear significantly more distinct from seen actions, due to
the dramatic increase in the number of dimensions used to represent the action-dependent input.

E.2 Empirical Analysis

In this section we vary the input to the value function in TD7 to understand the role of the input
dimension size and extrapolation error. The default input to the value function in TD7 is as follows:

Q(zsa, zs, ϕ), (67)
ϕ := AvgL1Norm(Linear(s, a)). (68)

Throughout all experiments, we assume no value clipping (as this is introduced in response to the
analysis from this section). This makes the value function loss (originally Equation 15):

L(Qt+1) := Huber
(
target−Qt+1(z

sa
t , zst , s, a)

)
, (69)

target := r + γmin (Qt,1(x), Qt,2(x)) , (70)

x := [zs
′a′

t−1 , z
s′

t−1, s
′, a′], (71)

a′ := πt(z
s′

t−1, s
′) + ϵ, (72)

ϵ ∼ clip(N (0, σ2),−c, c). (73)

Policy checkpoints are not used and the policy is not modified. Since extrapolation error is closely
linked to available data, we also vary the maximum size of the replay buffer (default: 1M).

(Figure 18) Extrapolation 1: No clipping. This is TD7 without value clipping in the value function
loss as discussed above.

(Figure 19) Extrapolation 2: No zsa. We remove zsa from the value function input. This makes the
input: Qt+1(z

s
t , ϕ).

(Figure 20) Extrapolation 3: Small ϕ. We reduce the number of dimensions of ϕ from 256 to 16.

(Figure 21) Extrapolation 4: No zsa and small ϕ. We remove zsa from the value function input and
reduce the number of dimensions of ϕ from 256 to 16.

(Figure 22) Extrapolation 5: Frozen embeddings. The encoders are left unchanged throughout
training, by leaving them untrained. This means the input of the value function is Qt+1(z

s
0, ϕ).

(Figure 23) Extrapolation 6: TD7. The full TD7 method (without checkpoints).
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Figure 18: No clipping. The performance curve and corresponding value estimate made by the value function,
where no value clipping is used. The results for each individual seed are presented for a replay buffer size of
either 1M (left) or 100k (right). The environment used is Ant.
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Figure 19: No zsa. The performance curve and corresponding value estimate made by the value function, where
zsa is not included in the input. The results for each individual seed are presented for a replay buffer size of
either 1M (left) or 100k (right). The environment used is Ant.
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Figure 20: Small ϕ. The performance curve and corresponding value estimate made by the value function,
where the dimension size of ϕ is reduced. The results for each individual seed are presented for a replay buffer
size of either 1M (left) or 100k (right). The environment used is Ant.
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Figure 21: No zsa, small ϕ. The performance curve and corresponding value estimate made by the value
function, where zsa is not included in the input and the dimension size of ϕ is reduced. The results for each
individual seed are presented for a replay buffer size of either 1M (left) or 100k (right). The environment used is
Ant.
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Figure 22: Frozen embeddings. The performance curve and corresponding value estimate made by the value
function, where the encoders are not trained. The results for each individual seed are presented for a replay
buffer size of either 1M (left) or 100k (right). The environment used is Ant.
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Figure 23: TD7. The performance curve and corresponding value estimate made by the value function of TD7
(using value clipping). The results for each individual seed are presented for a replay buffer size of either 1M
(left) or 100k (right). The environment used is Ant.
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F Policy Checkpoints

F.1 Motivation

Deep RL algorithms are widely known for their inherent instability, which often results in substantial
variance in performance during training. Instability in deep RL can occur on a micro timescale
(performance can shift dramatically between episodes) [Henderson et al., 2017, Fujimoto and Gu,
2021] and a macro timescale (the algorithm can diverge or collapse with too much training) [Kumar
et al., 2020a, Lyle et al., 2021]. In Figure 24 & 25 we show the instability of RL methods by (a)
showing how presenting the average performance can hide the instability in a single trial of RL
(Figure 24), and (b) measuring how much the performance can drop between nearby evaluations
(Figure 25).
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The training curve as commonly presented in RL papers and the training curve
of a single seed . Both curves are from the TD3 algorithm, trained for 5M
time steps. The standard presentation is to evaluate every Nfreq steps, average
scores over Nepisodes evaluation episodes and Nseeds seeds, then to smooth the
curve by averaging over a window of Nwindow evaluations. (In our case this
corresponds to Nfreq = 5000, Nepisodes = 10, Nseeds = 10, Nwindow = 10). The
learning curve of a single seed has no smoothing over seeds or evaluations
(Nseeds = 1, Nwindow = 1). By averaging over many seeds and evaluations, the
training curves in RL can appear deceptively smooth and stable.
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Figure 25: window = 1 window = 5 window = 10
The % of evaluations which suffer from a performance drop of at least x% in
the next window evaluations for the TD3 algorithm, trained for 5M time steps.
For example, for any given evaluation, the likelihood of one of the next 10
evaluations performing at least 50% worse is around 30%. Only evaluations
from the last 1M training steps are used, so that early training instability is not
accounted for. This shows that large drops in performance are common.

F.2 Method

The overview for our approach for using checkpoints in RL:

• Assess the current policy (using training episodes).
• Train the current policy (with a number of time steps equal (or proportional) to the number

of time steps viewed during assessment).
• If the current policy outperforms the checkpoint policy, then update the checkpoint policy.

Note that we aim to use training episodes to evaluate the checkpoint policy, as any evaluation or test
time episodes are considered entirely separate from the training process. For clarity, we will use the
term assessment (rather than evaluation) to denote any measure of performance which occurs during
training. In Algorithm 3 we outline the basic policy checkpoint strategy.

Minimum performance criteria. An interesting choice that remains is how to determine whether
the current policy outperforms the checkpoint policy. Instead of using the average performance, we
consider the minimum performance over a small number of assessment episodes. Using the minimum
provides a criteria which is more sensitive to instability, favoring policies which achieve a consistent
performance.

Additionally, using the minimum allows us to end the assessment phase early, if the minimum
performance of the current policy drops below the minimum performance of the checkpoint policy.
This allows us to use a higher maximum number of assessment episodes, while not wasting valuable
training episodes assessing suboptimal policies. In Algorithm 4 we outline policy checkpoints
where the minimum performance is used, and the assessment phase is variable length due to early
termination.
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Algorithm 3 Basic Policy Checkpoints

1: for episode = 1 to assessment_episodes do ▷ Assessment
2: Follow the current policy πt+1 and determine episode_reward.
3: Update the performance measure of the current policy.
4: Increment timesteps_since_training by the length of the episode.

5: if actor πt+1 outperforms checkpoint policy πc then ▷ Checkpointing
6: Update checkpoint networks πc ← πt+1, fc ← ft.
7: Update checkpoint performance.

8: for i = 1 to timesteps_since_training do ▷ Training
9: Train RL agent.

10: Reset the performance measure of the current policy.

Algorithm 4 Policy Checkpoints with Minimum Performance and Early Termination

1: for episode = 1 to assessment_episodes do ▷ Assessment
2: Follow the current policy πt+1 and determine episode_reward.
3: min_performance← min(min_performance, episode_reward).
4: Increment timesteps_since_training by the length of the episode.

5: if min_performance ≤ checkpoint_performance then ▷ Early termination
6: End current assessment.
7: if min_performance ≥ checkpoint_performance then ▷ Checkpointing
8: Update checkpoint networks πc ← πt+1, fc ← ft.
9: checkpoint_performance← min_performance

10: for i = 1 to timesteps_since_training do ▷ Training
11: Train RL agent.
12: Reset min_performance.

Early learning. In our empirical analysis we observe that long assessment phases had a negative
impact on early learning (Table 13). A final adjustment to policy checkpoints is to keep the number
of assessment episodes fixed to 1 during the early stages of learning, and then increase it to a much
larger value later in learning. Since the policy or environment may be stochastic, when increasing
the number of assessment episodes, we reduce the performance of the checkpoint policy (by a factor
of 0.9), since the checkpoint performance may be overfit to the single episode used to assess its
performance.

In Algorithm 1 in the main text, several variables are referenced. These are as follows:

• checkpoint_condition: The checkpoint condition refers to either (a) the maximum num-
ber of assessment episodes being reached (20) or the current minimum performance dropping
below the minimum performance of the checkpoint policy.

• outperforms: The maximum number of assessment episodes were reached and the current
minimum performance is higher than the minimum performance of the checkpoint policy.

Variable descriptions. In Table 3 (in Section A.2), which describes the hyperparameters of TD7,
several variables are referenced. These are as follows:

• Checkpoint criteria: the measure used to evaluate the performance of the current and
checkpoint policy (default: minimum performance over the assessment episodes).

• Early assessment episodes: the maximum number of assessment episodes during the early
stage of learning (default: 1).

• Late assessment episodes: the maximum number of assessment episodes during the late
stage of learning (default: 20).

• Early time steps: the duration of the early learning stage in time steps. We consider early
learning to be the first 750k time steps.

• Criteria reset weight: The multiplier on the current performance of the checkpoint policy
that is applied once, after the early learning stage ends (default: 0.9).
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F.3 Empirical Analysis

TD7 uses a checkpointing scheme which:

• Measures the performance of the current and checkpoint policy by the minimum performance
over 20 assessment episodes.

• Uses a variable length assessment phase, where the assessment phase terminates early if the
minimum performance of the current policy is less than the minimum performance of the
checkpoint policy.

• Uses an early learning stage where the maximum number of assessment episodes starts at 1
and is increased to 20 after 750k time steps.

In this section, we vary some of the choices made when using policy checkpoints and analyze the
stability benefits of using checkpoints.

(Figure 26) Checkpoint 1: Maximum number of assessment episodes. We vary the maximum
number episodes used to assess the performance of the current policy (default 20). Early termination
of the assessment phase is still used.

(Figure 27) Checkpoint 2: Mean, fixed assessment length. We use the mean performance instead of
the minimum (default) to determine if the current policy outperforms the checkpoint policy. In this
case, early termination of the assessment phase is not used. The number of assessment episodes is
fixed at 20.

(Figure 27) Checkpoint 3: Mean, variable assessment length. The mean performance is used to
determine if the current policy outperforms the checkpoint policy. Early termination of the assessment
phase is used. After each episode, we terminate the assessment phase if the current mean performance
is below the checkpoint performance. This means the number of assessment episodes is variable, up
to a maximum of 20.

(Figure 28) Checkpoint 4: Fixed assessment length. The same number of assessment episodes is
used during each assessment phase, without early termination.

(Figure 29) Checkpoint 5: Immediate. The number of assessment episodes starts at the corresponding
number (as opposed to starting at 1 and increasing to a higher number after the early learning state
completes at 750k time steps).

In Table 12 we present the main set of results at 5M time steps. To measure early learning performance,
in Table 13 we present the performance of using immediate checkpoints at 300k time steps. To
observe stability benefits, in Figure 30 we display the performance of five individual seeds, with and
without checkpoints.

Table 12: Average performance on the MuJoCo benchmark at 5M time steps. ± captures a 95% confidence
interval around the average performance. Results are over 10 seeds.

Algorithm HalfCheetah Hopper Walker2d Ant Humanoid

TD7 18165 ± 255 4075 ± 225 7397 ± 454 10133 ± 966 10281 ± 588
TD7 (no checkpoints) 18328 ± 331 3851 ± 372 6519 ± 209 10388 ± 1024 9521 ± 820

Max 10 episodes 18257 ± 338 4208 ± 52 6856 ± 273 9890 ± 661 10689 ± 576
Max 50 episodes 17875 ± 192 4110 ± 83 7104 ± 559 8226 ± 743 10239 ± 273

Mean, fixed 18137 ± 417 4061 ± 160 7347 ± 459 9866 ± 804 9850 ± 497
Mean, variable 17943 ± 291 4217 ± 9 6845 ± 476 9614 ± 849 10784 ± 188

Immediate, 10 episodes 17767 ± 374 4218 ± 17 7416 ± 451 10090 ± 961 9573 ± 255
Immediate, 20 episodes 17900 ± 127 4078 ± 53 7696 ± 616 9576 ± 935 10219 ± 551
Immediate, 50 episodes 17619 ± 275 4033 ± 154 6712 ± 313 9716 ± 1091 9687 ± 584

Fixed, 10 episodes 18209 ± 332 4130 ± 56 6890 ± 410 10357 ± 893 9682 ± 1408
Fixed, 20 episodes 17925 ± 334 3777 ± 337 6882 ± 452 9716 ± 772 10471 ± 560
Fixed, 50 episodes 17807 ± 183 3759 ± 142 6800 ± 422 8881 ± 408 8830 ± 655
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Table 13: Average performance on the MuJoCo benchmark at 300k time steps. ± captures a 95% confidence
interval around the average performance. Results are over 10 seeds.

Algorithm HalfCheetah Hopper Walker2d Ant Humanoid

TD7 15031 ± 401 2948 ± 464 5379 ± 328 6171 ± 831 5332 ± 714

Immediate, 10 episodes 13778 ± 856 3306 ± 34 4595 ± 343 5977 ± 764 4660 ± 735
Immediate, 20 episodes 12289 ± 507 3052 ± 195 4518 ± 321 5504 ± 889 4531 ± 738
Immediate, 50 episodes 6658 ± 1309 2668 ± 247 2897 ± 816 3709 ± 1848 2060 ± 620
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Figure 26: Maximum number of assessment episodes. Learning curves on the MuJoCo benchmark, varying
the maximum number episodes that the policy is fixed for. Results are averaged over 10 seeds. The shaded area
captures a 95% confidence interval around the average performance.
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Figure 27: Checkpoint condition. Learning curves on the MuJoCo benchmark, using the mean performance of
assessment episodes rather than the minimum. The number of assessment episodes is kept at 20. Results are
averaged over 10 seeds. The shaded area captures a 95% confidence interval around the average performance.
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Figure 28: Fixed assessment length. Learning curves on the MuJoCo benchmark, where there is no early
termination of the assessment phase (i.e the number of assessment episodes is fixed), and the number of
assessment episodes is varied. Results are averaged over 10 seeds. The shaded area captures a 95% confidence
interval around the average performance.
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Figure 29: Immediate. Learning curves on the MuJoCo benchmark, where the maximum number of assessment
episodes does not start at 1 (i.e. there is no early learning phase) and is varied. Results are averaged over 10
seeds. The shaded area captures a 95% confidence interval around the average performance.
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Figure 30: Performance of individual seeds with and without checkpoints. Learning curves of five individual
seeds, with and without checkpoints, on the MuJoCo benchmark. The shaded area captures a 95% confidence
interval around the average performance.
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G Ablation Study

In this section we perform an ablation study on the components of TD7.

G.1 Main Components

(Figure 31) Ablation 1: No SALE. SALE is entirely removed from TD7. This means the input to
the value function and policy return to the original Q(s, a) and π(s), respectively. TD7 keeps LAP,
policy checkpoints, and any implementation differences over TD3 (discussed in Section A.1).

(Figure 31) Ablation 2: No checkpoints. Similar to TD3 and other off-policy deep RL algorithms,
TD7 is trained at every time step, rather than after a batch of episodes. The current policy is used at
test time.

(Figure 31) Ablation 3: No LAP. TD7 uses the standard replay buffer where transitions are sampled
with uniform probability. The value function loss (Equation 15) uses the mean-squared error (MSE)
rather than the Huber loss.

Table 14: Average performance on the MuJoCo benchmark at 5M time steps. ± captures a 95% confidence
interval around the average performance. Results are over 10 seeds.

Algorithm HalfCheetah Hopper Walker2d Ant Humanoid

TD7 18165 ± 255 4075 ± 225 7397 ± 454 10133 ± 966 10281 ± 588
TD3 14337 ± 1491 3682 ± 83 5078 ± 343 5589 ± 758 5433 ± 245

No SALE 17099 ± 335 4018 ± 170 6418 ± 261 7861 ± 253 7275 ± 608
No checkpoints 18328 ± 331 3851 ± 372 6519 ± 209 10388 ± 1024 9521 ± 820
No LAP 18104 ± 315 4188 ± 22 7233 ± 251 6940 ± 1044 10155 ± 522
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Figure 31: Main ablation. Learning curves on the MuJoCo benchmark, removing the main components of TD7.
Results are averaged over 10 seeds. The shaded area captures a 95% confidence interval around the average
performance.
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G.2 Subcomponents

(Figure 31) Ablation 4: No SALE, with encoder. The encoder is kept but trained end-to-end with the
value function, rather than via the SALE loss function. This means the encoder can be simply treated
as an extension of the architecture of the value function. Since the embeddings trained with the value
function may be conflicting with the policy, the policy does not use the state embedding, and only
takes its original input π(s).

(Figure 31) Ablation 5: TD3 with encoder. We add the encoder from SALE to TD3 but train it
end-to-end with the value function. The encoder is not applied to the policy.

(Figure 33) Ablation 6: Current policy. TD7 is trained in an identical fashion, but uses the current
policy at test time, rather than the checkpoint policy.

(Figure 33) Ablation 7: TD3 with checkpoints. We add policy checkpoints to TD3, using the
checkpoint policy at test time.

(Figure 34) Ablation 8: TD3 with LAP. We add LAP to TD3 (identical to the TD3 + LAP [Fujimoto
et al., 2020]).

(Figure 35) Ablation 9: No clipping. We remove our proposed value clipping for mitigating
extrapolation error. This makes the value function loss (originally Equation 15):

L(Qt+1) := Huber
(
target−Qt+1(z

sa
t , zst , s, a)

)
, (74)

target := r + γmin (Qt,1(x), Qt,2(x)) , (75)

x := [zs
′a′

t−1 , z
s′

t−1, s
′, a′], (76)

a′ := πt(z
s′

t−1, s
′) + ϵ, (77)

ϵ ∼ clip(N (0, σ2),−c, c). (78)

(Figure 35) Ablation 10: TD3 with clipping. We add value clipping to the loss function of TD3.

(Figure 36) Ablation 11: No normalization. We remove the use of AvgL1Norm from TD7. This is
identical to no normalization in the design study in Section D.3, except this version includes policy
checkpoints (the design study does not use checkpoints).

(Figure 36) Ablation 12: No fixed encoder. We remove the fixed embeddings from the value function
and the policy, this means the networks use embeddings from the current encoder, rather than the fixed
encoder from the previous iteration. This makes the input: Qt+1(z

sa
t+1, z

s
t+1, s, a) and πt+1(z

s
t+1, s).

This is identical to no normalization in the design study in Section D.3, except this version includes
policy checkpoints (the design study does not use checkpoints).

(Figure 37) Ablation 13: No implementation. We remove the implementation details differences
discussed in Section A.1, namely using both value functions when updating the policy, ELU activation
functions in the value function network. The target network update is not changed as this may
influence the use of fixed encoders.

(Figure 37) Ablation 14: Our TD3. TD3 with the implementation detail differences discussed in
Section A.1, namely using both value functions when updating the policy, ELU activation functions
in the value function network, and updating the target network every 250 time steps, rather than using
an exponential moving average.
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Table 15: Average performance on the MuJoCo benchmark at 1M time steps. ± captures a 95% confidence
interval around the average performance. Results are over 10 seeds.

Algorithm HalfCheetah Hopper Walker2d Ant Humanoid

TD7 17434 ± 155 3512 ± 315 6097 ± 570 8509 ± 422 7429 ± 153
TD3 10574 ± 897 3226 ± 315 3946 ± 292 3942 ± 1030 5165 ± 145

No SALE 12981 ± 261 3536 ± 65 5237 ± 376 5296 ± 1336 6263 ± 289
No SALE, with encoder 15639 ± 548 3544 ± 371 5350 ± 427 6003 ± 920 5480 ± 83
TD3 with encoder 12495 ± 813 1750 ± 302 4226 ± 491 5255 ± 579 5082 ± 317

No checkpoints 17123 ± 296 3361 ± 429 5718 ± 308 8605 ± 1008 7381 ± 172
Current policy 17420 ± 273 2940 ± 636 5765 ± 800 8748 ± 397 7162 ± 274
TD3 with checkpoints 10255 ± 656 3414 ± 77 3266 ± 474 3843 ± 749 5349 ± 72

No LAP 17347 ± 207 3697 ± 144 6382 ± 339 6571 ± 1504 8082 ± 260
TD3 with LAP 10324 ± 1159 3117 ± 554 4127 ± 330 4310 ± 1150 5090 ± 190

No clipping 17378 ± 100 3762 ± 118 6198 ± 289 7695 ± 497 7251 ± 274
TD3 with clipping 10283 ± 422 2969 ± 682 3990 ± 258 3711 ± 799 5254 ± 203

No normalization 17391 ± 275 3640 ± 95 6256 ± 317 7807 ± 266 4829 ± 1809
No fixed encoder 17145 ± 138 3710 ± 120 5869 ± 531 8287 ± 379 7412 ± 337

No implementation 17334 ± 99 3750 ± 136 5819 ± 71 7756 ± 704 7042 ± 259
Our TD3 11068 ± 1399 2791 ± 632 4179 ± 297 5489 ± 448 5186 ± 108
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Figure 32: SALE. Learning curves on the MuJoCo benchmark, varying the usage of SALE. Results are averaged
over 10 seeds. The shaded area captures a 95% confidence interval around the average performance.
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Figure 33: Checkpoints. Learning curves on the MuJoCo benchmark, varying the usage of policy checkpoints.
Results are averaged over 10 seeds. The shaded area captures a 95% confidence interval around the average
performance.
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Figure 34: LAP. Learning curves on the MuJoCo benchmark, varying the usage of LAP. Results are averaged
over 10 seeds. The shaded area captures a 95% confidence interval around the average performance.
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Figure 35: Clipping. Learning curves on the MuJoCo benchmark, varying the usage of our proposed value
clipping for mitigating extrapolation error. Results are averaged over 10 seeds. The shaded area captures a 95%
confidence interval around the average performance.
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Figure 36: SALE components. Learning curves on the MuJoCo benchmark, removing components of SALE.
Results are averaged over 10 seeds. The shaded area captures a 95% confidence interval around the average
performance.
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Figure 37: Implementation differences. Learning curves on the MuJoCo benchmark, varying the minor
implementation details between TD3 and TD7. Results are averaged over 10 seeds. The shaded area captures a
95% confidence interval around the average performance.
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Figure 38: Learning curves on the offline D4RL benchmark. Results are averaged over 10 seeds. The shaded
area captures a 95% confidence interval around the average performance.
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I Run time

We benchmark the run time of TD7 and the baseline algorithms. Evaluation episodes were not
included in this analysis. Each algorithm is trained using the same deep learning framework,
PyTorch [Paszke et al., 2019]. All experiments are run on a single Nvidia Titan X GPU and Intel Core
i7-7700k CPU. Software is detailed in Appendix B. We display run time adjusted learning curves in
Figure 39.
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Figure 39: Run time adjusted curves. Learning curves on the MuJoCo benchmark over 5M time steps, where
the x-axis is run time. Results are averaged over 10 seeds. The shaded area captures a 95% confidence interval
around the average performance.
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J Limitations

Depth vs. Breadth. Although our empirical study is extensive, the scope of our experimentation
emphasizes depth over breadth. There remains many other interesting benchmarks for continuous
control, such as examining a setting with image-based observations.

Baselines. We benchmark TD7 against the highest performing agents in both the online and offline
setting. However, due to the fact that most representation learning methods do not cover low level
states, we only benchmark against a single other method focused on representation learning. While it
would be surprising if a method, originally designed for a different setting, outperformed the strongest
existing baselines, exploring additional methods could provide new insight into representation
learning for low level states.

Computational cost. While TD7 has a lower computational cost than other competing methods, the
run time over TD3 (the base algorithm) is more than double.

Theoretical results. We perform extensive empirical analysis to uncover which factors of dynamics-
based representation learning are important for performance. However, we do not address the
theoretical side of representation learning. There are many important questions regarding why
dynamics-based representation learning is effective, or what makes a good representation.
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