
Cognitive Model Discovery via Disentangled RNNs

Kevin J. Miller
Google DeepMind and University College London

London, UK
kevinjmiller@deepmind.com

Maria Eckstein
Google DeepMind

London, UK
mariaeckstein@deepmind.com

Matthew M. Botvinick
Google DeepMind

London, UK
botvinick@deepmind.com

Zeb Kurth-Nelson
Google DeepMind and University College London

London, UK
zebk@deepmind.com

Abstract

Computational cognitive models are a fundamental tool in behavioral neuroscience.
They instantiate in software precise hypotheses about the cognitive mechanisms
underlying a particular behavior. Constructing these models is typically a difficult
iterative process that requires both inspiration from the literature and the creativity
of an individual researcher. Here, we adopt an alternative approach to learn
parsimonious cognitive models directly from data. We fit behavior data using
a recurrent neural network that is penalized for carrying information forward in
time, leading to sparse, interpretable representations and dynamics. When fitting
synthetic behavioral data from known cognitive models, our method recovers the
underlying form of those models. When fit to laboratory data from rats performing
either a reward learning task or a decision-making task, our method recovers simple
and interpretable models that make testable predictions about neural mechanisms.

1 Introduction

Fitting quantitative cognitive models to behavioral data is a fundamental tool in many areas of
psychology and neuroscience [51, 12, 10, 39]. These models can be viewed as mechanistic hypotheses
about the cognitive processes used by the brain. Viewed in this way, they act as an explicit software
instantiation of a particular cognitive hypothesis, and can be used to make precise quantitative
predictions about behavioral and neural data. A traditional modeling pipeline is for a human
researcher to iterate over a three-step process: first to propose a candidate model structure (e.g.
Q-learning), second to optimize model parameters (e.g. learning rate) with respect to a behavioral
dataset, and finally to check whether the resulting model reproduces scientifically important features
of the dataset. However, discovering an appropriate model structure is difficult (there are many
possible structures to explore) as well as biased (the best structure may be one that the researcher has
not thought of).

An alternative approach is fitting recurrent neural networks (RNNs) directly to behavior using
supervised learning [16, 19, 46, 2]. RNNs are highly expressive and can approximate a wide variety
of model structures in their weights. This is therefore a way of discovering a well-fitting model from
data automatically. The drawback of this approach is that the resulting RNN is a “black box”: a
complex system that itself requires further analysis if it is to yield insight into cognitive mechanism.

Here, we propose a solution that aims to achieve the best of both worlds: automated discovery of
human-interpretable cognitive models. Our approach, which we call disentangled RNN or “DisRNN”,
draws on recently developed methods from machine learning for “disentangling” [23, 24, 8, 21].

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

These methods encourage networks to learn representations in which each dimension corresponds to
a single true factor of variation in the data [23, 8]. DisRNN encourages disentangling in two ways.
The first is to separate the update rule for each element of the latent state into separate sub-networks.
The second is to use information “bottlenecks”, which impose a penalty on maintaining information
within the network, to the inputs and outputs of these sub-networks.

We fit DisRNN on sequential behavioral datasets from rats and artificial agents performing two
classic cognitive tasks: a dynamic two-armed bandit task [13, 28, 26, 43] and a ”pulse accumulation”
decision-making task [7, 45, 14, 41]. First, we generate synthetic datasets for the two-armed bandit
task using artificial agents with known learning algorithms (Q-Learning and Actor-Critic) which have
different update rules and carry different information between timesteps. When fitting these synthetic
datasets, DisRNN correctly recovers the timecourses of latent state information and the structure of
the update rules. Second, we fit DisRNN on large laboratory datasets generated by rats performing
the same two-armed bandit task [37]. We find that DisRNN provides a similar quality of fit to the
best known human-derived cognitive model of this dataset [37] as well as to an unconstrained neural
network [16]. Third, we generate a synthetic dataset for the decision-making task using an agent
with a known decision algorithm (bounded accumulation) and show that disRNN is able to correctly
recover the structure of its decision rule. Finally, we fit disRNN to a large laboratory dataset of
rats performing this task [7], and find that it recovers a strategy similar to that of the best known
human-derived model for this dataset. In all cases, we find that DisRNN is able to learn simple
human-interpretable cognitive strategies which can be used to make predictions about behavioral and
neural datasets.

2 Related Work

Our strategy for encouraging networks to adopt disentangled representations is directly inspired by
work using variational autoencoders (VAE). Specifically, β-VAE [23, 8], by scaling the KL loss of
a variational autoencoder’s sampling step (which can be viewed as requiring information to pass
through a Gaussian information bottleneck), often learns sparse, disentangled representations in
which each latent variable corresponds to a single true factor of variation in the data. While β-VAE
considered feedforward autoencoders, a wide variety of techniques have been proposed combining
elements of feedforward VAEs with recurrent neural networks [20]. We adapt these ideas here in a
way that emphasizes interpretability and is appropriate for cognitive model discovery.

The use of recurrent neural networks as cognitive models has a long history [5, 27], and recent work
has expanded the toolkit for fitting networks to behavioral datasets and for interpreting them [16,
19, 46, 15]. This approach of fitting standard neural networks and working to interpret the resulting
fits benefits from the growing toolkit for neural network interpretability [47, 35, 36]. Our approach
is complementary: instead of fitting standard networks and developing tools to interpret them post
hoc, we develop networks which are incentivized to learn easily-interpretable solutions. Within
neuroscience, a number of methods exist which attempt to discover interpretable latent dynamics
from neural recording data [40, 50, 29, 44]. To our knowledge, these ideas have not been applied in
the context of cognitive model discovery from behavioral data.

The two-armed bandit task we consider here is one of a family of dynamic reward learning tasks that
have been heavily studied in behavioral neuroscience. This has led to a large library of candidate
cognitive models [13, 4, 17, 32, 11, 26, 34, 37, 33, 3, 42]. The development of such models typically
follows a theory-first approach, beginning with an idea (e.g. from optimality [13, 42], from machine
learning [33], or from neurobiology [34]). Several studies have fit behavioral dataset using highly
flexible classical models [26, 37, 32, 11]. One of these has attempted to use these fits as a basis for a
process of data-driven cognitive model discovery by compressing the revealed patterns into a simpler
model which is cognitively interpretable [37].

Two very recent papers have proposed a very similar workflow of discovering cognitive strategies
from behavioral data using constrained neural networks. The first uses “hybrid” models that combine
elements of classic structured models and flexible neural networks [18]. The second constrains
networks by limiting them to a very small number of hidden units [2]. Future work should compare
these approaches directly on matched datasets, as well as explore other possible opportunities for
adapting modern machine learning techniques as tools for cognitive model discovery.

2

3 Disentangled Recurrent Neural Networks

An RNN trained to match a behavioral dataset containing temporal dependencies [16, 19, 46] can
be viewed as maintaining a set of latent variables which carry information from the past that is
useful for predicting the future. The weights of the network can be viewed as defining a set of
update rules defining how each latent variable evolves over time based on external observations as
well as the previous values of the other latent variables. Standard RNN architectures (such as the
GRU [9]) typically learn high-dimensional latent representations with highly entangled update rules.
This makes it difficult to understand which cognitive mechanisms they have learned, limiting their
usefulness as cognitive hypotheses.

Figure 1: Network Architecture. Left: Overall architecture of the DisRNN. Each latent variable
is updated by a separate feedforward neural network (MLP: Multilayer Perceptron). Bottlenecks
(orange connections) are imposed both on the inputs to these networks and on each latent variable
to encourage interpretable representations. Right: A single information bottleneck. Output z̃ is a
random sample from a Gaussian distribution determined by input z and bottleneck parameters m and
σ. The bottleneck is associated with a KL loss penalizing information transfer.

3.1 Network Architecture

In order to learn an interpretable cognitive model, we encourage sparsity and independence by
imposing bottlenecks which penalize the network for using excess information (Figure 1, right) [49,
1, 31, 23, 24, 8, 21]. The bottlenecks in our networks limit information flow using Gaussian noise.
Our implementation uses multiple information bottlenecks, each of which is a noisy channel defined
by two learned parameters: a “multiplier” m and noise variance σ. The output on each timestep is
sampled from a Gaussian distribution:

z̃t ∼ N (mzt, σ) (1)

where x is the scalar input to the bottleneck and x̃ is the scalar output. Each bottleneck is associated
with a loss which penalizes the sampling distribution for deviating from the unit Gaussian:

Lbottleneck =
∑
t

DKL

(
N (mbxb,t, σb)||N (0, 1)

)
(2)

where DKL is the Kullback-Leiber divergence, a measure of the difference between two probability
distributions. This difference, and therefore the cost of the bottleneck, will be zero in the case that
m = 0 and σ = 1. In that situation, the bottleneck will output samples from the unit Gaussian.
These outputs will be independent of the input, meaning that no information will flow through the
bottleneck. We refer to these as “closed bottlenecks”. In all other situations, Lb will be greater than
zero, and some information will pass through. In our experiments, bottlenecks that are carrying useful
information typically fit m ≈ 1 and σ ≪ 1. We refer to these as “open bottlenecks”.

We use these information bottlenecks to encourage cognitively interpretable models by encouraging
two distinct kinds of disentangling. The first is disentangling in the latent variables themselves:
we would like these to capture separable latent processes and to be relatively few in number. We

3

encourage this kind of simplicity by imposing a separate bottleneck on each scalar element of the
network’s hidden state. We refer to these as the “latent bottlenecks”.

z̃it ∼ bottlenecki(zit) (3)

The second kind of simplicity is in the update rules for the latent variables. We would like each
variable to be updated by its own separate rule, and we would like each of these rules to be as simple
as possible. We encourage this kind of simplicity by updating each element of the network’s hidden
state, zit, using a separate learned update rule defined by a separate set of parameters. Each update
rule consists of a multilayer perceptron (MLP) which defines a multiplicative update to be applied to
its corresponding latent variable. These “Update MLPs” have access to the values of all elements of
the previous timestep’s hidden state, z̃it−1 (having passed already through its latent bottleneck), as
well as to the network’s current observations ot. Each element of the MLP input (i.e. of z̃t−1 and
of ot) must pass through an additional information bottleneck, which we refer to as “Update MLP
Bottlenecks”. The output of each update MLP is a scalar weight wi

t and update target ui
t, which are

used together to update the value of the associated latent variable zi in a manner analogous to the
Gated Recurrent Unit [9].

wi
t, u

i
t = MLPi

update(bottleneck(z̃t−1,ot)) (4)

zit = (1− wi
t)z̃

i
t−1 + wi

tu
i
t (5)

The latent variables are used on each timestep to make a prediction about the target, y, using a
separate “Choice MLP”:

ŷt = MLPoutput(z̃t) (6)

We train the model end-to-end by gradient descent to minimize the total loss function:

Ltotal = Lsoftmax(y, ŷ) + β
∑

b∈bottlenecks
Lbottleneck(b) (7)

where y are supervised targets, Lsoftmax is a softmax cross-entropy loss. The hyperparameter β
scales the cost associated with passing information through the bottleneck [23, 8]. Different values of
β are expected to produce solutions which adopt different tradeoffs between predictive accuracy and
model simplicity.

3.2 Training Details

For the two-armed bandit task, datasets consisted of sequences of binary choices made (left vs.
right) and outcomes experienced (reward vs. no reward) by either a rat [37] or an artificial agent
(Q-Learning or Leaky Actor-Critic, see below). Each episode corresponded to a single behavioral
session. On each timestep, the observation given to the network consisted of the choice and reward
from the corresponding trial, and the target was the choice on the subsequent trial. For the pulse
accumulation task, datasets consisted of sequences of integer pulse counts (left vs. right) observed and
binary choices made (left vs right) by either a rat [7] or an artificial agent (Bounded Accumulation,
see below). Each episode corresponded to a single trial. On each timestep, the observation given to
the network consisted of the left and right pulse counts in a corresponding 10ms timebin. The target
was null for all timesteps during the stimulus, and on the final timestep of each trial indicated the
binary choice made by the rat.

All networks trained for this paper were of the same size and trained in the same way. Each network
had five latent variables. Update MLPs consisted of three hidden layers containing five units each.
The Choice MLP consisted of two hidden layers of two units each. We used the rectified linear
(ReLU) activation function. Networks were defined using custom modules written using Jax [6] and
Haiku [22]. Network parameters were optimized using gradient descent and the Adam optimizer [30],
with a learning rate of 5× 10−3. We typically trained networks for 105 steps, except that networks
with very low β (10−3 or 3× 10−4) required longer to converge and were trained for 5× 105 steps.
Using a second-generation TPU, models required between four and fifty hours to complete this
number of training steps.

4

4 DisRNN Recovers True Structure in Synthetic Datasets

We first apply DisRNN to synthetic datasets in which the process generating the data is known. We
consider a task that has been the subject of intensive cognitive modeling efforts in psychology and
neuroscience, the dynamic two-armed bandit task (Figure 2) [13, 28, 26, 43, 37]. In each trial of this
task, the agent selects one of two available actions and then experiences a probabilistic reward. In our
instantiation of the task, rewards are binary, and the reward probability conditional on selecting each
arm drifts independently over time according to a bounded random walk [37].

We generated synthetic datasets from two reinforcement learning agents performing this task: Q-
Learning and Leaky Actor-Critic. These agents have markedly different latent variables and update
rules, allowing us to test whether DisRNN can recover the correct structure of each agent.

Figure 2: Dynamic Two-Armed Bandit Task. a: In each trial, the rat selects one of two actions (left
or right) and receives one of two outcomes (reward or no reward). b: Example behavioral session
[37]. Orange and purple lines show the drifting generative reward probabilities for each action. The
placement of each tick mark (above or below) indicates the choice of the animal on that trial, while
the color of the tick indicates whether or not the animal received reward. We will use this session as a
running example to illustrate the dynamics of artificial agents and RNNs.

4.1 Q-Learning Agent

The Q-learning agent [48] maintains two latent variables, Qleft and Qright. Each of these is associated
with one of the available actions, and gives a running average of recent rewards experienced after
taking that action. They are updated according to the following rules:

Qt+1(at) = (1− α)Qt(at) + αrt (8)

Qt+1(a ̸= at) = Qt(a ̸= at) (9)
where α is a learning rate parameter. We visualize these update rules by plotting the updated value of
Q as a function of its initial value and of the trial type (Figure 3a). A key feature is that each Q value
only changes when its corresponding action is selected.

The Q-Learning agent selects actions based on the difference in Q-values:

at ∼ Logistic
(
β(Qt,left −Qt,right)

)
(10)

where β is an inverse temperature parameter. We generated a large synthetic dataset consisting of
choices made and rewards received by the Q-Learning agent (α = 0.3, β = 3; 1000 sessions of 500
trials each) (Figure 3b). We then trained a DisRNN to imitate this dataset. Inspecting the learned
bottleneck parameters of this network (Figure 3e), we find that just two of its latents have open
bottlenecks (σ ≪ 1), allowing them to pass information forward through time. We find that the update
rules for these latents have open bottlenecks for the input from both previous choice and previous
reward. We find that the three latents with closed (σ ≈ 1) bottlenecks take on near-zero values on all
timesteps, while the two with open bottlenecks follow timecourses that are strikingly similar to those
of Qleft and Qright (albeit centered on zero instead of on 0.5; Figure 3c). We visualize the learned
update rule associated with each latent by probing its associated update MLP (Figure 3d). We find
that these update rules are strikingly similar to those for Qleft and Qright. They reproduce the key
feature that each is only updated following choices to a particular action.

4.2 Leaky Actor-Critic Agent

The Leaky Actor-Critic agent uses a modification of the policy gradient learning rule [48](Section
2.8). Like the Q-Learning agent, it makes use of two latent variables, but uses very different rules

5

Q-Learning Agent DisRNN Trained on Q-Learning Data

Update Rules

Q
-V

al
ue

0

0.5

1
Left Choices

Right Choices
Trial

Rewarded Q-Left
Q-RightUnrewarded

Update Rules
Left, Unrewarded Left, Rewarded Right, Unrewarded Right, Rewarded

Latent 1

Latent 2

U
pd

at
ed

 L
at

en
t 2

Latent 2 Latent 2 Latent 2

Latent 1 Latent 1 Latent 1

U
pd

at
ed

 L
at

en
t 1

−1 0 1

−1.0

0.0

1.0

−1 0 1
−1.5

−1.0

−0.5

0.0

0.5

1.0

−1 0 1
−1.5

−1.0

−0.5

0.0

0.5

1.0

−1 0 1
−1.5

−1.0

−0.5

0.0

0.5

1.0

−1 0 1

−1.0

0.0

1.0

−1 0 1
−1.5

−1.0

−0.5

0.0

0.5

1.0

−1 0 1
−1.5

−1.0

−0.5

0.0

0.5

1.0

−1 0 1
−1.5

−1.0

−0.5

0.0

0.5

1.0

Latent One
Latent Two
Latent Three
Latent Four
Latent Five

Left Choices

Right Choices

Rewarded
Unrewarded

0 100 200 300 400 500
−2

−1

0

1

2

Trial

Information Bottlenecks

Q-Left

Left, Unrewarded Left, Rewarded Right, Unrewarded Right, Rewarded

U
pd

at
ed

 Q
-L

ef
t

Q-Left Q-Left Q-Left

Q-Right Q-Right Q-Right Q-Right

U
pd

at
ed

 Q
-R

ig
ht

a

b e

c

Ch
oi

ce

Re
w

ar
d

La
te

nt
 1

La
te

nt
 2

La
te

nt
 3

La
te

nt
 4

La
te

nt
 5

1

2

3

4

5

La
te

nt
 #

Update MLP
Bottlenecks

Si
gm

a

1

0
Bottleneck

Open

Bottleneck
Closed

1

2

3

4

5

La
te

nt
 #

Latent
Bottlenecks

tim
es

te
p

t

tim
es

te
p

t+
1

Q-Left

Reward
Choice

Q-Right

Q-Left update

Reward
Choice

Q-Right update

d

tim
es

te
p

t

tim
es

te
p

t+
1

Latent 1

Reward
Choice

Latent 2

Latent 1 update

Reward
Choice

Latent 2 update

f g

Example SessionExample Session

Figure 3: DisRNN Recovers Latent Dynamics of Q-Learning. a: Q-Learning agent run using
the choices and rewards from the example behavioral session (Figure 2) to generate timeseries
for Qleft and Qright. b: Visualization of the Q-Learning update rules. Each panel visualizes the
update of either Qleft (top row) or Qright (bottom row) following a particular combination of choice
and outcome (columns). The post-update value is shown on the vertical axis, as a function of the
pre-update value, on the horizontal. Dashed lines are identity. c: Dependency graph of Q-learning.
Q-learning computes an update for each latent (Qleft and Qright) on each timestep. The update for
Qleft depends on choice and reward (Equation 8). The new value of Qleft is a weighted sum of its
old value (dashed line) and the update. Qright is similarly updated. d: DisRNN trained on a synthetic
behavioral dataset generated by the Q-Learning agent. This panel shows data from the trained model
run with choice and reward input from the same example session. Latents have been ordered, signed,
and colored to highlight similarities with the Q-Learning agent. e: Visualization of the learned
update rules (equations 4 and 5) for the first two latents. f: Learned parameters of the information
bottlenecks. Left: Transmission bottlenecks (equation 3). Right: Update MLP bottlenecks (equation
4). Darker colors indicate open bottlenecks: for example, the update for latent 1 can depend on choice
and reward. g: Dependency graph of cognitive model learned by DisRNN.

to update them. The first variable, V , tracks “value”. It keeps a running average of recent rewards,
regardless of the choice that preceded them:

Vt+1 = (1− αv)Vt + αvrt (11)

where αv is a learning rate parameter.

The second, Θ, is a “policy” variable that determines the probability with which the agent will select
each action. The policy gradient algorithm defines two variables θleft and θright, each associated
with one of the actions and updated using the following rules:

θt+1(at) =
(
1− αf

)
θt(at) + αl

(
rt − Vt

)(
1− πt(at)

)
(12)

θt+1(a ̸= at) = (1− αf)θt(a)− αl

(
rt − Vt

)
πt(a) (13)

6

Actor-Critic Agent DisRNN Trained on Actor-Critic Data

0 0.5 1

V

0

0.5

1

U
p

d
at

ed
 V

0 0.5 1

V

Unrewarded Rewarded

Update Rules

−2 0 2
−2

0

2

Theta

U
p

d
at

ed
 T

h
et

a

Left, Unrewarded

−2 0 2

Theta

Left, Rewarded

−2 0 2

Theta

Right, Unrewarded Right, Rewarded

−2 0 2

Theta

V

0

0.5

1

Example Session
Latent One
Latent Two
Latent Three
Latent Four
Latent Five

Left Choices

Right Choices

Rewarded
Unrewarded

0 100 200 300 400 500
−4

−2

0

2

4

e

Information Bottlenecks

Example Session
Left Choices

Right Choices

Trial

Rewarded
V

ThetaUnrewarded

0 100 200 300 400 500

0

1

- 5

0

5a

b Update Rules
Unrewarded Rewarded

−1 0 1

−1

0.0

1

−1 0 1

Latent Two

U
p

d
at

ed
L

at
en

t
Tw

o

Latent Two
Left, Rewarded Right, Unrewarded Right, Rewarded

U
p

d
at

ed
L

at
en

t
O

n
e

−1 0 1

−1

0

1

Latent One
−1 0 1

Latent One
−1 0 1

Latent One

L
at

en
t

Tw
o

0.5

0

1

−1 0 1

Latent One

d

C
h
o
ic

e

R
ew

ar
d

La
te

n
t

1

La
te

n
t

2

La
te

n
t

3

La
te

n
t

4

La
te

n
t

5

1

2

3

4

5

La
te

n
t

#

Update MLP
Bottlenecks

Si
g
m

a
1 (Closed)

0 (Open)
1

2

3

4

5

La
te

n
t

#

Latent
Bottlenecks

Θ

V

tim
es

te
p
t

tim
es

te
p
t+

1

Reward

Choice
Θ update

RewardV update

c f g

Latent 1

Latent 2

tim
es

te
p
t

tim
es

te
p
t+

1

Reward

Choice
Latent 1 update

RewardLatent 2 update

Trial

Left, Unrewarded

Figure 4: DisRNN Recovers Latent Dynamics of Leaky Actor-Critic. a: Actor-Critic agent run on
the example rat behavioral session (Figure 2) to generate timeseries for V and Θ. b: Visualization
of the Actor-Critic update equations. The update for v depends on reward but is independent of
choice. The update for Θ depends on choice and reward, as well as the value of V . c: Dependency
graph of Actor-Critic learning. d: DisRNN trained on a synthetic behavioral dataset generated by an
Actor-Critic agent. e: Visualization of the learned update rules for the first two latents. f: Learned
bottleneck parameters. Left: Transmission bottlenecks (equation 3). The first two latents have open
bottlenecks; the remaining three latents have closed bottlenecks. Right: Update MLP bottlenecks
(equation 4). g: Dependency graph of DisRNN trained on Actor-Critic data.

where πt is the agent’s policy defined below (equation 14), αl is a learning rate parameter, and αf is
a forgetting rate parameter that we have added to the update rule. This forgetting mechanism causes
the policy variables to decay towards zero over time, allowing the agent to perform in an environment
with changing reward probabilities. In a setting with just two available actions, θleft and θright
are degenerate: it will always be the case that θleft = −θright. We therefore define a single latent
variable Θ = θleft − θright for the purposes of visualization. Actions are selected according to:

at ∼ Logistic(Θ) (14)

We visualize these update rules by plotting the updated values of V and of Θ as a function of their
initial value and of the trial type (Figure 4b). These update rules are quite different from those of
the Q-Learning agent. One key feature is that the update rule for V depends only on reward, not on
choice. Another is that the update rule for Θ depends not only on choice and reward, but also on V .

We generated a large synthetic dataset consisting of choices made and rewards received by the Leaky
Actor-Critic agent (αV = 0.3, αL = 1, αF = 0.05; 1000 sessions of 500 trials each), and trained a
DisRNN to imitate this dataset. Inspecting the learned bottleneck parameters of this network (Figure
4e), we find that two of its latents have open bottlenecks allowing them to pass information forward
through time. One of these (latent two) has an open bottleneck to receive input from reward only.
We find that this latent is strikingly similar to V from the Leaky Actor-Critic agent, both in terms

7

of its timecourse (Figure 4c) and update rule (Figure 4d, above). The other (latent one) has open
bottlenecks to receive input from choice, reward, and from latent two. This latent is strikingly similar
to Θ from the Leaky Actor-Critic Agent, both in terms of its timecourse (Figure 4c) and update rule
(Figure 4d, below).

Together with the previous section, these results indicate that DisRNN is capable of recovering
the true generative structure of agents with two very different cognitive strategies to perform the
two-armed bandit task. We also applied DisRNN to a synthetic behavioral dataset from an artificial
performing a very different behavioral neuroscience task: decision-making by accumulation of noisy
evidence (Appendix A). We found that it was similarly able to recover the true generative structure of
this agent (Figure A1)

5 DisRNN Reveals Interpretable Models of Rat Behavior

Figure 5: Model Comparison on Rat Behavioral Dataset. Quality of model fit (cross-validated
normalized likelihood) relative to the human-derived cognitive model from [37] for DisRNN (orange)
and LSTM (blue). The x-axis for DisRNN represents different values of the hyperparameter β, which
controls the tradeoff between model simplicity and predictive performance. LSTM hyperparameters
were selected by subject-level cross-validation. Error bars indicate standard error over N = 20 rats.

Having established that DisRNN can recover true cognitive mechanisms in synthetic datasets with
known ground truth, we moved on to consider a large laboratory dataset from rats performing the
drifting two-armed bandit task [37]. This dataset has previously been the subject of an intensive
human effort at data-driven cognitive modeling, which resulted in a cognitive model consisting of
three components each with its own latent variable: a fast-timescale reward-seeking component,
a slower perseverative component, and a very slow “gambler’s fallacy” component. This model
provided a better fit to the dataset than existing models from the literature, and is currently the
best known cognitive model for this dataset [37]. We first asked whether DisRNN could provide
a similar quality of fit to this model. We fit DisRNNs using four different values of the parameter
β (10−3, 3x10−3, 10−2, and 3x10−2) that controls the relative weight of predictive power and
model simplicity in the network’s loss function (equation 7). Following [37], we evaluated model
performance using two-fold cross-validation: we divide each rat’s dataset into even-numbered and
odd-numbered sessions, fit a set of model parameters to each, and compute the log-likelihood for
each parameter set using the unseen portion of the dataset. To compare results across different
animals, we use “normalized likelihood”: elog-likelihood/n trials [12]. For each rat, we compute
this both for our DisRNNs and for the cognitive model from [37], and plot the differences in Figure
5. We find that DisRNNs trained with β = 3x10−3 achieved a quality of fit similar to the cognitive
model, and that those with β = 10−3 even narrowly outperformed it (Figure 5, orange curve). As an
additional benchmark, we also compared our models to a widely-used RNN architecture, the LSTM
[25]. We selected LSTM hyperparameters (network size and early stopping) using subject-level cross-
validation: we divided the dataset into subsets containing only even-numbered and odd-numbered
rats, identified the hyperparameters that maximized (session-level) cross-validated likelihood in each
subset, and evaluated networks with those hyperparameters in the unseen subset. We found that
DisRNNs with β = 10−3 achieved a very similar quality of fit to these optimized LSTMs. Together
these results indicate the DisRNNs, despite their architectural constraints and disentanglement loss,

8

can achieve predictive performance comparable to standard RNNs and to well-fit human-derived
cognitive models.

Finally, we examined the parameters of DisRNNs fit to the complete dataset for each rat. We found
that these were typically low-dimensional, with only a small number of latent variables having open
bottlenecks, as well as sparse, with each update MLP having only a small number of open bottlenecks.
While a thorough characterization of the patterns present in DisRNNs fit to individual rats remains a
direction for future work, we present a representative example in Figure 6. This figure shows three
DisRNNs with different values of β fit to the dataset from the same example rat. The DisRNN with the
largest β of 3x10−2 (left) adopts a strategy that utilizes only one latent variable. This strategy mixes
reward-seeking and perseverative patterns into a single update rule (note that fixed points, where the
line crosses unity, are more extreme for the rewarded conditions than the unrewarded ones). The
DisRNN with a medium β of 10−2 (middle) adds a second latent variable that is purely perseverative
and operates on a considerably slower timescale. Its fast-timescale reward-seeking latent variable,
however, shows a similar perseverative signature to the previous network. The network with the
smallest β of 3x10−3 (right) retains both the fast reward-seeking and slower perseverative dynamics
and adds a third, much slower-timescale, latent. The update rule for this latent depends both on
reward and on the value of the perseverative latent. Interestingly, this very slow latent influences the
update rules for both the reward-seeking and the perseverative latents. While the best human-derived
cognitive model does include a very long-timescale component, this component simply influences
choice rather than modulating the update rules of the other components. Situations where one latent
variable modulates the update rule of another do sometimes occur in human-derived models for
related tasks [3, 42], though it is not clear whether the pattern seen in this network is consistent with
any of these. Characterizing these patterns in more detail, and especially quantifying similarities and
differences among different animals, will be an important step for future work.

We also applied DisRNN to a laboratory behavioral dataset from rats performing an evidence
accumulation task [7], and found that it was similarly able to identify low-dimensional models with
interpretable structure (Figure A2).

Figure 6: DisRNN Trained on Rat Datasets. Examples of fit DisRNN networks with different
values of the hyperparameter β controlling the tradeoff between simplicity and predictive power.

6 Discussion

In this work, we develop a framework for discovering parsimonious cognitive models directly from
behavioral data by fitting recurrent neural networks that contain structural features that encourage
them to learn sparse, disentangled representations. Fit to synthetic datasets generated using known
cognitive mechanisms, our method accurately recovers the structure of those mechanisms. Fit to
laboratory datasets from rats performing a cognitive task, our method reveals models that are relatively
simple and human-interpretable while outperforming the best known human-derived cognitive model
in terms of predictive accuracy.

9

While the extent to which a model fit is ”human-interpretable” is of course ultimately subjective, we
believe that sparsity and disentangling provide benefits for at least three distinct reasons. The first is
that fully understanding a model requires a human expert to inspect the update rules. The smaller
the number of latents and fewer inputs to the update rule for each, the less cognitive burden will be
placed on that expert, and the more likely they will be able to arrive at a satisfying human intuition
about the cognitive mechanism embodied by the model. The second is that goal of discovery is to
identify models that human experts will consider to be cognitively plausible. When evaluating classic
handcrafted models, many experts agree that, all else being equal, simpler models (smaller number of
equations, fewer terms in each equation) are more plausible. The third is that such a model is more
likely to be useful for scientific tasks, such as searching for correlates in measurements of neural
activity, that involve interacting with finite datasets.

The fit disRNNs have several key features than enable them to be applied immediately to standard
cognitive neuroscience workflows [51, 12, 10, 39]. The first is that they generate timestep-by-
timestep timecourses for the values of latent variables that play known cognitive roles within the
model. These timecourses can be used as predictions about neural activity: if the model’s mechanisms
are implemented in the brain, then somewhere in the brain there is likely to be a signal that follows a
similar timecourse. A second key feature is that disRNN makes explicit the rules by which latent
variables are updated. These can be used as predictions about update rules within the brain: if the
model’s mechanisms are implemented in the brain, then somewhere in the brain there are likely to be
similar update rules (e.g. synaptic weights to update the ongoing neural activity, synaptic plasticity to
adjust synaptic weights, etc). A third is that a trained disRNN can be used to generate predictions
for experiments which alter neural activity, for example by silencing it using optogenetics. Activity
within the disRNN can be altered, for example by artificially zero-ing out a particular latent on a
particular subset of trials, and the model can be run to generate predictions for behavioral and neural
data [38].

An appealing feature of disRNN is that, for the same dataset, models with different complexity can be
discovered by training networks with different values of the hyperparameter β. For some applications,
it may be best to select the model that achieves the highest cross-validated quality-of-fit. For others,
it may be useful to work with a model that is simpler, even though it may achieve lower quality-of-fit.
We expect that in practice disRNN will be most useful if researchers fit several copies, at each of
several values of β, and inspect their fits to determine which (if any) have learned models that are
useful (Appendix B).

The most important limitation of our approach is that there is no guarantee that the recovered model
will necessarily correspond to the true cognitive mechanisms used by the brain. Instead, it uses the
dataset to reveal a parsimonious hypothesis. This hypothesis that requires evaluation by a human
scientist to determine whether, given the rest of what is known about the psychology and biology
of the system, it is plausible. If plausible, it may require new experiments to test the predictions
that it makes. This limitation is fundamental to any approach that seeks to make inferences about
cognitive mechanisms by analyzing behavioral data, as any behavioral dataset will provide only a
limited window on neural mechanisms. One view of these systems is that they perform automatic
hypothesis generation, without themselves addressing the problem of hypothesis testing.

An additional limitation is that the method, because it requires fitting quite flexible models, likely is
applicable only to relatively large-scale datasets. Determining how performance scales with dataset
size and exploring methods of improving data efficiency may be important directions for further
research. Another direction is exploring the performance of disRNN on behavioral datasets from
other types of cognitive neuroscience tasks. A large number of scientifically-important tasks exist
which are of similar complexity to those considered here, and we believe that for many of these
disRNN would prove able to discover reasonable models. A large number of tasks also exist which
are considerably more complex, and we expect that for these disRNN in its current form might
struggle, perhaps by requiring prohibitively large datasets.

The ultimate goal in cognitive model discovery is to develop tools which can reveal scientifically
valuable models automatically from data. We believe that disRNN represents an important step
towards this goal. Its most important test will come from work applying it to novel datasets, for
which no model is known, and evaluating whether the structures it learns are useful to researchers.

10

Acknowledgments and Disclosure of Funding

We would like to thank Kim Stachenfeld and Yu Jin Oh for helpful comments on the manuscript.

References
[1] Alexander A Alemi et al. “Deep variational information bottleneck”. In: arXiv preprint

arXiv:1612.00410 (2016).
[2] Li Ji-An, Marcus K Benna, and Marcelo G Mattar. “Automatic Discovery of Cognitive

Strategies with Tiny Recurrent Neural Networks”. In: bioRxiv (2023), pp. 2023–04.
[3] Timothy EJ Behrens et al. “Learning the value of information in an uncertain world”. In:

Nature neuroscience 10.9 (2007), pp. 1214–1221.
[4] Celia C Beron et al. “Mice exhibit stochastic and efficient action switching during probabilis-

tic decision making”. In: Proceedings of the National Academy of Sciences 119.15 (2022),
e2113961119.

[5] Matthew Botvinick and David C Plaut. “Doing without schema hierarchies: a recurrent connec-
tionist approach to normal and impaired routine sequential action.” In: Psychological review
111.2 (2004), p. 395.

[6] James Bradbury et al. JAX: composable transformations of Python+NumPy programs. Ver-
sion 0.3.13. 2018. URL: http://github.com/google/jax.

[7] Bingni W Brunton, Matthew M Botvinick, and Carlos D Brody. “Rats and humans can
optimally accumulate evidence for decision-making”. In: Science 340.6128 (2013), pp. 95–98.

[8] Christopher P Burgess et al. “Understanding disentangling in beta-VAE”. In: arXiv preprint
arXiv:1804.03599 (2018).

[9] Kyunghyun Cho et al. “On the properties of neural machine translation: Encoder-decoder
approaches”. In: arXiv preprint arXiv:1409.1259 (2014).

[10] Greg Corrado and Kenji Doya. “Understanding neural coding through the model-based analysis
of decision making”. In: Journal of Neuroscience 27.31 (2007), pp. 8178–8180.

[11] Greg S Corrado et al. “Linear-nonlinear-Poisson models of primate choice dynamics”. In:
Journal of the experimental analysis of behavior 84.3 (2005), pp. 581–617.

[12] Nathaniel D Daw et al. “Trial-by-trial data analysis using computational models”. In: Decision
making, affect, and learning: Attention and performance XXIII 23.1 (2011).

[13] Nathaniel D Daw et al. “Cortical substrates for exploratory decisions in humans”. In: Nature
441.7095 (2006), pp. 876–879.

[14] Ben Deverett et al. “Cerebellar involvement in an evidence-accumulation decision-making
task”. In: elife 7 (2018), e36781.

[15] Amir Dezfouli, Richard Nock, and Peter Dayan. “Adversarial vulnerabilities of human decision-
making”. In: Proceedings of the National Academy of Sciences 117.46 (2020), pp. 29221–
29228.

[16] Amir Dezfouli et al. “Models that learn how humans learn: The case of decision-making and
its disorders”. In: PLoS computational biology 15.6 (2019), e1006903.

[17] R Becket Ebitz, Eddy Albarran, and Tirin Moore. “Exploration disrupts choice-predictive
signals and alters dynamics in prefrontal cortex”. In: Neuron 97.2 (2018), pp. 450–461.

[18] Maria K. Eckstein et al. “Predictive and Interpretable: Combining Artificial Neural Networks
and Classic Cognitive Models to Understand Human Learning and Decision Making”. In:
bioRxiv (2023). DOI: 10.1101/2023.05.17.541226. eprint: https://www.biorxiv.
org/content/early/2023/05/17/2023.05.17.541226.full.pdf. URL: https:
//www.biorxiv.org/content/early/2023/05/17/2023.05.17.541226.

[19] Matan Fintz, Margarita Osadchy, and Uri Hertz. “Using deep learning to predict human
decisions and using cognitive models to explain deep learning models”. In: Scientific reports
12.1 (2022), p. 4736.

[20] Laurent Girin et al. “Dynamical Variational Autoencoders: A Comprehensive Review”. In:
CoRR abs/2008.12595 (2020). arXiv: 2008.12595. URL: https://arxiv.org/abs/2008.
12595.

[21] Anirudh Goyal et al. “Infobot: Transfer and exploration via the information bottleneck”. In:
arXiv preprint arXiv:1901.10902 (2019).

11

http://github.com/google/jax
https://doi.org/10.1101/2023.05.17.541226
https://www.biorxiv.org/content/early/2023/05/17/2023.05.17.541226.full.pdf
https://www.biorxiv.org/content/early/2023/05/17/2023.05.17.541226.full.pdf
https://www.biorxiv.org/content/early/2023/05/17/2023.05.17.541226
https://www.biorxiv.org/content/early/2023/05/17/2023.05.17.541226
https://arxiv.org/abs/2008.12595
https://arxiv.org/abs/2008.12595
https://arxiv.org/abs/2008.12595

[22] Tom Hennigan et al. Haiku: Sonnet for JAX. Version 0.0.9. 2020. URL: http://github.com/
deepmind/dm-haiku.

[23] Irina Higgins et al. “Beta-VAE: Learning basic visual concepts with a constrained variational
framework”. In: International conference on learning representations. 2017.

[24] Irina Higgins et al. “Darla: Improving zero-shot transfer in reinforcement learning”. In: Inter-
national Conference on Machine Learning. PMLR. 2017, pp. 1480–1490.

[25] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural computation
9.8 (1997), pp. 1735–1780.

[26] Makoto Ito and Kenji Doya. “Validation of decision-making models and analysis of decision
variables in the rat basal ganglia”. In: Journal of Neuroscience 29.31 (2009), pp. 9861–9874.

[27] MI Jordan. Serial order: a parallel distributed processing approach. technical report, june
1985-march 1986. Tech. rep. California Univ., San Diego, La Jolla (USA). Inst. for Cognitive
Science, 1986.

[28] Hoseok Kim et al. “Role of striatum in updating values of chosen actions”. In: Journal of
neuroscience 29.47 (2009), pp. 14701–14712.

[29] Timothy D Kim et al. “Inferring latent dynamics underlying neural population activity via
neural differential equations”. In: International Conference on Machine Learning. PMLR.
2021, pp. 5551–5561.

[30] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (2014).

[31] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv preprint
arXiv:1312.6114 (2013).

[32] Brian Lau and Paul W Glimcher. “Dynamic response-by-response models of matching behavior
in rhesus monkeys”. In: Journal of the experimental analysis of behavior 84.3 (2005), pp. 555–
579.

[33] Daeyeol Lee, Benjamin P McGreevy, and Dominic J Barraclough. “Learning and decision
making in monkeys during a rock–paper–scissors game”. In: Cognitive Brain Research 25.2
(2005), pp. 416–430.

[34] Germain Lefebvre et al. “Behavioural and neural characterization of optimistic reinforcement
learning”. In: Nature Human Behaviour 1.4 (2017), p. 0067.

[35] Niru Maheswaranathan et al. “Universality and individuality in neural dynamics across large
populations of recurrent networks”. In: Advances in neural information processing systems 32
(2019).

[36] Vladimir Mikulik et al. “Meta-trained agents implement bayes-optimal agents”. In: Advances
in neural information processing systems 33 (2020), pp. 18691–18703.

[37] Kevin J Miller, Matthew M Botvinick, and Carlos D Brody. “From predictive models to
cognitive models: Separable behavioral processes underlying reward learning in the rat”. In:
bioRxiv (2018).

[38] Kevin J Miller, Matthew M Botvinick, and Carlos D Brody. “Value representations in the
rodent orbitofrontal cortex drive learning, not choice”. In: Elife 11 (2022), e64575.

[39] John P O’Doherty, Alan Hampton, and Hackjin Kim. “Model-based fMRI and its application
to reward learning and decision making”. In: Annals of the New York Academy of sciences
1104.1 (2007), pp. 35–53.

[40] Chethan Pandarinath et al. “Inferring single-trial neural population dynamics using sequential
auto-encoders”. In: Nature methods 15.10 (2018), pp. 805–815.

[41] Lucas Pinto et al. “An accumulation-of-evidence task using visual pulses for mice navigating
in virtual reality”. In: Frontiers in behavioral neuroscience 12 (2018), p. 36.

[42] Payam Piray and Nathaniel D Daw. “A model for learning based on the joint estimation of
stochasticity and volatility”. In: Nature communications 12.1 (2021), p. 6587.

[43] Kazuyuki Samejima et al. “Representation of action-specific reward values in the striatum”. In:
Science 310.5752 (2005), pp. 1337–1340.

[44] Steffen Schneider, Jin Hwa Lee, and Mackenzie Weygandt Mathis. “Learnable latent embed-
dings for joint behavioural and neural analysis”. In: Nature (2023), pp. 1–9.

[45] Benjamin B Scott et al. “Sources of noise during accumulation of evidence in unrestrained and
voluntarily head-restrained rats”. In: Elife 4 (2015), e11308.

12

http://github.com/deepmind/dm-haiku
http://github.com/deepmind/dm-haiku

[46] Mingyu Song, Yael Niv, and Mingbo Cai. “Using Recurrent Neural Networks to Understand
Human Reward Learning”. In: Proceedings of the Annual Meeting of the Cognitive Science
Society. Vol. 43. 43. 2021.

[47] David Sussillo and Omri Barak. “Opening the black box: low-dimensional dynamics in high-
dimensional recurrent neural networks”. In: Neural computation 25.3 (2013), pp. 626–649.

[48] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[49] Naftali Tishby, Fernando C Pereira, and William Bialek. “The information bottleneck method”.
In: arXiv preprint physics/0004057 (2000).

[50] Alex H Williams et al. “Unsupervised discovery of demixed, low-dimensional neural dynamics
across multiple timescales through tensor component analysis”. In: Neuron 98.6 (2018),
pp. 1099–1115.

[51] Robert C Wilson and Anne GE Collins. “Ten simple rules for the computational modeling of
behavioral data”. In: eLife 8 (Nov. 2019), e49547. ISSN: 2050-084X. DOI: 10.7554/eLife.
49547. URL: https://doi.org/10.7554/eLife.49547 (visited on 04/23/2021).

13

https://doi.org/10.7554/eLife.49547
https://doi.org/10.7554/eLife.49547
https://doi.org/10.7554/eLife.49547

A Pulse Accumulation Task

In this appendix, we explore the generality of disRNN by applying it to datasets from a very different
class of tasks: decision-making via accumulation of noisy evidence. Like the reward-learning tasks
considered earlier, these tasks are heavily studied in behavioral neuroscience and have been the
subject of intensive cognitive modeling efforts. We consider specifically the “pulse accumulation”
tasks, which are particularly amenable to computational modeling [7, 45, 14, 41]. In each trial of
these tasks, discrete “pulses” of evidence arrive over time via two parallel streams (typically “left”
and “right”), and the agent is rewarded for reporting which of the two streams contained a larger total
number of pulses.

A.1 Bounded Accumulator Agent

We generated synthetic data from an artificial decision-making agent performing this task by im-
plementing a known strategy: Bounded Accumulation. The Bounded Accumulator agent maintains
a single latent variable A, which indicates a running estimate of the difference in pulse counts
between the two streams. At the beginning of each trial, A is initialized to 0 and then updated
timestep-by-timestep as the pulses arrive according to:

At+1 = At + σaηa + δt,trσpηr + δt,tlσpηl (15)

where σa is an accumulator noise parameter controlling noise that scales with time; σc is a pulse noise
parameter controlling how much sensory noise is associated with each evidence pulse; δt,tR,L

are
delta functions are the times of the right and left pulses; ηR,L are i.i.d. Gaussian variables drawn from
N (1, 1); ηa is an i.i.d. Gaussian variable drawn from N (0, 1). The dynamics of A are additionally
governed by a bound parameter B. If A reaches a value more extreme than ±B, it will remain at this
value for the remainder of the trial.

The agent’s decision on each trial is based on the final value of A and on a lapse parameter l, which
is constrained to lie between 0 and 0.5. With probability 1− l, the decision is given by the sign of A,
and with probability l it is inverted.

We generated a large synthetic dataset consisting of pulses observed and decisions made, using a
Bounded Accumulator agent with relatively little noise (σa = 0; σp = 0.01; B=2.9; l=0; 200,000
trials) (Figure A1a,b). We then trained a DisRNN to imitate this dataset. We find that just one of its
latents has an open bottleneck, allowing it to pass information through time, and that the timecourse
of this latent is strikingly similar to that of A (Figure A1c). We visualize the learned update rules for
this latent by probing its associated update MLP, and find that they are strikingly similar to those for
A (Figure A1d).

A.2 Rat Behavioral Data

We next considered a large laboratory dataset from rats performing a pulse accumulation task in
which the evidence streams consisted of auditory clicks delivered from a pair of speakers, one located
to the left and one located to the right of the rat [7]. For the purposes of modeling, we discretized
each trial into 10ms timebins, and gave as inputs to the network the integer number of clicks that
were delivered from each speaker in each bin. We fit copies of DisRNN to the dataset from each
individual rat, with different values of the bottleneck cost β.

We find that these often recover human-interpretable models which capture known features of rat
behavior on this task. In the first example shown (Figure A2, left), the model has identified a single
latent (green) which follows a timecourse similar to that of an accumulator variable. Unlike in the
synthetic agent considered above, this accumulator does not seem to have a bound, and it does seem
to have “decay” dynamics, drifting gradually towards 0 on timesteps that do not contain clicks. In the
second example shown (Figure A2, left), the model has identified a similar accumulator latent (green),
whose dynamics are now modified by those of a second latent (blue). The value of this second latent
decreases sharply in response to clicks (from either speaker) and recovers gradually during timesteps
without clicks. While it remains low, the impact of additional clicks on the accumulator variable is
attenuated. This pattern is consistent with “sensory adaptation” dynamics that are often included in
cognitive models for tasks of this kind [7].

14

Figure A1: DisRNN Recovers Latent Dynamics of Bounded Accumulator. a: Bounded Ac-
cumulator agent run on an example trial of the click accumulation task to generate timeseries for
the accumulator variable A. b: Visualization of the Bounded Accumulator update equation. A is
incremented on timesteps containing a left click only and decremented on trials containing a right
click only, unless it has already reached one of the bounds (here ±3), in which case it remains at that
bound. On timesteps with no click or with clicks on both sides, A remains the same. The dynamics
of A beyond the bound are undefined, as these values are never reached c: DisRNN trained on a
synthetic behavioral dataset generated by an Bounded Accumulator agent. d: Visualization of the
learned update rules for the first latent.

Figure A2: DisRNN Trained on Rat Decision-Making Dataset. Examples of fit DisRNN networks
with different values of the hyperparameter β controlling the tradeoff between simplicity and predic-
tive power

B Robustness of Fits

In this appendix, we explore the robustness of disRNN fits to different values of the hyperparameter
β, which controls the contribution of the information bottleneck cost to the loss function (equation 7).
We fit three copies of DisRNN to each of our three synthetic datasets (Q-Learning, Actor-Critic, and
Bounded Accumulation) at each of nine values of β ranging from 10−5 to 10−1 (Figure A3). For
each DisRNN, we measure the cross-validated quality-of-fit (Figure A3, yellow, top row), as well as
number of information bottlenecks that are open (σ < 0.3) for both latent bottlenecks (blue, middle
row) and update bottlenecks (green, bottom row). We compare the number of open latent bottlenecks
in the fit DisRNNs to the number of latent variables in the true generative process (Q-Learning and
Actor-Critic: two latent variables; bounded Accumulator: One latent variable), and the number of
open update bottlenecks to the number of total terms across all update rules in the true generative
processes (Q-Learning: four terms; Actor-Critic: five terms; Bounded Accumulator: three terms).

15

We find for all three datasets that DisRNNs with very high values of β adopted structures simpler
than those of the true generative agents (fewer open bottlenecks), and that these DisRNNs earned
lower quality-of-fit. We find for all three datasets that DisRNNs with very low values of β adopted
structures more complex than those of the true generative agents (more open bottlenecks), and that
these typically earned a high quality-of-fit. In between the extremes, DisRNNs with medium values
of β adopted structures similar to those of the true generative agents. These DisRNNs could reliably
be identified as those with the simplest structures (largest β; fewest open bottlenecks) among the set
of networks with high quality-of-fit. Manual inspection revealed that all DisRNNs with the correct
number of open bottlenecks also adopted the correct model structure and qualitatively well-matched
update rules (data not shown).

These results demonstrate that an approach of fitting multiple copies of DisRNN with different
hyperparameters is able to reliably identify the true model structure in each of our synthetic datasets.
They also highlight the fact that this approach results in a spectrum of models adopting different
tradeoffs between simplicity and quality-of-fit. We expect that DisRNN will be most useful in practice
if researchers fit several models with different values of β and inspect each of them to determine
which (if any) have discovered structures of scientific interest.

Figure A3: Robustness of DisRNN Fits Across Different Values of β. See text for description

C Cognitive Model Discovery Using Classic RNNs

In this appendix, we explore whether similar results might have been obtained using classic neural
network architectures, either by constraining the size of the network [2] or by fitting a larger network
and considering only the top few principal components of its activity space. We consider networks
using the popular Gated Recurrent Unit (GRU) architecture [9], because related work has reported
good performance with this architecture on similar datasets [2, 16] and because having only a single
type of recurrent unit makes them simpler to analyze.

First, we explore quality of fit for GRU networks of different sizes, ranging from one to fourteen
hidden units, fit to each of the five datasets (table 1). We find that for the synthetic datasets, “tiny”
networks with just one or two recurrent units do provide a quality-of-fit that is only slightly less than
that of larger networks. This raises the possibility that these networks might be able to discover the true
model structure for these synthetic datasets. For the rat datasets, we find that larger networks provide
a meaningfully better quality-of-fit. This indicates that very small networks do not quantitatively
fully capture the structure present in the rat datasets, though it does not rule out the possibility that
they might nevertheless discover scientifically-useful model structures.

Next, we inspected the fit of the “tiny” two-unit GRU networks to our three synthetic datasets,
examining plots of their update rules (Figure A4). We see that these typically do not have a 1:1
relationship with the true generative latent variables. The exception is the Q-Learning agent, for which
two-unit GRUs do often discover a disentangled solution. Solutions found for the Actor-Critic and
Bounded Accumulator datasets are fully entangled, with each unit’s update dependent on the value of
the other unit and on both input variables. We interpret this to mean that very small conventional
networks can discover dynamics that recapture those of certain generative processes, but that they do
not do so reliably.

Finally, we inspected the fit of larger ten-unit GRU networks to our three synthetic datasets (Figure
A5). We summarize their dynamics by plotting update rules for the first two principal components.
While some interpretable patterns are apparent, there is still not a 1:1 mapping between PCs and

16

the latent variables of the generative process. The dynamics are entangled, with each PC’s update
depending on all inputs and on the value of the other PC.

Taken together, we interpret these results to indicate that conventional neural networks like GRUs
can be a viable route to cognitive model discovery in some circumstances, but also that they have
important limitations. One limitation is that, while task training ensures that the dynamics they contain
are sufficient to solve the task, nothing ensures that all aspects of these dynamics are necessary (they
are free to retain null-space dynamics). Another limitation is that, while the number of latent variables
can be constrained by limiting network size or by only considering the top few PCs, nothing ensures
that the update rules for these variables are sparse, and nothing encourages them to be “axis aligned”,
mapping 1:1 onto the true generative dynamics. Note that the “tiny RNNs” approach of Ji-An et al.,
[2] introduced additional architectural changes to the networks, which may help address some of
these limitations.

Hidden Q-Learning Actor-Critic Bandit Rats Accumulator Clicks Rats
1 -0.72 -1.38 -2.16 - -0.36
2 - - - -0.008 -
3 0.002 0.01 0.34 0.001 0.08
4 0.003 0.02 0.26 0.003 0.07
5 0.002 0.02 0.39 0.004 0.08
6 0.002 0.02 0.38 0.004 0.09
7 0.002 0.02 0.35 0.004 0.08
8 0.002 0.02 0.46 0.004 0.10
9 0.002 0.02 0.44 0.004 0.11

10 0.002 0.02 0.38 0.004 0.05
11 0.002 0.02 0.35 0.004 0.10
12 0.002 0.02 0.51 0.004 0.10
13 0.001 0.02 0.53 0.004 0.10
14 0.001 0.02 0.50 0.004 0.13

Table 1: Model Comparison: GRUs of Different Sizes Difference in cross-validated normalized
likelihood (percentage points) between GRU networks with different numbers of hidden units. Score
for each synthetic dataset is the average of three networks fit with different random seeds. Score for
the rat two-armed bandit dataset is the average of three networks for each of 20 rats. Score for the rat
Poisson clicks dataset is the average of three networks for each of 19 rats. Scores are reported as the

difference between the average score for that combination of dataset and network size and a
reference size for each dataset (two units for Q-Learning, Actor-Critic, Bandit Rats, and Clicks Rats;

one unit for Bounded Accumulator)

17

Figure A4: Update Rules for Two-Unit GRUs Fit to Synthetic Datasets. The update rules for the
GRU fit to the Q-Learning dataset are strikingly similar to the true update rules of the Q-Learning
agent (Figure 3). The update rules for GRUs fit to the Actor-Critic and Bounded Accumulator datasets
are quite different from the true update rules of these agents.

Figure A5: Update Rules for Top Two PCs of Large GRUs fit to Synthetic Datasets. For all three
networks, the update rules for the top two PCs are quite different from the true update rules of the
corresponding generative agents.

18

	Introduction
	Related Work
	Disentangled Recurrent Neural Networks
	Network Architecture
	Training Details

	DisRNN Recovers True Structure in Synthetic Datasets
	Q-Learning Agent
	Leaky Actor-Critic Agent

	DisRNN Reveals Interpretable Models of Rat Behavior
	Discussion
	Pulse Accumulation Task
	Bounded Accumulator Agent
	Rat Behavioral Data

	Robustness of Fits
	Cognitive Model Discovery Using Classic RNNs

