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Abstract

Inference and simulation in the context of high-dimensional dynamical systems
remain computationally challenging problems. Some form of dimensionality re-
duction is required to make the problem tractable in general. In this paper, we
propose a novel approximate Gaussian filtering and smoothing method which prop-
agates low-rank approximations of the covariance matrices. This is accomplished
by projecting the Lyapunov equations associated with the prediction step to a
manifold of low-rank matrices, which are then solved by a recently developed,
numerically stable, dynamical low-rank integrator. Meanwhile, the update steps
are made tractable by noting that the covariance update only transforms the column
space of the covariance matrix, which is low-rank by construction. The algorithm
differentiates itself from existing ensemble-based approaches in that the low-rank
approximations of the covariance matrices are deterministic, rather than stochastic.
Crucially, this enables the method to reproduce the exact Kalman filter as the low-
rank dimension approaches the true dimensionality of the problem. Our method
reduces computational complexity from cubic (for the Kalman filter) to quadratic
in the state-space size in the worst-case, and can achieve linear complexity if the
state-space model satisfies certain criteria. Through a set of experiments in classi-
cal data-assimilation and spatio-temporal regression, we show that the proposed
method consistently outperforms the ensemble-based methods in terms of error in
the mean and covariance with respect to the exact Kalman filter. This comes at no
additional cost in terms of asymptotic computational complexity.

1 Introduction

Spatio-temporal dynamical systems have always played an important role in the applied sciences,
such as climate science, numerical weather prediction, or geophysics. In precisely these settings, one
is often faced with massive amounts of data to be processed. At the same time the interactions are
of such complex nature that it is imperative to include a notion of uncertainty in the model and in
its outputs. Both these requirements have a reputation as being computationally expensive. Hence,
sensible approximations are indispensable at a certain scale.

Concretely, we consider state-space models of the form

dx(t) = Ax(t) dt+Bdw(t), (1a)
y(tl) | x(tl) ∼ N (Cx(tl),R), l = 1, . . . , N (1b)
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Figure 1: Rank-r approximations to the true KF covariance (left) for increasing r. The considered
problem’s true rank is r∗ = 7 by construction, the state-dimension is n = 1000. The respective
low-rank factors are shown above and left of their outer product. For r ≥ r∗, the KF estimate is
recovered. For r > r∗, the excess columns of the low-rank factor collapse (rightmost plot).

where x ∈ Rn is the latent state, y ∈ Rm is the measurement process, and w is a standard Wiener
process in Rq. Equation (1a) defines the prior dynamics model via a linear time-invariant (LTI)
stochastic differential equation (SDE) with drift matrix A ∈ Rn×n and dispersion matrix B ∈ Rn×q .
The linear Gaussian observation model Eq. (1b) is specified via the measurement matrix C ∈ Rm×n

and measurement-noise covariance R ∈ Rm×m, where possible time-dependency has been omitted
from the notation. While the probabilistic state-estimation problem may in principle be solved
in closed form using the Kalman filter (KF) and smoother [25, 34], we will consider the case
where the state dimension n and measurement dimension m are very large, making the covariance
recursion computationally prohibitive in practice. Such settings include spatio-temporal Gaussian
process regression [35, 37, 45, 7, 20], and data assimilation applications such as meteorology and
oceanography [17, 11], numerical weather forecasting [21], geoscience [6], inverse problems [9, 41],
and brain imaging [16]. While the Gaussian process (GP) literature offers many ways of tractable,
approximate inference, approaches based on approximations of the underlying kernel function are not
amenable to the present problem setting. Without a kernel to approximate, the problem is often solved
by ensemble methods, which stochastically propagate low-rank approximations to the covariances
in the filtering recursion. This stochasticity introduces unfavorable properties in these methods. To
avert this shortcoming, we propose a novel low-rank filtering recursion, which is fully deterministic.

Contributions This text develops a method for efficient, approximate Gaussian filtering, including
smoothing and marginal likelihood computation. The method employs the standard predict/correct
formulation of the filtering problem, and can in principle be thought of as a square-root implementation
of a Kalman filter, in that it represents all covariance matrices as their left square-root factors [19].
However, instead of square matrix square roots, the covariances are approximated by (n × r)-
dimensional low-rank factors, where r ≪ n. We propose an approximate low-rank prediction-
correction loop, together with the computation of the backwards Markov process representing the
smoothing posterior, all while preserving this low-rank structure throughout time.

Crucial to this work are (i) the use of dynamic-low-rank approximation (DLRA) [27, 29, 8] to solve
Lyapunov equations on the manifold of rank-r matrices in the prediction step and (ii) an efficient
correction scheme that updates only the low-dimensional column space of the predicted covariance
factor, which introduces no additional approximation error. The computational complexity of the
proposed filter is asymptotically equal to those of the widely-used ensemble Kalman filters.

The method offers a deterministic alternative to existing ensemble methods. In particular, it recovers
the exact Kalman filter estimate both in the full-rank limit r = n and if the problem is in fact of rank
r < n. The latter is demonstrated in Fig. 1, in which a problem with n = 1000 state dimensions and
a true rank of 7 is approximated with r = 3, 7, 11. As soon as r exceeds the true rank of the problem,
the residual subspace dimensions collapse. The method will be detailed in Section 3 and evaluated on
the basis of various experiments in Section 4. All source code is publicly available on GitHub.1,2

1https://github.com/schmidtjonathan/RRKF.jl
2https://github.com/schmidtjonathan/RRKF_experiments/
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Related work The state estimation problem defined by Eq. (1) amounts to linear Gaussian state
estimation and can be computed in closed form by Kalman filtering and smoothing. A modern
overview can be found in Särkkä and Solin [36]. While the exact filtering and smoothing recursions
scale linearly with the number of time points N , they scale cubically in the state dimension n and the
measurement dimension m, making their use computationally infeasible in many high-dimensional
problems. A widely-used approximate filtering technique used to circumvent this computational
burden are ensemble Kalman filters (EnKF) [11–13, 26, 32, 6]. The ensemble is a set of r randomly
sampled state vectors of dimension n, which parametrize the mean and covariance via sample
statistics. It is processed successively in a prediction-correction loop similar to the KF. The mean-
centered ensemble can be regarded as a low-rank square-root factor of the sample covariance matrix.
In Section 4 we compare our method to the standard version of the EnKF and the ensemble transform
Kalman filter [4], which is categorized as an ensemble-square-root filter [43].

In so far as it aims for computationally tractable Gaussian process regression, the proposed method is
related to approaches using the Nyström method [48], inducing point methods [38, 44, 22], random
Fourier features [31], and doubly-sparse variational Gaussian processes [1].

The literature offers more contributions related to the present work under the broader context of low-
rank and dimensionality-reduction methods. Loiseau et al. [28], Netto and Mili [30], Vijayshankar
et al. [47] approach low-rank modelling of dynamical systems based on measured data, whereas
Farrell and Ioannou [15] are concerned with low-rank approximations of a given model based on
classical theory on linear time-invariant systems. Cressie et al. [10] develop a tractable hierarchical
Bayesian model to approximate high-dimensional spatio-temporal dynamics in a reduced latent
space and condition on measurements by transporting the low-dimensional diffusive process to the
full space by a projection that is assumed to be known. In those cases, once a low rank model is
obtained for the phenomena under study, state estimation becomes computationally tractable, due to
the reduced size of the resulting model. These works build upon the assumption that the state of the
system evolves approximately in a low-dimensional manifold, whereas our method works under the
assumption that the error in the state estimate evolves approximately in a low-dimensional manifold.

2 Background

Throughout this work, for a function x(t) and a grid (t1, .., tN ) we use the abbreviated notation
x(tl) = xl and (x(ta), ...x(tb)) = xa:b. The task of interest is computing the filtering densities
p(xl | y1:l) and smoothing densities p(xl | y1:N ) for l = 1, . . . , N . LTI SDEs of the form in Eq. (1a)
admit an equivalent discrete formulation in terms of linear Gaussian transition densities of the form

xl | xl−1 ∼ N (Φlxl−1,Ql). (2)

The transition matrix Φ(t) ∈ Rn×n and process-noise covariance matrix Q(t) ∈ Rn×n solve the
matrix differential equations Φ̇(t) = AΦ(t) and

Q̇(t) = AQ(t) + Q(t)A∗ +BB∗, (3)

in the interval [tl−1, tl) with initial conditions Φ(tl−1) = I and Q(tl−1) = 0, respectively [36].
Equation (3) is known as a Lyapunov equation, and will be of special importance in this work.

2.1 Square-root filtering

For numerically stable filtering and smoothing, all covariance matrices involved can be represented
by matrix square roots (e.g. Cholesky factors). This is known as square-root filtering/smoothing [19].
Let (M1 M2) denote a wide block matrix in Rd1×(d2+d3), where M1 ∈ Rd1×d2 and M2 ∈ Rd1×d3
are some matrices. Given the filtering covariance at time tl−1 as Σl−1 = Σ

1/2
l−1Σ

∗/2
l−1 a square-root

factorization of the predicted covariance Πl = Π
1/2
l Π

∗/2
l is given by

Πl = ΦlΣl−1Φ
∗
l +Ql =

(
ΦlΣ

1/2
l−1 Q

1/2
l

)(
ΦlΣ

1/2
l−1 Q

1/2
l

)∗
, (4)

and, hence, (ΦlΣ
1/2
l−1 Q

1/2
l ) is a matrix square-root of Πl. Similarly, the correction step can be

carried out entirely on square-root factors. For more details, see Grewal and Andrews [19].
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2.2 Dynamical low-rank approximation

Consider an initial value problem with a matrix-valued flow field F : R× Ru×v → Ru×v

Ṁ(t) = F (t,M(t)), M(t0) = M0, (5)

where u and v are potentially very large. Dynamic low-rank approximation (DLRA) methods [27, 8]
efficiently compute low-rank factorizations Y(t) = U(t)D(t)V∗(t) ≈ M(t) of Eq. (5) by solving

Ẏ(t) = Pr[Y(t)] ◦ F (t,Y(t)), Y(t0) = U0D0V
∗
0, (6)

instead. The matrices U0 ∈ Ru×r, D0 ∈ Rr×r, and V0 ∈ Rv×r are an initial low-rank factorization
of Y(t0) ≈ M(t0). Pr[Y(t)] denotes the projection operator onto the tangent space at Y(t), where
Y(t) lies in the manifold of rank-r matrices. In the present work, we leverage this technique to obtain
a low-rank factor Q1/2 of the process-noise covariance at the next prediction location. Thus, we avoid
much of the computational cost in the prediction step, otherwise caused by solving the full Lyapunov
equation for Q in Eq. (3), for example using matrix-fraction decomposition [40, 3]. Concretely,
let F (Q) = AQ + QA∗ + BB∗. Then, an approximate low-rank process-noise covariance matrix
associated with the prediction step is obtained by integrating

Q̇(t) = Pr[Q(t)] ◦ F (Q(t)), Q(tl−1) = U0D
2
0U

∗
0 = 0 (7)

from tl−1 to tl. At the start of the filtering recursion t0, an initial low-rank factorization is constructed
with a random orthogonal matrix U0 and D0 = 0. For all subsequent steps the propagated orthogonal
basis U(tl) can be reused. In this work, all mentions of dynamic low-rank integration always refer to
the recently developed, numerically stable basis update & Galerkin (BUG) integrator [8], whose error
bounds are independent of small singular values. More details are given in Appendix C.

3 Rank-reduced Kalman filtering

In this section, a method for approximate inference in Eq. (1) is developed. The idea is to approximate
the full filtering/smoothing covariance matrices of the latent state by an eigendecomposition truncated
at the r-th largest eigenvalue. The main challenge is to thereby attain linear computational scaling
in n and m under appropriate assumptions on the state-space model. Before proceeding with the
filtering and smoothing recursions, it is instructive to examine inference in a static low-rank model.

3.1 Efficient inference in static models of low rank

Consider the following latent variable model

x ∼ N (µ,Π
1/2Π

∗/2), y ∼ N (Cx,R), (8)

where Π1/2 ∈ Rn×r is of full column rank, r ≤ n, and R ∈ Rm×m. Representing the latent state x as

x = µ+Π
1/2z, z ∼ N (0, Ir×r), (9)

reduces the problem to inference in the following model

z ∼ N (0, Ir×r), y | z ∼ N (Cµ+CΠ
1/2z,R). (10)

An efficient inference scheme is given by the following proposition, which is proved in Appendix A.1.
Proposition 1. Let z and y be two random variables governed by Eq. (10). Assume r ≤ m and
consider the following singular value decomposition (R−1/2CΠ1/2)∗ = UDV∗, where U,D ∈ Rr×r
and V ∈ Rm×r. Then, defining the whitened residual e = R−1/2(y − Cµ), we get

y ∼ N (Cµ,R
1/2(VD2V∗ + I)R

∗/2), (11a)

z | y ∼ N (U(I + D2)−1DV∗e,U(I + D2)−1U∗). (11b)

Furthermore, let | · | denote the matrix determinant. The marginal log-likelihood of y is given by

logN (y; Cµ,R
1/2(VD2V∗ + I)R

∗/2) = −m
2
log 2π − log |R1/2| − 1

2

r∑
k=1

log(1 + D2
kk)

− 1

2
∥e∥2 + 1

2
e∗VD(D2 + I)−1DV∗e.

(12)
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The below corollary follows from the deterministic relationship between z and x given by Eq. (9).
Corollary 1. Let y and x be two random variables governed by the model Eq. (8) and r ≤ m. Then

x | y ∼ N (µ+Ke,Σ), (13)

where
K = Π

1/2U(I + D2)−1DV∗, Σ = Π
1/2U(I + D2)−1U∗Π

∗/2. (14)
Moreover, a square-root of Σ is readily obtained by

Σ
1/2 = Π

1/2U(I + D2)
−1/2. (15)

3.2 The rank-reduced filtering recursion

In this section, a low-rank prediction-correction recursion is developed for the purpose of obtaining
the filtering densities and the logarithm of the marginal likelihood.

The prediction equations Suppose the filtering distribution at time tl−1 is given by

p(xl−1 | y1:l−1) = N (xl−1;µl−1,Σ
1/2
l−1Σ

∗/2
l−1), (16)

where Σ
1/2
l−1 ∈ Rn×r. We begin by detailing how to compute a low-rank factor Π

1/2
l of the predicted

covariance. First compute the truncated singular value decomposition (SVD)(
ΦlΣ

1/2
l−1 Q

1/2
l

)
≈ ŨlD̃lṼ

∗
l (17)

of the square-root factor (cf. Section 2.1), with Ũl ∈ Rn×r, D̃l ∈ Rr×r, and Ṽl ∈ Rr×r. This can be
done in an optimal way by computing the full SVD and truncating it at the r-th largest singular value
in O(nr2) [18]. The process-noise covariance factor Q

1/2
l ∈ Rn×r in Eq. (17) is computed using

DLRA as described in Section 2.2. The rank-reduced predicted moments at time tl are thus given as

µ−
l = Φlµl−1 ∈ Rn, (18)

Π
1/2
l = ŨlD̃l ∈ Rn×r. (19)

The update equations The low-rank update equations follow from Proposition 1 and Corollary 1:

µl = µ−
l +Klel ∈ Rn, (20)

Σ
1/2
l = Π

1/2
l Ul(I + D2

l )
−1/2 ∈ Rn×r, (21)

with the whitened residual el = R−1/2(yl − Cµ−
l ) and

(R
−1/2CΠ

1/2
l )∗ = UlDlV

∗
l , Kl = Π

1/2
l Ul(I + D2

l )
−1DlV

∗
l , (22)

for Ul,Dl ∈ Rr×r and Vl ∈ Rm×r. The marginal predictive log-likelihood of yl is given by

log p(yl | y1:l−1) = −m
2
log 2π − log |R1/2| − 1

2

r∑
k=1

log((Dl)
2
kk + 1)

−∥el∥2

2
+

1

2
e∗lVlDl(D

2
l + I)−1DlV

∗
l el.

(23)

Corollary 1—and by extension, the above filtering recursion—is only valid when r ≤ m, which
is exactly the intended usecase for the proposed method. For settings in which m < r ≤ n the
correction step follows the square-root correction of a Kalman filter and is detailed in Appendix B.

3.3 Time complexity of the rank-reduced filtering recursion

This section analyzes the computational complexity of the proposed method. In the worst case, the
method scales quadratically in the state dimension n and measurement dimensionm. Under favorable
conditions, which are met in many real-world applications, the rank-reduced Kalman filter obtains a
computational complexity of O(nr2) as stated by Proposition 2, which is proven in Appendix A.2.
We begin by specifying a set of assumptions for Proposition 2.
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Assumption 1. The maps x 7→ Ax, x 7→ Φx, and x 7→ BB∗x can be evaluated in O(n).

Assumption 1 is fulfilled naturally in many dynamical systems, in which local operators introduce
sparsity into the dynamics, as, e.g., in finite-difference approximations of spatial differential opera-
tors. Another example is Kronecker structure in the system matrices arising in spatio-temporal GP
regression by assuming the covariance function is separated into a product over the respective spatial
and temporal components [35, 39, 20, 42].
Assumption 2. The map x 7→ Cx can be evaluated in O(m).

Assumption 3. The map x 7→ R−1/2x and the log-determinant log |R1/2| can be evaluated in O(m).

Throughout this work, we refer to the situation in which Assumption 1 or 2 do not apply as the “worst
case”. Assumption 3 is taken for granted as the measurement-noise covariance R is often a diagonal
matrix, which implies that sensor errors are uncorrelated. This is not only realistic but also commonly
imposed in modelling. The above assumptions allow the following proposition.
Proposition 2. Given Assumptions 1 to 3, the proposed method approximates the filtering densities
and the marginal likelihood at a cost of O(nr2 +mr2 + r3).

The below corollary follows from the book-keeping in the proof of Proposition 2 in Appendix A.2.
Corollary 2. When Assumption 1 or Assumption 2 are not satisfied, the worst-case complexity of the
proposed low-rank filtering recursion is O(n2r + nm+m2r).

Overall, the proposed filtering recursions achieve the same asymptotic complexity as the existing
ensemble methods under the same set of assumptions. However, our method is entirely deterministic.

3.4 The rank-reduced smoothing recursion

It remains to obtain a recursion for the smoothing densities, which can be shown to be computationally
tractable given that the filtering recursion is tractable. The smoothing densities are denoted by

p(xl | y1:N ) = N (xl; ξl,Λl), ξN = µN , ΛN = ΣN . (24)

It can be shown that the posterior process has a backward Markov representation [5], hence the
smoothing marginals may be obtained by

p(xl | y1:N ) =

∫
bl,l+1(xl | xl+1)p(xl+1 | y1:N ) dxl+1, (25)

where we call bl,l+1 the backwards kernel. Consequently, the problem consists of approximating
bl,l+1 such that the marginalization Eq. (25) may be implemented in a computationally frugal manner.

Approximating the backwards kernel For the linear Gaussian case, the backward kernel [46]

bl,l+1(xl | xl+1) = N (xl; Glxl+1 + vl,Pl), (26)

is parametrized by the smoothing gain Gl ∈ Rn×n, the shift vector vl ∈ Rn, and the covariance of
the backwards kernel Pl ∈ Rn×n. Let (·)+ denote the Moore–Penrose pseudoinverse. Then

Gl = ΣlΦ
∗
l+1Π

+
l+1, vl = µl−Glµ

−
l+1, Pl = (I−GlΦl+1)Σl(I−GlΦl+1)

∗+GlQl+1G
∗
l . (27)

In the low-rank setting, the backwards kernel is efficiently approximated given the results from above.
The approximate smoothing gain is a product of a tall, a small quadratic, and a wide matrix:

Gl ≈ Σ
1/2
l Σ

∗/2
l Φ∗

l+1

(
Π

1/2
l+1

)+

︸ ︷︷ ︸
=:Γl∈Rr×r

(
Π

∗/2
l+1

)+

. (28)

During filtering, Γl is saved alongside the low-rank factors of the prediction and filtering covariances.
We proceed to compute a low-rank representation of the backwards-transition covariance. Consider
the following singular value decomposition, truncated at the r-th largest singular value,(

(I−GlΦl+1)Σ
1/2
l GlQ

1/2
l+1

)
≈ ÛlD̂lV̂

∗
l , (29)
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(a) Linear advection dynamics (true rank = 51).
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Figure 2: Performance of the low-rank filters on two different settings. In the truly low-rank linear
advection problem (a), the RRKF achieves the optimal estimate ( ) when r exceeds the true rank of
the problem. For the spatio-temporal air-quality regression (b), our method is consistently better.

where Ûl ∈ Rn×r, D̂l ∈ Rr×r diagonal, V̂l ∈ Rr×r, and Gl as given in Eq. (28). Then a rank-r
factor of Pl is given as

P
1/2
l = ÛlD̂l ∈ Rn×r. (30)

As for filtering, in the worst case, the cost for low-rank smoothing scales quadratically with the state
dimension n. The following proposition, which is proved in Appendix A.3, states that this can be
further reduced to linear complexity in n, given the assumptions on the dynamics model are satisfied.
Proposition 3. Given Assumption 1, computing the smoothing density p(xl | y1:N ) costs O(nr2+r3).

Finally, it is useful to mention that realizations of the backwards process are posterior samples.

4 Experiments

This section evaluates the proposed method in different experimental settings. The chosen measure
of quality is the distance of the approximate low-rank moments to the exact KF. We measure the
mean deviations with the root-mean-squared error (RMSE) and the covariance deviations with the
time-averaged relative Frobenius distances. The presented rank-reduced Kalman filter (RRKF) is
compared to the ensemble Kalman filter (EnKF) and the ensemble transform Kalman filter (ETKF).
All EnKF and ETKF results are given in sample statistics over 20 runs. Section 4.1 shows that for
a truly low-rank system, our method recovers the KF estimate up to numerical error as soon as r
exceeds the true rank of the problem. Section 4.2 tests the method on a spatio-temporal GP regression
problem with real data. After Section 4.3 evaluates the approximation quality for increasingly low-
rank systems in a controlled experimental environment, Section 4.4 verifies the stated asymptotic
cost of the method. Finally, a large-scale spatio-temporal regression problem is solved in Section 4.5.
In all experiments, we compute the stationary mean and a low-rank factorization of the stationary
covariance matrix of the prior and condition the stationary moments on the first measurement in the
respective time-series dataset. More details on the experimental setups are given in Appendix D.

4.1 Linear advection model

The proposed algorithm is evaluated in a standard data-assimilation setup in which linear-advection
dynamics with periodic boundary conditions are assimilated to a set of simulated data. The setup
follows the description in Sakov and Oke [33] and the experimental details are additionally detailed
in Appendix D. This problem has rank 51 by construction. Figure 2a shows how the exact KF
estimate is recovered by our method for r = 51, while the ensemble methods converge according to
a Monte–Carlo rate. This is particularly clear for the covariance estimate (Fig. 2a, B.).

4.2 London air-quality regression

This experiment uses hourly data from the London air-quality network [23] between January 2019
and April 2019, which amounts to measurements at 72 spatial locations and 2159 points in time. The
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all methods converge to the KF estimate. The first and second row compare the mean estimates and
the covariance estimates, respectively. The RRKF estimate is consistently closer and recovers the KF
estimate ( ) at r = n. The cumulative spectrum of the final-step KF covariance is shown in grey.
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Figure 4: Best-case and worst-case asymptotic complexities of the low-rank filters. When all
Assumptions 1 to 3 are satisfied (A.), the elapsed time grows linearly with the state dimension n. If
parts of the assumptions are not met (B.), the cost scales quadratically with the respective dimension.

data used, together with its processing (except the train-test split), is the same as in the corresponding
experiment by Hamelijnck et al. [20]. The model is a spatio-temporal Matérn-3/2 process with prior
hyperparameters that maximize the marginal log likelihood. Figure 2b shows that—compared to the
ensemble methods—our algorithm is consistently closer to the KF estimate and recovers it at r = n.

4.3 Spatio-temporal Matérn process with varying spatial lengthscale

Consider a spatio-temporal Gaussian process x(t) ∼ GP(0, kt ⊗ kx) with covariance structure that
is separable in time and space. Let both kt and kx be of the Matérn family with characteristic spatial
and temporal lengthscales ℓt, ℓx and output scales σ2

t , σ
2
x. Spatio-temporal Matérn processes can be

translated to the formulation in Eq. (1a), as detailed, for instance, by Solin [39]. This setting allows
for varying the “low-rankness” by the choice of ℓx: the larger ℓx, the more information about a spatial
point is prescribed by its surroundings. As ℓx approaches zero, the spatial kernel matrix gets more
and more diagonal, encoding spatially independent states, and causing a barely decaying spectrum.
The spectrum for large ℓx decays rapidly, making low-rank approximations more accurate for small r.

In the experiment, we consider a spatial domain [0, 2] × [0, 2] ⊂ R2, which is subsampled at a
uniformly-spaced grid with ∆x = 0.1 (n = 21 × 21 = 441). Noisy observations of the full state
trajectory, are drawn from a realization of the prior process. Figure 3 demonstrates that, for increasing
spatial lengthscales, all methods converge faster to the true KF estimate. Crucially, however, our
method is consistently closer to the optimal estimate and recovers it for r = n.
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Figure 5: Rainfall in Australia. A spatio-temporal GP regression problem with n = 30 911 state
dimensions, solved with the RRKF with r = 1000. The columns are three different days in the time
series. The rows show the data, mean estimate, and Z-scores, respectively.

4.4 Runtime

To demonstrate the asymptotic computational complexities given in Section 3.3, we investigate the
runtimes on two different settings: The first fulfills both Assumptions 1 and 2, whereas the second
only fulfills Assumption 2, which means that the cost of prediction is quadratic in the state dimension.
Both problems are solved on a temporal grid of size N = 100 with the measurement dimension fixed
at m = 100 and the low-rank dimension fixed at r = 5.

The problem from Section 4.1 serves as the best-case setting. The noise-free linear-advection
dynamics amount to multiplication of the state with a circulant matrix, which is implemented
efficiently using fast Fourier transform. The measurement operator amounts to array indexing. As
subplot A. in Fig. 4 confirms, the computational cost grows linearly with the state dimension. As a
worst-case example we employ a spatio-temporal Matérn process with a dense spatial kernel matrix
(cf. Section 4.3). In this case, we expect the computation time to scale quadratically with the state
dimension because BB∗ is dense. This is verified by the right plot in Fig. 4 (B.).

4.5 Large-scale spatio-temporal GP regression on rainfall data

As a final experiment, a spatio-temporal GP regression problem is solved on a large gridded analysis
data set measuring rainfall in Australia. The data is provided by the Australian Water Availability
Project (AWAP) [2, 24]. The number of spatial data points is n = 30 911, which rules out the
cubic-in-n Kalman filter. The smoothing posterior is computed at N = 40 time points, from 25
January, 2023 through 5 March, 2023. The total number of observations is thus n ·N = 1236 440.
The spatio-temporal prior Matérn model is selected by maximizing the marginal log-likelihood of a
lower-resolution data set. A set of 6160 spatial points is excluded from the data during filtering and
smoothing in order to evaluate spatial interpolation performance. Thus, the measurement dimension
is m = n − 6160 = 24751. Figure 5 shows the low-rank approximation to the GP posterior with
r = 1000 low-rank dimensions. The non-observed spatial locations are framed in the horizontal-“S”
shape. At measurement locations, the data is described well by the model, while a slight smoothing-
out effect can be observed due to the high-frequency features of the model being truncated. At the
evaluation points the interpolation aligns with the expectations regarding the simple Matérn model.

9



The Z-score map shows ξl−yl

λl
, where ξl and λl denote the smoothing mean and marginal standard

deviation and yl the data point, at time tl. This highlights badly calibrated uncertainty estimates,
wherever the model under-/overestimates the data and is divided by a small standard deviation, in
blue/red. The Z-score distribution receives further attention in Appendix E. All in all, the RRKF
achieves high-quality approximate estimates while compressing the state by a factor of 30 911

1000 ≈ 30.

5 Limitations

The main limitation of the proposed approximate probabilistic inference scheme is that the truncation
to r dimensions cuts away covariance information, which is not accounted for. As a result, confidence
grows as r shrinks, while estimates should arguably get more uncertain instead with increased
compression. In existing low-rank filters, this issue is often counteracted manually by inflating
the covariance matrices, on a per-application basis [6, Section 4.4] and calls for a more principled
treatment. Finding a way to keep track of that residual uncertainty information is beyond the scope of
this paper. It remains unclear how to preserve the stated asymptotic complexities while doing so.

Further, all results herein are stated for linear dynamics and observation models. Extensions to
non-linear models could include linearization of the according transitions, or cubature methods [34].

6 Conclusion

By building upon well-established knowledge about optimal compression, we have proposed an
algorithm providing a principled way to balance approximation accuracy against computational cost
in high-dimensional state estimation. It combines simple (truncated) singular value decompositions
with recent numerical low-rank integrators of large matrix differential equations. We have offered
both theoretical and empirical arguments for why it is desirable to use a deterministic algorithm when
approximating large-scale probabilistic state-estimation problems.

Acknowledgments and Disclosure of Funding

The authors gratefully acknowledge financial support by the German Federal Ministry of Education
and Research (BMBF) through Project ADIMEM (FKZ 01IS18052B), and financial support by
the European Research Council through ERC StG Action 757275 / PANAMA; the DFG Cluster
of Excellence “Machine Learning - New Perspectives for Science”, EXC 2064/1, project number
390727645; the German Federal Ministry of Education and Research (BMBF) through the Tübingen
AI Center (FKZ: 01IS18039A); and funds from the Ministry of Science, Research and Arts of the
State of Baden-Württemberg. Jörg Nick is funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – Project-ID 258734477 – SFB 1173. Filip Tronarp was partially
supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation. The authors thank the International Max Planck Research
School for Intelligent Systems (IMPRS-IS) for supporting Jonathan Schmidt. The authors also thank
Nathanael Bosch and Christian Lubich for many valuable discussions and for helpful feedback.

References
[1] Adam, V., Eleftheriadis, S., Artemev, A., Durrande, N., and Hensman, J. (2020). Doubly sparse

variational Gaussian processes. In Chiappa, S. and Calandra, R., editors, Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of
Proceedings of Machine Learning Research, pages 2874–2884. PMLR.

[2] Australian Data Archive for Meteorology (ADAM) (2023). Australian Water Availability Project.
http://www.bom.gov.au/jsp/awap/index.jsp. [Online; accessed May 2023].

[3] Axelsson, P. and Gustafsson, F. (2015). Discrete-time solutions to the continuous-time differential
Lyapunov equation with applications to Kalman filtering. IEEE Transactions on Automatic Control,
60(3):632–643.

[4] Bishop, C. H., Etherton, B. J., and Majumdar, S. J. (2001). Adaptive sampling with the ensemble
transform Kalman filter. part i: Theoretical aspects. Monthly weather review, 129(3):420–436.

10

http://www.bom.gov.au/jsp/awap/index.jsp


[5] Cappé, O., Moulines, E., and Ryden, T. (2005). Inference in Hidden Markov Models. Springer
Series in Statistics. Springer.

[6] Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G. (2018). Data assimilation in the
geosciences: An overview of methods, issues, and perspectives. Wiley Interdisciplinary Reviews:
Climate Change, 9(5).

[7] Carron, A., Todescato, M., Carli, R., Schenato, L., and Pillonetto, G. (2016). Machine learning
meets Kalman filtering. In 2016 IEEE 55th conference on decision and control (CDC), pages
4594–4599. IEEE.

[8] Ceruti, G. and Lubich, C. (2022). An unconventional robust integrator for dynamical low-rank
approximation. BIT. Numerical Mathematics, 62(1):23–44.

[9] Chada, N. K., Stuart, A. M., and Tong, X. T. (2020). Tikhonov regularization within ensemble
Kalman inversion. SIAM Journal on Numerical Analysis, 58(2):1263–1294.

[10] Cressie, N., Shi, T., and Kang, E. L. (2010). Fixed Rank Filtering for Spatio-Temporal Data.
Journal of Computational and Graphical Statistics, 19(3):724–745.

[11] Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model
using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans,
99(C5):10143–10162.

[12] Evensen, G. (2009a). Data assimilation: the ensemble Kalman filter, volume 2. Springer.

[13] Evensen, G. (2009b). The ensemble Kalman filter for combined state and parameter estimation.
IEEE Control Systems Magazine, 29(3):83–104.

[14] Evensen, G. (2021). Formulating the history matching problem with consistent error statistics.
Computational Geosciences, 25(3).

[15] Farrell, B. F. and Ioannou, P. J. (2001). State estimation using a reduced-order kalman filter.
Journal of the Atmospheric Sciences, 58(23):3666–3680.

[16] Galka, A., Yamashita, O., Ozaki, T., Biscay, R., and Valdés-Sosa, P. (2004). A solution to the
dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering. NeuroImage,
23(2):435–453.

[17] Ghil, M. and Malanotte-Rizzoli, P. (1991). Data assimilation in meteorology and oceanography.
In Advances in geophysics, volume 33, pages 141–266. Elsevier.

[18] Golub, G. H. and Van Loan, C. F. (2013). Matrix computations. JHU press.

[19] Grewal, M. and Andrews, A. (2011). Kalman Filtering: Theory and Practice Using MATLAB.
Wiley.

[20] Hamelijnck, O., Wilkinson, W., Loppi, N., Solin, A., and Damoulas, T. (2021). Spatio-temporal
variational Gaussian processes. Advances in Neural Information Processing Systems, 34:23621–
23633.

[21] Hamill, T. M. and Snyder, C. (2000). A hybrid ensemble Kalman filter–3D variational analysis
scheme. Monthly Weather Review, 128(8):2905–2919.

[22] Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data. In
Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI), pages 282–290.

[23] Imperial College London (2020). Londonair – London air quality network (LAQN). https:
//www.londonair.org.uk.

[24] Jones, D., Wang, W., and Fawcett, R. (2009). High-quality spatial climate data-sets for Australia.
Australian Meteorological and Oceanographic Journal, 58(04):233–248.

[25] Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Transactions
of the ASME–Journal of Basic Engineering, 82(Series D):35–45.

11

https://www.londonair.org.uk
https://www.londonair.org.uk


[26] Katzfuss, M., Stroud, J. R., and Wikle, C. K. (2016). Understanding the ensemble Kalman filter.
The American Statistician, 70(4):350–357.

[27] Koch, O. and Lubich, C. (2007). Dynamical low-rank approximation. SIAM Journal on Matrix
Analysis and Applications, 29(2):434–454.

[28] Loiseau, J.-C., Noack, B. R., and Brunton, S. L. (2018). Sparse reduced-order modelling:
sensor-based dynamics to full-state estimation. Journal of Fluid Mechanics, 844:459–490.

[29] Lubich, C. and Oseledets, I. V. (2014). A projector-splitting integrator for dynamical low-rank
approximation. BIT Numerical Mathematics, 54(1):171–188.

[30] Netto, M. and Mili, L. (2018). A robust data-driven koopman kalman filter for power systems
dynamic state estimation. IEEE Transactions on Power Systems, 33(6):7228–7237.

[31] Rahimi, A. and Recht, B. (2007). Random features for large-scale kernel machines. In Advances
in Neural Information Processing Systems (NeurIPS).

[32] Roth, M., Hendeby, G., Fritsche, C., and Gustafsson, F. (2017). The ensemble Kalman filter: a
signal processing perspective. EURASIP Journal on Advances in Signal Processing, 2017(1):1–16.

[33] Sakov, P. and Oke, P. R. (2008). A deterministic formulation of the ensemble Kalman filter: An
alternative to ensemble square root filters. Tellus A: Dynamic Meteorology and Oceanography,
60(2):361.

[34] Särkkä, S. (2013). Bayesian Filtering and Smoothing. Cambridge University Press.

[35] Särkkä, S. and Hartikainen, J. (2012). Infinite-dimensional Kalman filtering approach to spatio-
temporal Gaussian process regression. In Artificial Intelligence and Statistics, pages 993–1001.
PMLR.

[36] Särkkä, S. and Solin, A. (2019). Applied Stochastic Differential Equations. Cambridge
University Press.

[37] Särkkä, S., Solin, A., and Hartikainen, J. (2013). Spatiotemporal learning via infinite-
dimensional Bayesian filtering and smoothing: A look at Gaussian process regression through
Kalman filtering. IEEE Signal Processing Magazine, 30(4):51–61.

[38] Snelson, E. and Ghahramani, Z. (2005). Sparse Gaussian processes using pseudo-inputs.
Advances in Neural Information Processing Systems (NeurIPS), 18:1257–1264.

[39] Solin, A. (2016). Stochastic Differential Equation Methods for Spatio-Temporal Gaussian
Process Regression. Doctoral thesis, Aalto University, School of Science.

[40] Stengel, R. (1994). Optimal Control and Estimation. Dover Publications.

[41] Stuart, A. M. (2010). Inverse problems: a Bayesian perspective. Acta numerica, 19:451–559.

[42] Tebbutt, W., Solin, A., and Turner, R. E. (2021). Combining pseudo-point and state space
approximations for sum-separable Gaussian processes. In de Campos, C. and Maathuis, M. H.,
editors, Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence,
volume 161 of Proceedings of Machine Learning Research, pages 1607–1617. PMLR.

[43] Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., and Whitaker, J. S. (2003).
Ensemble square root filters. Monthly weather review, 131(7):1485–1490.

[44] Titsias, M. (2009). Variational learning of inducing variables in sparse Gaussian processes. In
Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS),
pages 567–574. PMLR.

[45] Todescato, M., Carron, A., Carli, R., Pillonetto, G., and Schenato, L. (2020). Efficient spatio-
temporal Gaussian regression via Kalman filtering. Automatica, 118:109032.

12



[46] Tronarp, F., Bosch, N., and Hennig, P. (2022). Fenrir: Physics-enhanced regression for initial
value problems. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S.,
editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 21776–21794. PMLR.

[47] Vijayshankar, S., Nabi, S., Chakrabarty, A., Grover, P., and Benosman, M. (2020). Dynamic
mode decomposition and robust estimation: Case study of a 2d turbulent boussinesq flow. In 2020
American Control Conference (ACC), pages 2351–2356. IEEE.

[48] Williams, C. and Seeger, M. (2001). Using the Nyström method to speed up kernel machines.
In Advances in Neural Information Processing Systems (NeurIPS).

13


