
SHOT: Suppressing the Hessian along the
Optimization Trajectory for Gradient-Based

Meta-Learning

JunHoo Lee, Jayeon Yoo, and Nojun Kwak∗
Seoul National University

{mrjunoo, jayeon.yoo, nojunk}@snu.ac.kr

Abstract

In this paper, we hypothesize that gradient-based meta-learning (GBML) implicitly
suppresses the Hessian along the optimization trajectory in the inner loop. Based on
this hypothesis, we introduce an algorithm called SHOT (Suppressing the Hessian
along the Optimization Trajectory) that minimizes the distance between the param-
eters of the target and reference models to suppress the Hessian in the inner loop.
Despite dealing with high-order terms, SHOT does not increase the computational
complexity of the baseline model much. It is agnostic to both the algorithm and
architecture used in GBML, making it highly versatile and applicable to any GBML
baseline. To validate the effectiveness of SHOT, we conduct empirical tests on stan-
dard few-shot learning tasks and qualitatively analyze its dynamics. We confirm our
hypothesis empirically and demonstrate that SHOT outperforms the corresponding
baseline. Code is available at: https://github.com/JunHoo-Lee/SHOT

1 Introduction

With the advent of deep learning revolution in the 2010s, machine learning has widened its application
to many areas and outperformed humans in some areas. Nevertheless, machines are still far behind
humans in the ability to learn by themselves, in that humans can learn concepts of new data with
only a few samples, while machines cannot. Meta-Learning deals with this problem of learning to
learn. An approach to address this issue is the metric-based methods Chen and He [2021], Snell et al.
[2017], Bromley et al. [1993], Grill et al. [2020], Chen et al. [2020], Sung et al. [2018], Radford et al.
[2021], which aims to learn ‘good‘ kernels in order to project given data into a well-defined feature
space. Another popular line of research is optimization-based methods Finn et al. [2017], Ravi and
Larochelle [2017], Rusu et al. [2018a], so-called Gradient-Based Meta-Learning (GBML), which
aims to achieve the goal of meta-learning by gradient descent.

As the most representative GBML methods applicable to any model trained with the gradient descent
process, model-agnostic meta-learning (MAML) Finn et al. [2017] and its variations Raghu et al.
[2019], Oh et al. [2020], Rusu et al. [2018b] exploit nested loops to find a good meta-initialization
point from which new tasks can be quickly optimized. To do so, it divides the problem into two loops:
the inner loop (task-specific loop) and the outer loop (meta loop). The former tests the meta-learning
property of fast learning, and the latter moves the meta-initialization point by observing the dynamics
of the inner loop. The general training is performed by alternating the two loops. In this paper,
by focusing on the inner loop of GBML methods, we propose a new loss term for the outer loop
optimization.

To properly evaluate the meta-learning property in the inner loop, GBML samples a new problem
for each inner loop. Fig. 1 shows how the problem is formulated. For every inner loop, the task is

∗Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

θ̃⋆0

θ̃⋆1
θ̃⋆2

θ⋆0

θ⋆1

θ⋆2

Outer Loop
Early Inner Loop
‘Well learned’ Inner Loop

θ0
θ⋆

̂θ⋆

θ0 θ⋆

Figure 1: For the i-th inner loop in meta-
learning, the task, τi, is sampled from the
task distribution: N (e.g. 3) classes consti-
tuting each task are randomly sampled with a
random configuration order, meaning that the
model does not have any information before it
retrieves an unseen task.

sampled from the task distribution. The classes constituting each task are randomly sampled, and the
configuration order (class order) is also randomized. This means that the model tackles an entirely
new task at the beginning of each inner loop. Since the task is unknown and the model has to solve
the problem within a few gradient steps (some extreme algorithms Raghu et al. [2019], Oh et al.
[2020] solve the problem in one gradient step), the model typically exploits large learning rates to
adapt quickly. For example, MAML Finn et al. [2017] and ANIL Raghu et al. [2019] use significantly
larger learning rates of 0.4 and 0.5 respectively, for the inner loop compared to that of the outer loop
(10−3). These rates are much larger than those used in modern deep learning techniques such as ViT
Dosovitskiy et al. [2020], which typically use rates in the order of 10−6. However, using such large
learning rates can lead to instability due to high-order terms like the Hessian LeCun et al. [2015].
The issue of instability caused by high-order terms is particularly evident during the initial training
phase. To mitigate this problem, some deep-learning methodologies employ a heuristic that utilizes a
smaller learning rate at the beginning Dosovitskiy et al. [2020], He et al. [2018]. Given that GBML
goes through only several optimizations in the entire inner loop, GBML’s inner loop corresponds to
the initial training phase. Therefore, we anticipate that the problem caused by high-order terms may
be severe with a large learning rate in each inner loop. However, it is noteworthy that GBML appears
to perform well despite these potential issues.

In this paper, we investigate the inner loop of GBML and its relationship with the implicit risk of
using a large learning rate with a few optimization steps in the inner loop. We observe that the
gradient of a GBML model remains relatively constant within an inner loop, indicating that the
Hessian along the optimization trajectory has a minimal impact on the model’s dynamics as learning
progresses. We hypothesize that this phenomenon is a key property that enables GBML to mitigate
the risk of using a large learning rate in the inner loop.

Our hypothesis that GBML implicitly suppresses the Hessian along the optimization trajectory
suggests a desirable property for a GBML algorithm. By explicitly enforcing this property instead
of relying on implicit suppression, we anticipate that the model will achieve faster convergence and
superior performance. However, enforcing this property is not trivial as it involves dealing with
high-order terms, which naturally require a significant amount of computation. In this paper, we
propose an algorithm called Suppressing the Hessian along the Optimization Trajectory (SHOT)
that suppresses the Hessian in the inner loop by minimizing the distance of the target model from a
reference model which is less influenced by the Hessian. Our algorithm can enforce the Hessian to
have desirable properties along the inner loop without much increasing the computational complexity
of a baseline model. More specifically, SHOT only requires one additional forward pass without any
additional backward pass in general cases.

Our algorithm, SHOT, is agnostic to both the algorithm and architecture used in GBML, making
it highly versatile and applicable to any GBML baseline. To validate the effectiveness of SHOT,
we conducted empirical tests on standard few-shot learning tasks, including miniImagenet, tiered-
Imagenet, Cars, and CUB Vinyals et al. [2016], Ren et al. [2018], Krause et al. [2013], Welinder
et al. [2010]. Furthermore, we tested SHOT’s cross-domain ability by evaluating its performance on
different benchmarks. Also, SHOT can be applied to one-step or Hessian-free baselines, acting as a
regularizer. Our results demonstrate that SHOT can significantly boost GBML in an algorithm- and
architecture-independent manner. Finally, we analyzed the dynamics of SHOT and confirmed that it
behaves as expected.

2 Related Works

GBML, or optimization-based meta-learning, is a type of methodology which wants to mimic
people’s rapid learning skill. Thus, a model should learn with a small number of samples and gradient

2

steps. To achieve this property, Ravi and Larochelle [2017] tried to save meta-data to recurrent
networks. Recently, MAML-based methods Finn et al. [2017], Rajeswaran et al. [2019], Rusu et al.
[2018b], Baik et al. [2020], Bernacchia [2021] are typically considered as a synonym of GBML
consisting of nested loops: outer loop (meta-loop) and inner loop (task-specific loop). They sample
few-shot classification tasks to test the meta-learning property in the inner loop and update the
meta-initialization parameters in the outer loop with SGD. To learn rapidly, they exploit a more-than-
thousand times larger learning rate in the inner loop compared to modern deep learning settings such
as ViT Dosovitskiy et al. [2020] and CLIP Radford et al. [2021]. Although some researches have
proved their convergence property Fallah et al. [2020], Wang et al. [2020], they set infinitesimal
size of learning rate to prove convergence. Fallah et al. [2020] set the learning rate considering the
Hessian i.e., setting the learning rate small enough so that the higher-order terms do not affect the
convergence and Wang et al. [2020] proved the convergence with the assumption that the learning
rate goes to zero. Although some lines of research have shown algorithms dealing with learning rates
Baik et al. [2020], Bernacchia [2021], they did not explain the success of a large learning rate. Baik
et al. [2020] used an additional model to predict a proper task-specific learning rate. ANIL (Almost
No Inner Loop) Raghu et al. [2019] and BOIL (Body Only Inner Loop) Oh et al. [2020] tried to
explain GBML with the dynamics of the encoder’s output features. Although both used the same
feature-level perspective, they argued in exactly different ways. ANIL Raghu et al. [2019] argued
feature reuse is an essential component, while BOIL Oh et al. [2020] said that feature adaption is
crucial. Both algorithms can be considered as a variant of preconditioning meta-learning since they
freeze most layers in the inner loop, thereby frozen layers can be considered as warp-parameters
Flennerhag et al. [2019]. Our SHOT can be viewed as a variant of preconditioning, as we hypothesize
that there exists a suitable condition of meta-parameter that can adapt well to a given meta-learning
task. However, unlike previous work, we define the condition of the meta-parameter based on the
curvature of the loss surface. Additionally, our algorithm does not require any specific architecture
such as warp-parameters, making it applicable to any architecture and any GBML algorithm. Finally,
there exists some paper which delt with curvature, those all required some special architecture Simon
et al. [2020], or explicit calculation of the Hessian Hiller et al. [2022], Park and Oliva [2019]. In
contrast, we propose much weaker condition and does not require specific architecture. We only
suppress the Hessian along the inner loop. In addition, we discuss in the Appendix the possibility of
integrating the hypotheses proposed in ANIL Raghu et al. [2019] and BOIL Oh et al. [2020] into our
SHOT framework.

Optimization methods based on second-order or first-order derivatives that take curvature into account
is a vast area of research. Although they incur a higher computational cost than vanilla SGD, they
have been demonstrated to exhibit superior convergence properties. Several studies have investigated
the curvature of the loss surface while maintaining the first-order computational costs. Natural
gradient descent Bonnabel [2013], a type of Riemannian gradient descent employing the Fisher
information metric as a measure, is coordinate-invariant, and exhibits better convergence properties
than vanilla gradient descent. Given that GBML utilizes relatively fewer samples, incorporating
second-order terms is computationally more feasible. As a result, there is a growing body of research
that employs natural gradient descent in the inner loop. Additionally, the SAM optimizer Foret et al.
[2020] implicitly leverages curvature by iteratively searching for flat minima during training, leading
to better generalization properties than SGD. This means they find a point where the Hessian is
close to zero around a local minimum. Our method can be interpreted as the variation of Knowledge
Distillation Hinton et al. [2015]. We reduced the distance between models, slow model and fast
model. However, we do not need any pretrained model. Those models share same meta-initialization
parameter.

As our goal is to find a proper meta-initialization point that is not affected by the Hessian along the
inner loop, our proposed algorithm, SHOT, also deals with the Hessian of the loss surface. However,
unlike SAM optimizer Foret et al. [2020], we do not seek a point where the Hessian is zero in any
direction. We rather seek a point where the Hessian does not take effect only along the optimization
trajectory in the inner loop. By using this restriction, we give a looser constraint. Also, while the
SAM optimizer has a nested loop to find a proper point, SHOT does not need any iteration in a single
optimization step. Also, although natural gradient descent regards curvature like our algorithm, our
SHOT does not calculate the exact Hessian during inference time as we precondition the Hessian and
only consider the Hessian’s effect along the optimization trajectory. In this paper, we aim to shed
light on how GBML’s inner loop works. Through an analysis of the curvature of the loss surface in
the inner loop, we hypothesize that the primary role of the outer loop is to implicitly regulate the

3

Figure 2: This figure provides the concept of the proposed SHOT.
Specifically, a reference model (θ̂?) is initialized with the same
support set and starting point as our model (θ?), but undergoes sig-
nificantly more optimization steps. The outer loop then minimizes
the distance between the two models.

curvature of the inner loop’s loss surface. To reinforce this property by explicitly incorporating a
corresponding loss term in the inner loop, we propose an algorithm called SHOT, which takes into
account the curvature of the loss surface in the inner loop and aims to enhance its generalization
properties and dynamics by controlling the curvature itself. We provide empirical evidence supporting
our hypothesis through the success of SHOT. Additionally, we offer a new interpretation of GBML as
a variant of MBML in the Appendix.

3 Preliminaries: GBML

We consider the few-shot classification task of N -way K-shot, which requires learning K samples
per class to distinguish N classes in each inner loop. In few-shot GBML, we can apply gradient
descent for only a limited number of steps for fast adaptation.

Let f(x|θ) ∈ RN be the output of the classifier parameterized by θ for a given input x. In this setting,
f(·) can be considered as the logit before the softmax operation. The model parameters θ are updated
by the loss, L(x, y|θ) = D(s(f(x|θ)), y), where x and y are the input and the corresponding label,
s(·) is the softmax operation and D(·, ·) is some distance metric.

As shown in Fig. 1, at each inner loop, we sample a task τ ∼ p(T), an N -way classification problem
consisting of two sets of labeled data: X τs (support set) and X τt (target set). In the inner loop, the
goal is to find the task-specific parameter θ?τ which minimizes the loss L for the support set X τs given
the initial parameter θ0 as follows:

Inner Loop: θ?τ = argmin
θ

∑
(x,y)∈X τs

L(x, y|θ; θ0). (1)

Normally, θ?τ is obtained by SGD [Schmidhuber, 1987, Rusu et al., 2018a, Oh et al., 2020, Raghu
et al., 2019]: θk+1 = θk − α∇θL(θk), where k indicates an inner loop optimization step and α is a
learning rate. We use T steps in the inner loop.

Then, for the outer loop, we optimize the initialization parameters θ0 which improve the performance
of θ?τ on Xt as follows:

Outer Loop: θ?0 = argmin
θ0

∑
τ

∑
(x,y)∈X τt

L(x, y|θ?τ ; θ0). (2)

Although GBML gained its success with this setting, this success is quite curious: since N classes
constituting each task are randomly sampled and the configuration (class) order is also random, ‘What
characteristics of meta-initialization θ0 make GBML work?’ remains quite uncertain.

4 Optimization in GBML

4.1 Hypothesis: Outer loop implicitly forces inner loop’s loss surface linear

The perspective of gradient flow provides a way to understand the dynamics of optimization. In
this view, the evolution of model parameters is seen as a discretization of continuous time evolution.
Specifically, the equation governing the model parameters is θ̇ = −∇θL(θ), where θ represents the
model parameter and L(θ) is the loss function. With gradient flow, we can characterize our models
into two principal types: the Fast Model and the Slow Model. These definitions emerge from our
observation of the models’ convergence timelines. Considering the terminal point in time as 1 and
the initialization as 0, we deduce the timestamp of a singular learning step as 1

N , where N signifies
the number of steps.

4

Figure 3: (left) Averaged cosine similarity between the overall parameter difference (θ?τ − θ0) and
each step’s gradient (∇θkL(θk)) in the inner loop over the training (meta) epochs. The cosine
similarity increases as training progresses, indicating that the gradient does not vary much during an
inner loop. (right) Validation accuracy vs. training epoch. To ensure a fair comparison, we shifted
SHOTp for 30 epochs as it pretrains for 30 epochs with LSHOT only. For this figure, we trained
SHOTr for 300 epochs to compare it at a glance. Our results show that SHOT converges much
faster than the baseline. Additionally, we observed a strong correlation between cosine similarity and
validation accuracy.

Fast Model: A model with a relatively small value of N is should converge rapidly. A salient
exemplar is GBML’s inner loop, typically evolving within a minuscule span of 1 to 5 optimization
steps. Such rapid convergence necessitates an elevated learning rate.

Slow Model: In contrast, models with a larger value of N take longer to converge. Traditional deep
learning models fall into this category. They require many gradient steps and a lower learning rate.

This separation makes clear the differences between typical deep learning models and GBML’s inner
loop. However, we should note that GBML’s high learning rate approach can arise some issues.

∫ 1

0

∇L(θ(t)) · ∇L(θk)dt ≈
∫ 1

0

‖∇L(θk)‖22 − αt∇L(θk)TH(θk)∇L(θk)dt > 0, (3)

Gradient descent is the notion of treating the model as a (locally) linear approximation, adjusting
its parameters in a direction where the loss decreases most rapidly. If a model adheres to Eq. 3,
we can expect the gradient descent effective in that context. (Refer to Appendix A for the detailed
proof.) However, the inner loop of GBML can be characterized as a fast model. This implies a
pronounced influence of the Hessian in the optimization dynamics. Due to this, we cannot guarantee
loss decreases in the inner loop. In this paper, We argue that the outer loop’s primary role in GBML
is to counteract this influence of the Hessian. In more specific terms, it aims to attenuate the impact
of H(θk)∇L(θk) on the optimization trajectory.

Fig. 3 supports our claim. As mentioned before, the optimization steps are a discrete representation
of the gradient over time. This allows us to track how the gradient changes as time progresses. In
meta-learning, the gradient’s direction and magnitude do not change significantly as time progresses.
This is because meta-learning algorithms are designed to learn how to quickly adapt to new tasks. By
learning how to adapt to new tasks, meta-learning algorithms can avoid the need to learn from scratch
on each new task. In contrast, in conventional deep learning, the gradient’s direction and magnitude
change significantly as time progresses. This is because conventional deep learning algorithms are not
designed to learn how to quickly adapt to new tasks. Instead, conventional deep learning algorithms
are designed to learn a general model that can perform well on a wide variety of tasks. The difference
in how the gradient changes over time between meta-learning and conventional deep learning is one
of the key factors that explains why meta-learning algorithms are able to learn new tasks so quickly.

It seems clear that Eq. 3 plays a crucial role in GBML, suggesting that we can enhance its performance
and dynamics by explicitly inducing the model to meet this condition. However, the challenge remains:
how can we directly reduce the Hessian?

5

Table 1: Comparison of the test accuracies (%) of a 4-convolutional network with random initialization
and SHOT. SHOT does not receive label information from the outer loop. (i.e., SHOTr without
supervision) The numbers in parentheses indicate the number of shots.

meta-train miniImageNet Cars

meta-test miniImageNet tieredImageNet Cars Cars CUB miniImageNet

Random-init (1) 21.36 ± 0.01 21.20 ± 0.01 21.10 ± 0.93 21.20 ± 0.93 21.62 ± 0.02 21.36 ± 0.01
SHOT-init (1) 24.62 ± 0.04 23.80 ± 0.06 24.63 ± 0.04 25.84 ± 0.06 25.86 ± 0.03 26.48 ± 0.04

Random-init (5) 21.29 ± 0.09 21.72 ± 0.19 21.58 ± 0.37 21.58 ± 0.04 22.31 ± 0.06 21.28 ± 0.09
SHOT-init (5) 27.32 ± 0.59 31.28 ± 1.68 29.10 ± 1.81 28.28 ± 0.79 30.34 ± 2.69 26.61 ± 1.05

4.2 SHOT (Suppressing Hessian along the Optimization Trajectory)

In this part, we present our novel algorithm, Suppressing Hessian along the Optimization Trajectory
(SHOT), which is the main contribution of our paper. SHOT is designed to obviate the effect of the
Hessian along the inner loop while maintaining the order of computation cost.

As previously discussed, directly reducing the Hessian is impractical. However, we can reduce
the effect of the Hessian along the optimization trajectory, specifically by minimizing the product
H(θt)∇L(θt), which is in line with the condition expressed in Eq. 3 and computationally feasible.
To achieve this, we define a measure that quantifies the effect of the Hessian along the optimization
trajectory.

To do so, we first create a reference model that is not influenced by the Hessian. We obtain this
reference model by increasing the number of optimization steps. The intuition behind this is that
as we increase the number of optimization steps, the smaller the discretized step becomes, which
means that the model with many optimization steps is less influenced by the Hessian. We then
define the measure as the distance between the target model (a model with few optimization steps,
θt) and the reference model (a model with many optimization steps, θr). This distance metric,
denoted as D(θt, θr), quantifies the distortion along the optimization path and evaluates the deviation
from the ideal optimization trajectory. By minimizing this measure, we can achieve our goal of
reducing the effect of the Hessian along the optimization trajectory. We will call this method as
SHOT (Suppressing Hessian along the Optimization Trajectory) which adds the following loss term
in the outer loop of a conventional GBML algorithm:

LSHOT = D(θTt , θ
R
r). (4)

Here, T and R denote the number of steps in an inner loop used to obtain the target and reference
model respectively. In this paper, we used KL divergence (KL(s(f(θTt))|s(f(θRr))) as a distance
metric D, but we also conducted experiments with other distance metrics such as L2(||θTt − θRr ||22)
and cross-entropy (−

∑
c s(f(θ

T
t))c log s(f(θ

R
r))c, as shown in Table. 6. We set T < R because our

intention is to measure distortion caused by the Hessian in the inner loop. As we increase the number
of optimization steps in the inner loop, the effect of distortion by the Hessian decreases. Therefore,
we could use SHOT as a pseudo-measure of distortion in the inner loop caused by the Hessian. To
match the scale of distribution between θTt and θRr , we set α in Eq. 1 as αr = T

Rαt.

Reducing the effect of Hessian along the optimization in the inner loop, as measured by Eq. 4, can
lead to faster convergence and better performance. By minimizing the deviation from the ideal
optimization trajectory, SHOT can effectively enforce the condition expressed in Eq. 3, which is
critical for the success of GBML. As shot is the measure of distortion in the whole trajectory of an
inner loop. We use SHOT at the outer loop, where scoring of each optimization trajectory is done.

Table 1 highlights the importance of distortion in GBML. We compared the performance of a
randomly-initialized model with that of a lower-distortion-initialized model, where we only reduced
the distortion introduced in Eq. 4 in the outer loop. As our SHOT loss is self-supervisory that can
be applied without target class labels, no target labels are given here. The results demonstrate that
the lower-distortion-initialized model outperforms the randomly-initialized model, indicating that
distortion is a crucial factor in GBML. This also suggests that we can generally improve GBML by
incorporating our loss term, SHOT.

6

4.3 SHOT can be used as a regularizer or meta-meta-initializer in the outer loop.

One potential approach to incorporating SHOT is to use it as a regularizer in GBML. This approach
involves adding SHOT to the loss function of the outer loop during training, thereby leveraging it as a
regularizer reducing the effect of the Hessian along the optimization trajectory. Alternatively, SHOT
can be utilized as a meta-meta-initializer as is used to obtain Table 1. In this approach, the entire
model is pre-trained with SHOT, i.e., The outer loss is substituted with LSHOT without utilizing any
labeling information. Then the model is trained with the original loss function. However, there is
a vulnerability to homogeneous corruption, where the loss goes to zero only if θt and θr produce
the same output of all inputs. As this phenomenon is trivial in the self-supervised learning area, we
drew inspiration from BYOL Grill et al. [2020]. To address this issue, we added a projector to the
reference model, while the target remained the same. We also augmented X τt . After pre-training
with SHOT, we started training by loading the best model with the highest validation accuracy. To
differentiate between SHOT utilized as a regularizer and SHOT utilized as a meta-meta-initializer,
we denote them as SHOTr and SHOTp, respectively.

4.4 SHOT does not require any computation burden

Several meta-learning algorithms have already assumed linearity in the inner loop. For example, Fo-
MAML and Reptile Finn et al. [2017], Nichol et al. [2018] proposed Hessian-Free GBML algorithms
that both assumed linearity in the inner loop. Additionally, ANIL Raghu et al. [2019] proposed a
feature reuse concept that allows for translation to zero distortion in the inner loop. However, none
of these studies explicitly argued that GBML implicitly suppresses the Hessian in the inner loop as
an inductive prior, nor did they propose an algorithm that controls the Hessian. Our algorithm is
similar to the ‘SAM’ optimizer Foret et al. [2020] or natural gradient descent Bonnabel [2013]. Like
SAM and natural gradient descent, our algorithm searches for a good initialization point based on
its curvature. However, SHOT finds it without much increasing the computational cost compared
to normal gradient descent, which is a notable advantage over SAM or natural gradient descent.
Although SAM uses a first-order computation term, it searches for flat minima by iteratively adding
noise to each point. Natural gradient descent exploits the Fisher metric, which is a second-order
computation cost.

On the other hand, we can make SHOT not give any computation burden. When we set the reference
model θr to exploit the same number of optimization steps in the inner loop as the baseline model and
the target model θt exploits one optimization step in the inner loop, because both models share the
same initialization point θ0, i.e., θ0t = θ0r . θt can be obtained by calculating the first optimization step
of θr. Therefore, SHOT does not require any additional backpropagation. What we require is only
one more inference at the endpoint θTt for SHOTr. Also, even if we set θr to have more optimization
steps than the baseline model and set θt to have the same number of optimization steps as the baseline
model, the computation cost at test time is unchanged as it is only used in the training phase.

5 Experiments

Datasets Our method is evaluated on miniImageNet [Vinyals et al., 2016], tieredImageNet Ren
et al. [2018], Cars Krause et al. [2013], and CUB Welinder et al. [2010] datasets. miniImageNet and
tieredImageNet are subsets of ImageNet Russakovsky et al. [2015] with 100 classes each and can be
considered as general datasets. Cars and CUB are widely used benchmarks for fine-grained image
classification tasks as they contain similar objects with subtle differences. By conducting experiments
on these datasets, we can evaluate the performance of our method across a range of tasks.

Architectures We use 4-Conv from Finn et al. [2017] and ResNet-12 from Oreshkin et al. [2018] as
our backbone architecture. We trained 4-Conv for 30k iterations and ResNet-12 for 10k iterations.

Experimental Setup To ensure a fair comparison, we fine-tuned MAML Finn et al. [2017] first,
and our baselines outperformed the original paper. We used Adam Kingma and Ba [2014] as our
optimizer and fixed the outer loop learning rate to 10−3 and inner loop learning rate to 0.5 for 4-Conv,
and 10−5 and 0.01 for ResNet-12. We restricted the total number of steps in the inner loop to 3, as
argued in Finn et al. [2017]. We set the number of steps to 1 for the target model θt and 3 for the
reference model θr in our SHOT. With this setting, we can exploit SHOT without any additional
computation burden as discussed in Sec 4.4. For SHOTr, we fixed λ to 0.1 when we set the original

7

Table 2: Test accuracy % of 4-conv network on benchmark data sets. The values in parentheses
indicate the number of shots. The best accuracy among different methods is bold-faced.

Domain General (Coarse-grained) Specific (Fine-grained)

Dataset miniImageNet tieredImageNet Cars Cub
MAML (1) 47.88 ± 0.55 46.93 ± 1.07 47.78 ± 0.99 57.04 ± 1.42

MAML + SHOTr (1) 47.97 ± 0.71 47.53 ± 0.59 50.44 ± 0.62 57.55 ± 0.64
MAML + SHOTp (1) 48.11 ± 0.26 47.53 ± 0.68 49.08 ± 0.88 58.23 ± 0.39

MAML (5) 64.81 ± 1.63 66.12 ± 1.10 62.24 ± 2.01 72.48 ± 0.86
MAML + SHOTr (5) 66.86 ± 0.58 69.08 ± 0.31 64.20 ± 1.58 73.38 ± 0.32
MAML + SHOTp (5) 66.35 ± 0.27 68.94 ± 0.87 64.84 ± 2.87 73.27 ± 0.40

Table 3: Test accuracy % of 4-conv network on cross-domain adaptation. The values in parentheses
indicate the number of shots. The best accuracy among different methods is bold-faced.

adaptation General to General General to Specific Specific to General Specific to Specific
meta-train tieredImageNet miniImageNet miniImageNet miniImageNet Cars Cars CUB Cars
meta-test miniImageNet tieredImageNet Cars CUB miniImageNet tieredImageNet Cars CUB

MAML (1) 47.52 ± 1.66 51.84 ± 0.24 34.41 ± 0.47 40.91 ± 0.57 28.67 ± 1.17 30.79 ± 1.17 32.74 ± 1.12 30.95 ± 1.41
MAML + SHOTr (1) 48.20 ± 0.64 51.68 ± 0.68 34.03 ± 1.11 41.58 ± 0.56 30.19 ± 0.50 31.96 ± 0.50 33.11 ± 0.41 31.21 ± 0.64
MAML + SHOTp (1) 48.45 ± 0.13 51.97 ± 0.25 34.84 ± 0.16 41.65 ± 0.70 29.02 ± 0.73 31.26 ± 0.54 33.69 ± 0.45 31.65 ± 0.39

MAML (5) 66.86 ± 1.58 67.96 ± 1.22 46.57 ± 0.53 56.32 ± 1.17 37.23 ± 1.95 41.00 ± 1.86 44.02 ± 2.29 41.84 ± 1.25
MAML + SHOTr (5) 70.70 ± 0.29 69.48 ± 0.17 48.42 ± 0.72 58.40 ± 0.48 40.79 ± 0.93 42.73 ± 0.32 44.47 ± 0.25 43.46 ± 0.89
MAML + SHOTp (5) 69.88 ± 0.53 69.83 ± 0.34 47.99 ± 2.10 58.30 ± 0.44 37.96 ± 1.14 41.94 ± 0.23 43.83 ± 1.06 40.64 ± 1.25

model as θr. For one-step algorithms, we set the number of optimization steps to 2 for θr and 1 for
θt. So actual optimization step in inference time is 1, which is the same as the baseline. We set λ
for 10−6 in that case. For the Hessian-Free algorithm FoMAML, we fine-tuned λ to meet the best
performance. We set the learning rate of the outer and inner loops to 10−4 and 0.01, respectively, for
4-Conv. To maintain conciseness, we only report the results of SHOTr except for the comparison
with MAML baseline. We conducted our experiments on a single A100 GPU. We implemented our
method using torchmeta Deleu et al. [2019] library except for the implementation of LEO Rusu et al.
[2018a], where we used the official implementation and embeddings.

5.1 Characteristics of SHOT

Table 4: Test accuracy % of ResNet-12. The values
in parentheses indicate the number of shots. The
better accuracy between the baseline and SHOT is
bold-faced.

meta-train miniImageNet

meta-test miniImageNet tieredImageNet Cars
MAML (1) 49.47 ± 0.43 54.88 ± 1.07 32.74 ± 0.48

MAML + SHOTr (1) 51.11 ± 0.32 55.14 ± 0.63 32.66 ± 0.27
MAML (5) 69.12 ± 0.08 71.60 ± 0.08 51.99 ± 0.25

MAML + SHOTr (5) 69.74 ± 0.16 71.71 ± 0.39 52.16 ± 0.28

SHOT Outperforms the Baselines on Bench-
marks and Cross-Benchmark Settings Our
method, SHOT, outperforms the corresponding
baseline on all benchmarks, as shown in Table
2. Both SHOTr and SHOTp outperform the
baseline, regardless of whether the benchmark
is general or fine-grained. Additionally, SHOT
generalizes well to cross-benchmark settings, as
demonstrated in Table 3, where it improves the
performance of the baseline. Also, we can see
that this result is independent of the backbone
architecture, as shown in Table 4.

SHOT works with Hessian-Free and One-Step algorithms As many GBML algorithms are based
on Hessian-Free algorithms which only exploit gradients and One-Step algorithms which only exploit
one step in the inner loop Finn et al. [2017], Nichol et al. [2018], Oh et al. [2020], Raghu et al. [2019],
it is important to show that our method also works with these algorithms. As shown in Table 5, our
method improves the performance of the baseline on both Hessian-Free and One-Step algorithms. For
One-Step algorithms, we set θt as the original model and θr as the 2-step optimized model. This is
practically useful since many algorithms exploit only one step in the inner loop. Notably, our method
is applied only in the training phase, so it has the same inference cost as the baseline. Also, we only
used first-order optimization for the meta-optimizer to ensure a fair comparison when adding SHOT
to FoMAML. For ANIL Raghu et al. [2019] and BOIL Oh et al. [2020], we conducted experiments
with the same settings from each baseline paper, and we bring the results from Oh et al. [2020] for
comparison.

SHOT enables faster convergence. Our method, SHOT, achieves faster convergence compared to
the baseline, as demonstrated in Figure 3, where we plot the validation accuracy against the training

8

Table 5: Test accuracy (%) of 4-conv network on benchmark data sets. The values in parentheses
indicate the number of shots. The better accuracy between the baseline and SHOT is bold-faced.
Baselines in the table corresponds to either one-step algorithm (which uses one step optimization in
the inner loop) or Hessian-Free algorithm (an algorithm which only uses gradients in the outer loop).

Domain General(Coarse-grained) Specific (Fine-grained)

Dataset miniImageNet tieredImageNet Cars Cub
FoMAML (1) 47.70 ± 0.56 47.72 ± 0.76 49.08 ± 1.46 60.18 ± 0.45

FoMAML + SHOTr (1) 48.49 ± 0.29 47.91 ± 0.59 48.59 ± 0.72 60.54 ± 0.29
ANIL (1) 47.82 ± 0.20 49.35 ± 0.26 46.81 ± 0.24 57.03 ± 0.41

ANIL + SHOTr (1) 48.02 ± 0.38 48.29 ± 0.93 47.82 ± 1.48 57.31 ± 0.89
BOIL (1) 49.61 ± 0.16 48.58 ± 0.27 56.82 ± 0.21 61.60 ± 0.57

BOIL + SHOTr (1) 50.36 ± 0.42 50.36 ± 0.49 56.22 ± 1.96 62.43 ± 0.30
FoMAML (5) 64.49 ± 0.46 65.25 ± 0.64 67.99 ± 1.20 73.18 ± 0.18

FoMAML + SHOTr (5) 64.58 ± 0.06 65.92 ± 0.22 68.02 ± 1.00 73.89 ± 0.18
ANIL (5) 63.04 ± 0.42 65.82 ± 0.12 61.95 ± 0.38 70.93 ± 0.28

ANIL + SHOTr (5) 64.40 ± 0.75 66.19 ± 0.13 61.00 ± 0.90 71.71 ± 1.34
BOIL (5) 66.45 ± 0.37 69.37 ± 0.12 75.18 ± 0.21 75.96 ± 0.17

BOIL + SHOTr (5) 66.34 ± 0.21 69.20 ± 0.25 75.25 ± 0.14 76.77 ± 0.51

epoch. To understand why this occurs, we plotted averaged cosine similarity between the overall
parameter difference with each inner gradient step in the inner loop, as shown in Figure 3. We found
that overall similarity increases in both cases of with and without SHOT, and the similarity is highly
correlated with the validation accuracy. SHOT enforces high similarity from the beginning, resulting
in faster convergence with better generalization ability.

Applying other distance metrics. We used KL divergence as a distance metric in SHOT, but it is
possible to use other metrics as well. For example, we could use cross-entropy as a distance metric
from a probability perspective, or we could use L2 distance between parameters as a distance metric.
We conducted experiments with different distance metrics, and for L2 distance we divided the L2
distance by the square root of the number of parameters to account for the initialization scheme
Kumar [2017]. For the cross-entropy loss, we used the same λ (balancing term for Eq. 4) settings
as for KL divergence. The results are shown in Table 6. We observed that SHOT outperformed the
baseline for every distance metric. This supports our hypothesis that we can improve performance
and dynamics by suppressing the effect of the Hessian along the optimization trajectory.

6 Conclusion

Table 6: Test accuracy % of 4-conv using SHOT
with various distance metrics. The values in paren-
theses indicate the number of shots. The better
accuracy between the baseline and SHOT is bold-
faced.

meta-train miniImageNet

meta-test miniImageNet tieredImageNet Cars
Baseline (1) 47.88 ± 0.55 51.84 ± 0.24 34.41 ± 0.47

KL-Divergence (1) 47.97 ± 0.71 51.68 ± 0.68 34.03 ± 1.11
Cross-Entropy (1) 49.07 ± 0.14 53.83 ± 0.14 34.54 ± 0.31
L2 Distance (1) 50.89 ± 0.06 54.63 ± 0.25 35.75 ± 0.29

Baseline (5) 64.81 ± 1.63 67.96 ± 1.22 46.57 ± 0.53
KL-Divergence (5) 66.86 ± 0.58 71.77 ± 0.42 48.42 ± 0.72
Cross-Entropy (5) 66.34 ± 0.35 69.47 ± 0.35 48.86 ± 0.71
L2 Distance (5) 66.85 ± 0.44 69.96 ± 0.27 48.40 ± 0.12

In this paper, we claim that GBML implicitly
suppresses the Hessian along the optimization
path. We also demonstrate that we can improve
the performance of GBML by explicitly enforc-
ing this implicit prior. To achieve this, we pro-
pose a novel method, SHOT (Suppressing the
Hessian along Optimization Trajectory). Al-
though it deals with curvature of the loss surface,
it has the same computational order compared
to other GBML methods. More specifically, it
adds a negligible computational overhead to the
baseline and costs the same at inference time.
We show that SHOT outperforms the baseline
and is algorithm- and architecture-independent.
We believe that our method can be applied to other GBML methods in a plug-and-play manner.

7 Acknowledgements

This work was supported by NRF grant (2021R1A2C3006659) and IITP grants (2021-0-01343,
2022-0-00953), all of which were funded by Korean Government (MSIT).

9

References
S. Baik, M. Choi, J. Choi, H. Kim, and K. M. Lee. Meta-learning with adaptive hyperparameters.

Advances in Neural Information Processing Systems, 33:20755–20765, 2020.

A. Bernacchia. Meta-learning with negative learning rates. arXiv preprint arXiv:2102.00940, 2021.

S. Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Transactions on Automatic
Control, 58(9):2217–2229, 2013.

J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah. Signature verification using a" siamese"
time delay neural network. Advances in neural information processing systems, 6, 1993.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of
visual representations. In International conference on machine learning, pages 1597–1607. PMLR,
2020.

X. Chen and K. He. Exploring simple siamese representation learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15750–15758, 2021.

T. Deleu, T. Würfl, M. Samiei, J. P. Cohen, and Y. Bengio. Torchmeta: A Meta-Learning
library for PyTorch, 2019. URL https://arxiv.org/abs/1909.06576. Available at:
https://github.com/tristandeleu/pytorch-meta.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale. CoRR, abs/2010.11929, 2020. URL https:
//arxiv.org/abs/2010.11929.

A. Fallah, A. Mokhtari, and A. Ozdaglar. On the convergence theory of gradient-based model-
agnostic meta-learning algorithms. In S. Chiappa and R. Calandra, editors, Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of
Proceedings of Machine Learning Research, pages 1082–1092. PMLR, 26–28 Aug 2020. URL
https://proceedings.mlr.press/v108/fallah20a.html.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks.
In International conference on machine learning, pages 1126–1135. PMLR, 2017.

S. Flennerhag, A. A. Rusu, R. Pascanu, F. Visin, H. Yin, and R. Hadsell. Meta-learning with warped
gradient descent. arXiv preprint arXiv:1909.00025, 2019.

P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur. Sharpness-aware minimization for efficiently
improving generalization. CoRR, abs/2010.01412, 2020. URL https://arxiv.org/abs/2010.
01412.

J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch, B. Avila Pires,
Z. Guo, M. Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised
learning. Advances in neural information processing systems, 33:21271–21284, 2020.

T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li. Bag of tricks for image classification with
convolutional neural networks, 2018. URL https://arxiv.org/abs/1812.01187.

M. Hiller, M. Harandi, and T. Drummond. On enforcing better conditioned meta-learning for rapid
few-shot adaptation. In NeurIPS, 2022.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations for fine-grained categorization.
In Proceedings of the IEEE international conference on computer vision workshops, 2013.

10

https://arxiv.org/abs/1909.06576
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://proceedings.mlr.press/v108/fallah20a.html
https://arxiv.org/abs/2010.01412
https://arxiv.org/abs/2010.01412
https://arxiv.org/abs/1812.01187

S. K. Kumar. On weight initialization in deep neural networks. arXiv preprint arXiv:1704.08863,
2017.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.

A. Nichol, J. Achiam, and J. Schulman. On first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

J. Oh, H. Yoo, C. Kim, and S.-Y. Yun. Boil: Towards representation change for few-shot learning.
arXiv preprint arXiv:2008.08882, 2020.

B. N. Oreshkin, P. R. López, and A. Lacoste. TADAM: task dependent adaptive metric for improved
few-shot learning. CoRR, abs/1805.10123, 2018. URL http://arxiv.org/abs/1805.10123.

E. Park and J. B. Oliva. Meta-curvature. In NeurIPS, 2019. Published 9 February 2019.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from natural language
supervision. CoRR, abs/2103.00020, 2021. URL https://arxiv.org/abs/2103.00020.

A. Raghu, M. Raghu, S. Bengio, and O. Vinyals. Rapid learning or feature reuse? towards under-
standing the effectiveness of maml. arXiv preprint arXiv:1909.09157, 2019.

A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine. Meta-learning with implicit gradients.
Advances in neural information processing systems, 32, 2019.

S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In International Conference
on Learning Representations, 2017. URL https://openreview.net/forum?id=rJY0-Kcll.

M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B. Tenenbaum, H. Larochelle, and R. S.
Zemel. Meta-learning for semi-supervised few-shot classification. In the Sixth International
Conference on Learning Representations, 2018.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al. Imagenet large scale visual recognition challenge. International journal of
computer vision, 115:211–252, 2015.

A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Hadsell. Meta-learning
with latent embedding optimization. CoRR, abs/1807.05960, 2018a. URL http://arxiv.org/
abs/1807.05960.

A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Hadsell. Meta-learning
with latent embedding optimization. arXiv preprint arXiv:1807.05960, 2018b.

J. Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn: the
meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

C. Simon, P. Koniusz, R. Nock, and M. Harandi. On modulating the gradient for meta-learning. In
ECCV, 2020.

J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. Advances in neural
information processing systems, 30, 2017.

F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales. Learning to compare:
Relation network for few-shot learning. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1199–1208, 2018.

O. Vinyals, C. Blundell, T. Lillicrap, and D. Wierstra. Matching networks for one shot learning.
Advances in neural information processing systems, 29, 2016.

H. Wang, R. Sun, and B. Li. Global convergence and induced kernels of gradient-based meta-learning
with neural nets. CoRR, abs/2006.14606, 2020. URL https://arxiv.org/abs/2006.14606.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-ucsd birds
200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.

11

http://arxiv.org/abs/1805.10123
https://arxiv.org/abs/2103.00020
https://openreview.net/forum?id=rJY0-Kcll
http://arxiv.org/abs/1807.05960
http://arxiv.org/abs/1807.05960
https://arxiv.org/abs/2006.14606

A Proof of (3)

Due to fundamental theorem of calculus,

L(θk+1)− L(θk) =
∫
C

∇L(θ) · dθ =
∫ 1

0

∇L(θ(t)) · v(t)dt, (5)

where C is a trajectory whose start and end points are θk and θk+1. In GD setting, because
θk+1 = θk − α∇L(θk) for some learning rate α > 0, we can think of the straight line trajectory
joining θk and θk+1. In this case, the velocity vector becomes v(t) = −α∇L(θk) and

L(θk+1)− L(θk) = −α
∫ 1

0

∇L(θ(t)) · ∇L(θk)dt (6)

where θ(0) = θk, θ(1) = θk+1 and θ(t) = (1− t)θ(0) + tθ(1).

By Taylor series expansion it becomes

∇L(θ(t)) ≈ ∇L(θk) +H(θk)(θ(t)− θk) = (I − αtH(θk))∇L(θk) (7)

and combining Eq.(6) and Eq.(7) proves Eq.(3).

B SHOT is robust to hyperparameter settings

Table 7: Test accuracy % of 4-conv using SHOT with different λ values. The values in parentheses
indicate the number of shots. The better accuracy between the baseline and SHOT is bold-faced.

size of λ miniImageNet (5)
0 (baseline, MAML) 64.81 ± 1.63
0.1 (SHOTr) 66.86 ± 0.58
10−2 65.97 ± 0.93
10−3 66.85 ± 0.47
10−4 66.08 ± 0.36
10−5 66.81 ± 0.28

Table 7 shows the performance of SHOT with various hyperparameter settings. We conducted
experiments with different learning rates of λ, and in all cases, SHOT improved the performance of
the baseline. This suggests that SHOT is robust to hyperparameter settings.

C Another viewpoint of ANIL and BOIL

In this section, we reconcile the opposite opinions of feature reuse versus feature adaptation in
gradient-based meta-learning (GBML) with our hypothesis that reducing the impact of the Hessian in
the inner loop can improve performance.

ANIL, proposed in Raghu et al. [2019], argues that feature reuse is key in the inner loop, where the
feature remains invariant while only the decision boundary is adapted. On the other hand, BOIL,
proposed in Oh et al. [2020], argues that feature adaptation is key in the inner loop, where the feature
is adapted while the decision boundary remains invariant.

To test their arguments, ANIL and BOIL proposed two algorithms. ANIL freezes the encoder and
only updates the head in the inner loop, while BOIL freezes the head and only updates the encoder in
the inner loop. The problem is that both algorithm shown good performance thereby both arguments
look persuasive despite they argue exactly in the opposite ways.

Our hypothesis, which suggests that the outer loop implicitly suppresses the Hessian along the
optimization trajectory, can reconcile the arguments of both ANIL and BOIL. This is because our
hypothesis implies that the model acts linearly in the inner loop. ANIL and BOIL can be interpreted
as algorithms that enforce linearity in the inner loop by restricting parameters and reducing the
number of non-linear components between layers.

12

ANIL freezes the encoder and only updates the head in the inner loop, reducing the number of non-
linear components in the inner loop. This enforces linearity in the inner loop, as the only non-linearity
is the loss function. ANIL achieves better performance than MAML in 1-step optimization, as it is
more powerful at 1-step optimization, which views the model as linear.

BOIL freezes the head and only updates the encoder in the inner loop, reducing the number of
non-linear components in the inner loop. By applying BOIL, the gradient norm is predominant in the
last layer of the encoder, making it a variant of ANIL that updates only the penultimate layer. This
layer has much stronger performance, as it can change the feature while maintaining the linearity of
the model. Table 14 of Oh et al. [2020] shows a boosted performance when all but the penultimate
layer is not frozen. By explicitly enforcing linearity in the inner loop, BOIL achieves improved
performance.

D GBML is a variant of Prototype Vector method

In this section, we provide a novel viewpoint of GBML, that GBML (Gradient-Based Meta Learning)
is a varient of MBML (Metric-Based Meta Learning). This viewpoint relies on the linearity assump-
tion. i.e., the effect of the Hessian along the optimization trajectory is zero, thereby the model act as
linear in the inner loop.

Suppose there exists a meta-learning model that satisfies the linearity assumption in the inner loop,
then classifying a new classification task with a task-specific function f(·|θ?) after an inner loop is
equivalent to creating a prototype vector for each class on a specific feature map and classifying the
input as the class of the most similar prototype vector.

The proof starts by defining the prototype vector at first.

Prototype Vector We define a prototype vector Vc for class c in an N -way K-shot classification task
formally as

Vc =

N∑
i=1

K∑
j=1

βijϕc(Xij), c ∈ {1, · · · , N}, (8)

where Xij is the j-th input sample for the i-th class, ϕc(·) ∈ H is a class-specific feature map and
βij indicates the importance of Xij for constituting the prototype vector Vc.

In other words, there exists a feature map ϕc for each class c, and the support set is mapped to the
corresponding feature map and then weighted-averaged to constitute the prototype vector of the
corresponding class. At inference time, the classification of a given query X is done by taking the
class of the most similar prototype vector as follows:

ĉ = argmax
c
〈Vc, ϕ(X)〉. (9)

Here, ϕ : X → H is a non-class-specific mapping. We can also rewrite the prototype vector using ϕ
and by defining a projection Pc : X → X as

Pc(X) =

{
X if y(X) = c,
ν ∈ N (ϕ), if y(X) 6= c

(10)

where y(X) is the ground truth class of X and N is the null space of ϕ i.e., ϕ(ν) = 0.

Then by defining ϕc , ϕ ◦ Pc and βij , 1
K , it becomes

Vc =
1

K

K∑
j=1

ϕ(Xcj). (11)

SGD in the inner loop If GBML satisfies the hypothesis of linearity in the inner loop, f is locally
linear in θ in an inner loop. More specifically, there exists an equivalent feature map ϕc : X → H

13

which satisfies fc(·|θc) = 〈θc, ϕc(·)〉 for every x ∈ X where f(·|θ) = [f1(·|θ1), · · · , fN (·|θN)]T .
With the loss function L(x, y|θ) = D(s(f(x|θ)), y) for some distance measure D such as cross
entropy, we can formulate the inner loop of N -way K-shot meta learning by SGD as

θk+1
c = θkc − α

N∑
i=1

K∑
j=1

∂L(Xij , y(Xij)|θ)
∂θc

= θkc − α
N∑
i=1

K∑
j=1

∂D

∂fc
ϕc(Xij), (12)

since all samples in the support set are inputted in a batch of an inner loop.

Because the model is linear in the inner loop, the batch gradient does not change. Let βij =

− ∂D
∂fc
|θ0c ,Xij . Then after t steps, by (8), the model becomes

θtc = θ0c + αt

N∑
i=1

K∑
j=1

βijϕc(Xij) = θ0c + αtVc. (13)

At the initialization step of an inner loop, there is no information about the class, even the configuration
order of the class, because the task is randomly sampled. If so, the problem is solved in the inner loop.
For example, if a class Dog is allocated to a specific index such as Class 3. There is no guarantee that
it will have the identical index the next time the class Dog comes in. Thus, at a meta-initialization
point θ0, the scores for different classes would not be much different, i.e., fi(x|θ0i) ' fj(x|θ0j) for
i, j ∈ [1, · · · N].

Considering the goal of classification is achieved through relative values between fi(X)’s, the value
at the initialization point does not need to be considered significantly. Therefore

argmax
c

fc(X) = argmax
c
〈θtc, ϕ(X)〉 = argmax

c
〈θ0c + αtVc, ϕ(X)〉 ∼ argmax

c
〈Vc, ϕ(X)〉 (14)

So inner loop in GBML can be interpreted as making proptotype vector with given support set. �

Table 8: Test accuracy % of 4-conv network on benchmark data sets. The values in parentheses
indicate the number of shots. The best accuracy among different methods is bold-faced. To differ-
entiate the notation, we have denoted SHOT3 as a model that uses 3 optimization steps in fr and 1
optimization step in ft, and SHOT6 as a model that uses 6 optimization steps in fr and 3 optimization
steps in ft.

meta-train miniImageNet Cars
meta-test miniImageNet tieredImageNet Cars Cars miniImageNet CUB

MAML (1) 47.88 ± 0.55 51.84 ± 0.24 34.41 ± 0.47 47.78 ± 0.99 28.67 ± 1.17 30.95 ± 1.41
MAML + SHOT3 (1) 47.97 ± 0.71 51.68 ± 0.68 34.03 ± 1.11 50.44 ± 0.62 30.19 ± 0.50 31.21 ± 0.64
MAML + SHOT6 (1) 48.15 ± 0.31 51.67 ± 0.73 34.79 ± 0.70 49.89 ± 0.17 28.39 ± 0.37 30.83 ± 0.26

MAML (5) 64.81 ± 1.63 67.96 ± 1.22 46.57 ± 0.53 62.24 ± 2.01 37.23 ± 1.95 41.84 ± 1.25
MAML + SHOT3 (5) 66.86 ± 0.58 69.48 ± 0.17 48.42 ± 0.72 69.08 ± 0.31 40.79 ± 0.93 43.46 ± 0.89
MAML + SHOT6 (5) 66.27 ± 0.23 69.60 ± 0.31 45.83 ± 1.82 66.37 ± 1.93 39.35 ± 0.74 42.63 ± 0.24

E SHOT with more optimization step in the inner loop

In the main paper, we used only one step for the target model to improve computation efficiency.
However, it’s also important to test if SHOT works with more optimization steps in the inner loop.
As a reference model, we set the number of optimization steps to 6, which is different from the main
paper where we only used 3 steps (same as the baseline). As shown in Table 9, SHOT still performs
better than the baseline even with more optimization steps in the inner loop.

F SHOT can act as a regularlizer

Regularlization techniques are widely used in many GBML algorithms Rajeswaran et al. [2019],
Rusu et al. [2018a] and SHOT can also act as a regularizer. We replaced the regularization term of
LEO Rusu et al. [2018a], a popular GBML algorithm that uses regularization in the inner loop, with

14

Table 9: Test accuracy % of LEO [Rusu et al., 2018a]. The values in parentheses are the number of
shots. The better accuracy between the baseline and SHOT is bold-faced.

Dataset miniImageNet tieredImageNet
LEO (1) 60.24 ± 0.02 65.07 ± 0.14

LEO + SHOTr (1) 60.39 ± 0.07 65.26 ± 0.10
LEO (5) 75.27 ± 0.13 79.87 ± 0.06

LEO + SHOTr (5) 75.32 ± 0.17 79.84 ± 0.14

SHOT. The results, shown in Table 9, demonstrate that SHOT slightly enhances LEO’s performance.
Although the results are marginal, there is still room for improvement considering LEO works
with highly-fine-tuned hyperparameters. This suggests the potential of SHOT as a plug-and-play
regularization technique for GBML algorithms, whether it is highly-fine-tuned or not. Also, the
role of SHOT as a regularizer explains why regularization techniques are effective in GBML. If we
minimize the total transport distance in the inner loop, parameters do not move much even with a
large learning rate, thereby the effect of the Hessian reduces.

G Algorithm

Algorithm 1 Training Algorithm for GBML Model
Initialize parameter theta (the model)

while not reach max number of epochs:
Sample query set Q, support set S
Start of Inner loop
Initialize reference model and target model with theta
theta_r = theta
theta_t = theta

Optimize theta_r with more (e.g. 3) inner loop steps step_r
and a smaller learning rate alpha
for i in range(step_r):

theta_r = theta_r - alpha * gradient(loss(theta_r, S), theta_r)

Optimize theta_t with less (e.g. 1) inner loop steps step_t
and a larger learning rate step_r / step_t * alpha
theta_t = theta_t - step_r / step_t * alpha *

gradient(loss(theta_t, S), theta_t)
End of Inner loop

Start of Outer loop
Calculate outer loss
outer_loss = loss(theta_r, Q)
Reduce the distance between theta_r and theta_t using KL-divergence
kl_loss = KL_divergence(target_distribution(theta_t, Q)

, reference_distribution(theta_r, Q).detach())
outer_loss += lambda * kl_loss
Use meta-optimizer to optimize parameter theta
theta = theta - beta * gradient(outer_loss, theta)
End of Outer loop

End of training loop

15

Random direction

Gradient direction

Randomly-Initialized Model SHOTp Pretrained Model

Figure 4: Comparison of loss surface between randomly initialized model and SHOTp initialized
model. Showing that effect of the Hessian is suppressed is along the optimization trajectory.

H Loss surface actually gets linear along the optimization trajectory

Fig. 4 shows that our algorithm actually do what we expected. We compared between randomly-
initialized model and SHOTp initialized model. Randomly-initialized model shows rough loss surface.
The characteristic doesn’t differ whether it is gradient’s direction or not. However, SHOTp pretrained
models shows smooth surface along the gradient direction, while other direction remains rough.

16

	Introduction
	Related Works
	Preliminaries: GBML
	Optimization in GBML
	Hypothesis: Outer loop implicitly forces inner loop's loss surface linear
	SHOT (Suppressing Hessian along the Optimization Trajectory)
	SHOT can be used as a regularizer or meta-meta-initializer in the outer loop.
	SHOT does not require any computation burden

	Experiments
	Characteristics of SHOT

	Conclusion
	Acknowledgements
	Proof of (3)
	SHOT is robust to hyperparameter settings
	Another viewpoint of ANIL and BOIL
	GBML is a variant of Prototype Vector method
	SHOT with more optimization step in the inner loop
	SHOT can act as a regularlizer
	Algorithm
	Loss surface actually gets linear along the optimization trajectory

