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A Example Instructions

As described in Sec. 3.2 of the main paper, we follow self-instruct [25] to design a set of seed
instructions with placeholders and employ LLMs to create diverse related task descriptions for
coarse-grained task-level customization. Here, we show some examples of instructions for task-level
customization, including object detection, instance segmentation, visual grounding, image captioning,
and visual question answering (VQA). Following various instructions, our model can elegantly switch
among different vision-centric tasks and accomplish them in a unified manner like LLMs.

A.1 Object Detection

Example 1. “Please examine the image and identify all objects in the category set <class>. For each
object, specify its location within the range <range> by determining the top-left and bottom-right
corners of its bounding box. To indicate the object’s class and location, provide the output in the
format (c, x1, y1, x2, y2), where ‘c’ represents the class index starting from 0, and (x1, y1, x2, y2)
correspond to the offsets of the bounding box corners relative to the center point. The image is:
<image>”

Example 2. “Identify all the objects in the image that belong to the category set <class> and predict
a bounding box around each one. The output should be a list in the format (c, x1, y1, x2, y2), where c
represents the index of the class label starting from 0, and x1, y1, x2, y2 are the offsets of the top-left
and bottom-right corners of the box relative to the center point. The coordinates should be within
<range>. The image is: <image>”

Example 3. “For each object in the image that is a member of the category set <class>, output a
tuple with the index of class label starting from 0 and the offsets of corners relative to the center point
that encloses the object. The offsets should be in the order of top-left and bottom-right corners of the
rectangle and should be within <range>. The output format should be (c, x1, y1, x2, y2). The image
is: <image>”

A.2 Instance Segmentation

Example 1. “Segment the objects from the image with class labels from <class> and output their
coordinates within range <range>. The coordinates should be given as the boundary points relative
to the center point, and the output format should be (c, x1, y1, x2, y2, ..., x20, y20), where c is the
index of the class label that starts from 0. The image is: <image>”
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Example 2. “Segment all the objects from the category set <class> in the provided image and output
a tuple (c, x1, y1, x2, y2, ..., x14, y14) for each, where c is the index of the class label in the category
set that starts from 0, and (x1, y1, x2, y2, ..., x14, y14) correspond to the offsets of boundary points
on the instance mask relative to the center point which should be within <range>. The image is:
<image>”

Example 3. “In the provided image, please segment all the objects in category set <class> within
the range <range> by providing their coordinates in the (c, x1, y1, x2, y2, ..., x24, y24) format, where

‘c’ denotes the index of the class label starting from 0, and (x1, y1, x2, y2, ..., x24, y24) stand for the
offsets of boundary points relative to the center point. The image is: <image>”

A.3 Visual Grounding

Example 1. “Please find the object in the category set {<expression>:<cls0>} within the range
<range>. Please provide the output in the format (c, x1, y1, x2, y2), where c is the class index starting
from 0, and (x1, y1, x2, y2) are the offsets of the top-left and bottom-right corners of the bounding
box relative to the center point. The image is: <image>”

Example 2. “Given the input image, category set {<expression>:<cls0>}, and the range
<range>, please locate the object in the image and output the corresponding coordinates in the tuple
(c, x1, y1, x2, y2), where c is the index of the class label starting from 0, and (x1, y1, x2, y2) are the
offsets of the top-left and bottom-right corners of the rectangle relative to the center point. The image
is: <image>”

Example 3. “For each object in the image that belongs to the {<expression>:<cls0>} category
set, please provide the class label (starting from 0) and the offsets from the center of a bounding
box that encloses the object. The corner offsets should be in the order of top-left and bottom-right,
and within the range <range>. The output should be in the format (c, x1, y1, x2, y2). The image is:
<image>”

A.4 Image Captioning

Example 1. “The image is <image>. Write a caption: ”

Example 2. “The image is <image>. Please describe this image: ”

Example 3. “With the objects in the <image>, please generate a caption for the image: ”

A.5 Visual Question Answering

Example 1. “The image is <image>. Please generate an answer according to the question:
<question>. ”

Example 2. “The image is <image>. Please answer the question <question> according to the
image. ”

Example 3. “With the objects in the <image>, <question>. ”

B Experimental Settings

B.1 Datasets

VisionLLM unifies the output formats of vision and language tasks as vocabulary generation, which
enables models to be jointly trained on a wide range of tasks. In the experiments, we investigate the
general modeling capacities of VisionLLM on five vision-centric tasks, including object detection,
instance segmentation, visual grounding, image captioning, and visual question answering.

For object detection and instance segmentation, COCO2017 [13] is used for training and evalua-
tion. For visual grounding, we combine the annotations of RefCOCO [27], RefCOCO+ [27] and
RefCOCOg [17] for training, resulting in over 120k referred objects in total. And our models are
evaluated on the validation set of RefCOCO. For image captioning and visual question answering,
we adopt COCO Caption [4] and LLaVA-Instruct-150K [14] as the training source. We evaluate
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the image captioning performance on the COCO Karpathy test split following common practice
[10, 23, 26]. We mainly use qualitative results to demonstrate the VQA capability of our model,
as LLaVA-Instruct-150K is not compatible with the standard VQA benchmark. These tasks differ
in their granularity, ranging from coarse-grained image level to fine-grained pixel level, enabling a
comprehensive evaluation of the model’s ability to adapt to different levels of customization through
language instructions.

B.2 Implementation Details

We implement two variants of VisionLLM with two image backbones, i.e., ResNet [8] and
InternImage-H [24]. ResNet-50 is initialized with ImageNet-1K [5] pre-trained weights. InternImage-
H is firstly pre-trained on ImageNet-22K and then trained on the detection task with Objects365 [20].
For the language-guided image tokenizer, we adopt BERT-Base [1] as the text encoder and De-
formable DETR (D-DETR) [28] to capture high-level information. We set the number of queries
M to 100, and the number of encoder/decoder layers to 6 for D-DETR. For the LLM, we employ
Alpaca-7B [21], a LLaMA [22] model fine-tuned with instructions, and equip it with LoRA [9] for
parameter-efficient fine-tuning.

The model is trained in two stages. In the first stage, we initialize the model with the pre-trained
weights of D-DETR, BERT, and Alpaca-7B, and train the visual backbone and the language-guided
image tokenizer, while freezing most parameters of the LLM except a few LoRA parameters. To
simplify the training complexity, in this stage, we mainly focus on object detection tasks with random
object categories and task descriptions. In the second stage, we freeze the visual backbone and
introduce the unified supervision of multiple tasks. Unless otherwise specified, the training runs for
50 epochs on 4× 8 NVIDIA A100 GPUs. AdamW [15] is used as the optimizer, with one sample per
GPU. We employ the cosine annealing schedule [16] as the learning policy, with an initial learning
rate of 2× 10−4. In addition to the experiments in the main paper, more experimental settings and
ablation studies are provided in the supplementary material due to space limitations.

C Output-Format-as-Query Decoding

The output-format-as-query decoding technique is designed to parse the user instructions into the
standard output format, which is compatible with the LLM-based decoder. In this section, we
introduce its details from data construction, training, and inference aspects.

C.1 Data Construction.

Following self-instruct [25], we create various user instructions for each task to simulate human
interaction. Here is an example:

System Message. “You are an AI assistant for translating the user instructions to the standard prompt.
Please help me parse the following input. Input: {input} Output:”

Object Detection. “Input: The image is: <image>. Please thoroughly examine the image and detect
all objects belonging to the category set ’person’: <c0>, ’bicycle’: <c1>, ’car’: <c2>, ’motorcycle’:
<c3>. Output: The bounding boxes are <cls> <x1> <y1> <x2><y2> <cls> <x1> <y1> <x2> <y2> ...
<cls> <x1> <y1> <x2><y2>.”

Image Caption. “Input: The image is: <image>. Please write a short caption for this image. Output:
The image shows that <bos>”

C.2 Training and Inference

Training. After obtaining the data of user instructions, we finetune Alpaca using the next token
prediction task for supervision, making it able to accomplish the output format parsing process.

Inference. As described in Sec. 3.4 and Figure 4, the inference process involves the following steps:

(1) We first use the fine-tuned Alpaca to parse the user instructions into standard output formats for
different tasks. For instance, in the case of object detection, the output format may be "The bounding
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Table A: Comparison of the time cost of different methods.

Method FPS Times per Image
VisionLLM-R50 5.1 img/s 197.4 ms

Pix2Seq-R50 4.4 img/s 227.3 ms
VisionLLM-ViT-B 4.0 img/s 251.7 ms
Pix2SeqV2-ViT-B 3.4 img/s 294.1 ms

boxes are <cls> <x1> <y1> <x2> <y2> <cls> <x1> <y1> <x2> <y2> ... <cls> <x1> <y1> <x2>
<y2>". For image captioning, the output format could be "The image shows that <bos>".

(2) The parsed outputs are then appended to the original user instructions as suffix texts. The extended
instructions are fed into the LLM-based decoder as queries.

(3) Since the output format contains special tokens, such as <cls>, <x1>, <y1>, <x2>, <y2>, and
<bos>, by treating these tokens as queries, the LLM-based decoder can predict the corresponding
results. This approach enables the detection task to run in parallel like the cloze task, while the
captioning task remains the next token prediction.

D Time Cost Analysis

As shown in Table A, we compare the inference speed of Pix2Seq and VisionLLM. Specifically,
we executed tests on a single A100 GPU, utilizing code and model weights from Pix2Seq’s official
repository. For both methods, we set the batch size as 1 and the image size as 1024x1024. We see
that although VisionLLM is equipped with a large LLM-based decoder, its inference speed is faster
than Pix2Seq. This shows that VisiomLLM has an acceptable inference speed thanks to the proposed
output-format-as-query decoding.

E Differences between VisionLLM and Pix2Seq Series

Although both VisionLLM and Pix2Seq v1/v2 employ coordinate discretization for object detection
tasks, they differ significantly in terms of task generality, model design, and decoding process.

Task Generality. VisionLLM allows users to customize vision tasks using language instructions,
supporting user-tailored output formats, task targets, task descriptions, etc. In contrast, Pix2Seq v1 is
a special model for object detection, and Pix2Seq v2 only supports pre-defined task switching with
learnable prompt tokens, lacking the flexibility of task customization.

Model Design. VisionLLM consists of a series of careful designs for open-ended tasks, including
(1) language instructions that align vision tasks with NLP tasks; (2) a flexible tokenizer guided by
natural language instructions (Pix2Seq v2 uses unreadable embedding for task switching); and (3) an
open-ended task decoder based on LLMs along with an improved decoding process.

Decoding Process. Pix2Seq struggles to converge in open-ended task scenarios with random user
instructions (see Table A(d) in supplementary material). VisionLLM solves this problem effectively
by using its output-format-as-query approach, which enables the model to work with the Hungarian
matching loss and handle highly random open-ended task instructions efficiently.

To sum up, VisionLLM and Pix2Seq are distinct models. Pix2Seq is a pioneering generalist model
but has limitations (see Figure 1(a)). VisionLLM explores new possibilities for end-to-end models
that unify vision and language tasks in the LLM era.

F Loss Function

VisionLLM consists of two model components: language-guided image tokenizer and LLM-based
open-task decoder. So the total loss L of our model can be written as:

L = Ltok + Ldec, (1)

where Ltok and Ldec denote the loss of language-guided image tokenizer and LLM-based open-task
decoder, respectively. We introduce the two loss functions as follows:
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Figure A: Comparison of two training schedules for VisionLLM. We found that a two-stage
training from easy to hard converges faster than a single-stage training.

Language-Guided Image Tokenizer. Different from the Q-Former [11], we use a supervision
method similar to that of Deformable DETR [28], but with a different loss Ltok: category-agnostic
classification (focal loss [12]) and center point regression (L1 loss). As explained in Sec. 3.3, our
image tokenizer extracts M image tokens T = {(ei, li)}Mi=1, each of which is represented by an
embedding ei and a location li (i.e., absolute coordinates of the center point).

LLM-Based Open-Ended Task Decoder. We handle two cases in decoding processing differently.
(1) For regular word prediction, we train with standard next-token supervision [22, 18, 2, 19]; (2) For
unordered set prediction (e.g., bounding boxes), we first output a sequence of tokens according to the
output format (see the output-format-as-query paradigm in Sec. 3.4), then use bipartite matching to
align the LLM-predicted outputs with the ground truths. Despite the differences, we use cross-entropy
to compute the loss Ldec in a unified way for both cases.

G Training Schedule

As shown in Figure A, to speed up the convergence of VisionLLM, we split the training schedule of
VisionLLM into two stages:

Stage 1. In this stage, we initialize the language-guided image tokenizer by loading the pre-trained
weights of Deformable DETR [28] and BERT [6]. Additionally, Alpaca [21] is employed as the
LLM-based open-ended task decoder. To align visual tokens with text tokens, we make the language-
guided image tokenizer trainable while freezing most parameters of the pre-trained Alpaca, with only
a few LoRA [9] parameters left tunable. We only focus on object detection in this stage to simplify
the training difficulty, with random task descriptions and object categories.

Stage 2. The second stage builds upon the model weights obtained from the first stage. For efficiency,
we freeze the visual backbone (e.g., ResNet [8]) in the language-guided image tokenizer. Notably,
this stage introduces the unified supervision of multiple tasks, including object detection, instance
segmentation, visual grounding, image captioning, and VQA, facilitating the model to leverage the
power of LLMs to understand and manipulate visual information holistically.

H More Ablation Studies

In this section, we provide more ablation studies and analysis of VisionLLM. Unless otherwise
specified, we use ResNet-50 [8] backbone and perform the ablation experiments for object detection
tasks with random task descriptions and object categories on COCO 2017 [13].

Randomness. In Table Ba, we examine the effect of introducing randomness during training for
VisionLLM, including randomness in task descriptions, object categories, and output formats (i.e.,
multi-task joint training). Initially, without any randomness, the model achieves a box AP of 45.2.
However, as randomness is gradually applied, interesting phenomena emerge: while there is a slight
decrease (45.2 → 44.6) in the AP of standard detection with the introduction of randomness, the
overall benefits of enhanced task customization and open-ended capabilities outweigh this minor
trade-off. Overall, introducing randomness during training in VisionLLM positively impacts its
capacity for open-ended tasks and customization.
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Table B: More ablation studies for VisionLLM.

(a) Effect of randomness.

Randomness AP
None 45.2
+ Random Task Description 45.1
++ Random Object Category 44.8
+++ Random Output Format 44.6

(Multi-task Joint Training)

(b) Effect of LoRA [9].

LoRA Randomness AP
✗ ✗ 45.2
✗ ✓ 1.2
✓ ✓ 44.8

(c) Effect of the number
of image tokens.

#Tokens AP
50 44.5

100 44.8
200 45.1
300 45.2

(d) Effect of Seq2Seq.

Seq2Seq AP
✓ -
✗ 44.8

(e) Large vocabulary object detection.

Dataset #Classes AP
COCO 80 44.8
LVIS 1203 18.9

Low-Rank Adaptation (LoRA). As shown in Table Bb, when randomness is not applied, the
model achieves 45.2 box AP without using LoRA [9]. However, when randomness is employed,
it is observed that the model fails to converge without using LoRA. Conversely, when LoRA and
randomness are used together, the model is able to converge. This indicates that LoRA plays a crucial
role as a bridge between the language and visual tokens, enabling effective alignment between the
two modalities and improving the convergence of the overall system.

Number of Image Tokens. We vary the number of image tokens from 50 to 300 to investigate
their impact on the performance. Results are presented in Table Bc. As the number of image tokens
increases, the performance continues to improve. This makes sense because a larger number of
image tokens provides a more detailed description of the image content. Considering computational
complexity, we adopted 100 image tokens in our experiments.

Robustness to Prompt Changes. Since VisionLLM is trained with random prompts, including
random task descriptions and random categories, one may ask whether there is a large performance
variance across different prompts. To validate the stability of VisionLLM, we conduct experiments
using eight different prompts. The first six prompts employ different task descriptions, while the last
two prompts involve random category orders. In the case of random category orders, we map the
categories back to the COCO standard category order for evaluation. As shown in Figure B, most
evaluation results are distributed closely to 44.8 AP. The performance differences among prompts are
marginal, demonstrating that VisionLLM is robust to different prompts.

Instruction Following Capability. As shown in Figure C, when the prompt only contains 40 classes,
the performance for these categories remains normal, while the performance for the remaining
categories is close to zero. This indicates that VisionLLM can dynamically detect objects based on
the given class set <class> in instructions while disregarding the other classes that are not mentioned.
This result highlights the flexibility of VisionLLM in adhering to instructions.

Output-Format-As-Query vs. Seq2Seq. In VisionLLM, we introduce the output-format-as-query
framework for LLM decoder. Alternatively, we also experiment with the sequence generation method
like Pix2Seq [3] for object detection with random task descriptions and object categories. However,

1 2 3 4 5 6 7 8

44.8 44.7 44.8 44.7 44.8 44.7 44.7 44.8

Prompt

A
P

Figure B: Evaluation results using eight different prompts. The first six prompts use different task
descriptions of object detection, while the last two prompts employ random category orders. These
results show that the performance of different prompts is similar, only a 0.1 AP gap is observed.
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(a) We randomly select 40 classes in random order to form the category set.
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(b) We randomly change the order of 80 classes to form the category set.

Figure C: Per-category AP on COCO dataset. We randomly select some categories to form the
category set <class> in language instructions.

#Points=8 #Points=14 #Points=16 #Points=24

Figure D: Customization of instance masks using the different number of points. Notably, we
only modify the output format mentioned in the prompt, i.e. the number of segmentation points. For
more details, please see the example prompts provided in Sec. A.2.

we find that the loss is hard to converge in this paradigm, which indicates that the seq2seq decoding
may need a more detailed design or a longer training schedule for the open-ended visual tasks, while
the proposed output-format-as-query framework is more effective for open-ended tasks.

Large-Vocabulary Object Recognization. To validate the capacity of VisionLLM in the large-
vocabulary scenario, we further conduct the experiments on the challenging dataset LVIS [7] with
1203 categories. Due to the limited number of language tokens, we randomly select 80 classes
for training in each iteration. During inference, we divide the 1203 categories into 16 groups and
predict the results in a sliding-window manner. As shown in Table Be, without tricks like federal loss,
VisionLLM-R50 can achieve 18.9 mAP on LVIS.
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Instruction: “Identify the objects in the image that belong to 
{‘person’: <c0>, ..., ‘frisbee': <c29>, ...} and draw a bounding 
box around each one. The output should be a list of tuples in 
the format (c, x1, y1, x2, y2), where ‘c’ represents the index 
of the class label starting from 0, and x1, y1, x2, y2 are the 
offsets of the top-left and bottom-right corners of the box 
relative to the center point. The coordinates should be 
within <range>. The image is: <image>”

Instruction: “Identify the objects in the image that belong to 
{‘person’: <c0>, ‘bicycle’: <c1>, ..., ‘backpack': <c24>, ..., 
‘toothbrush’: <c79>} and draw a bounding box around each
one. The output should be a list of tuples in the format (c, x1, 
y1, x2, y2), where ‘c’ represents the index of the class label 
starting from 0, and x1, y1, x2, y2 are the offsets of the top-
left and bottom-right corners of the box relative to the 
center point. The coordinates should be within <range>. The 
image is: <image>”

Instruction : “Identify the objects in the image that belong 
to {‘frisbee': <c0>} and draw a bounding box around each
one. The output should be a list of tuples in the format (c, x1, 
y1, x2, y2), where ‘c’ represents the index of the class label 
starting from 0, and x1, y1, x2, y2 are the offsets of the top-
left and bottom-right corners of the box relative to the 
center point. The coordinates should be within <range>. The 
image is: <image>”

Instruction: “Identify the objects in the image that belong to 
{‘bicycle’: <c0>, ‘surfboard’: <c1>, ‘sports ball': <c2>, 
‘backpack’: <c3>, ‘the man wearing blue T-shirt’: <c4>} and 
draw a bounding box around each one. The output should be 
a list of tuples in the format (c, x1, y1, x2, y2), where ‘c’
represents the index of the class label starting from 0, and x1, 
y1, x2, y2 are the offsets of the top-left and bottom-right 
corners of the box relative to the center point. The 
coordinates should be within <range>. The image is: <image>”

Figure E: Customization of category set. These results demonstrate that VisionLLM can correctly
detect the specified objects according to the category set <class> provided in language instructions.

I Qualitative Analysis

Customization of Segmentation Points. In this experiment, we focus on modifying the output
format mentioned in the prompt, specifically the number of points for instance segmentation (see
Sec. A.2). The results are visualized in Figure D. Remarkably, by increasing the number of points
for segmentation, we observe that the model successfully predicts more refined object masks. This
validates the capability of our method to precisely customize the output format, showcasing fine-
grained control over the segmentation process.

Customization of Category Set. We change the content of the category set <class> in language
instructions and visualize the predictions in Figure E. It is observed that the model can correctly
predict the object category according to the provided category set. This demonstrates that VisionLLM
has a strong capacity to understand and reason over the semantic information of language instructions,
which allows it for flexible category customization in open-vocabulary scenarios.
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Instruction: “The image is: <image>. Analyze the image in a 
comprehensive and detailed manner.”
VisionLLM: “The image features a busy city street with a 
large red double-decker bus driving down the road. There 
are several people walking on the sidewalk, some of whom 
are carrying backpacks. The bus is positioned towards the 
left side of the image. There are several people walking 
along the sidewalk, with some closer to the bus and others 
further away. The overall atmosphere suggests a busy urban 
environment with people going about their daily routines.”

VisionLLM: “The image features a large, open-air market 
filled with a variety of fruits and vegetables. There are 
numerous mangoes, watermelons and apples displayed in 
the market, with some fruits placed closer to the foreground 
and others further back. The market is bustling with activity 
as people can be seen browsing and purchasing the fresh 
produce. The market is likely a popular destination for those 
seeking a fresh and healthy diet.”

Instruction: “The image is: <image>. Write a detailed
description of the given image.”

Instruction: “The image is: <image>. Write a short description of the given image.”
VisionLLM: “The image features a lively open-air market with a variety of fruits and vegetables. People 
are busy browsing and buying fresh produce.”

(a) Image description with controllable text length

Instruction: “The image is: <image>. Please generate an 
answer according to the question: what reasons could there 
be for the cat squatting on the shoes?”
VisionLLM: “There could be several reasons. One possibility 
is that the cat is seeking warmth or comfort, as shoes can 
provide a cozy and warm surface for the cat to rest on. 
Another reason could be that the cat is seeking attention or 
affection from its owner, who is standing nearby. Cats are 
known to be curious creatures, and they may be seeking 
attention or attention from their owners.”

VisionLLM: “The working environment in this office space 
appears to be open, spacious, and well-equipped. There are 
several desks set up for employees, providing ample 
workspace for each individual. The office features a modern 
and contemporary design, which suggests a creative and 
collaborative work environment. The presence of several 
chairs and the organization of the office, including the 
laptops and monitors, indicate that the space is well-
maintained and conducive to productivity. Overall, the office 
appears to be a pleasant and efficient work environment for 
its employees.”

Instruction: “The image is: <image>. What do you think of 
the working environment here?”

(b) Visual question answering with reasoning

Figure F: Visualization of the image description and VQA capabilities of VisionLLM.

Image Description & VQA. Benefiting from the power of LLMs, VisionLLM exhibits a strong
ability in generating long descriptions for images and answering visual questions with complex
reasoning. We show the examples in Figure F.

9



References
[1] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video

understanding? In International Conference on Machine Learning, 2021. 3

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in Neural Information Processing Systems, 2020. 5

[3] Ting Chen, Saurabh Saxena, Lala Li, David J Fleet, and Geoffrey Hinton. Pix2seq: A language modeling
framework for object detection. arXiv preprint arXiv:2109.10852, 2021. 6

[4] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv preprint
arXiv:1504.00325, 2015. 2

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2009. 3

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. 5

[7] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance segmentation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 5356–5364,
2019. 7

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. 3, 5

[9] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021. 3, 5, 6

[10] Hao Li, Jinguo Zhu, Xiaohu Jiang, Xizhou Zhu, Hongsheng Li, Chun Yuan, Xiaohua Wang, Yu Qiao,
Xiaogang Wang, Wenhai Wang, et al. Uni-perceiver v2: A generalist model for large-scale vision and
vision-language tasks. arXiv preprint arXiv:2211.09808, 2022. 3

[11] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training
with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597, 2023. 5

[12] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2017. 5

[13] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European Conference on
Computer Vision. Springer, 2014. 2, 5

[14] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv preprint
arXiv:2304.08485, 2023. 2

[15] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations. 3

[16] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 3

[17] Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin Murphy.
Generation and comprehension of unambiguous object descriptions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016. 2

[18] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding
by generative pre-training. OpenAI, 2018. 5

[19] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. 5

[20] Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian Sun.
Objects365: A large-scale, high-quality dataset for object detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019. 3

10



[21] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-following model. Stanford Center for
Research on Foundation Models. https://crfm. stanford. edu/2023/03/13/alpaca. html, 2023. 3, 5

[22] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023. 3, 5

[23] Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren
Zhou, and Hongxia Yang. Unifying architectures, tasks, and modalities through a simple sequence-to-
sequence learning framework. arXiv preprint arXiv:2202.03052, 2022. 3

[24] Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi Li, Xizhou Zhu, Xiaowei Hu, Tong Lu, Lewei
Lu, Hongsheng Li, et al. Internimage: Exploring large-scale vision foundation models with deformable
convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023. 3

[25] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions. arXiv
preprint arXiv:2212.10560, 2022. 1, 3

[26] Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei Hu, Faisal Ahmed, Zicheng Liu, Yumao Lu, and
Lijuan Wang. Unitab: Unifying text and box outputs for grounded vision-language modeling. In European
Conference on Computer Vision, pages 521–539. Springer, 2022. 3

[27] Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling context in
referring expressions. In European Conference on Computer Vision. Springer, 2016. 2

[28] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr: Deformable
transformers for end-to-end object detection. In International Conference on Learning Representations,
2021. 3, 5

11


