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Abstract

Stein Variational Gradient Descent (SVGD) is a nonparametric particle-based deter-
ministic sampling algorithm. Despite its wide usage, understanding the theoretical
properties of SVGD has remained a challenging problem. For sampling from a
Gaussian target, the SVGD dynamics with a bilinear kernel will remain Gaussian
as long as the initializer is Gaussian. Inspired by this fact, we undertake a detailed
theoretical study of the Gaussian–SVGD, i.e., SVGD projected to the family of
Gaussian distributions via the bilinear kernel, or equivalently Gaussian variational
inference (GVI) with SVGD. We present a complete picture by considering both
the mean-field PDE and discrete particle systems. When the target is strongly
log-concave, the mean-field Gaussian–SVGD dynamics is proven to converge
linearly to the Gaussian distribution closest to the target in KL divergence. In the
finite-particle setting, there is both uniform in time convergence to the mean-field
limit and linear convergence in time to the equilibrium if the target is Gaussian. In
the general case, we propose a density-based and a particle-based implementation
of the Gaussian–SVGD, and show that several recent algorithms for GVI, proposed
from different perspectives, emerge as special cases of our unifying framework. In-
terestingly, one of the new particle-based instance from this framework empirically
outperforms existing approaches. Our results make concrete contributions towards
obtaining a deeper understanding of both SVGD and GVI.

1 Introduction

Sampling from a given target density arises frequently in Bayesian statistics, machine learning and
applied mathematics. Specifically, given a potential V : Rd → R, the target density is given by

ρ(x) := Z−1e−V (x), where Z := ∫ e−V (x)dx is the normalizing constant.
Traditionally-used Markov Chain Monte Carlo (MCMC) sampling algorithms are invariably not
scalable to large-scale datasets [8, 61]. Variational inference and particle-based methods are two
related alternatives proposed in the literature, both motivated by viewing sampling as optimization
over the space of densities. We refer to [33, 39] for additional details related to this line of works.

In the literature on variational inference, recent efforts have focused on the Gaussian Variational
Inference (GVI) problem. On the theoretical side, this is statistically motivated by the Bernstein-von
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Mises theorem, which posits that in the limit of large samples posterior distributions tend to be
Gaussian distributed under certain regularity assumptions. We refer to [81, Chapter 10] for details
of the classical results, and to [34, 73] for some recent non-asymptotic analysis. On the algorithmic
side, efficient algorithms with both statistical and computational guarantees are developed for GVI
[14, 20, 1, 35, 43, 19]. From a practical point-of-view, several works [64, 78, 80, 67] have shown
superior performance of GVI, especially in the presence of large datasets.

Turning to particle-based methods, [53] proposed the Stein Variational Gradient Descent (SVGD)
algorithm, a kernel-based deterministic approach for sampling. It has gained significant attention
in the machine learning and applied mathematics communities due to its intriguing theoretical
properties and wide applicability [23, 31, 56, 87]. Researchers have also developed variations of
SVGD motivated by algorithmic and applied challenges [89, 49, 18, 28, 84, 12, 55, 71]. In its original
form, SVGD could be viewed as a nonparametric variational inference method with a kernel-based
practical implementation.

The flexibility offered by the nonparametric aspect of SVGD also leads to unintended consequences.
On one hand, from a practical perspective, the question of how to pick the right kernel for imple-
menting the SVGD algorithm is unclear. Existing approaches are mostly ad-hoc and do not provide
clear instructions on the selection of kernels. On the other hand, developing a deeper theoretical
understanding of SVGD dynamics is challenging due to its nonparametric formulation. Notably [58]
derived the continuous-time PDE for the evolving density that emerges as the mean-field limit of the
finite-particle SVGD systems, and shows the well-posedness of the PDE solutions. In general, the
following different types of convergences could be examined regarding SVGD:

Initial particles
ζ
(0)
N = 1

N

∑N
j=1 δx(0)

j

Evolving particles
ζ
(t)
N = 1

N

∑N
j=1 δx(t)

j

Equilibrium
ζ
(∞)
N = 1

N

∑N
j=1 δx(∞)

j

Initial density
ρ0

Evolving density
ρt

Target
ρ∗

(c)

(b)

(e)

(d)

(a)

(a) Unified convergence of the empirical measure for N finite particles to the continuous target
as time t and N jointly grow to infinity;

(b) Convergence of mean-field SVGD to the target distribution over time;
(c) Convergence of the empirical measure for finite particles to the mean-field distribution at

any finite given time t ∈ [0,∞);
(d) Convergence of finite-particle SVGD to the equilibrium over time;
(e) Convergence of the empirical measure for finite particles to the continuous target at time

t =∞.

From a practical point of view (a) is the ideal type of result that fully characterizes the algorithmic
behavior of SVGD, which could be obtained by combining either (b) and (c) or (d) and (e). Regarding
(b), [51] showed the convergence of mean-field SVGD in kernel Stein discrepancy (KSD, [17, 52, 29]),
which is known to imply weak convergence under appropriate assumptions. [40, 15, 70, 75, 22]
sharpened the results with weaker conditions or explicit rates. [32] extended the above result to
the stronger Fisher information metric and Kullback–Leibler divergence based on a regularization
technique. [58, 30, 40] obtained time-dependent mean-field convergence (c) of N particles under
various assumptions using techniques from the literature of propagation of chaos. [72] obtained even
stronger results for (c) and combined (b) to get the first unified convergence (a) in terms of KSD.
However, they have a rather slow rate 1/

√
log logN , resulting from the fact that their bounds for (c)

still depends on the time t (sum of step sizes) double-exponentially. Moreover, there has not been any
work that studies the convergence (d) and (e) for SVGD, which illustrate a new way to characterize
the unified convergence (a).

In an attempt to overcome the drawbacks of the nonparametric formulation of SVGD and also taking
cue from the GVI literature, in this work we study the dynamics of Gaussian–SVGD, a parametric
formulation of SVGD. Our contributions in this work are three-fold:

• Mean-field results: We study the dynamics of Gaussian–SVGD in the mean-field setting and
establish linear convergence for both Gaussian and strongly log-concave targets. As an example
of the obtained results, Table 1 shows the convergence rates of covariance for centered Gaussian
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Table 1: Convergence rates of SVGD with different bilinear kernels for Gaussian families.
K1-SVGD K2-SVGD WGF (K3-SVGD) R-SVGD (K4-SVGD)

Centered
Gaussian O(e−2t) [3.2] O(e−2t) [F.2] O(e− 2t

λ ) [F.1] O(e−
2t

(1−ν)λ+ν ) [3.4]

General
Gaussian Theorem 3.1 O

(
e−

1
λ∧2t

)
[F.2] O(e− t

λ ) [F.1] O
(
e−

1
λ∧ 2

(1−ν)λ+ν
t) [3.4]

families for several revelant algorithms. All of them will be introduced later in Sections 2 and 3.
We also establish the well-posedness of the solutions for the mean-field PDE and discrete particle
systems that govern SVGD with bilinear kernels (see Appendix C). Prior work [58] requires that
the kernel be radial which rules out the important class of bilinear kernels that we consider. [32]
relaxed the radial kernel assumption, however, they required boundedness assumptions which we
avoid in this work for the case of bilinear kernels.

• Finite-particle results: We study the finite-particle SVGD systems in both continuous and discrete
time for Gaussian targets. We show that for SVGD with a bilinear kernel if the target and initializer
are both Gaussian, the mean-field convergence can be uniform in time (See Theorem 3.7). To
the best of our knowledge, this is the first uniform in time result for SVGD dynamics and should
be contrasted with the double exponential dependency on t for nonparametric SVGD [58, 72].
Our numerical simulations suggest that similar results should hold for certain classes of non-
Gaussian target as well for Gaussian–SVGD. We also study the convergence (d) by directly solving
the finite-particle systems (See Theorems 3.6 and 3.8). Moreover, in Theorem 3.10, assuming
centered Gaussian targets, we obtain a linear rate for covariance convergence in the finite-particles,
discrete-time setting, precisely characterizing the step size choice for the practical algorithm.

• Unifying algorithm frameworks: We propose two unifying algorithm frameworks for finite-
particle, discrete-time implementations of the Gaussian–SVGD dynamics. The first approach
assumes access to samples from Gaussian densities with the mean and covariance depending on
the current time instance of the dynamics. The second is a purely particle-based approach, in
that, it assumes access only to an initial set of samples from a Gaussian density. In particular, we
show that three previously proposed methods from [27, 43] for GVI emerge as special cases of
the proposed frameworks, by picking different bilinear kernels, thereby further strengthening the
connections between GVI and the kernel choice in SVGD. Furthermore, we conduct experiments
for eight algorithms that can be implied from our framework, and observe that the particle-based
algorithms are invariably more stable than density-based ones. Notably one of the new particle-
based algorithms emerging from our analysis outperforms existing approaches.

2 Preliminaries

Denote the space of probability densities on Rd by P(Rd) :=
{
ρ ∈ F(Rd) :

∫
ρdx = 1, ρ ≥ 0

}
,

where F(Rd) is the set of smooth functions. As studied in [42], P(Rd) forms a Fréchet manifold
called the density manifold. For any “point” ρ ∈ P(Rd), we denote the tangent space and cotangent
space at ρ by TρP(Rd) and T ∗

ρP(Rd) respectively. A Riemannian metric tensor assigns to each
ρ ∈ P(Rd) a positive definite inner product gρ : TρP(Rd)×TρP(Rd)→ R and uniquely corresponds
to an isomorphism Gρ (called the canonical isomorphism) between the tangent and cotangent bundles
[66], i.e., we have Gρ : TρP(Rd)→ T ∗

ρP(Rd) .
Definition 2.1 (Wasserstein metric). The Wasserstein metric is induced by the following canonical
isomorphism GWass

ρ : TρP(Rd)→ T ∗
ρP(Rd) such that

(GWass
ρ )−1Φ = −∇ · (ρ∇Φ), Φ ∈ T ∗

ρP(Rd).

The Wasserstein gradient flow (WGF) can be seen as the natural gradient flow for KL divergence on
the density manifold with respect to the Wasserstein metric. In specific, the mean-field PDE is given
by the linear Fokker-Planck equation [33]:

ρ̇t = −(GWass
ρt )−1 δ

δρt
KL(ρt ∥ ρ∗) = ∇ ·

(
ρt∇ δ

δρt
KL(ρt ∥ ρ∗)

)
= ∇ · (∇ρt + ρt∇V ), (1)
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where δ
δρt

denotes the variational derivative with respect to ρt, KL(ρ ∥ ρ∗) is the so-called energy
function, and V (x) is the potential function that satisfies ρ∗(x) ∝ exp(−V (x)).

Interestingly, the mean field flow of SVGD can also be seen as a gradient flow for the KL divergence
but with respect to the Stein metric, where we perform kernelization in the cotangent space before
taking the divergence [51, 22].
Definition 2.2 (Stein metric). The Stein metric is induced by the following canonical isomorphism
GStein
ρ : TρP(Rd)→ T ∗

ρP(Rd) such that

(GStein
ρ )−1Φ = −∇ ·

(
ρ(·)

∫
K(·,y)ρ(y)∇Φ(y) dy

)
, Φ ∈ T ∗

ρP(Rd),

where K : Rd × Rd → R is a positive-definite kernel.

In particular, the mean field PDE of the SVGD algorithm can be written as

ρ̇t = −(GStein
ρt )−1 δ

δρt
KL(ρt ∥ ρ∗) = ∇ ·

(
ρt(·)

∫
K(·,y)

(
∇ρt(y) + ρt(y)∇V (y)

)
dy
)
. (2)

Gaussian Families as Submanifolds. We consider the family of (multivariate) Gaussian densities
ρθ ∈ P(Rd) where θ = (µ,Σ) ∈ Θ = Rd × Sym+(d,R). Note that Sym+(d,R) is the set of
(symmetric) positive definite d × d matrices. In this way, Θ can be identified as a Riemannian
submanifold of the density manifold P(Rd) with the induced Riemannian structure. If we further
restrict the Gaussian family to have zero mean, it further induces the submanifold Θ0 = Sym+(d,R).
Notably the Wasserstein metric on the density manifold induces the Bures–Wasserstein metric for the
Gaussian families [6, 82]. In our paper, however, we consider the induced Stein metric on Θ or Θ0

(we call it the Gaussian–Stein metric; for details see Appendix B).

Different Bilinear Kernels and Induced Metrics. There are several different bilinear kernels that
appear in literature. [54] considers the simple bilinear kernel K1(x,y) = x⊤y + 1 while [27, 13]
suggest the use of an affine-invariant bilinear kernel K2(x,y) = (x−µ)⊤(y −µ) + 1. [13] further
points out that with the rescaled affine-invariant kernel K3(x,y) = (x− µ)⊤Σ−1(y − µ) + 1, the
Gaussian–Stein metric magically coincides with the Bures–Wasserstein metric on Θ (not true on the
whole density manifold). Note that here µ and Σ are the mean and covariance of the current mean-
field Gaussian distribution which could change with time. Moreover, [32] proposed a regularized
version of SVGD (R-SVGD) that interpolates the dynamics between WGF and SVGD. Interestingly
R-SVGD with the affine-invariant kernel K2 for Gaussian families can be reformulated as Gaussian–
SVGD with a new kernel K4(x,y) = (x − µ)⊤((1 − ν)Σ + νI)−1(y − µ), which interpolates
between K2 and K3 (see Theorem 3.4). For clarity we present the results for K1 in the main article
while leave the analogues for K2–K4 in the appendix. We also point out that K1 and K2 are the
same on Θ0.

Gaussian–Stein Variational Gradient Descent. With a bilinear kernel and Gaussian targets, we
will prove in the next subsection that the SVGD dynamics would remain Gaussian as long as the
initializer is Gaussian. However, this is not true in more general situations especially when the target
is non-Gaussian. Fortunately for Gaussian variational inference we can still consider the gradient flow
restricted to the Gaussian submanifold. In general, we denote by GStein

θ the canonical isomorphism
on Θ induced by GStein

ρ , and define the Gaussian–Stein variational gradient descent as

θ̇t = −(GStein
θt

)−1∇θt KL(ρθt ∥ ρ∗),

where ρ∗ might not be a Gaussian density. Notably Gaussian–SVGD solves the following optimization
problem

min
θ∈Θ

KL(ρθ ∥ ρ∗), where ρθ is the density of N (µ,Σ),

via gradient descent under the Gaussian–Stein metric.

3 Dynamics of Gaussian–SVGD for Gaussian Targets

3.1 Mean-Field Analysis from WGF to SVGD

The Wasserstein gradient flow (WGF) restricted to the general Gaussian family Θ is known as
the Bures–Wasserstein gradient flow [43, 19]. For consistency in this subsection we always set
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the initializer to be N (µ0,Σ0) with density ρ0 and target N (b, Q) with density ρ∗ for the general
Gaussian family. Then the WGF at any time t remains Gaussian, and can be fully characterized by
the following dynamics of the mean µt and covariance matrix Σt:

µ̇t = −Q−1(µt − b), Σ̇t = 2I − ΣtQ
−1 −Q−1Σt. (3)

For SVGD with bilinear kernels we have similar results:
Theorem 3.1 (SVGD). For any t ≥ 0 the solution ρt of SVGD (2) with the bilinear kernel K1

remains a Gaussian density with mean µt and covariance matrix Σt given by{
µ̇t = (I −Q−1Σt)µt − (1 + µ⊤

t µt)Q
−1(µt − b)

Σ̇t = 2Σt − Σt
(
Σt + µt(µt − b)⊤

)
Q−1 −Q−1

(
Σt + (µt − b)µ⊤

t

)
Σt

, (4)

which has a unique global solution on [0,∞) given any µ0 ∈ Rd and Σ0 ∈ Sym+(d,R). And ρt
converges weakly to ρ∗ as t→∞ at the following rates

∥µt − b∥ = O(e−2(γ−ϵ)t), ∥Σt −Q∥ = O(e−2(γ−ϵ)t), ∀ϵ > 0,

where γ is the smallest eigenvalue of the matrix[
Id2

1√
2
b⊗Q−1/2

1√
2
b⊤ ⊗Q−1/2 1

2 (1 + b⊤b)Q−1

]
with a lower bound γ >

1

1 + b⊤b+ 2λ
,

where λ is the largest eigenvalue of Q.

Note that for any vector x, ∥x∥ denotes its Euclidean norm and for any matrix A we use ∥A∥ for its
spectral norm, ∥A∥∗ for the nuclear norm and ∥A∥F for the Frobenius norm. All matrix convergence
are considered under the spectral norm in default for technical simplicity (though all matrix norms
are equivalent in finite dimensions).

If we restrict to the centered Gaussian family where both the initializer and target have zero mean
(setting µ0 = b = 0), the dynamics can further be simplified.
Theorem 3.2 (SVGD for centered Gaussian). Let ρ0 and ρ∗ be two centered Gaussian densities.
Then for any t ≥ 0 the solution ρt of SVGD (2) with the bilinear kernel K1 or K2 remains a centered
Gaussian density with the covariance matrix Σt given by the following Riccati type equation:

Σ̇t = 2Σt − Σ2
tQ

−1 −Q−1Σ2
t , (5)

which has a unique global solution on [0,∞) given any Σ0, Q ∈ Sym+(d,R). If Σ0Q = QΣ0, we
have the closed-form solution:

Σ−1
t = e−2tΣ−1

0 + (1− e−2t)Q−1. (6)

In particular, if we let Σ0 = I and Q = I + ηvv⊤ for some η > 0 and v ∈ Rd such that v⊤v = 1,
then Σt can be rewritten as

Σt = I + η(1−e−2t)
1+ηe−2t vv⊤. (7)

[13] shows that for WGF if Σ0Q = QΣ0, then we have ∥µt − b∥= O(e−t/λ) and ∥Σt − Q∥ =
O(e−2t/λ). For the centered Gaussian family SVGD converges faster if λ > 1. For the general
Gaussian family WGF and SVGD have rather comparable rates (e.g., take λ≫ ∥b∥ then the lower
bound here is roughly O(e−t/λ)). Another observation is that the WGF rates depend on Q alone but
the SVGD rates here sometimes also depend on b, which breaks the affine invariance of the system.
This is a problem originated from the choice of kernels as addressed in [13], where they propose to
use K2 instead of K1. Such approach has both advantages and disadvantages. The convention in
SVGD is that the kernel should not depend on the mean-field density because the density is usually
unknown and changes with time. But for GVI the affine-invariant bilinear kernel K2 only requires
estimating the means from Gaussian distributions and is not a big issue.

Regularized Stein Variational Gradient Descent. In Section 2 we show that SVGD can be regarded
as WGF kernelized in the cotangent space T ∗

ρP(Rd). The regularized Stein variational gradient
descent (R-SVGD) [32] interpolates WGF and SVGD by pulling back part of the kernelized gradient
of the cotangent vector Φ, which is also seen as gradient flows under the regularized Stein metric:
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Definition 3.3 (Regularized Stein metric). The regularized Stein metric is induced by the following
canonical map

(GRS
ρ )−1Φ := −∇ ·

(
ρ ((1− ν)TK,ρ + νI)

−1 TK,ρ∇Φ
)
,

where TK,ρ is the kernelization operator given by TK,ρf :=
∫
K(·,y)f(y)ρ(y) dy.

The R-SVGD is defined as

ρ̇t = −(GRS
ρt )

−1 δ
δρt

KL(ρt ∥ ρ∗) = ∇ ·
(
ρt ((1− ν)TK,ρt + νI)

−1 TK,ρt∇ log ρt
ρ∗

)
. (8)

Theorem 3.4 (R-SVGD). Let ρ0 and ρ∗ be two Gaussian densities. Then the solution ρt of R-SVGD
(8) with the bilinear kernel K2 converges to ρ∗ as t→∞, and ρt is the density of N (b,Σt) with{

µ̇t = −Q−1(µt − b)

Σ̇t = 2((1− ν)Σt + νI)−1Σt − ((1− ν)Σt + νI)−1Σ2
tQ

−1 −Q−1((1− ν)Σt + νI)−1Σ2
t

.

(9)
If Σ0Q = QΣ0, we have ∥Σt −Q∥ = O

(
e−2t/((1−ν)λ+ν)), where λ is the largest eigenvalue of Q.

From this theorem we see that R-SVGD can take the advantage of both regimes by choosing ν wisely.
Another interesting connection is that on Θ the induced regularized Stein metric coincides with the
Stein metric with a different kernel K4(x,y) = (x − µ)⊤((1 − ν)Σ + νI)−1(y − µ) + 1 (see
Theorem B.7).

Stein AIG Flow. Accelerating methods are widely used in first-order optimization algorithms and
have attracted considerable interest in particle-based variational inference [50]. [76, 86] study the
accelerated information gradient (AIG) flows as the analogue of Nesterov’s accelerated gradient
method [63] on the density manifold. Given a probability space P(Rd) with a metric tensor gρ(·, ·),
let Gρ : TρP(Rd) → T ∗

ρP(Rd) be the corresponding isomorphism. The Hamiltonian flow in
probability space [16] follows from

∂t

[
ρt
Φt

]
=

[
0 1
−1 0

] [ δ
δρt
H (ρt,Φt)

δ
δΦt
H (ρt,Φt)

]
, whereH(ρt,Φt) := 1

2

∫
ΦtG

−1
ρt Φt dx+KL(ρ ∥ ρ∗)

is called the Hamiltonian function, which consists of a kinetic energy 1
2

∫
ΦG−1

ρ Φdx and a potential
energy KL(ρ ∥ ρ∗). Following [86] we introduce the accelerated information gradient flow in
probability space. Let αt ≥ 0 be a scalar function of time t. We add a damping term αtΦt to the
Hamiltonian flow:

∂t

[
ρt
Φt

]
= −

[
0

αtΦt

]
+

[
0 1
−1 0

][ δ
δρt
H (ρt,Φt)

δ
δΦt
H (ρt,Φt)

]
, (10)

By adopting the Stein metric we obtain the Stein AIG flow (S-AIGF):{
ρ̇t = −∇ ·

(
ρt(·)

∫
K(·,y)ρt(y)∇Φt(y) dy

)
Φ̇t = −αtΦt −

∫
∇Φt(·)⊤∇Φt(y)K(·,y)ρt(y) dy − δ

δρt
KL(ρt ∥ ρ∗)

. (11)

Again we characterize the dynamics of S-AIGF with the linear kernel for the Gaussian family:
Theorem 3.5 (S-AIGF). Let ρ0 and ρ∗ be two centered Gaussian densities. Then the solution ρt of
S-AIGF (11) with the bilinear kernel K1 or K2 is the density of N (0,Σt) where Σt satisfies{

Σ̇t = 2(StΣ
2
t +Σ2

tSt)

Ṡt = −αtSt − 2(S2
tΣt +ΣtS

2
t ) +

1
2 (Σ

−1
t −Q−1)

, (12)

where St ∈ Sym(d,R) with initial value S0 = 0.

Note that the convergence properties of S-AIGF still remains open in contrast to the Wasserstein AIG
flow (W-AIGF) as [86] shows that the W-AIGF for the centered Gaussian family is

Σ̇t = 2(StΣt +ΣtSt), Ṡt = −αtSt − 2S2
t +

1
2 (Σ

−1
t −Q−1),

and that if αt is well-chosen, the KL divergence in W-AIGF converges at the rate ofO(e−t/
√
λ). Thus,

when λ is large it converges faster than WGF. It is also interesting to point out that the acceleration
effect of Nesterov’s scheme also comes from time discretization of the ODE system (see [74]) as it
moves roughly

√
ϵ rather than ϵ along the gradient path when the step size is ϵ.
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3.2 Finite-Particle Systems

In this subsection, we consider the case where N <∞ particles evolve in time t. We set a Gaussian
target N (b, Q) (i.e., the potential is V (x) = 1

2 (x− b)⊤Q−1(x− b)) and run the SVGD algorithm
with a bilinear kernel, and obtain the dynamics of x(t)

1 , · · · ,x(t)
N . The continuous-time particle-based

SVGD corresponds to the following deterministic interactive system in Rd:

ẋ
(t)
i = 1

N

∑N
j=1∇xj

K
(
x
(t)
i ,x

(t)
j

)
− 1

N

∑N
j=1K

(
x
(t)
i ,x

(t)
j

)
∇V

(
x
(t)
j

)
(13)

with initial particles given by x
(0)
i (i = 1, · · · , N ). Now denoting the sample mean and covariance

matrix at time t by µt := 1
N

∑N
j=1 x

(t)
j and Ct := 1

N

∑N
j=1 x

(t)
j x

(t)⊤
j − µtµ

⊤
t , we have the

following theorem.
Theorem 3.6 (SVGD). Suppose the initial particles satisfy that C0 is non-singular. Then SVGD (13)
with the bilinear kernel K1 and Gaussian potential V has a unique solution given by

x
(t)
i = At(x

(0)
i − µ0) + µt, (14)

where At is the unique (matrix) solution of the linear system

Ȧt =
(
I −Q−1(Ct + µtµ

⊤
t ) +Q−1bµ⊤

t

)
At, A0 = I, (15)

and µt and Ct are the unique solution of the ODE system{
µ̇t = (I −Q−1Ct)µt − (1 + µ⊤

t µt)Q
−1(µt − b)

Ċt = 2Ct − Ct
(
Ct + µt(µt − b)⊤

)
Q−1 −Q−1

(
Ct + (µt − b)µ⊤

t

)
Ct

. (16)

The ODE system (16) is exactly the same as that in the density flow (4). Thus, we have the the same
convergence rates as in Theorem 3.1. Theorem 3.6 can be interpreted as: At each time t the particle
positions are a linear transformation of the initialization. On one hand, if we initialize i.i.d. from
Gaussian, there is uniform in time convergence as shown in the theorem below.

On the other hand, if we initialize i.i.d. from a non-Gaussian distribution ρ0. At each time t the mean
field limit ρt should be a linear transformation of ρ0 and cannot converge to the Gaussian target ρ∗ as
t→∞. Note that in general SVGD with the bilinear kernel might not always converge to the target
distribution for nonparametric sampling but for GVI there is no such issue. This will be discussed in
detail in Appendix C together with general results of well-posedness and mean-field convergence of
SVGD with the bilinear kernel, which has not yet been studied in literature.
Theorem 3.7 (Uniform in time convergence). Given the same setting as Theorem 3.6, further suppose
the initial particles are drawn i.i.d. from N (µ0,Σ0). Then there exists a constant Cd,Q,b,Σ0,µ0

such
that for all t ∈ [0,∞] , for all N ≥ 2, with the empirical measure ζ(t)N = 1

N

∑N
i=1 δx(t)

i
, the second

moment of Wasserstein-2 distance between ζ(t)N and ρt converges:

E
[
W2

2

(
ζ
(t)
N , ρt

)]
≤ Cd,Q,b,Σ0,µ0

×

 N−1 log logN if d = 1
N−1(logN)2 if d = 2

N−2/d if d ≥ 3
. (17)

Similar to Theorem 3.2, we also provide the finite-particle result for a centered Gaussian target.
Theorem 3.8 (SVGD for centered Gaussian). Suppose the SVGD particle system (13) with the
bilinear kernel K1 or K2 is targeting a centered Gaussian distribution and initialized by

(
x
(0)
i

)N
i=1

such that µ0 = 0 and C0Q = QC0. Then we have the following closed-form solution

x
(t)
i =

(
e−2tI + (1− e−2t)Q−1C0

)−1/2
x
(0)
i . (18)

Analogous Result for R-SVGD. Next we consider the particle dynamics of R-SVGD. As shown in
[32], the finite-particle system of R-SVGD is

Ẋt = −
(
(1− ν)Kt

N + νI
)−1

(
Kt

N Lt∇V −
1
N

∑N
j=1 Lt∇K

(
x
(t)
j , ·

))
,

where Xt :=
(
x
(t)
1 , · · · ,x(t)

N

)⊤
, Ltf :=

(
f(x

(t)
i ), · · · , f(x(t)

N )
)⊤

for all f : Rd → Rd and

(Kt)ij := K
(
x
(t)
i ,x

(t)
j

)
for all 1 ≤ i, j ≤ N . Similar to Theorem 3.6, we have the following result:
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Theorem 3.9 (R-SVGD). Suppose the R-SVGD system (13) with K1 or K2 is targeting a centered
Gaussian distribution and initialized by

(
x
(0)
i

)N
i=1

such that µ0 = 0. Then we have x
(t)
i = Atx

(0)
i

where At is the unique solution of the linear system

Ȧt = (I −Q−1Ct)((1− ν)Ct + νI)−1At, A0 = I, (19)

and the sample covariance matrix Ct is given by

Ċt = 2((1− ν)Ct + νI)−1Ct − ((1− ν)Ct + νI)−1C2
tQ

−1 −Q−1((1− ν)Ct + νI)−1C2
t . (20)

Again we observe that the particles at time t is a time-changing linear transformation of the initializers.

Discrete-time Analysis for Finite Particles. Next we consider the algorithm in discrete time t. The
SVGD updates according to the following equation:

x
(t+1)
i = x

(t)
i + ϵ

N

(∑N
j=1∇x

(t)
j
K
(
x
(t)
i ,x

(t)
j

)
−
∑N
j=1K

(
x
(t)
i ,x

(t)
j

)
∇

x
(t)
j
V
(
x
(t)
j

))
. (21)

For simplicity, we only consider the case where both the target and initializers are centered, i.e.,
b = µ0 = 0 and show the convergence:

Theorem 3.10 (Discrete-time convergence). For a centered Gaussian target, suppose the particle
system (21) with K1 or K2 is initialized by

(
x
(0)
i

)N
i=1

such that µ0 = 0 and C0Q = QC0. For
0 < ϵ < 0.5, we have µt = 0 and ∥Ct −Q∥ → 0 as long as all the eigenvalues of Q−1C0 lie in the
interval (0, 1 + 1/ϵ).

Furthermore, if we set uϵ to be the smaller root of the equation f ′ϵ(u) = 1− ϵ (it has 2 distinct roots)
where fϵ(x) := (1 + ϵ(1− x))2x, then we have linear convergence, i.e.,

∥Ct −Q∥ ≤ (1− ϵ)t∥C0 −Q∥ ≤ e−ϵt∥C0 −Q∥

as long as all the eigenvalues of Q−1C0 lie in the interval [uϵ, 1/3 + 1/(3ϵ)].

The above result illustrates that firstly the step sizes required are restricted by the largest eigenvalue
of Q−1C0. In particular if C0 = Id then we need smaller step size if the smallest eigenvalue of Q is
smaller, which corresponds to the β-log-smoothness condition of the target distribution. Secondly
we can potentially have faster convergence over iteration given larger step sizes. We believe that the
commutativity assumption in Theorem 3.10 can be relaxed and similar results can be obtained for
general targets. Detailed examinations are left as future work.

4 Beyond Gaussian Targets

In this section we consider the Gaussian–SVGD with a general target and have the following
dynamics.

Theorem 4.1. Let ρ∗ be the density of the target distribution with the potential function V (x) that
satsifies Assumption C.1 and ρ0 be the density ofN (µ0,Σ0). The Gaussian–SVGD withK1 produces
a Gaussian density ρt with mean µt and covariance matrix Σt given by{

µ̇t = (I − ΓtΣt)µt − (1 + µ⊤
t µt)mt

Σ̇t = 2Σt − Σt
(
ΣtΓt + µtm

⊤
t

)
−
(
ΓtΣt +mtµ

⊤
t

)
Σt

, (22)

where Γt = Ex∼ρt [∇2V (x)] and mt = Ex∼ρt [∇V (x)].

Furthermore, suppose that θ∗ is the unique solution of the following optimization problem

min
θ=(µ,Σ)

KL(ρθ ∥ ρ∗), where ρθ is the Gaussian measure N (µ,Σ).

Then we have ρt → ρθ∗ ∼ N (µ∗,Σ∗) as t→∞.

In particular, if the target is strongly log-concave, it gives rise to the following linear convergence:
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Algorithm 1 Density-based Gaussian–SVGD.

for t in 0 : T do
Draw

(
x
(t)
i

)N
i=1

from N (µt,Σt)

Update m̂t and Γ̂t using (24) or (25)
µt+1 ← µt + ϵ1 F

(
µt,Σt, m̂t, Γ̂t

)
Mt+1 ← I + ϵ2 G

(
µt,Σt, m̂t, Γ̂t

)
Σt+1 ←Mt+1ΣtM

⊤
t+1

end for

Algorithm 2 Particle-based Gaussian–SVGD.

Draw (x
(0)
i )Ni=1 from N (µ0,Σ0)

for t in 0 : T do
µt ← 1

N

∑N
k=1 x

(t)
k

Σt ← 1
N

∑N
k=1 x

(t)
k x

(t)⊤
k − µtµ

⊤
t

Update m̂t and Γ̂t using (24) or (25)
Update (x

(t+1)
i )Ni=1 using (26)

end for

Theorem 4.2. Assume that the target ρ∗ is α-strongly log-concave and β-log-smooth, i.e., αI ⪯
∇2V (x) ⪯ βI . Then ρt of Theorem 4.1 converges to ρθ∗ at the following rate

∥µt − µ∗∥ = O(e−(γ−ϵ)t), ∥Σt − Σ∗∥ = O(e−(γ−ϵ)t), ∀ϵ > 0,

where γ/α is the smallest eigenvalue of the matrix[
Id ⊗ Σ∗ µ∗ ⊗ (Σ∗)1/2

µ∗⊤ ⊗ (Σ∗)1/2 (1 + µ∗⊤µ∗)Id

]
with a lower bound γ >

α

β(1 + µ∗⊤µ∗) + 1
.

Typically the β-log-smoothness condition is not required for continuous-time analyses. However, it
is required in the above statement, as our proof technique is based on comparing the decay of the
energy function of the flow to that for WGF, following [13]. Relaxing this condition is interesting
and we leave it as future work.

Unifying Algorithms. For general targets, we propose two unifying algorithm frameworks where
we can choose any bilinear kernel (e.g., K1–K4) to solve GVI with SVGD. The first framework is
density-based where we update µt and Σt according to the mean-field dynamics. It requires the
closed-form of the ODE system{

µ̇t = F (µt,Σt,mt,Γt)

Σ̇t = Σt G (µt,Σt,mt,Γt) +G (µt,Σt,mt,Γt)
⊤

Σt
, (23)

where mt = Ex∼ρt [∇V (x)] and Γt = Ex∼ρt [∇2V (x)], and F and G are some closed-form func-
tions. For example F (µt,Σt,mt,Γt) = (I − ΓtΣt)µt−(1+µ⊤

t µt)mt andG (µt,Σt,mt,Γt) =
I − ΣtΓt − µtm

⊤
t for K1 as shown in (22). Note that mt and Γt can be estimated from samples

using
m̂t =

1
N

∑N
k=1∇V (x

(t)
k ), Γ̂t =

1
N

∑N
k=1∇2V (x

(t)
k ), (24)

or using the first-order estimator

Γ̂t =
1
N

∑N
k=1∇V (x

(t)
k )(x

(t)
k − µt)

⊤Σ−1
t . (25)

The second framework is particle-based and does not need the closed-form ODE of the mean and
covariance, making it more flexible than Algorithm 1. Here we intially draw N particles and keep
updating them over time using

x
(t+1)
i = x

(t)
i + ϵ

N

(∑N
j=1∇x

(t)
j
K
(
x
(t)
i ,x

(t)
j

)
−
∑N
j=1K

(
x
(t)
i ,x

(t)
j

)
∇̂V

(
x
(t)
j

))
, (26)

where ∇̂V is a (time-dependent) linear approximation of∇V defined as ∇̂V (x) = Γ̂t (x− µt)+m̂t.
Intuitively this is used instead of∇V to ensure the Gaussianity of the particle system.

We now remark on the algorithms proposed in the literature that emerge as instances of the two
proposed algorithm frameworks, thereby highlighting the unifying viewpoint offered by our analysis.
The use of the kernel K1 for SVGD in variational inference dates back to [54]. Algorithms 1 and 2
with the kernel K2 correspond precisely to the GF and GPF algorithms in [27]. Moreover, if K3

is chosen, Algorithm 1 reproduces the BWGD algorithm in [43] (with N = 1) and shares some
similarity with the FB-GVI algorithm in [19]. Detailed discussions on these variants, connections
and convergence properties are deferred to Appendix D.
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Figure 1: Convergence of Algorithms 1 and 2 with bilinear kernels in Bayesian logistic regression.

5 Simulations

In this section, we conduct simulations to compare Gaussian–SVGD dynamics with different kernels
and the performance of the algorithms mentioned in the previous section. We consider three settings,
Bayesian logistic regression, and Gaussian and Gaussian mixture targets. Here we present the
results for Bayesian logistic regression as it involves a non-Gaussian but unimodal target and is one
of the typical setups such that GVI is preferred in practice. For sake of space we leave the simulations
for the other two settings along with further discussions to Appendix E.

Bayesian Logistic Regression. The following generative model is considered: Given a parameter
ξ ∈ Rd, draw samples {(Xi, Yi)}ni=1 ∈ (Rd × {0, 1})n such that Xi

i.i.d.∼ N (0, Id) and Yi |
Xi ∼ Bern(σ(⟨ξ, Xi⟩)) where σ(·) is the logistic function. Given the samples {(Xi, Yi)}ni=1
and a uniform (improper) prior on ξ, the potential function of the posterior ρ∗ on ξ is given by
V (ξ) =

∑n
i=1 (log(1 + exp(⟨ξ, Xi⟩)− Yi⟨ξ, Xi⟩)) . We run both Algorithms 1 and 2 initialized at

ρ0 = N (0, Id) to find the ρθ∗ that minimizes KL(ρθ ∥ ρ∗). In Figure 1, SBGD (Simple Bilinear
Gradient Descent), GF (Gaussian Flow [27]), BWGD (Bures–Wasserstein Gradient Descent [43]),
and RGF (Regularized Gaussian Flow) are density-based algorithms with the bilinear kernels K1,
K2, K3, and K4 (ν = 0.5) respectively; SBPF (Simple Bilinear Particle Flow), GPF (Gaussian
Particle Flow [27]), BWPF (Bures–Wasserstein Particle Flow), and RGPF (Regularized Gaussian
Particle Flow) are particle-based algorithms with the bilinear kernels K1, K2, K3, and K4 (ν = 0.5)
respectively. We use the sample estimator of F(ρθ) =

∫
(log ρθ + V ) dρθ = KL(ρθ ∥ ρ∗) + C (C

is some constant) to evaluate the learned parameters θ = (µ,Σ). For a fair comparison in Figure 1b,
we draw 2000 particles for particle-based algorithms and run all algorithms for 2000 iterations so
that a total of 2000 samples are drawn for the density-based algorithms. The largest safe step sizes
are 0.02, 0.1, 2, 0.8, 0.02, 0.2, 4, 4.

Figure 1 shows the decay of F̂(ρθ) over time or iterations. For Figure 1a the same step size 0.01
is specified for all algorithms while for Figure 1b we choose the largest safe step size for each
algorithm. In other words, Figure 1a provides the continuous-time flow of the dynamical system
in each algorithm while Figure 1b emphasizes more on the discrete-time algorithmic behaviors. In
Figure 1a there are roughly four distinct curves indicating four different kernels. K1 has the most
rapid descent, followed by K2, K4, and K3.

From Figure 1b we observe that BWPF and RGPF are the better choices for practical use. The
difference in the largest step sizes shows that in terms of stabilityK3 is the best,K4 is almost as stable,
but K2 and K1 are much worse. We also observe that particle-based algorithms are consistently
more stable than density-based counterparts (which are essentially stochastic gradient based). The
superiority of particle-based algorithms are even more evident in the Gaussian mixture experiment
where the target is multi-modal. We further remark that another recently proposed density-based
algorithm, the FB-GVI [19] shows comparable performance to BWPF and RGPF with large step
sizes. We conduct a comparison of these three algorithms in Appendix E but do not include it here for
clarity. It would also be really interesting to study the particle-based analogue of FB-GVI as future
works.
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A Further Discussion

Other Related Works. There exist several other approaches for minimizing KL-divergence over
the Wasserstein space (or over appropriately restricted subsets). For example, normalizing flows [68,
37, 11], the blob method [10], variants of gradient descent in Wasserstein spaces [69, 85, 5], natural-
gradient based variational inference techniques [48], mean-field methods [88], neural networks based
approaches [2] and MCMC methods. This is certainly not a comprehensive list and summarizing the
large literature on this topic is impossible in the limited space available. However, we emphasize
that a majority of the above methods are nonparametric and do not come with strong theoretical
guarantees. Our main focus in this work is on theoretically understanding (Gaussian)-SVGD and its
connection to GVI.

Beyond Gaussian VI. While we present a comprehensive study of Gaussian–SVGD, it is currently
unclear how such relation between bilinear kernels and Gaussian family could be generalized. For
example, it would be interesting to ask if there is a class (submanifold) C of probability densities
such that for any initialization-target pair ρ0, ρ∗ ∈ C, the dynamics of SVGD with a radius-based
kernel function (RBF-SVGD) would always remain in C. If such C is identified, we could similarly
carry out the convergence analysis of RBF-SVGD and perform variational inference with respect
to the class C. It remains an open question whether the uniform in time propagation of chaos as
shown in Theorem 3.7 would hold for general kernels. Moreover, there has been increasing interest
on variational inference with respect to other special density classes. Remarkably [43] considered
Gaussian mixtures in additional to GVI, and [62] analyzed the family of elliptical distributions, which
has applications for performing variational inference under heavy-tails [21].

SVGD in High Dimensions. It is well-known in literature [89, 4] that RBF-SVGD suffers from
severe particle degeneracy in high dimensions and cannot guarantee good covariance estimation.
However, such issue has not been observed for Gaussian–SVGD in our simulations. It would be
interesting future works to study whether this undesired phenomenon is tied to specific choices of
kernels and to carry out theoretical analysis of (Gaussian)–SVGD in high dimensions.

B Details on Gaussian–Stein Metrics

For any region Ω ⊆ Rd, denote the set of probability densities on Ω by

P(Ω) :=
{
ρ ∈ F(Ω) :

∫
Ω
ρdx = 1, ρ ≥ 0

}
,

where F(Ω) is the set of C∞-smooth functions on Ω. As studied in [42], P(Ω) forms a Fréchet
manifold called the density manifold. For any “point” ρ ∈ P(Ω), the tangent space is given by

TρP(Ω) =
{
σ ∈ F(Ω) :

∫
σ dx = 0

}
.

And the cotangent space at ρ, T ∗
ρP(Ω) consists of equivalent classes of F(Ω), each containing

functions that differ by a constant. A Riemannian metric (tensor) assigns to each ρ ∈ P(Ω) a positive
definite inner product gρ : TρP(Ω)× TρP(Ω)→ R. If we define the pairing between T ∗

ρP(Ω) and
TρP(Ω) by

⟨Φ, σ⟩ :=
∫
Φ · σ dx,

where Φ ∈ T ∗
ρP(Ω) and σ ∈ TρP(Ω). Any Riemannian metric uniquely corresponds to an

isomorphism (called the canonical isomorphism) between the tangent and cotangent bundles [66],
i.e., we have Gρ : TρP(Ω)→ T ∗

ρP(Ω) through

gρ(σ1, σ2) = ⟨Gρσ1, σ2⟩ = ⟨Gρσ2, σ1⟩, σ1, σ2 ∈ TρP(Ω).

Definition B.1 (Wasserstein metric). The Wasserstein metric is induced by the following canonical
isomorphism GWass

ρ : TρP(Ω)→ T ∗
ρP(Ω) such that

(GWass
ρ )−1Φ = −∇ · (ρ∇Φ), Φ ∈ T ∗

ρP(Ω).

Note that the Wasserstein metric we define here corresponds exactly to the Wasserstein-2 distance
studied in the literature of optimal transport [83]. For details of such connection, please refer
to [36]. Also we need to clarify that the concepts we introduce follow from the convention in
Riemannian geometry, where the manifold strictly speaking is required to be finite-dimensional. For
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a mathematically formal formulation of infinite-dimensional calculus on the density manifold, please
refer to [42, 41, 65, 57].

The Wasserstein gradient flow can be seen as the natural gradient flow on the density manifold with
respect to the Wasserstein metric. In specific, consider any energy functional E(ρ), e.g., the KL
divergence from ρ to some fixed target ρ∗. The Wasserstein gradient flow for E(ρ) is provided by

ρ̇t = −(GWass
ρt )−1 δE

δρt
= ∇ ·

(
ρt∇

δE

δρt

)
, (27)

where δE
δρt

is the variational derivative of the functional E with respect to ρt. If E(ρ) is the KL
divergence mentioned above, (27) gives the linear Fokker-Planck equation [33]

ρ̇t = ∇ · (∇ρt + ρt∇V ),

where V (x) = − log ρ∗(x) is called the potential function. If E(ρ) is the Wasserstein metric
between ρ and ρ∗, (1) gives the geodesic flow on the density manifold. If E(ρ) is the maximum mean
discrepancy (MMD) or kernelized Stein discrepancy (KSD) between ρ and ρ∗, it leads to the MMD
descent and KSD descent algorithms [3, 38].

Interestingly, the mean field flow of SVGD can also be seen as the gradient flows of the KL divergence
on the density manifold but with respect to the Stein metric, where we perform kernelization in the
cotangent space before taking the divergence [51, 22].
Definition B.2 (Stein metric). The Stein metric is induced by the following canonical isomorphism
GWass
ρ : TρP(Ω)→ T ∗

ρP(Ω) such that

(GStein
ρ )−1Φ = −∇ ·

(
ρ(·)

∫
K(·,y)ρ(y)∇Φ(y) dy

)
, Φ ∈ T ∗

ρP(Ω).

In particular, the mean field PDE of the SVGD algorithm can be written as

ρ̇t(x) = −(GStein
ρ )−1 δKL(ρt ∥ ρ∗)

δρt
(x) (28)

= ∇ ·
(
ρt(x)

∫
K(x,y)ρt(y)∇

δKL(ρt ∥ ρ∗)
δρt

(y) dy

)
= ∇ ·

(
ρt(x)

∫
K(x,y)ρt(y)∇

(
log ρt(y) + V + 1

)
dy

)
= ∇ ·

(
ρt(x)

∫
K(x,y)

(
∇ρt(y) + ρt(y)∇V (y)

)
dy

)
,

where V (x) = − log ρ∗(x).

We set Ω = Rd and consider the multivariate Gaussian densities N (µ,Σ) in Rd :

ρ(x, θ) = 1√
det(2πΣ)

exp
(
− 1

2 (x− µ)⊤Σ−1(x− µ)
)
,

where θ := (µ,Σ) ∈ Θ and Θ := Rd × Sym+(d,R). Here Sym+(d,R) is the set of (symmetric)
positive definite d × d matrices, which is an open subset of the d × d symmetric matrix space
Sym(d,R). In this way, Θ can be identified as a Riemannian submanifold of the density manifold
P(Rd) with the induced Riemannian structure.

We first look into the Stein metric with the bilinear kernel K1(x,y) = x⊤y + 1, and derive the
closed form of the induced metric tensor on Θ, which plays an essential role in characterizing the
SVGD dynamics.
Theorem B.3 (Gaussian–Stein metric with the simple bilinear kernel). Given θ = (µ,Σ) ∈ Θ,
let gθ(·, ·) denote the Gaussian–Stein metric tensor for the multivariate Gaussian model with the
bilinear kernel K1(x,y) = x⊤y + 1, and Gθ be the corresponding canonical isomorphism from
TθΘ ≃ Rd × Sym(d,R) to T ∗

θΘ ≃ Rd × Sym(d,R).

For any ν ∈ Rn, and S ∈ Sym(d,R), the inverse map G−1
θ is given by the following automorphism

on Rd × Sym(d,R):

G−1
θ (ν, S) =

(
2SΣµ+ (1 + µ⊤µ)ν,

(
Σ(2ΣS + µν⊤) + (2SΣ+ νµ⊤)Σ

))
. (29)
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And for any ξ, η ∈ TθΘ the Stein metric tensor can be written as

gθ(ξ, η) = tr(S1S2Σ
2) + (b⊤1 S2 + b⊤2 S1)Σµ+ (1 + µ⊤µ)b⊤1 b2. (30)

Here ξ =
(
µ̃1, Σ̃1

)
and η =

(
µ̃2, Σ̃2

)
, in which µ̃1, µ̃2 ∈ Rd, Σ̃1, Σ̃2 ∈ Sym(d,R). And bi, Si’s

(i = 1, 2) are defined as (
bi,

1

2
Si

)
= Gθ(µ̃i, Σ̃i).

Then for the Gaussian–Stein metric with kernel K2(x,y) = (x − µ)⊤(y − µ) + 1 we have the
following result:
Theorem B.4 (Gaussian–Stein metric with the affine-invariant bilinear kernel). Given θ = (µ,Σ) ∈
Θ, let gθ(·, ·) denote the affine-invariant Gaussian–Stein metric tensor for the multivariate Gaus-
sian model with the affine-invariant bilinear kernel K2, and Gθ be the corresponding canonical
isomorphism from TθΘ ≃ Rd × Sym(d,R) to T ∗

θΘ ≃ Rd × Sym(d,R).

For any ν ∈ Rn, and S ∈ Sym(d,R), the inverse map G−1
θ is given by the following automorphism

on Rd × Sym(d,R):
G−1
θ (ν, S) =

(
ν, 2

(
Σ2S + SΣ2

))
. (31)

And for any ξ, η ∈ TθΘ the Stein metric tensor can be written as

gθ(ξ, η) = tr(S1S2Σ
2) + µ̃⊤

1 µ̃2. (32)

Here ξ =
(
µ̃1, Σ̃1

)
and η =

(
µ̃2, Σ̃2

)
, in which µ̃1, µ̃2 ∈ Rd, Σ̃1, Σ̃2 ∈ Sym(d,R). And Si’s

(i = 1, 2) are defined as the symmetric solution of

Σ̃i = Σ2Si + SiΣ
2.

Now if we further restrict the Gaussian family to have zero mean, it induces the submanifold
Θ0 = Sym+(d,R). We have the following result for K1 or K2 as a direct corollary of Theorem B.3
or Theorem B.4.
Corollary B.5. Given Σ ∈ Θ0, let gΣ(·, ·) denote the Gaussian–Stein metric tensor for the centered
Gaussian family with the bilinear kernel K(x,y) = x⊤y + 1, and GΣ be the corresponding
canonical isomorphism from TΣΘ0 ≃ Sym(d,R) to T ∗

ΣΘ0 ≃ Sym(d,R).

For any S ∈ Sym(d,R), the inverse map G−1
Σ is given by the following automorphism on Sym(d,R):

G−1
Σ (S) = 2(Σ2S + SΣ2). (33)

And for any Σ̃1, Σ̃2 ∈ TΣΘ0 the Stein metric tensor can be written as

gΣ(Σ̃1, Σ̃2) = tr(S1S2Σ
2), (34)

where for i = 1, 2, Si is the unique solution in Sym(d,R) that satisfies the Lyapunov equation

Σ̃i = Σ2Si + SiΣ
2.

Next we consider the Bures–Wasserstein metric for Gaussian families, which is defined as the
Wasserstein metric restricted to the Gaussian family. It has the following elegant expressions from
[77, 60]:
Theorem B.6 (Bures–Wasserstein metric). Given θ = (µ,Σ) ∈ Θ, let gθ(·, ·) denote the Bures–
Wasserstein metric tensor for the multivariate Gaussian model (or equivalently Gaussian–Stein metric
with the kernel K3), and Gθ be the corresponding isomorphism from TθΘ ≃ Rd × Sym(d,R) to
T ∗
θΘ ≃ Rd × Sym(d,R). For any ν ∈ Rn, and S ∈ Sym(d,R), the inverse map G−1

θ is given by
the following automorphism on Rd × Sym(d,R):

(GWass
θ )−1(ν, S) = (ν, 2(ΣS + SΣ)) . (35)

And for any ξ, η ∈ TθΘ the Bures–Wasserstein metric tensor can be written as

gθ(ξ, η) = tr(S1S2Σ) + µ̃⊤
1 µ̃2. (36)
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Here ξ =
(
µ̃1, Σ̃1

)
and η =

(
µ̃2, Σ̃2

)
, in which µ̃1, µ̃2 ∈ Rd, Σ̃1, Σ̃2 ∈ Sym(d,R). And Si’s

(i = 1, 2) are defined as the symmetric solution of

Σ̃i = ΣSi + SiΣ.

Notably this metric coincides with Gaussian–Stein metric with the kernel K3(x,y) = (x −
µ)⊤Σ−1(y − µ) + 1.

Note that the only difference between (32) and (36) is the power of Σ.
Theorem B.7 (Regularized Gaussian–Stein metric with the affine-invariant bilinear kernel). Given
θ = (µ,Σ) ∈ Θ, let gθ(·, ·) denote the affine-invariant regularized Gaussian–Stein metric tensor
for Gaussian families, and Gθ be the corresponding isomorphism from TθΘ ≃ Rd × Sym(d,R) to
T ∗
θΘ ≃ Rd Sym(d,R). For any ν ∈ Rd and S ∈ Sym(d,R), the inverse map G−1

θ is given by the
following automorphism on Rd × Sym(d,R):

(GRS
θ )−1(ν, S) =

(
ν, 2

(
((1− ν)Σ + νI)−1Σ2S + S((1− ν)Σ + νI)−1Σ2

))
. (37)

Notably this metric coincides with Gaussian–Stein metric with the kernelK4(x,y) = (x−µ)⊤((1−
ν)Σ + νI)−1(y − µ) + 1.

C Properties of SVGD Solutions with the Simple Bilinear Kernel

[58] showed a few nice properties of the mean field PDE (2) for SVGD with radius-based kernels
that can be written as K(x− y) which is symmetric and positive definite, meaning that

m∑
i=1

m∑
j=1

K(xi − xj)ξiξj ≥ 0, ∀xi ∈ Rd, ξi ∈ R, m ∈ N.

Although their results covered a large class of kernels commonly used in practice e.g., Gaussian
kernels, they do not apply to the bilinear kernel K(x,y) = x⊤y + 1. In this subsection we establish
similar results for the bilinear kernel. In fact, some of their results for radius-based kernels still hold
here while some do not.

Before showing the properties of the mean field PDE, we need the following assumption on the
potential function V .
Assumption C.1. The potential function V : Rd → R satisfies the conditions below:

1. V ∈ C∞(Rd), V ≥ 0, and V (x)→∞ as ∥x∥ → ∞.

2. For any α, β > 0, there exists a constant Cα,β > 0 such that if ∥y∥ ≤ α∥x∥+ β, then the
following inequality always holds that

(1 + ∥x∥)∥∇V (y)∥+ (1 + ∥x∥)2∥∇2V (y)∥ ≤ Cα,β(1 + V (x)).

To make things precise although all vector norms in Rd and all matrix norms are equivalent, we
always choose the Euclidean norm for vectors and the spectral norm for matrices unless otherwise
specified. Note that our assumption here is a little different from Assumption 2.1 in [58]. We do not
require their second formula but our second piece of assumption is slightly stricter than their third one.
It is straightforward to check that any positive definite quadratic form satisfies all the assumptions
above, corresponding to the case where the target is a non-degenerate Gaussian distribution.

We use PV (Rd) and Pp(Rd) (p = 1, 2, · · · ) to denote the set of probability measure µ on Rd
satisfying

∥µ∥PV
:=

∫
Rd

(1 + V (x)) dµ(x) <∞ (38)

and
∥µ∥Pp :=

∫
Rd

∥x∥p dµ(x) <∞ (39)

respectively.
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Theorem C.2 (Well-posedness and regularity of the mean field solution). Let V satisfy Assump-
tion C.1. For any ν ∈ PV (Rd), there is a unique ρt ∈ C

(
[0,∞),PV (Rd)

)
which is a weak solution

to (2) with initial condition ρ0 = ν. Moreover, there exists C1 > 0 depending on V such that

∥ρt∥PV
≤ eC1t∥ν∥PV

t ≥ 0. (40)

If ν ∈ Pp(Rd) ∩ PV (Rd), then for any t ∈ [0,∞), we have that ρt ∈ Pp(Rd) ∩ PV (Rd) and there
exists C2 > 0 depending on V such that

∥ρt∥Pp ≤ eC2t∥ν∥Pp t ≥ 0. (41)

If ν has a density ρ0(x) ≥ 0, then ρt also has a density. Furthermore, if ρ0 ∈ Hk(Rd) for some k,
then we have ρt ∈ Hk(Rd). Here

Hk(Rd) =Wk,2(Rd) :=
{
u ∈ Lp(Rd) : Dαu ∈ Lp(Rd) ∀|α| ≤ k

}
, k ≥ 1

denotes the Sobolev (Hilbert) space of order k.
Theorem C.3 (Well-posedness of the finite-particle solution). Let V satisfy Assumption C.1. Then

for any initial condition X0 =
(
x
(0)
1 , · · · ,x(0)

N

)⊤
∈ RdN , the system (13) has a unique solution

Xt =
(
x
(t)
1 , · · · ,x(t)

N

)⊤
∈ C1

(
[0,∞),RdN

)
,

and the measure µNt = 1
N

∑N
i=1 δx(t)

i
is a weak solution to the PDE (2).

Finally, we show that if two initial probability measures are close to each other, the solutions of (2)
up to time T are also close. We need to further impose the following assumption on V .
Assumption C.4. There exists a constant CV > 0 and some index q > 1 such that

∥∇V (x)∥q ≤ CV (1 + V (x)) for every x ∈ Rd (42)
and that

sup
θ∈[0,1]

∥∇2V (θx+ (1− θ)y)∥q ≤ CV
(
1 +

V (x) + V (y)

(∥x∥+ ∥y∥)q

)
. (43)

Remarkably a Gaussian distribution satisfies both Assumptions C.1 and C.4. Secondly an important
observation is that (42) implies that there is C0 such that

V (x) ≤ C0(1 + ∥x∥q
′
) ∀x ∈ Rd (44)

where q′ = q/(q − 1). Indeed, we note that

∂t

(
1 + V

(
t
x

∥x∥

)) q−1
q

=
q − 1

q
·

x
∥x∥ · ∇V

(
t x
∥x∥

)
(
1 + V

(
t x
∥x∥

))1/q ≤ (1− 1

q

)
C

1/q
V .

Integrating from t = 0 to t = ∥x∥, we get (44), which shows that Pp ⊂ PV for any p ≥ q′ =
q/(q − 1).
Theorem C.5. Let V satisfy Assumptions C.1 and C.4. Let R > 0. Assume that ν1, ν2 are two
initial probability measures in Pp(Rd) satisfying ∥νi∥Pp ≤ R (i = 1, 2). Let µ1,t and µ2,t be the
associated weak solutions to (2). Then given any T > 0, there exists a constant CT > 0 depending
on V,R and T such that

sup
t∈[0,T ]

Wp (µ1,t, µ2,t) ≤ CTWp (ν1, ν2) .

Remark. 1. Theorem C.5 implies the convergence of empirical measure to the mean field limit
at time t ∈ [0, T ]. In fact, if we set ν1,n to be an empirical measure, which converges to ν2
as n grows to infinity, then µ1,n,t, the solution of (2) at time t with initializaiton ν1,n, will
also converge to µ2,t for any t ∈ [0, T ].

2. In general there is no guarantee that the density ρt will converge to the target density ρ∗
in (2) with the bilinear kernel. Some counterexamples will be elaborated in the remarks
following Theorem 3.6.

3. We show in Theorem 3.1 that for Gaussian families ρt always converges to the target density
ρ∗ as t → ∞ and the convergence rate is linear in KL divergence. We also establish a
uniform in time convergence result (Theorem 3.7) for the empirical measure in this case.
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D Details of the Gaussian–SVGD Algorithms

Different Ways of Estimating Γt. The first-order estimator of Γt arises from

Γt = Eρθ [∇2V (x)] =

∫
ρθ(x)∇2V (x) dx = −

∫
∇ρθ(x)∇V (x)⊤ dx

=

∫
ρθ(x)Σ

−1(x− µ)∇V (x)⊤ dx = Σ−1Eρθ [(x− µ)∇V (x)⊤].

Since Γt is symmetric we also have

Γt = Eρθ [∇V (x)(x− µ)⊤]Σ−1.

Note that using the first-order estimator also comes at a cost as the inverse of Σ is needed. However,
for density-based Gaussian–SVGD this Σ−1 might cancel with Σ in computing.

Previous Algorithms Under the Proposed Frameworks. The use of K1 for SVGD in variational
inference dates back to [54]. Our Algorithm 2 is slightly different from [54] in the sense that ∇V is
replaced by a linear function to ensure Gaussianity. Moreover, Algorithms 1 and 2 with the kernel
K2 correspond precisely to the GF and GPF algorithms in [27]. If K3 (Bures–Wasserstein metric)
is chosen, Algorithm 1 reproduces the BW-SGD algorithm in [43] (with N = 1). [19] also uses
K3 (Bures–Wasserstein metric) but their energy function for gradient flow is different from others.
Instead of directly performing the gradient descent to minimize KL divergence, they separate the KL
divergence into two parts and perform the proximal gradient descent.

Variants of Gradient Descent in Density-Based Gaussian–SVGD. For the density-based SVGD,
we draw new samples at each step. It is interesting to study the behaviorial difference between
drawing one sample (stochastic) and efficiently many samples (almost deterministic). For example,
in [43] only one sample is drawn at each time step and they study the stochastic properties arising
from this design. [19] considers both settings. In general, they do not differ much in convergence
rates but there could be huge gaps in the constants of the bounds and will actually impact practical
performance. Another choice is to only draw N samples at time 0 and we use a linear transformation
of the same N points to serve as new samples at time t, which becomes similar to the particle-based
Gaussian–SVGD. Moreover, the vanilla gradient descent could also be replaced by accelerated ones
or gradient descent with adaptive learning rate, e.g., AdaGrad, RMSProp.

Resampling Scheme and Particle-Level Convergence. As presented in the main text the Gaussian–
SVGD for a general target is given by

x
(t+1)
i = x

(t)
i +

ϵ

N

( N∑
j=1

∇
x

(t)
j
K
(
x
(t)
i ,x

(t)
j

)
−

N∑
j=1

K
(
x
(t)
i ,x

(t)
j

)
∇̂V

(
x
(t)
j

))
. (45)

where ∇̂V (x) = Γ̂t(x− µt) + m̂t.

The updating rules of Gaussian–SVGD given above is totally deterministic, meaning that at each
time step x

(t)
i is updated only using deterministic quantities and

(
x
(t)
k

)N
k=1

without any external
randomness. This is computationally more efficient but imposes difficulty in the analysis. On the
other hand, we could also consider slightly modifying the updating rules by applying a resampling
scheme to get a better estimation of mt and Γt. In other words, we resample (yk)

M
k=1 i.i.d. from

N (µt,Σt) and use the following estimators

m̂t =
1

M

M∑
k=1

∇V (y
(t)
k ), Γ̂t =

1

M

M∑
k=1

∇2V (y
(t)
k ), (46)

or first-order estimators

Γ̂t =
1

M

M∑
k=1

∇V (y
(t)
k )(y

(t)
k − µt)

⊤Σ−1
t =

1

M

M∑
k=1

Σ−1
t (y

(t)
k − µt)∇V (y

(t)
k )⊤. (47)

In this way, when M is large enough ∇̂V (x) will be sufficiently close to Γt(x− µt) +mt.
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Figure 2: Convergence of Algorithms 1 and 2 with bilinear kernels for a Gaussian target.

Now we replace m̂t and Γ̂t by mt and Γt and consider the continuous-time dynamics

ẋ
(t)
i =

1

N

( N∑
j=1

∇
x

(t)
j
K
(
x
(t)
i ,x

(t)
j

)
−

N∑
j=1

K
(
x
(t)
i ,x

(t)
j

)(
Γt(x

(t)
j − µt) +mt

))
, (48)

where µt and Σt are sample mean and variance and

mt := Ex∼N (µt,Σt)[∇V (x)], Γt := Ex∼N (µt,Σt)[∇
2V (x)].

Theorem D.1 (Equivalence of density-based and particle-based algorithms). The solution of the
finite-particle system (48) with K1 is given by x

(t)
i = At(x

(0)
i − µ0) + µt where At is the unique

solution of
Ȧt = (I − ΓtCt −mtµ

⊤
t )At, A0 = I,

where µt and Σt are the unique solution of the ODE system{
µ̇t = (I − ΓtΣt)µt − (1 + µ⊤

t µt)mt

Σ̇t = 2Σt − Σt
(
ΣtΓt + µtm

⊤
t

)
−
(
ΓtΣt +mtµ

⊤
t

)
Σt

. (49)

This can be proved using exactly the same technique as in the proof of Theorem 3.6. Here (49) is
the same as (22), and hence by Theorem 4.1 µt and Σt converges to µ∗ and Σ∗ that solves the GVI
and the convergence rate is given in Theorem 4.2 when the target is strongly log-concave. We also
conjecture that there is still uniform in time convergence to the mean-field limit for this particle
system and leave it to future works. .

E Details of the Simulations

Gaussian Targets. Following [19], we consider a scenario where the target is Gaussian N (µ,Σ)
where µ ∼ Unif([0, 1]10) and Σ−1 = U diag{λ1, λ2, · · · , λ10}U⊤ with U ∈ R10×10 drawn from
the Haar measure of the orthogonal matrices O(10) and λ1, · · · , λ10 being a geometric sequence
such that λ1 = 0.01 and λ10 = 1. We run the eight different algorithms as introduced in Section 5
and show the decay of logKL(ρθ ∥ ρ∗) over time in Figure 2. Clearly the algorithms with K1 show
a faster rate over time compared to the others while the other algorithms eventually all converge at
the same rate. This is actually confirmed from our theoretical analysis as in all the other dynamics
except SBGD and SBPF, the mean converges at the rate of O(e−t/λ) while the covariance converges
at a faster rate, resulting in the fact that the KL divergence converges at O(e−2t/λ). But for K1 the
rate is different and given in Theorem 3.1.

Gaussian Mixture Targets. Next we consider the 1-dimensional Gaussian mixture targets given
by w1N (µ1, σ

2
1) + (1 − w1)N (µ2, σ

2
2). We run the aforementioned eight algorithms with initial
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Figure 3: Convergence of Algorithms 1 and 2 with bilinear kernels for a Gaussian mixture target.

µ = 0 and σ = 1 or particles drawn from N (0, 1). Here again we plot the decay of F̂(ρθ) over
time or iteration as shown in Figure 3. In particular, the plots correspond to the specific setting of
µ1 = 5, µ2 = 10, σ1 = 5, σ2 = 2 and ρ∗(x) ∝ 0.3 exp(−(x − 5)2/50) + 0.7 exp(−(x − 10)2/8).
These parameters are arbitrarily chosen. For the decay of F̂(ρθ) over time, we fix the step size to be
0.1 and run 1000 iterations. For F̂(ρθ) over time, we draw 500 particles for particle-based algorithms
and run all algorithms for 500 iterations so that a total of 500 samples are drawn for the density-based
algorithms. The step sizes are chosen to be the largest ones that still allow convergence. Specifically
for these eight algorithms the step sizes are 0.02, 0.1, 1, 1, 0.2, 0.8, 8, 8. Consistent with the results of
Bayesian logistic regression, the particle-based ones are more stable and allow larger step sizes, with
BWPF and RGPF clearly outperforming all the others. In fact, the constrast between particle-based
and density-based algorithms is particularly significant in this problem probably because of the
non-log-concave target.

More on the Bayesian Logistic Regression. We compare three so-far best performed algorithms,
BWPF, RGPF, and FB-GVI [19] for the same problem with different step sizes. From Figure 4
we see that BWPF outperforms the other two. FB-GVI is better than RGPF with a larger learning
rate but fluctuate a bit more when η = 2. This is probably attributed to the stochastic gradients.
Furthermore, it is interesting to compare to ordinary gradient descent (OGD) on the variational
parameters (mean and covariance) and SVGD with a radius-based kernel function (RBF-SVGD)
Kh(x,y) = exp

(
−∥x−y∥2

2h2

)
. We show this comparison in Figure 5 with the same step size η = 2.

Firstly, OGD does not converge as fast as BWPF and it is not as stable. Secondly, RBF-SVGD is
quite sensitive to the choice of bandwidth and it does not converge as fast as BWPF in general. We
also notice that RBF-SVGD is significantly slower in computation compared to Gaussian–SVGD.
However, as a particle-based algorithm, RBF-SVGD does have the advantage of being stable even
when the step size is large.

F Analogous Results for the Affine-Invariant Bilinear Kernels

For the Bures–Wasserstein metric (Gaussian–Stein metric with K3), the dynamics of natural gradient
descent has already been studied in literature. See [60, 86, 13] for proofs for the following theorem.
Theorem F.1 (Wasserstein gradient flow for the Gaussian family). Let ρ0 ∼ N (µ0,Σ0) and ρ∗ ∼
N (b, Q) be two Gaussian measures. Then the solution of (1) converges to ρ∗ as t→∞. In particular,
ρt is the density of N (µt,Σt) where the mean µt and covariance matrix Σt satisfies{

µ̇t = −Q−1(µt − b)

Σ̇t = 2I − ΣtQ
−1 −Q−1Σt

. (50)

If Σ0Q = QΣ0, we have ∥µt − b∥= O(e−t/λ) and ∥Σt −Q∥ = O(e−2t/λ), where λ is the largest
eigenvalue of Q.

Now we focus on the results for Gaussian–SVGD with the kernel K2. First we remark that for K2 the
previous results on the well-posedness of mean-field PDE and finite-particle solutions in Appendix C
still hold and can be proved using similar techniques to Appendix H but for simplicity they are

23



0 100 200 300 400 500
iteration

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(
)

BWPF ( = 8)
BWPF ( = 2)
BWPF ( = 0.5)
RGPF ( = 8)
RGPF ( = 2)
RGPF ( = 0.5)
FB-GVI ( = 8)
FB-GVI ( = 2)
FB-GVI ( = 0.5)
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Figure 5: Performance of BWPF, OGD, and RBF-SVGD with bandwidth h.

omitted. The proofs of the following theorems will also be omitted unless a different proof technique
from the analogous results needs to be applied.
Theorem F.2 (Analogue of Theorem 3.1). For any t ≥ 0 the solution ρt of SVGD (2) with the
bilinear kernel remains a Gaussian density with mean µt and covariance matrix Σt given by{

µ̇t = −Q−1(µt − b)

Σ̇t = 2Σt − Σ2
tQ

−1 −Q−1Σ2
t

, (51)

which has a unique global solution on [0,∞) given any µ0 ∈ Rd and Σ0 ∈ Sym+(d,R). And ρt
converges weakly to ρ∗ as t→∞. If Σ0Q = QΣ0 then we have the following rates

∥µt − b∥ = O(e−t/λ), ∥Σt −Q∥ = O(e−2t), ∀ϵ > 0,

where λ is the largest eigenvalue of Q.

The proof of the dynamics is similar to that of Theorem 3.1. The rate O(e−t/λ) is trivially true from
the theory of linear ODEs and the rate O(e−2t) is given by Theorem 3.2.
Theorem F.3 (Analogue of Theorem 3.6). Suppose the initial particles satisfy that C0 is non-singular.
There exists a unique solution of the finite particle system (13) given by

x
(t)
i = At(x

(0)
i − µ0) + µt, (52)
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where At is the unique (matrix) solution of the linear system

Ȧt =
(
I −Q−1Ct

)
At, A0 = I, (53)

and µt and Ct are the unique solution of the ODE system{
µ̇t = −Q−1(µt − b)

Ċt = 2Ct − C2
tQ

−1 −Q−1C2
t

. (54)

The proof is similar to that of Theorem 3.6.

Theorem F.4 (Analogue of Theorem 3.7). Given the same setting as Theorem F.3, further suppose
the initial particles are drawn i.i.d. from N (µ0,Σ0). Then there exists a constant Cd,Q,b,Σ0,µ0

such
that for all t, for all N ≥ 2, with the empirical measure ζ(t)N = 1

N

∑N
i=1 δx(t)

i
, the second moment of

Wasserstein-2 distance between ζ(t)N and ρt converges:

E
[
W2

2

(
ζ
(t)
N , ρt

)]
≤ Cd,Q,b,Σ0,µ0

×

 N−1 log logN if d = 1
N−1(logN)2 if d = 2

N−2/d if d ≥ 3
. (55)

The proof is similar to that of Theorem 3.7. But for sake of completeness we provide more proof
details in Appendix L.

Theorem F.5 (Analogue of Theorem 4.1). Let ρ∗ be the density of a target distribution with the
potential function V (x) = − log ρ∗(x) and ρ0 be the density of N (µ0,Σ0). Then for any t ≥ 0 the
Gaussian–SVGD produces a Gaussian density ρt with mean µt and covariance matrix Σt given by
the following ODE system:{

µ̇t = −Ex∼ρt [∇V (x)]

Σ̇t = 2Σt − Σ2
tEx∼ρt [∇2V (x)]− Ex∼ρt [∇2V (x)]Σ2

t

. (56)

Furthermore, suppose that θ∗ is the unique solution of the following optimization problem

min
θ=(µ,Σ)

KL(ρθ ∥ ρ∗), where ρθ is the Gaussian measure N (µ,Σ).

Then we have ρt → ρθ∗ ∼ N (µ∗,Σ∗) as t→∞.

The proof is similar to that of Theorem 4.1. In particular, if the target is strongly log-concave, it gives
rise to the following linear convergence rate.

Theorem F.6 (Analogue of Theorem 4.2). Assume that the target ρ∗ is α-strongly log-concave and
β-log-smooth, i.e., αI ⪯ ∇2V (x) ⪯ βI . Then ρt converges to ρθ∗ at the following rate:

∥µt − µ∗∥ = O(e−αt/max{β,1}), ∥Σt − Σ∗∥ = O(e−αt/max{β,1}).

The proof is similar to that of Theorem 4.2.

Theorem F.7 (Analogue of Theorem D.1). The solution of the finite-particle system (48) with K2 is
given by x

(t)
i = At(x

(0)
i − µ0) + µt where At is the unique solution of

Ȧt = (I − ΓtCt)At, A0 = I,

where µt and Σt are the unique solution of the ODE system{
µ̇t = −mt

Σ̇t = 2Σt − Σ2
tΓt − ΓtΣ

2
t

.

The proof is similar to that of Theorem 3.6 or Theorem D.1.
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G Proofs for Section B

Lemma G.1. Let ρ(x) = (2π)−d/2
(
det(Σ)

)−1/2
exp

(
− 1

2x
⊤Σ−1x

)
be the density of a d-

dimensional normal random vector where Σ is a positive definite matrix. Then for any d × d
real matrix A and d-dimensional real vector b, we have∫

x⊤Axρ(x) dx = tr(AΣ),

∫
b⊤xAxρ(x) dx = AΣb.

Proof. Since Σ−1 is a positive definite matrix, we can find its positive definite root Σ−1/2. Let
y = Σ−1/2x and ρ0(x) = (2π)−d/2 exp

(
− 1

2x
⊤x
)
. Then we have∫

x⊤Axρ(x) dx

=

∫
y⊤Σ1/2AΣ1/2y (det(Σ))

−1/2
ρ0(y) (det(Σ))

1/2
dy

=

∫  d∑
j=1

(Σ1/2AΣ1/2)jjy
2
j

 ρ0(y) dy

=

d∑
j=1

(Σ1/2AΣ1/2)jj

=tr(Σ1/2AΣ1/2) = tr(AΣ).

The second equation is given by∫
b⊤xAxρ(x) dx =

∫
Axx⊤bρ(x) dx

=A

(∫
xx⊤ρ(x) dx

)
b = AΣb.

Lemma G.2 (Lyapunov equation). The Lyapunov equation

PX +XP = Q

has a unique solution. If P,Q ∈ Sym(d,R), then the solution X ∈ Sym(d,R).

Proof. By Sylvester-Rosenblum theorem in control theory [7], PX+XP = Q has a unique solution
X . Note that if P,Q ∈ Sym(d,R) and X is a solution, then X⊤ is also a solution. Thus, we have
X = X⊤ which implies that X ∈ Sym(d,R).

Proof of Theorem B.3. Note that the tangent space at each θ ∈ Θ = Rd × Sym+(d,R) is TθΘ ≃
Rd × Sym(d,R). If we define the inner product (pairing) on TθΘ by

⟨ξ, η⟩ := tr(Σ1Σ2) + µ⊤
1 µ2, (57)

for any ξ, η ∈ TθΘ, where ξ =
(
µ̃1, Σ̃1

)
and η =

(
µ̃2, Σ̃2

)
, then the tangent bundle TΘ is trivial.

Since

ϕ : Θ → P(Rd)
θ 7→ ρ(·, θ)

provides an immersion from Θ to P(Rd), we consider its pushforward dϕθ given by

dϕθ : TθΘ → TρP(Rd)
ξ 7→ ⟨∇θρ(·, θ), ξ⟩.
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On the other hand, for any Φ ∈ T ∗
ρP(Rd), the inverse canonical isomorphism of Stein metric maps it

to

G−1
ρ Φ = −∇ · ρ(·, θ)

∫
K(·,y)ρ(y, θ)∇Φ(y) dy ∈ TρP(Rd).

Thus, we obtain that

⟨∇θρ(x, θ), ξ⟩ = −∇x · ρ(x, θ)
∫
K(x,y)ρ(y, θ)∇Φ(y) dy (58)

for any x ∈ Rd.

Now we try to find a suitable function∇Φξ that satisfies the equation above. We compute that

⟨∇θρ(x, θ), ξ⟩
=tr

(
∇Σρ(x, θ)Σ̃1

)
+∇µρ(x, θ)

⊤µ̃1

=

(
−1

2

(
tr
(
Σ−1Σ̃1

)
− (x− µ)TΣ−1Σ̃1Σ

−1(x− µ)
)
+ µ̃⊤

1 Σ
−1(x− µ)

)
ρ(x, θ).

Letting Ψ(x) =
∫
K(x,y)ρ(y, θ)∇Φ(y) dy, we get

−∇x · ρ(x, θ)
∫
K(x,y)ρ(y, θ)∇Φ(y) dy

=−∇x · ρ(x, θ)Ψ(x)

=
(
Ψ(x)⊤Σ−1(x− µ)−∇ ·Ψ(x)

)
ρ(x, θ).

We choose ∇Φξ(x) = S1(x − µ) + b1, where S1 ∈ Sym(d,R) and b1 ∈ Rd will be determined
later. Note that S1 needs to be symmetric because the gradient field is curl-free. We derive that

Ψ(x) =

∫
(x⊤y + 1)ρ(y, θ)∇Φξ(y) dy

=

∫
(x⊤y + 1)ρ(y, θ)(S1(y − µ) + b1) dy

=

∫ (
x⊤(y + µ) + 1

)
ρ(y + µ, θ)

(
S1y + b1

)
dy

=S1Σx+ (x⊤µ+ 1)b1

=(S1Σ+ b1µ
⊤)x+ b1.

By comparison of the coefficients, we need
(S1Σ+ b1µ

⊤)⊤Σ−1 +Σ−1(S1Σ+ b1µ
⊤) = Σ−1Σ̃1Σ

−1,

tr(S1Σ+ b1µ
⊤) =

1

2
tr(Σ−1Σ̃1),

S1Σµ+ (1 + µ⊤µ)b1 = µ̃1.

(59)

Note that the Lyapunov equation
PX +XP = Q,

where

P = Σ

(
I − 1

1 + µ⊤µ
µµ⊤

)
Σ,

Q = Σ̃1 −
1

1 + µ⊤µ
(Σµµ̃⊤

1 + µ̃1µ
⊤Σ),

has a unique solution X = S1 ∈ Sym(d,R). Together with

b1 =
1

1 + µ⊤µ
(µ̃1 − S1Σµ),
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we find that (59) holds with the unique solution described above. Now from the calculations above it
is straightforward to check that (59) is equivalent to the following equation

G−1
θ

(
b1,

1

2
S1

)
=
(
µ̃1, Σ̃1

)
,

where G−1
θ is the map defined in (29). Thus, the existence and uniqueness of the solution indicates

that Gθ is an isomorphism.

Similarly, we let
∇Φη(x) = S2(x− µ) + b2,

where X = S2 ∈ Sym(d,R) is the unique solution of the Lyapunov equation

PX +XP = Q,

where

P = Σ

(
I − 1

1 + µ⊤µ
µµ⊤

)
Σ,

Q = Σ̃2 −
1

1 + µ⊤µ
(Σµµ̃⊤

2 + µ̃2µ
⊤Σ),

and
b2 =

1

1 + µ⊤µ
(µ̃2 − S2Σµ).

Now we compute the Riemannian tensor

gθ(ξ, η) = gρ(ξ, η) =

∫
Φξ(x)G

−1
ρ Φη(x) dx

=

∫
(∇Φξ(x))⊤ρ(x, θ)

∫
(x⊤y + 1)ρ(y, θ)∇Φη(y) dy dx

=

∫
ρ(x, θ) (S1(x− µ) + b1)

⊤ (
(S2Σ+ b2µ

⊤)x+ b2
)
dx

=tr
(
S1(S2Σ+ b2µ

⊤)Σ
)
+ b⊤1 (S2Σµ+ (1 + µ⊤µ)b2)

= tr(S1S2Σ
2) + (b⊤1 S2 + b⊤2 S1)Σµ+ (1 + µ⊤µ)b⊤1 b2.

Finally, we show that Gθ is indeed the canonical isomorphism corresponding to gθ(·, ·). We check
that

gθ(ξ, η) = tr
(
S1(S2Σ+ b2µ

⊤)Σ
)
+ b⊤1 (S2Σµ+ (1 + µ⊤µ)b2)

=
1

2
tr(S1Σ̃2) + b⊤1 µ̃2 = ⟨Gθ(ξ), η⟩.

Proof of Theorem B.7. Similar to the proof of Theorem B.3, we define the inner product on TθΘ by

⟨ξ, η⟩ := tr(Σ1Σ2) + µ⊤
1 µ2,

for any ξ, η ∈ TθΘ, where ξ =
(
µ̃1, Σ̃1

)
and η =

(
µ̃2, Σ̃2

)
. The map

ϕ : Θ → P(Rd)
θ 7→ ρ(·, θ),

where ρ(·,Σ) denotes the density ofN (µ,Σ), provides an immersion from Θ to P(Rd). We consider
its pushforward dϕθ given by

dϕθ : TθΘ → TρP(Rd)
ξ 7→ ⟨∇θρ(·, θ), ξ⟩.

On the other hand, for any Φ ∈ T ∗
ρP(Rd), the inverse canonical isomorphism of regularized Stein

metric maps it to

G−1
ρ Φ = −∇ ·

(
ρ((1− ν)TK,ρ + νI)−1TK,ρ (∇Φ)

)
∈ TρP(Rd).
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Thus, we obtain that

⟨∇θρ(x, θ), ξ⟩ = −∇x ·
(
ρ(x, θ)((1− ν)TK,ρ + νI)−1TK,ρ (∇Φ(x))

)
(60)

for any x ∈ Rd.

Now we try to find a suitable function∇Φξ that satisfies the equation above. We compute that

⟨∇θρ(x, θ), ξ⟩
=tr

(
∇Σρ(x, θ)Σ̃1

)
+∇µρ(x, θ)

⊤µ̃1

=

(
−1

2

(
tr
(
Σ−1Σ̃1

)
− (x− µ)TΣ−1Σ̃1Σ

−1(x− µ)
)
+ µ̃⊤

1 Σ
−1(x− µ)

)
ρ(x, θ).

Letting Ψ(x) = ((1− ν)TK,ρ + νI)−1TK,ρ (∇Φ(x)), we get that the RHS of (60) is equal to

−∇x · ρ(x,Σ)Ψ(x) =
(
Ψ(x)⊤Σ−1(x− µ)−∇ ·Ψ(x)

)
ρ(x,Σ).

We choose ∇Φξ(x) = S1(x − µ) + b1, where S1 ∈ Sym(d,R) and b1 ∈ Rd will be determined
later. Note that S1 needs to be symmetric because the gradient field is curl-free. We derive that

TK,ρ (∇Φξ(x)) =
∫
((x− µ)⊤(y − µ) + 1)ρ(y, θ)∇Φξ(y) dy

=

∫
((x− µ)⊤(y − µ) + 1)ρ(y, θ)(S1(y − µ) + b1) dy

=S1Σ(x− µ) + b1.

Thus, we know Ψ(x) = S1Σ ((1− ν)Σ + νI)
−1

x + b1. By comparison of the coefficients, we
need b1 = µ̃1 andΣ ((1− ν)Σ + νI)

−1
S1Σ

−1 +Σ−1S1Σ ((1− ν)Σ + νI)
−1

= Σ−1Σ̃1Σ
−1,

tr
(
S1Σ ((1− ν)Σ + νI)

−1
)
=

1

2
tr
(
Σ−1Σ̃1

)
.

(61)

Note that the first equation is equivalent to the following Lyapunov equation

Σ2 ((1− ν)Σ + νI)
−1
X +XΣ2 ((1− ν)Σ + νI)

−1
= Σ̃1,

which has a unique solution X = S1 ∈ Sym(d,R), and the second equation is automatically satisfied
once we have the first one. Now from the calculations above it is straightforward to see that

G−1
θ (b1, S1) =

(
b1, 2

(
((1− ν)Σ + νI)−1Σ2S1 + S1((1− ν)Σ + νI)−1Σ2

))
.

The proofs of Theorems B.4 and B.6 are similar to that of Theorems B.3 and B.7. In particular,
other proofs of Theorem B.6 can also be found in literature, for example, see [77, 60]. Finally,
Corollary B.5 is the direct corollary of Theorem B.3 or Theorem B.4.

H Proofs for Section C

Given a probability measure µ and a Borel-measurable map f , we denote by f#µ the pushforward of
the measure µ under the map f .
Definition H.1 (Mean field characteristic flow). Given a probability measure ν, we say that the map

X(t,x, ν) : [0,∞)× Rd → Rd

is a mean field characteristic flow associated to the particle system (13) or to the mean field PDE (2)
if X is C1 in time and solves the following problem

Ẋ(t,x, ν) = − (∇K ∗ µt) (X(t,x, ν))− (K ∗ (µt∇V )) (X(t,x, ν))

µt = X(t, ·, ν)#ν
X(0,x, ν) = x

. (62)
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Note that here X(t, ·, ν)#ν is the push-forward of ν under the map x 7→ X(t, ·, ν), and
{X(t, ·, ν)}t≥0,ν can be regarded as a family of maps from Rd to Rd, parameterized by t and
ν. In the lemma below we show that the mean field characteristic flow (62) is well-defined.

Lemma H.2 (Solution of the mean field characteristic flow). Assume the conditions of Assumption C.1
hold, and ν ∈ PV (Rd). For any T > 0, there exists a unique solution X(·, ·, ν) ∈ C1([0, T ], Y ) to
the problem (62), where Y is the function space given by

Y :=

{
u ∈ C(Rd,Rd) : sup

x∈Rd

∥u(x)− x∥
1 + ∥x∥

<∞
}
.

Moreover, the measure µt = X(t, ·, ν)#ν satisfies

∥µt∥PV
≤ eCt∥ν∥PV

,

for some constant C that is independent of ν.

Proof. We prove the lemma in two steps. First we show local well-posedness of the mean field
characteristic flow. Second we extend the local solution to t ∈ [0,∞).

Fix r > 0, and we define

Yr :=

{
u ∈ Y : sup

x∈Rd

∥u(x)− x∥
1 + ∥x∥

≤ r
}
.

We show that there exists T0 > 0 such that (62) has a unique solution X(t,x, ν) on t ∈ [0, T0], and
the solution is in the following function class

Sr := C ([0, T0] , Yr) ,

which is a complete metric space equipped with the uniform metric

dS(u, v) := sup
t∈[0,T0]

dY (u(t, ·), v(t, ·)), dY (u, v) := sup
x∈Rd

∥u(x)− v(x)∥
1 + ∥x∥

.

Now we check the integral formulation of (62) given by

X(t,x, ν) =x−
∫ t

0

∫
Rd

∇2K (X(s,x, ν), X(s,x′, ν)) ν(dx′) ds

−
∫ t

0

∫
Rd

K (X(s,x, ν), X(s,x′, ν))∇V (X(s,x′, ν)) ν(dx′) ds

=x−
∫ t

0

X(s,x, ν) ds−
∫ t

0

∫
Rd

∇V (X(s,x′, ν))X(s,x′, ν)⊤X(s,x, ν)ν(dx′) ds.

(63)

Let us define the operator F : u(t, ·) 7→ F(u)(t, ·) by

F(u)(t,x) := x−
∫ t

0

u(s,x) ds−
∫ t

0

∫
Rd

∇V (u(s,x′))u(s,x′)⊤u(s,x)ν (dx′) ds.

We aim to show that F is a contraction map in Sr, and thus, it has a unique fixed point. For this
purpose we first prove thatF maps Sr into Sr. It is straightforward to check that (t,x) 7→ F(u)(t,x).
We now need to establish a bound on

∥∥F(u)(t,x) − x
∥∥. If u ∈ Sr, then for any s ∈ [0, T0] and

x ∈ Rd
∥u(s,x)∥ ≤ ∥x∥+ ∥u(s,x)− x∥ ≤ (r + 1) ∥x∥+ r.

By Assumption C.1, we have that∥∥∇V (u(s,x′))u(s,x′)⊤
∥∥ = ∥∇V (u(s,x′))∥ · ∥u(s,x′)∥

≤(r + 1)(1 + ∥x′∥) ∥∇V (u(s,x′))∥
≤(r + 1)Cr+1,r(1 + V (x′)).
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As a consequence, we have∥∥F(u)(t,x)− x
∥∥

≤t
(
(r + 1)∥x∥+ r

)
+ t
(
(r + 1)∥x∥+ r

)
(r + 1)Cr+1,r

∫
(1 + V (x′))ν(dx′)

≤C̃rt(1 + ∥x∥),

for some constant C̃r, where we used the assumption that ν ∈ PV (Rd). Therefore, choosing
T0 ≤ r/C̃r we get

sup
t∈[0,T0]

sup
x∈Rd

∥F(u)(t,x)− x∥
1 + ∥x∥

≤ C̃rT0 ≤ r,

which shows that F maps from Sr to Sr for sufficiently small T0. Next, we prove that F is indeed a
contraction map. If u, v ∈ Sr, then for any t ∈ [0, T0] and x ∈ Rd∥∥F(u)(t,x)−F(v)(t,x)∥∥
≤
∫ t

0

∥∥u(s,x)− v(s,x)∥∥ds+ ∫ t

0

∫
Rd

∥∥∇V (u(s,x′))u(s,x′)⊤
∥∥ ν(dx′) ∥u(s,x)− v(s,x)∥ ds

+

∫ t

0

∫
Rd

∥∇V (u(s,x′))∥ · ∥u(s,x′)− v(s,x′)∥ ν(dx′) ∥v(s,x)∥ ds

+

∫ t

0

∫
Rd

∥∇V (u(s,x′))−∇V (v(s,x′))∥ · ∥v(s,x′)∥ ν(dx′) ∥v(s,x)∥ ds =: I + II + III + IV.

Term I can be upper-bounded by

I/(1 + ∥x∥) ≤
∫ t

0

∥∥u(s,x)− v(s,x)∥∥
1 + ∥x∥

ds ≤ tdS(u, v). (64)

Similarly we have

II/(1 + ∥x∥) ≤ tdS(u, v)(r + 1)Cr+1,r

∫
(1 + V (x′))ν(dx′). (65)

For the third term, we apply Assumption C.1 and get∥∥∇V (u(s,x′))
∥∥ · ∥∥u(s,x′)− v(s,x′)

∥∥
=(1 + ∥x′∥)

∥∥∇V (u(s,x′))
∥∥ · ∥∥u(s,x′)− v(s,x′)

∥∥
1 + ∥x′∥

≤(r + 1)Cr+1,r(1 + V (x′))dS(u, v).

Thus, we have

III/(1 + ∥x∥) ≤(r + 1)Cr+1,r

∫
(1 + V (x′))ν(dx′)

∫ t

0

∥v(s,x)∥
1 + ∥x∥

ds

≤tdS(u, v)(r + 1)2Cr+1,r

∫
(1 + V (x′))ν(dx′). (66)

Finally applying Assumption C.1 once again, we have

∥∇V (u(s,x′))−∇V (v(s,x′))∥ · ∥v(s,x′)∥

=(1 + ∥x′∥) ∥∇V (u(s,x′))−∇V (v(s,x′))∥ · ∥v(s,x
′)∥

1 + ∥x′∥
≤(r + 1)(1 + ∥x′∥) max

λ∈[0,1]

∥∥∇2V (λu(s,x′) + (1− λ)v(s,x′))
∥∥ · ∥∥u(s,x′)− v(s,x′)

∥∥
=(r + 1)(1 + ∥x′∥)2 max

λ∈[0,1]

∥∥∇2V (λu(s,x′) + (1− λ)v(s,x′))
∥∥ ∥∥u(s,x′)− v(s,x′)

∥∥
1 + ∥x′∥

≤(r + 1)Cr+1,r(1 + V (x′))dS(u, v),
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where in (∗) we have used the fact that λu+ (1− λ)v ∈ Sr, and thus, λu+ (1− λ)v also satisfies
the inequality (3.3), which enables us to apply Assumption C.1.

Thus, Term IV is also bounded from above by (the same as the upper bound of Term III)

IV/(1 + ∥x∥) ≤ tdS(u, v)(r + 1)2Cr+1,r

∫
(1 + V (x′))ν(dx′). (67)

Now combining (64)–(67), we conclude that F is a contraction on Sr when T0 is small enough. By
the contraction mapping theorem, F has a unique fixed point X(·, ·, ν) ∈ Sr, which solves (63).
After defining µt = X(t, ·, ν)#ν, one sees that X(t, x, ν) solves (62) in the small time interval
[0, T0].

Now we proceed to the second step of extending the local solution. Define

τ := sup
{
t ∈ R+ ∪ {∞} : (62) has a (unique) solution on [0, t)

}
.

If τ =∞, then we have a global solution. Otherwise suppose τ <∞. After examining the bounds
we have established in the previous step, we can see that supposing the local solution exists at some
time T0, it may be extended beyond T0 as long as the quantity

∥µt∥PV (Rd) =

∫
Rd

(1 + V (X(t,x, ν)))ν(dx)

is finite at time T0. We therefore establish an upper bound on this quantity.

∂t

∫
Rd

(1 + V (X(t,x, ν)))ν(dx)

=−
∫
Rd

∇V (X(t,x, ν))⊤X(t,x, ν)ν(dx)

−
∫
Rd

∫
Rd

∇V (X(s,x, ν))⊤∇V (X(s,x′, ν))X(s,x′, ν)⊤X(s,x, ν)ν(dx′)ν(dx)

≤−
∫
Rd

∇V (X(t,x, ν))⊤X(t,x, ν)ν(dx)

≤C1,0

∫
Rd

(1 + V (X(t,x, ν)))ν(dx).

The last inequality follows from Assumption C.1. Therefore, by Grönwall’s inequality we get

∥µt∥PV (Rd) =

∫
Rd

(1 + V (X(t,x, ν)))ν(dx) ≤ eC1,0t

∫
Rd

(1 + V (x))ν(dx) = eC1,0t∥ν∥PV (Rd),

holds for all t ∈ [0, τ). Next we show an upper bound on ∥X(t,x, ν)∥. We derive that

∂t∥X(t,x, ν)∥2 = 2X(t,x, ν)⊤Ẋ(t,x, ν)

=− 2X(t,x, ν)⊤
(
I +

∫
Rd

∇V (X(t,x′, ν))X(t,x′, ν)⊤ν(dx′)

)
X(t,x, ν)

≤2∥X(t,x, ν)∥2
(
1 + C1,0

∫
Rd

(1 + V (X(t,x′, ν)))ν(dx′)

)
≤2∥X(t,x, ν)∥2

(
1 + C1,0e

C1,0t∥ν∥PV (Rd)

)
.

Again the first inequality follows from Assumption C.1. Thus, by Grönwall’s inequality we have

∥X(t,x, ν)∥ ≤ exp
(
t+ (eC1,0t − 1)∥ν∥PΩ(Rd)

)
∥x∥,

for all t ∈ [0, τ). This also implies that

∥Ẋ(t,x, ν)∥
≤
(
1 + C1,0e

C1,0t∥ν∥PV (Rd)

)
∥X(t,x, ν)∥

≤
(
1 + C1,0e

C1,0t∥ν∥PV (Rd)

)
exp

(
t+ (eC1,0t − 1)∥ν∥PΩ(Rd)

)
∥x∥,
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for all t ∈ [0, τ).

Next we extend the solution to t ∈ [0, τ ]. For this purpose, we first prove that for any sequence
{ti}∞i=1 such that 0 < t1 < t2 < · · · < τ and limi→∞ ti = τ , the sequence of functions {X(ti, ·, ν)}
is Cauchy in Y . Then by completeness of Y , there is a limiting function for the sequence, and it
is straightforward to see that such function is unique (does not rely on the choice of the sequence
{ti}∞i=1).

In fact, we check that for any i < j

∥X(tj ,x, ν)−X(ti,x, ν)∥

=(tj − ti)
∫ 1

0

Ẋ(λtj + (1− λ)ti,x, ν) dλ

≤(tj − ti) sup
t∈[ti,tj ]

∥Ẋ(t,x, ν)∥

≤(tj − ti)
(
1 + C1,0e

C1,0τ∥ν∥PV (Rd)

)
exp

(
τ + (eC1,0τ − 1)∥ν∥PΩ(Rd)

)
∥x∥.

Thus, for any ϵ > 0 there exists N > 0 such that for any j > i > N , we have

dY (X(tj ,x, ν), X(ti,x, ν)) = sup
x

∥X(tj ,x, ν)−X(ti,x, ν)∥
1 + ∥x∥

< ϵ.

In other words, {X(ti, ·, ν)} is a Cauchy sequence in Y .

Now we know that (62) has a unique solution on [0, τ ]. Since ∥µτ∥PV (Rd) <∞, we can further find
a unique solution of (62) on [τ, τ + T0] for some T0 small enough, which contradicts the definition
of τ . Therefore, we conclude that τ =∞, and (62) has a unique global solution. Finally, thanks to
the integral formulation (63) Ẋ is continuous on [0,∞)× Rd. The proof is complete.

Proof of Theorem C.2. Given ν, let X(t, x, ν) be the mean field characteristic flow defined in (62),
and let ρt = X(t, ·, ν)#ν. Note that (2) can be rewritten as

ρ̇t +∇ · (ρtU [ρt]) = 0,

where U [ρ] is the vector field given by

U [ρ](x) = −x−
∫
Rd

∇V (y)y⊤xν(dy) = −x−
∫
Rd

ρ(y)∇V (y)y⊤x dy.

Then ρt is a weak solution to (2) in the sense that

sup
t∈[0,T ]

∥ρt∥PV
<∞, ∀T > 0,

and ∫ ∞

0

∫
Rd

(
ϕ̇(t,x) +∇ϕ(t,x)⊤U [ρt](x)

)
ρt(dx) dt+

∫
Rd

ϕ(0,x)ν(dx) = 0

holds for all ϕ ∈ C∞0
(
[0,∞)× Rd

)
. This is either directly checked or follows immediately from

Theorem 5.34 in [83].

By Lemma H.2 there exists some constant C1 such that

∥ρt∥PV
≤ ∥ν∥PV

.

Suppose that ν ∈ Pp(Rd) ∩ PV (Rd). As shown in the proof of Lemma H.2, the map X(t,x, ν) is
an element of the space Y with dY (X(t,x, ν),x) ≤ C1e

C1t. Therefore, since

∥X(t,x, ν)∥p ≤ 2p∥x∥p + 2p(1 + ∥x∥)pdY (X(t,x, ν),x)p,

we have
∥ρt∥Pp =

∫
Rd

∥y∥pρt(dy) =
∫
Rd

∥X(t,x, ν)∥pν(dx) ≤ eC2t∥ν∥Pp

for some constant C2 > 0 and ρt ∈ Pp(Rd) ∩ PV (Rd).
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We now explain that the uniqueness of the weak solution follows from the uniqueness of the mean field
characteristic flow. Suppose q ∈ C

(
[0, T ],PV (Rd)

)
is another weak solution to (2). By definition of

the weak solution, the vector field (t,x) 7→ U [qt] (x) is bounded over [0, T ]× Rd, continuous in t
and Lipschitz continuous in x. Then we can define a continuous family of maps X̃(t, ·, ν) by

˙̃
X = U [qt] (X̃)

X̃(0,x, ν) = x
.

And the measure q̃t = X̃(t, ·, ν)#ν is a weak solution to the transport equation

˙̃qt +∇ · (q̃tU [qt](x)) = 0

with initial condition q̃0 = ν = q0. Uniqueness of the solution to this linear equation implies that
q̃t = qt. Thus, we have X̃(t, ·, ν)#ν = qt. In other words, X̃(t,x, ν) is the mean field characteristic
flow for ν. Uniqueness of the characteristic flow implies that X̃ = X , and hence qt = ρt. Thus, we
conclude that the weak solution is unique.

Lastly, we show the regularity result: If ν has a density ρ0(x) ≥ 0, then ρt also has a density.
Furthermore, if ρ0 ∈ Hk(Rd) for some k, then we have ρt ∈ Hk(Rd).
Note that we have already proven that ρt ∈ C ([0, T ],PV ) and

∥ρt∥PV
≤ eCt∥ρ0∥PV

, t ≥ 0.

Noting that

U [ρ](x) = −x−
∫
Rd

∇V (y)y⊤x dµ(y)

= −x+

∫
Rd

V (y)x dµ(y)

=

∫
Rd

(V (y)− 1) dµ(y) x,

we have

|U [ρt](x)| ≤ eCt∥ρ0∥PV
∥x∥,

∥∇U [ρt](x)∥ ≤ eCt∥ρ0∥PV
,

Dj
xU [ρt](x) = 0 for j = 2, · · · , k + 1.

Thus, U(t,x) := U [ρt](x) ∈ C
(
[0, T ], Ck+1

b (Rd)
)

where Ck+1
b (Rd) is the space of continuous

functions with bounded (k+1)-th order derivatives. Let Φt(x) = X(t,x, ν) denote the characteristic
flow. Since Φt satisfies the ODE system

∂tΦt(x) = U [ρt](Φt(x)),

from the regularity theory of ODE systems (see Chapter 2 of [79]) we know that both the map
x 7→ Φt and its inverse Φ−1

t are Ck. Therefore, if ρ0 has a density, then ρt also has a density and it is
given by

ρt(x) = (Φt)#ρ0 = ρ0(Φ
−1
t (x)) exp

(
−
∫ t

0

(∇x · U [ρs])(Φs ◦ Φ
−1
t (x)) ds

)
.

Moreover, since ρ satisfies
ρ̇t = −∇ · (ρtU [ρt])

with the vector field U(t,x) ∈ C
(
[0, T ], Ck+1

b (Rd)
)
, it follows from Lemma 2.8 of [44] that

ρ ∈ C
(
[0, T ],Hk(Rd)

)
for any T ≥ 0.
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Proof of Theorem C.3. We show that the particle system (13) is well-posed and that the empirical
measure is a weak solution to the mean field PDE. We introduce the function

HN (Xt) =
1

N

N∑
i=1

V
(
x
(t)
i

)
+ 1.

Since V is C1 hence locally Lipschitz, by Picard-Lindelöf theorem the problem (13) has a unique
solution up to some time T0 > 0. Intuitively we only need to show that the solution does not blow up
at any finite time. We claim that for some constant C,

HN (Xt) ≤ HN (X0) · eCt. (68)

To establish this, we first differentiate V (xi(t)) with respect to t and sum over i:

∂t

(
1

N

N∑
i=1

V
(
x
(t)
i

))

=− 1

N

N∑
i=1

∇V
(
x
(t)
i

)⊤
x
(t)
i −

1

N2

N∑
i,j=1

x
(t)
i

⊤
x
(t)
j ∇V

(
x
(t)
i

)⊤
∇V

(
x
(t)
j

)

≤C1,0

(
1

N

N∑
i=1

V
(
x
(t)
i

)
+ 1

)
.

Note that here we have used Assumption C.1. By Grönwall’s inequality, (68) holds.

Now to be rigorous, once again we define

τ := sup
{
t ∈ R+ ∪ {∞} : (13) has a (unique) solution on [0, t)

}
.

If τ <∞, we define
x
(τ)
i := lim

t↗τ−
x
(t)
i .

Then (13) has a unique solution on [0, τ ]. Again by Picard–Lindelöf theorem, there exists some ϵ > 0
such that (13) has a unique solution on [τ, τ + ϵ], which contradicts the definition of τ . Thus, we
conclude that τ =∞, which means that there is a global unique solution to (13).

Having established the well-posedness of the finite particle system, it now follows from the definition
of the characteristic flow X

(
t,x, µN0

)
that

x
(t)
i = X

(
t,x

(t)
i , µN0

)
and

µNt (dx) =
(
X
(
t, ·, µN0

))
#
µN0 .

Similar to the proof of Theorem C.2, we conclude that µNt is a weak solution to the mean field PDE
(2).

Finally, we show Theorem C.5.

Proof of Theorem C.5. Recall that p = q′ = q/(q − 1). By assumption ∥νi∥Pp ≤ R <∞ and the
fact that Pp(Rd) ⊂ PV (Rd), we know that there exists C > 0 depending on R such that

∥νi∥PV
≤ C <∞.

From the proof of Theorem C.2 and Definition H.1, we know that the weak solutions µi,t take the
form

µi,t = (X(t, ·, νi))#, i = 1, 2.

Now we bound Wp
p (µ1,t, µ2,t) using Wp

p (ν1, ν2). Let π0 be a coupling between ν1 and ν2. For
δ > 0 define ϕδ(x) := 1

p (∥x∥ + δ)p/2 to be an approximation to 1
p∥x∥

p. Given any two points
x1,x2 ∈ Rd, we have that
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∂tϕδ (X(t,x1, ν1)−X(t,x2, ν2))

=−∇ϕδ (X(t,x1, ν1)−X(t,x2, ν2))
⊤{

(X(t,x1, ν1)−X(t,x2, ν2))

+

(∫
R2d

∇V (X(t,x′
1, ν1))X(t,x′

1, ν1)
⊤X(t,x1, ν1)ν1(dx

′
1)

−
∫
R2d

∇V (X(t,x′
2, ν2))X(t,x′

2, ν2)
⊤X(t,x′

2, ν2)ν2(dx
′
2)

)}
=−∇ϕδ (X(t,x1, ν1)−X(t,x2, ν2))

⊤{
(X(t,x1, ν1)−X(t,x2, ν2))

+

∫
R2d

∇V (X(t,x′
1, ν1))X(t,x′

1, ν1)
⊤(X(t,x1, ν1)−X(t,x2, ν2))π

0(dx′
1 dx

′
2)

+

∫
R2d

∇V (X(t,x′
1, ν1))(X(t,x′

1, ν1)−X(t,x′
2, ν2))

⊤X(t,x2, ν2)π
0(dx′

1 dx
′
2)

+

∫
R2d

(∇V (X(t,x′
1, ν1))−∇V (X(t,x′

2, ν2)))X(t,x′
2, ν2)

⊤X(t,x2, ν2)π
0(dx′

1 dx
′
2)

}
= : I1 + I2 + I3 + I4.

Below we bound Ii individually. First, noticing that

∥∇ϕδ(x)∥ =
∥∥∥(∥x∥2 + δ)p/2−1x

∥∥∥ ≤ ∥x∥p−1, (69)

we obtain

I1 ≤ ∥X(t,x1, ν1)−X(t,x2, ν2)∥p . (70)

Next we bound I2:

I2 ≤ ∥X(t,x1, ν1)−X(t,x2, ν2)∥p
∥∥∥∥∫

R2d

∇V (X(t,x′
1, ν1))X(t,x′

1, ν1)
⊤ν1(dx

′
1)

∥∥∥∥
a
≤ ∥X(t,x1, ν1)−X(t,x2, ν2)∥p · (71)(∫

R2d

∥∇V (X(t,x′
1, ν1))∥qν1(dx′

1)

)1/q (∫
R2d

∥X(t,x′
1, ν1)∥pν1(dx′

1)

)1/p

b
≤ ∥X(t,x1, ν1)−X(t,x2, ν2)∥p C1/q

V ∥µ1,t∥1/qPV
· ∥µ1,t∥Pp

c
≤ C1/q

V e(C1/q+C2)t∥ν1∥1/qPV
· ∥ν1∥Pp ∥X(t,x1, ν1)−X(t,x2, ν2)∥p . (72)

Here we have applied Hölder’s inequality in a and Theorem C.2 in c. The inequality b is due to
Assumption C.4 and the definitions of the PV -norm and Pp-norm.
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Similarly for I3 we use Hölder’s inequality again and get

I3 ≤ ∥X(t,x1, ν1)−X(t,x2, ν2)∥p−1 · ∥X(t,x2, ν2)∥ ·∫
R2d

∥∇V (X(t,x′
1, ν1))∥ · ∥X(t,x′

1, ν1)−X(t,x′
2, ν2)∥π0(dx′

1 dx
′
2)

≤ ∥X(t,x1, ν1)−X(t,x2, ν2)∥p−1 · ∥X(t,x2, ν2)∥ ·(∫
R2d

∥∇V (X(t,x′
1, ν1))∥

q
ν1(dx

′
1)

)1/q (∫
R2d

∥X(t,x′
1, ν1)−X(t,x′

2, ν2)∥
p
π0(dx′

1 dx
′
2)

)1/p

≤ C1/q
V e(C1/q+C2)t∥ν1∥1/qPV

∥X(t,x1, ν1)−X(t,x2, ν2)∥p−1 ∥X(t,x2, ν2)∥ ·(∫
R2d

∥X(t,x′
1, ν1)−X(t,x′

2, ν2)∥
p
π0(dx′

1 dx
′
2)

)1/p

. (73)

Finally we proceed to bound I4. An application of the intermediate value theorem to the difference
of∇V yields that

I4 ≤ ∥X(t,x1, ν1)−X(t,x2, ν2)∥p−1 · ∥X(t,x2, ν2)∥ ·∫
R2d

sup
θ∈[0,1]

∥∥∇2V (θX(t,x′
1, ν1) + (1− θ)X(t,x′

2, ν2))
∥∥ ·

∥X(t,x′
1, ν1)−X(t,x′

2, ν2)∥ · ∥X(t,x′
2, ν2)∥π0(dx′

1 dx
′
2)

≤ ∥X(t,x1, ν1)−X(t,x2, ν2)∥p−1 ∥X(t,x2, ν2)∥ ·(∫
R2d

sup
θ∈[0,1]

∥∥∇2V (θX(t,x′
1, ν1) + (1− θ)X(t,x′

2, ν2))
∥∥q ∥X(t,x′

2, ν2)∥
q
π0(dx′

1 dx
′
2)

)1/q

·

(∫
R2d

∥X(t,x′
1, ν1)−X(t,x′

2, ν2)∥
p
π0(dx′

1 dx
′
2)

)1/p

a
≤ C1/q

V ∥X(t,x1, ν1)−X(t,x2, ν2)∥p−1 ∥X(t,x2, ν2)∥ ·(∫
R2d

(
∥V (X(t,x′

1, ν1))∥+ ∥V (X(t,x′
2, ν2))∥+ ∥X(t,x′

2, ν2)∥
q)
π0(dx′

1 dx
′
2)

)1/q

·(∫
R2d

∥X(t,x′
1, ν1)−X(t,x′

2, ν2)∥
p
π0(dx′

1 dx
′
2)

)1/p

≤ C1/q
V

(
∥µ1,t∥1/qPV

+ ∥µ2,t∥1/qPV
+ ∥µ2,t∥Pq

)
∥X(t,x1, ν1)−X(t,x2, ν2)∥p−1 ∥X(t,x2, ν2)∥ ·(∫

R2d

∥X(t,x′
1, ν1)−X(t,x′

2, ν2)∥
p
π0(dx′

1 dx
′
2)

)1/p

b
≤ C1/q

V

(
eC1t/q∥ν1∥1/qPV

+ eC1t/q∥ν2∥1/qPV
+ eC2t∥ν2∥Pp

)
∥X(t,x1, ν1)−X(t,x2, ν2)∥p−1 ·

∥X(t,x2, ν2)∥
(∫

R2d

∥X(t,x′
1, ν1)−X(t,x′

2, ν2)∥
p
π0(dx′

1 dx
′
2)

)1/p

(74)

Note that to get a we have applied (43) of Assumption C.4 and b is implied by Theorem C.2.

If we define

Dp(π)(s) :=

(∫
R2d

∥X(s,x′
1, ν1)−X(s,x′

2, ν2)∥
p
π(dx′

1 dx
′
2)

)1/p

,

combining (70), (71), (73) and (74) we obtain that

∂tϕδ (X(t,x1, ν1)−X(t,x2, ν2))

≤4C1/q
V e(C1/q+C2)tR(q+1)/q∥X(t,x1, ν1)−X(t,x2, ν2)∥p−1·(
∥X(t,x1, ν1)−X(t,x2, ν2)∥+Dp(π

0)(t)∥X(t,x2, ν2)∥
)
.
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Now integrating the inequality above with respect to the coupling π0(dx1,dx2) using the fact that∫
R2d

∥X(s,x1, ν1)−X(s,x2, ν2)∥p−1 ∥X(s,x2, ν2)∥π0(dx1 dx2)

≤
(∫

R2d

∥X(s,x1, ν1)−X(s,x2, ν2)∥p π0(dx1 dx2)

)(p−1)/p(∫
R2d

∥X(s,x2, ν2)∥pν2(x2)

)1/p

≤eC2tRDp−1
p (π0)(s).

Thus, we obtain that

∂tϕδ (X(t,x1, ν1)−X(t,x2, ν2)) ≤ 8C
1/q
V e(C1/q+2C2)tR(2q+1)/qDp

p(π
0)(t) ≤ CV,ReCTDp

p(π
0)(t).

Integrating t we get

ϕδ (X(t,x1, ν1)−X(t,x2, ν2)) ≤ ϕδ(x1 − x2) + CV,Re
CT

∫ t

0

Dp
p(π

0)(s) ds.

Finally letting δ → 0 yields

Dp
p(π

0)(t) ≤ Dp
p(π

0)(0) + CV,Re
CT

∫ t

0

Dp
p(π

0)(s) ds.

By Grönwall’s inequality, we obtain that

Dp
p(π

0)(t) ≤ Dp
p(0) exp

(
CV,Re

CT t
)
.

Now since π0 ∈ Γ(ν1, ν2) and µi,t = (X(t, ·, νi))#νi, the mapping

Ξt : (x1,x2) ∈ R2d 7→ (X(t,x1, ν1), X(t,x2, ν2)) ∈ R2d

satisties that (Ξt)#π0 ∈ Γ(µ1,t, µ2,t). As a consequence we have that

Wp
p (µ1,t, µ2,t) = inf

π∈Γ(µ1,t,µ2,t)

∫
R2d

∥x1 − x2∥pπ(dx1 dx2)

≤ inf
π0∈Γ(ν1,ν2)

Dp
p(π

0)(t)

≤ exp
(
CV,Re

CTT
)

inf
π0∈Γ(ν1,ν2)

Dp
p(π

0)(0)

= exp
(
CV,Re

CTT
)
· Wp

p (ν1, ν2).

I Proofs for Section 3.1

Proof of Theorem 3.1. For any θ = (µ,Σ) ∈ Θ, define Ẽ(µ,Σ) := E(ρ). Then we have

Ẽ(µ,Σ) = KL(ρ ∥ ρ∗) = 1

2

(
tr(Q−1Σ)− log det(Q−1Σ)− d+ (µ− b)⊤Q−1(µ− b)

)
,

where ρ is the density of N (µ,Σ) and ρ∗ is the density of N (b, Q).

Now we consider the gradient flow on the submanifold Θ

θ̇t = −G−1
θt

(∇θtẼ(θt)).

For clarity note that here

∇θtẼ(θt) :=
(
∇µt

Ẽ(µt,Σt), ∇ΣtẼ(µt,Σt)
)
,

where ∇ΣẼ(µ,Σ) denotes the standard matrix derivative (not the covariant derivative or affine
connection in the contexts of Riemannian geometry). We calculate that

∇µẼ(µ,Σ) = Q−1(µ− b), ∇ΣẼ(µ,Σ) =
1

2
(Q−1 − Σ−1).
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Thus, the gradient flow on Θ is equivalent to

⇔


µ̇t = −

(
2∇Σt

Ẽ(µt,Σt)Σtµt + (1 + µ⊤
t µt)∇µt

Ẽ(µt,Σt)
)

Σ̇t = −Σt
(
2Σt∇Σt

Ẽ(µt,Σt) + µt∇⊤
µt
Ẽ(µt,Σt)

)
−
(
2∇Σt

Ẽ(µt,Σt)Σt +∇µt
Ẽ(µt,Σt)µ

⊤
t

)
Σt

⇔

{
µ̇t = (I −Q−1Σt)µt − (1 + µ⊤

t µt)Q
−1(µt − b)

Σ̇t = 2Σt − Σt
(
Σt + µt(µt − b)⊤

)
Q−1 −Q−1

(
Σt + (µt − b)µ⊤

t

)
Σt

. (75)

Note that it is trivial to check that the functions on the right-hand-side of (3.1) are locally Lipschitz
with respect to µt and Σt (continuously differentiable hence locally Lipschitz). By Picard-Lindelöf
theorem, this ODE system given µ0 ∈ Rd,Σ0 ∈ Sym+(d,R) has a unique solution on t ∈ [0, ϵ) for
some ϵ > 0. Let

s := sup
{
t ∈ R+ ∪ {∞} : (75) has a (unique) solution on [0, s)

}
.

For convenience we define the curve on Θ = Rd × Sym+(d,R) by

γ : [0, s)→ Rd × Sym(d,R), γ(t) := (µt,Σt).

Next we consider the density flow given by

ρ̇t = −G−1
ρt

δE(ρt)

δρt
= ∇ ·

(
ρt(·)

∫
K(·,y)

(
∇ρt(y) + ρt(y)∇V (y)

)
dy

)
. (76)

By Theorem C.2 we know that there is a unique solution ρt in P(Rd) for t ∈ [0,∞). We claim that

Claim. ρt is a Gaussian density for t ∈ [0, s).

In fact, if we let ρ̃t := ϕ(γ(t)), where ϕ is the immersion

ϕ : Θ → P(Rd)
θ 7→ ρ(·, θ).

By uniqueness of the solution it suffices to prove that (76) holds for ρt = ρ̃t. This can be checked
by direct calculation of course. But there is also a more elegant way to show it. We consider the
following commutative diagram.

TθΘ Tρ̃P(Rd)

T ∗
θΘ T ∗

ρ̃P(Rd)

Gθ

dϕθ

ψθ

Gρ̃

Here dϕθ is the pushforward of the immersion ϕ at point θ and ψθ is the inverse of the pullback map
ϕ∗ : T ∗

ρ̃P(Rd)→ T ∗
θΘ restricted on ImGρ̃t◦ dϕθ(≃ T ∗

θΘ). The diagram is commutative due to the
fact that Gθ is the canonical isomorphism on the submanifold Θ induced from P(Rd).

Now we show that δEδρ̃t ∈ ImGρ̃t◦ dϕθ. In the proof of Theorem B.3, we have shown that ψθ maps(
b, 12S

)
to some Φ such that∇Φ(x) = S(x−µ)+b, where µ is obtained from G−1

θ

(
b, 12S

)
. Thus,

Imψθ contains all functions (or more precisely the equivalent classes of functions that differ by a
constant) with the form

Φ(x) =
1

2
(x− µ)⊤S(x− µ) + bx+ C, S ∈ Sym(d,R), b ∈ Rd, C is any constant.

In other words, Imψθ contains all quadratic forms on Rd. Note that we can derive that

δE(ρ̃t)

δρ̃t
= log ρ̃t + V
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is exactly a quadratic form. Thus,

δE

δρ̃t
∈ Imψθt = Imψθt ◦Gθt = ImGρ̃t◦ dϕθ.

Next since dϕθt maps the tangent vector ∂
∂θt
∈ TθtΘ to δ

δρ̃t
∈ Tρ̃tP(Rd), we have that

ϕ∗
δE

δρ̃t
= ∇θtẼ.

Combining this with the fact that δEδρ̃t ∈ ImGρ̃t◦ dϕθ, we get

δE

δρ̃t
= ψθ(∇θtẼ).

Thus, we have

G−1
ρ̃t

δE

δρ̃t
= G−1

ρ̃t
ψθ(∇θtẼ) = dϕθtG

−1
θt

(∇θtẼ).

And we conclude
˙̃ρt = dϕθt θ̇t = −dϕθtG

−1
θt

(∇θtẼ) = −G−1
ρ̃t

δE

δρ̃t
.

The claim is proven.

Now back to the original problem. Suppose s < ∞. Since we know that the mean field PDE (76)
has a unique solution on [0,∞), in particular, it exists on [0, s]. Note that the weak limit of Gaussian
distributions is Gaussian and since ρs ∈ P(Rd) it does not degenerate. By definition of ϕ we have
that ϕ−1(ρs) ∈ Θ. By letting (µs,Σs) = γ(s) := ϕ−1(ρs), we obtain the solution of (75) on [0, s].
Again by Picard-Lindelöf theorem there exists a small neighborhood [s, s+ ϵ′) such that (75) has a
unique solution. This together with the solution on [0, s] contradicts the definition of s. Therefore, we
conclude that s =∞. (75) has a unique global solution corresponding to the mean and covariance
matrix of ρt.

Next, we prove that ρt converges weakly to ρ∗ as t→∞. We calculate the quantity ˙̃
E(µt,Σt). By

Jacobi’s formula in matrix calculus (Theorem 8.1 in [59]), we have

∂t detΣt = detΣt tr(Σ
−1
t Σ̇t).

Thus, we derive that

˙̃
E(µt,Σt) =

1

2
tr((Q−1 − Σ−1

t )Σ̇t) + (µt − b)⊤Q−1µ̇t

=− tr
(
(Q−1 − Σ−1

t )2Σ2
t

)
− 2 tr

(
(Q−1 − Σ−1

t )Σtµt(µt − b)⊤Q−1
)

− (1 + µ⊤
t µt)(µt − b)⊤Q−2(µt − b)

=− tr
((

(Q−1 − Σ−1
t )Σt +Q−1(µt − b)µ⊤

t

)⊤ (
(Q−1 − Σ−1

t )Σt +Q−1(µt − b)µ⊤
t

))
− (µt − b)⊤Q−2(µt − b) ≤ 0.

Noticing that

0 ≤ −
∫ t

0

˙̃
E(µs,Σs) ds = Ẽ(µ0,Σ0)− Ẽ(µt,Σt) <∞,

we obtain that ˙̃
E(µt,Σt)→ 0 as t→∞, which is equivalent to µt → b and Σt → Q by checking

the expression above. Thus, we have shown that ρt converges weakly to ρ∗ which is the density
function of N (b, Q).

Finally, we show the convergence rates of µt and Σt. Since we have already proven that ρt → ρ∗, it
implies that

µt − b = o(1), Σt −Q = o(1), Σ−1
t −Q−1 = o(1).
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If we set ηt = Q−1(µt − b) and St = (Q−1 − Σ−1
t )Σt, then

− ˙̃
E(µt,Σt)

= tr
((

(Q−1 − Σ−1
t )Σt +Q−1(µt − b)µ⊤

t

)⊤ (
(Q−1 − Σ−1

t )Σt +Q−1(µt − b)µ⊤
t

))
+ (µt − b)⊤Q−2(µt − b)

= tr
(
(St + ηtµ

⊤
t )

⊤(St + ηtµ
⊤
t )
)
+ η⊤

t ηt

=
[
vec⊤(St) ηt

⊤] [ Id2 µt ⊗ Id
µ⊤
t ⊗ Id (1 + µ⊤

t µt)Id

] [
vec(St)

ηt

]
=
[
vec⊤(St) ηt

⊤] [ Id2 bt ⊗ Id
b⊤t ⊗ Id (1 + b⊤t bt)Id

] [
vec(St)

ηt

]
+ o(∥St∥+ ∥ηt∥).

On the other hand, Ẽ(µt,Σt) can be written as

Ẽ(µt,Σt) =
1

2

(
tr(Q−1Σ)− log det(Q−1Σ)− d+ (µ− b)⊤Q−1(µ− b)

)
=
1

2

(
tr(St)− log det(Id + St) + η⊤

t Qηt
)

=
1

4
tr(S⊤

t St) +
1

2
η⊤
t Qηt + o(∥St∥2)

=
1

4

[
vec⊤(St) ηt

⊤] [Id2
2Q

] [
vec(St)

ηt

]
+ o(∥St∥2)

Now we prove that ∀ϵ > 0 there exists T > 0 such that − ˙̃
E(µt,Σt) ≥ 4(γ− ϵ)Ẽ(µt,Σt) for t ≥ T .

It suffices to show that [
Id2 bt ⊗ Id

b⊤t ⊗ Id (1 + b⊤t bt)Id

]
⪰ γ

[
Id2

2Q

]
,

which is equivalent to [
Id2

1√
2
b⊗Q−1/2

1√
2
b⊤ ⊗Q−1/2 1

2 (1 + b⊤b)Q−1

]
⪰ γId2+d.

This is true because by definition γ is the smallest eigenvalue of the matrix.

By Grönwall’s inequality, we know Ẽ(µt,Σt) = O(e−4(γ−ϵ)t). Thus, we conclude

∥µt − b∥ = O(e−2(γ−ϵ)t), ∥Σt −Q∥ = O(e−2(γ−ϵ)t), ∀ϵ > 0.

Finally, we provide a lower bound on γ. Note that for any u > 0 if b ̸= 0 we have
1

1 + u
Id2

1√
2
b⊗Q−1/2

1√
2
b⊤ ⊗Q−1/2 1 + u

2
b⊤bQ−1

 ⪰ 0.

Thus, [
Id2

1√
2
b⊗Q−1/2

1√
2
b⊤ ⊗Q−1/2 1

2 (1 + b⊤b)Q−1

]
⪰
[ u
1+uId2

1
2 (1− ub

⊤b)Q−1

]
=: Ωu.

Since λmax is the largest eigenvalue of Q, we know the smallest eigenvalue of Ωu is given by

min

{
u

1 + u
,
1− ub⊤b
2λmax

}
, where u > 0.
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We find u such that this quantity is maximized and get

γ ≥max
u>0

min

{
u

1 + u
,
1− ub⊤b
2λmax

}
=

2

1 + b⊤b+ 2λmax +
√
(1 + b⊤b+ 2λmax)2 − 8λmax

>
1

1 + b⊤b+ 2λmax

.

If b = 0, then the smallest eigenvalue is given by

γ = min

{
1,

1

2λmax

}
>

1

1 + 2λmax
.

Proof of Theorem 3.2. Equation (5) is a direct corollary of Theorem 3.1.

By Theorem C.2 there is a unique global solution. Thus, we only need to check that the Σt given by
(6) and (7) satisfy the algebraic Riccati equation (5).

For
Σ−1
t = e−2tΣ−1

0 + (1− e−2t)Q−1, (77)
we take the derivative with respect to t and get

−Σ−1
t Σ̇tΣ

−1
t = 2e−2t(Q−1 − Σ−1

0 ). (78)

Substituting (78) into (77), we get

2Σ−1
t = 2Q−1 +Σ−1

t Σ̇tΣ
−1
t .

Multiplying by Σ2
t and using the fact that Σt and Q commute, we can see that the algebraic Riccati

equation (5) holds.

For

Σt = I +
η(1− e−2t)

1 + ηe−2t
vv⊤,

we apply the Sherman–Morrison formula:

(Σt)
−1 = I −

η(1−e−2t)
1+ηe−2t

1 + η(1−e−2t)
1+ηe−2t

vv⊤ = I − η(1− e−2t)

1 + η
vv⊤.

Thus,

2Σ−1
t

(
Q−1 − Σ−1

t

)
Σt = 2

(
I − η(1− e−2t)

1 + η
vv⊤

)(
−ηe

−2t

1 + η
vv⊤

)(
I +

η(1− e−2t)

1 + ηe−2t
vv⊤

)
= −2ηe−2t

1 + η
vv⊤ = ∂t

(
Σ−1
t

)
.

Moreover, (
Σ−1
t −Q−1

)
Σt =

ηe−2t

1 + η
vv⊤

(
I +

η(1− e−2t)

1 + ηe−2t
vv⊤

)
=

ηe−2t

1 + ηe−2t
vv⊤.

Thus,

2 tr
((
Σ−1
t −Q−1

)
Σt
)
=

2ηe−2t

1 + ηe−2t
tr(vv⊤) =

ηe−2t

1 + ηe−2t
tr(v⊤v) =

ηe−2t

1 + ηe−2t
.

On the other hand,

det(Σt) = 1 +
η(1− e−2t)

1 + ηe−2t
v⊤v =

1 + η

1 + ηe−2t
.

Thus,

∂t log det(Σt) = −
−2ηe−2t

1 + ηe−2t
=

2ηe−2t

1 + ηe−2t
.
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Therefore,

ρt = (2π)−d/2
(
det(Σt)

)−1/2
exp

(
−1

2
x⊤Σ−1

t x

)
with

Σt = I +
η(1− e−2t)

1 + ηe−2t
vv⊤,

is a solution with the initial condition Σ0 = Id. The theorem follows by the uniqueness of the solution
of the mean field PDE (Theorem C.2).

Proof of Theorem 3.4. Similar to the proof of Theorem 3.1, we have

µ̇t = −∇µt
Ẽ(µt,Σt) = −Q−1(µt − b)

and

Σ̇t = −2Σ2
t ((1− ν)Σt + νI)−1∇Σt

Ẽ(Σt)− 2∇Σt
Ẽ(Σt)Σ

2
t ((1− ν)Σt + νI)−1

⇔Σ̇t = 2((1− ν)Σt + νI)−1Σt − ((1− ν)Σt + νI)−1Σ2
tQ

−1 −Q−1((1− ν)Σt + νI)−1Σ2
t .

Following the arguments similar to the proof of Theorem 3.1, we can show

• (8) has a unique global solution,

• ρt is the density of N (µt,Σt) given by (8),

• ˙̃
E(θt) ≤ 0 and ˙̃

E(µt,Σt)→ 0 as t→∞,

• ρt converges weakly to ρ∗.

Finally suppose Σ0Q = QΣ0, then Σt also commutes withQ since 0 is a solution of the ODE satisfied
by ΣtQ−QΣt and the solution is unique. Thus, we can diagonalize Σt and Q simutaneously. Then
there exists orthogonal matrix P such that

Σt = P⊤ diag
{
σ
(t)
1 , · · · , σ(t)

d

}
P, Q = P⊤ diag {λ1, · · · , λd}P.

And (9) reduces to

σ̇
(t)
i =

2σ
(t)
i (λi − σ(t)

i )

λi

(
(1− ν)σ(t)

i + ν
) .

Solving this ODE, we get

(σ
(t)
i − λi)(1−ν)λi+ν

(σ
(t)
i )ν

=
(σ

(0)
i − λi)(1−ν)λi+ν

(σ
(0)
i )ν

e−2t.

Thus, we have σ(t)
i → λi as t→∞ and∣∣∣σ(t)

i − λi
∣∣∣ = O (e−2t/((1−ν)λi+ν)

)
.

In particular, we conclude ∥Σt − Q∥ = O
(
e−2t/((1−ν)λ+ν)) where λ is the largest eigenvalue of

Q.

Proof of Theorem 3.5. First, we define the Hamiltonian on the centered Gaussian submanifold by

H(Σt, St) :=
1

2
tr
(
St(G

−1
Σt
St)
)
+ E(Σt).

By Corollary B.5 we have
G−1

Σ S = 2(Σ2S + SΣ2).

Thus, the Hamiltonian is reduced to

H(Σt, St) = 2 tr
(
Σ2
tS

2
t

)
+

1

2

(
tr(Q−1Σt)− log det(Q−1Σt)− d

)
.
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Therefore, we have

∇Σt
H(Σt, St) = 2

(
ΣtS

2
t + S2

tΣt
)
+

1

2
(Q−1 − Σ−1

t ), ∇St
H(Σt, St) = 2

(
Σ2
tSt + StΣ

2
t

)
,

and thus the Hamiltonian or AIG flow on the Gaussian submanifold is given by (12).

Next we show Σt is well-defined and remains positive definite. We check thatHt := H(Σt, St) is
decreasing with respect to t.

dHt
dt

= tr
(
∇St
HtṠt +∇Σt

HtΣ̇t
)

= tr (∇StHt (−αtSt −∇ΣtHt) +∇ΣtHt∇StHt)
= −4αt tr

(
Σ2
tS

2
t

)
≤ 0.

Let σt be the smallest eigenvalue of Σt. Then

log det(ΣtQ
−1) = log detΣt − log detQ ≥ d log σt − log detQ.

Therefore, we have

−d
2
(log σt + 1) +

1

2
log detQ ≤− 1

2

(
log det(ΣtQ

−1) + d
)

≤E(Σt) ≤ Ht ≤ H0,

which yields that
σt ≥ exp (log detQ/d− 2H0/d− 1) .

This means that the smallest eigenvalue of Σt has a positive lower bound. Thus, Σt ∈ Sym+(d,R)
for any t ≥ 0.

Finally we show that the AIG flow on the centered Gaussian submanifold coincides with the one on
the density manifold. Similar to the proof of Theorem 3.1, we have a commutative graph

TΣΘ0 TρP(Rd)

T ∗
ΣΘ0 T ∗

ρP(Rd)

GΣ

dϕΣ

ψΣ

Gρ .

Here ψΣ : S → Φ(x) = x⊤Sx+ C, i.e., it maps a symmetric matrix to the quadratic function Φ(x)
(or more precisely the equivalent classes of quadratic functions that differ by a constant). Now the
only things we need to show are that δHδρt ∈ ImψΣ and that δH

δΦt
∈ ImdϕΣ.

δH
δΦt

= G−1
ρ Φt ∈ ImdϕΣ is trivially true from the commutative graph. Now since δE

δρt
= log ρt+V ∈

ImψΣ (ρt is centered Gaussian density and check the definition of ψΣ), it suffices to prove

δ

δρt

∫
ΦG−1

ρ Φdx ∈ ImψΣ.

Note that we have

δ

δρt

∫
ΦtG

−1
ρ Φt dx = − δ

δρt

∫
Φt∇ ·

(
ρt(·)

∫
K(·,y)ρt(y)∇Φt(y) dy

)
=

δ

δρt

∫
∇Φt ·

(
ρt(·)

∫
K(·,y)ρt(y)∇Φ(y) dy

)
= ∇Φt ·

∫
K(·,y)ρt(y)∇Φ(y) dy

= (Stx)
⊤(StΣtx)

=
1

2
x⊤ (S2

tΣt +ΣtS
2
t

)
x ∈ ImψΣ.

Thus, the proof is complete.
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We remark that the fact the Stein AIG flow remains Gaussian is highly non-trivial. In fact it requires
δH
δρt

to lie in the cotangent space of the Gaussian submanifold. One sufficient condition is that the
variational derivatives of both the kinetic and potential energies lie in this same space, and the former
could be interpreted as: The Gaussian submanifold is totally geodesic under the given metric, meaning
that any geodesic flow with an initial position and velocity chosen from the Gaussian submanifold
remains Gaussian. Fortunately both the Wasserstein metric and the Stein metric satisfy this property.

J Proofs for Section 3.2

Proof of Theorem 3.6. From the proof of Theorem 3.1 we know that (16) has a unique solution that
is continuous in t and bounded for any t ∈ [0, T ] with T <∞. Thus, the linear system (15) also has
a unique solution.

Now we check that the sample mean µt and covariance matrix Ct satisfy (16). We simplify the
right-han-side of (13) using µt and Ct.

RHS = x
(t)
i −

1

N

N∑
j=1

(
(x

(t)
i )⊤x

(t)
j + 1

)
Q−1(x

(t)
j − b)

= x
(t)
i −

1

N

N∑
j=1

Q−1(x
(t)
j − b)

(
(x

(t)
i )⊤x

(t)
j + 1

)
= x

(t)
i −Q

−1 1

N

N∑
j=1

x
(t)
j

(
(x

(t)
j )⊤x

(t)
i + 1

)
+Q−1b

1

N

N∑
j=1

(
(x

(t)
j )⊤x

(t)
i + 1

)
= (I −Q−1(Ct + µtµ

⊤
t ) +Q−1bµ⊤

t )x
(t)
i −Q

−1µt +Q−1b. (79)

Let Xt = (x
(t)
1 , · · · ,x(t)

N )⊤. Then we have that

µt =
X⊤
t 1

N
, Ct =

X⊤
t Xt

N
− µtµ

⊤
t .

Then (79) can be written in the matrix form as

Ẋt = Xt(I − (Ct + µtµ
⊤
t )Q

−1 + µtb
⊤Q−1)− 1µ⊤

t Q
−1 + 1b⊤Q−1. (80)

Multiplying by 1⊤/N on the left, we get

µ̇⊤
t = µ⊤

t − µ⊤
t (Ct + µtµ

⊤
t )Q

−1 + µ⊤
t µtb

⊤Q−1 − (µt − b)⊤Q−1.

Thus, we have

µ̇t = (I −Q−1Ct)µt − (1 + µ⊤
t µt)Q

−1(µt − b).

Note that Ċt = (Ẋ⊤
t Xt +X⊤

t Ẋt)/N − µtµ̇t − µ̇tµ
⊤
t . Substituting (80) we obtain

Ċt = 2Ct − Ct
(
Ct + µt(µt − b)⊤

)
Q−1 −Q−1

(
Ct + (µt − b)µ⊤

t

)
Ct.

Next we show that (14) and (15) satisfies (13).

RHS = (I −Q−1(Ct + µtµ
⊤
t ) +Q−1bµ⊤

t )x
(t)
i −Q

−1µt +Q−1b

= (I −Q−1(Ct + µtµ
⊤
t ) +Q−1bµ⊤

t )
(
x
(t)
i − µt

)
+

(I −Q−1Ct)µt − (1 + µ⊤
t µt)Q

−1(µt − b)

= (I −Q−1(Ct + µtµ
⊤
t ) +Q−1bµ⊤

t )At(x
(0)
i − µ0) + µ̇t

= Ȧt(x
(0)
i − µ0) + µ̇t = ẋ

(t)
i .

By Theorem C.3 (13) has a unique solution. Thus, the solution of (13) is given by (14)–(16).

The proof of Theorem 3.7 is quite long and tedious so we defer it to Appendix L.
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Proof of Theorem 3.8. IfC0 is non-singular, this is a direct corollary of Theorem 3.6 and Theorem 3.2.
To also accommodate for the singular case, we provide a direct proof by calculation. Since C0Q =
QC0, we know that C0 and Q are simultaneously diagonalizable. There exists some orthogonal
matrix P0 such that we have the spectral decompositions

C0 = P⊤
0 D0P0, Q = P⊤

0 Q0P0,

where D0 = diag(λ
(0)
1 , · · · , λ(0)d ) and Q0 = diag(q1, · · · , qd) are diagonal matrices. Let Dt :=

P0CtP
⊤
0 . (18) can be rewritten as

x
(t)
i = P⊤

0 diag
(
(e−2t + (1− e−2t)λ

(0)
1 /q1)

−1/2, · · · , (e−2t + (1− e−2t)λ
(0)
d /qd)

−1/2
)
P0x

(0)
i .

Thus, by taking the derivative with respect to t, we obtain

ẋ
(t)
i = e−2tP⊤

0 diag

(
1− λ(0)1 /q1

(e−2t + (1− e−2t)λ
(0)
1 /q1)3/2

, · · · ,
1− λ(0)d /qd

(e−2t + (1− e−2t)λ
(0)
d /qd)3/2

)
P0x

(0)
i

= U
(
e−2tI + (1− e−2t)Q−1C0

)−3/2
x
(0)
i ,

where
U = e−2tP⊤

0 diag
(
1− λ(0)1 /q1, · · · , 1− λ(0)d /qd

)
P0 = e−2t(I −Q−1C0).

On the other hand, we check that

x
(t)
i −

1

N

N∑
j=1

(
(x

(t)
i )⊤x

(t)
j + 1

)
Q−1x

(t)
j

=
(
e−2tI + (1− e−2t)Q−1C0

)−1/2
x
(0)
i −

1

N

N∑
j=1

(
(x

(0)
i )⊤

(
e−2tI + (1− e−2t)Q−1C0

)−1
x
(0)
j + 1

)
·

Q−1
(
e−2tI + (1− e−2t)Q−1C0

)−1/2
x
(0)
j

=
(
e−2tI + (1− e−2t)Q−1C0

)−1/2
x
(0)
i −

1

N

N∑
j=1

Q−1
(
e−2tI + (1− e−2t)Q−1C0

)−1/2
x
(0)
j

− 1

N

N∑
j=1

(x
(0)
j )⊤

(
e−2tI + (1− e−2t)Q−1C0

)−1
x
(0)
i ·

Q−1
(
e−2tI + (1− e−2t)Q−1C0

)−1/2
x
(0)
j

=
(
e−2tI + (1− e−2t)Q−1C0

)−1/2
x
(0)
i

− 1

N

N∑
j=1

Q−1
(
e−2tI + (1− e−2t)Q−1C0

)−1/2
x
(0)
j (x

(0)
j )⊤

(
e−2tI + (1− e−2t)Q−1C0

)−1
x
(0)
i

=
(
e−2tI + (1− e−2t)Q−1C0

)−1/2
x
(0)
i

−Q−1
(
e−2tI + (1− e−2t)Q−1C0

)−1/2
C0

(
e−2tI + (1− e−2t)Q−1C0

)−1
x
(0)
i

=e−2t(I −Q−1C0)
(
e−2tI + (1− e−2t)Q−1C0

)−3/2
x
(0)
i

=U
(
e−2tI + (1− e−2t)Q−1C0

)−3/2
x
(0)
i .

Thus, we conclude that (18) is a solution of (13). By Theorem C.3, the solution for (13) is unique
and hence the theorem follows.

Proof of Theorem 3.9. For any particle system of the R-SVGF, we can derive that

Ẋt =

(
(1− ν)

(
XtX

⊤
t

N
+

11⊤

N

)
+ νId

)−1(
Xt −

1

N
(XtX

⊤
t + 11⊤)XtQ

−1

)
=

(
(1− ν)

(XtX
⊤
t

N
+

11⊤

N

)
+ νId

)−1

Xt(I − CtQ−1).
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By Sherman–Morrison formula we have(
νId + (1− ν)11

⊤

N

)−1

=
1

ν
Id −

1− ν
ν

11⊤

N
.

By Woodbury matrix identity we derive(
(1− ν)

(XtX
⊤
t

N
+

11⊤

N

)
+ νId

)−1

=

(
νId + (1− ν)11

⊤

N

)−1

−
(
νId + (1− ν)11

⊤

N

)−1

Xt·

1

N

(
1

1− ν
Id +X⊤

t

(
νId + (1− ν)11

⊤

N

)−1

Xt

)−1

X⊤
t

(
νId + (1− ν)11

⊤

N

)−1

=

(
1

ν
Id −

1− ν
ν

11⊤

N

)
− 1

Nν2
Xt

(
1

1− ν
Id +

1

ν
Ct

)−1

X⊤
t .

Substituting this into (81), we have

Ẋt =

(
1

ν
Id −

1− ν
ν

11⊤

N

)
Xt(I − CtQ−1)− 1

Nν2
Xt

(
1

1− ν
Id +

1

ν
Ct

)−1

X⊤
t Xt(I − CtQ−1)

=
1

ν
Xt −

1

ν
XtCtQ

−1 − 1

ν
Xt

(
1

1− ν
Id +

1

v
Ct

)−1(
1

ν
Ct −

1

ν
C2
tQ

−1

)
=
1

ν
Xt

(
Id −

(
1

1− ν
Id +

1

ν
Ct

)−1
1

ν
Ct

)
(I − CtQ−1)

=Xt(νId + (1− ν)Ct)−1(I − CtQ−1) (81)

Multiplying by X⊤
t on the left we get

X⊤
t Ẋt

N
= (νId + (1− ν)Ct)−1Ct(I − CtQ−1).

Thus, the derivative of covariance matrix Ct is given by

Ċt =
X⊤
t Ẋt

N
+
Ẋ⊤
t Xt

N

=(νId + (1− ν)Ct)−1Ct(I − CtQ−1) + (I −Q−1Ct)(νId + (1− ν)Ct)−1Ct

=2(νId + (1− ν)Ct)−1Ct − (νId + (1− ν)Ct)−1C2
tQ

−1 −Q−1(νId + (1− ν)Ct)−1C2
t .

Next we show that (19) and (20) satisfies (81).

RHS = X0A
⊤
t (νId + (1− ν)Ct)−1

(I − CtQ−1) = X0Ȧ
⊤
t = Ẋt.

Similar to the proof of Theorem 3.4, it could be shown that the R-SVGF also has a unique solution
and the proof is complete.

Next we show Theorem 3.10.
Lemma J.1. The covariance matrix Ct (t = 1, 2, · · · ) of the discrete-time finite particle system
satisfies the following equation

Ct+1 =
(
I + ϵ(I −Q−1Ct)

)
Ct
(
I + ϵ(I −Q−1Ct)

)⊤
.

Proof. Let X = (x1, · · · ,xN )
⊤. Then (21) can be written as

Xt+1 = Xt + ϵXt(I − CtQ−1).

Thus, we have

Ct+1 =
X⊤
t Xt

N
=
(
I + ϵ(I −Q−1Ct)

)
Ct
(
I + ϵ(I −Q−1Ct)

)⊤
.
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Figure 6: Plot of the function fϵ(x) = (1 + ϵ(1− x))2x.

Proof of Theorem 3.10. First since C0Q = QC0 they are simutaneously diagonalizable. By Theo-
rem 3.8 any Ct and Q are simutaneously diagonalizable. Thus, without loss of generality we assume
all Ct and Q are diagonal matrices. Then by Lemma J.1 we know

Q−1Ct+1 = (I + ϵ(I −Q−1Ct))
2Q−1Ct.

If we define fϵ(x) = (1 + ϵ(1 − x))2x then every entry (i.e., eigenvalue) of Q−1Ct follows the
fϵ-iteration trajectory of the corresponding entry of Q−1C0.

The fixed points of fϵ(x) = (1 + ϵ(1 − x))2x are {0, 1, 2/ϵ + 1}. If 0 < ϵ < 1 then |f ′(0)| > 1,
|f ′(2/ϵ+ 1)| > 1, and |f ′(1)| < 1. By Proposition 1.9 of [26], 1 is an attracting fixed point while 0
and 2/ϵ+ 1 are repelling fixed points. By definition there exists an interval around 1 such that for
all initial points in that interval, the trajectory of any eigenvalue of Q−1Ct converges to 1. We now
quantify that result further.

Note that f ′ϵ(x) = (1 + ϵ − ϵx)(1 + ϵ − 3ϵx) is an upward-opening parabola whose zeros are
1/3 + 1/(3ϵ) and 1 + ϵ. Thus, f ′ϵ is monotone decreasing on [0, 1/3 + 1/(3ϵ)]. In particular,
both equation f ′ϵ(x) = 1 and f ′ϵ(x) = 1 − ϵ have two distinct roots, the smaller ones lying on
(0, 1/3 + 1/(3ϵ)). Define wϵ to be the smaller root of f ′ϵ(x) = 1 and uϵ, the smaller root of
f ′ϵ(x) = 1− ϵ. Since f ′ϵ is monotone descreasing and f ′ϵ(1) = 1− 2ϵ, we have 0 < wϵ < uϵ < 1.

Thus, for any x ∈ [wϵ, 1/3 + 1/(3ϵ)] we have 0 ≤ f ′ϵ(x) ≤ 1 and 0 ≤ fϵ(x) ≤ fϵ(1/3 + 1/(3ϵ)) <
1/3 + 1/(3ϵ) (here we have used the condition ϵ < 0.5). On the other hand, since f ′ϵ(0) ≥ 1 and
0 and 1 are two fixed points, it holds that fϵ(x) ≥ x for any x ∈ [0, 1], which implies that for any
x ∈ [wϵ, 1/3 + 1/(3ϵ)] we have fϵ(x) ≥ fϵ(wϵ) ≥ wϵ. Hence we know that f ′ϵ is a contraction map
and fϵ([wϵ, 1/3 + 1/(3ϵ)]) ⊂ [wϵ, 1/3 + 1/(3ϵ)], which implies that there is a unique fixed point
(i.e., 1) such that the fϵ-iteration trajectory converges to it.

Next we prove that for any x ∈ (0, 1+1/ϵ) the trajectory falls into the interval [wϵ, 1/3+1/(3ϵ)] after
finite iterations. If x ∈ (1/3 + 1/(3ϵ), 1 + 1/ϵ) then after one iteration we get fϵ(x) ∈ (0, fϵ(1/3 +

1/(3ϵ))) ⊂ (0, 1/3+1/(3ϵ)). We claim that if x ∈ (0, wϵ) then after t0 :=

⌈
logwϵ/x

2 log(1 + ϵ(1− wϵ))

⌉
we have f (t0)ϵ (x) ∈ [wϵ, 1]. Firstly f (t)ϵ (x) ≤ 1 for any t. It suffices to prove f (t0)ϵ (x) ≥ wϵ. Suppose
f
(t0)
ϵ (x) < wϵ. Then for any 0 ≤ t ≤ t0 we have f (t)ϵ (x) < wϵ. By definition of t0 we know

f (t0)ϵ (x) > (1 + ϵ(1− wϵ))2t0x ≥ wϵ.
This is a contradiction. Thus, the claim holds and in conclusion for any x ∈ (0, 1 + 1/ϵ) the
fϵ-iteration trajectory converges to the fixed point 1.

Finally we consider the case when x ∈ [uϵ, 1/3+ 1/(3ϵ)]. Since f ′ϵ is monotone descreasing here we
have f ′ϵ(x) ∈ [0, 1−ϵ]. And by similar argument we know fϵ([uϵ, 1/3+1/(3ϵ)]) ⊂ [uϵ, 1/3+1/(3ϵ)].
Thus, we conclude

|f (t)ϵ (x)− 1| ≤ (1− ϵ)|f (t−1)
ϵ (x)− 1| ≤ · · · ≤ (1− ϵ)t|x− 1| ≤ e−ϵt|x− 1|.
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K Proofs for Section 4

The following result was derived in [43]. We provide the proof below for completeness.

Lemma K.1. Let ρ∗ be a probability measure and ρθ be a Gaussian measure with parameters
θ = (µ,Σ). Then we have the following expressions:

∇µ KL(ρθ ∥ ρ∗) = Ex∼ρθ [∇V (x)], ∇Σ KL(ρθ ∥ ρ∗) =
1

2

(
Ex∼ρθ [∇2V (x)]− Σ−1

)
. (82)

Proof. We compute that

∇µ KL(ρθ ∥ ρ∗) = ∇µ

∫
log

ρθ(x)

ρ∗(x)
ρθ(x) dx

=

∫
∇µρθ(x)

ρθ(x)
ρθ(x) dx+

∫
log

ρθ(x)

ρ∗(x)
∇µρθ(x) dx

∗
= ∇µ

∫
ρθ(x) dx−

∫
log

ρθ(x)

ρ∗(x)
∇xρθ(x) dx

=

∫
∇x log

ρθ(x)

ρ∗(x)
ρθ(x) dx

=

∫
∇xρθ(x) dx−

∫
∇x log ρ∗(x) · ρθ(x) dx

= Ex∼ρθ [∇V (x)],

where we have used the fact that ρθ is a Gaussian density in ∗. Similarly, we have

∇Σ KL(ρθ ∥ ρ∗) = ∇Σ

∫
log

ρθ(x)

ρ∗(x)
ρθ(x) dx

=

∫
∇Σρθ(x)

ρθ(x)
ρθ(x) dx+

∫
log

ρθ(x)

ρ∗(x)
∇Σρθ(x) dx

(a)
=

∫
log

ρθ(x)

ρ∗(x)

(
−1

2
Σ−1 +

1

2
Σ−1(x− µ)(x− µ)⊤Σ−1

)
ρθ(x) dx

(b)
=

1

2

∫
log

ρθ(x)

ρ∗(x)
∇2

xρθ(x) dx

=
1

2

∫
∇2

x log
ρθ(x)

ρ∗(x)
· ρθ(x) dx

=
1

2

(
Ex∼ρθ [∇2V (x)]− Σ−1

)
.

Here again in (a) and (b) we have used the closed-form expression of Gaussian densities. Thus,

∇µE(µ,Σ) = Ex∼ρθ [∇V (x)], ∇ΣE(µ,Σ) =
1

2

(
Ex∼ρθ [∇2V (x)]− Σ−1

)
.

Proof of Theorem 4.1. By definition of Gaussian approximate gradient descent, we have that

θ̇t = −G−1
θt

(∇θtE(θt)), where E(θt) = KL(ρθt ∥ ρ∗) and θ = (µ,Σ).

Applying Theorem B.3, we obtain that θ̇t = −G−1
θt

(∇θtE(θt)) is given byµ̇t = −
(
2∇Σt

E(µt,Σt)Σtµt + (1 + µ⊤
t µt)∇µt

E(µt,Σt)
)

Σ̇t = −Σt
(
2Σt∇Σt

E(µt,Σt) + µt∇⊤
µt
E(µt,Σt)

)
−
(
2∇Σt

E(µt,Σt)Σt +∇µt
E(µt,Σt)µ

⊤
t

)
Σt

.

(83)
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Substituting (82) into (83), we get
µ̇t =

(
I − Ex∼ρt [∇2V (x)]Σt

)
µt − (1 + µ⊤

t µt)Ex∼ρt [∇V (x)]

Σ̇t = 2Σt − Σt
(
ΣtEx∼ρt [∇2V (x)] + µtEx∼ρt [∇⊤V (x)]

)
−
(
Ex∼ρt [∇2V (x)]Σt + Ex∼ρt [∇⊤V (x)]µt

)
Σt

.

Next we prove the convergence.

Ė(µt,Σt) = tr(∇Σt
E(µt,Σt)

⊤Σ̇t) +∇µt
E(µt,Σt)

⊤µ̇t

= − tr
(
(2∇ΣE(µ,Σ)Σ +∇µE(µ,Σ)µ⊤)⊤(2∇ΣE(µ,Σ)Σ +∇µE(µ,Σ)µ⊤)

)
−∇⊤

µE(µ,Σ)∇µE(µ,Σ) ≤ 0.

Noticing that

0 ≤ −
∫ t

0

Ė(µs,Σs) ds = E(µ0,Σ0)− E(µt,Σt) <∞,

we obtain that Ė(µt,Σt) → 0 as t → ∞, which means that there exists µ∞,Σ∞ such that ρt
converges to ρ∞, ρ∞ is the density ofN (µ∞,Σ∞). (Since E(µt,Σt) is given by the KL divergence
between ρt and ρ∗, by Lemma K.1 it will diverge if µt or Σt diverges.) In particular, it satisfies that{

2∇ΣE(µ∞,Σ∞) +∇µE(µ∞,Σ∞)µ⊤
∞ = 0

∇µE(µ∞,Σ∞) = 0
,

which is equivalent to {∇ΣE(µ∞,Σ∞) = 0

∇µE(µ∞,Σ∞) = 0
,

and implies that ρ∞ = ρθ∗ .

Lemma K.2. Given α-strongly convex measure ρ∗, we define θ∗ as the unique minimizer of KL(ρθ ∥
ρ∗) where ρθ denotes a Gaussian measure with parameters θ. Then it holds that

∥Eρθ [∇V (x)]∥22 + tr
(
(Eρθ [∇2V (x)]− Σ−1)Σ(Eρθ [∇2V (x)]− Σ−1)

)
≥ 2α (KL(ρθ ∥ ρ∗)−KL(ρθ∗ ∥ ρ∗)) .

This is proven in the Appendix D of [43]. The proof idea is to consider the Gaussian approximate
Wasserstein gradient flow from ρθ with the target ρ∗.
Lemma K.3. Given α-strongly convex measure ρ∗, we define θ∗ as the unique minimizer of KL(ρθ ∥
ρ∗) where ρθ denotes a Gaussian measure with parameters θ. Then the Wasserstein-2 distance
between ρθ and ρθ∗ satisfies that

αW2
2 (ρθ, ρθ∗) ≤ KL(ρθ ∥ ρ∗)−KL(ρθ∗ ∥ ρ∗).

This is Lemma E.2 of [13].

Proof of Theorem 4.2. From Lemma K.1 and the proof of Theorem 4.1 we know that

Ė(µt,Σt) = − tr
(
(2∇ΣE(µ,Σ)Σ +∇µE(µ,Σ)µ⊤)⊤(2∇ΣE(µ,Σ)Σ +∇µE(µ,Σ)µ⊤)

)
−∇⊤

µE(µ,Σ)∇µE(µ,Σ)

= − tr
(
(Eρθ [∇2V (x)]Σ− I + Eρθ [∇V (x)]µ⊤)⊤(Eρθ [∇2V (x)]Σ− I + Eρθ [∇V (x)]µ⊤)

)
− ∥Eρθ [∇V (x)]∥22 .

For convenience we let ηt = Eρθ [∇V (x)] and St = (Eρθ [∇2V (x)]− Σ−1)Σ1/2. Then we get

−Ė(µt,Σt) =
[
vec⊤(St) ηt

] [ Id ⊗ Σt µt ⊗ Σ
1/2
t

µ⊤
t ⊗ Σ

1/2
t (1 + µ⊤

t µt)Id

] [
vec(St)

ηt

]
=:
[
vec⊤(St) ηt

]
Mt

[
vec(St)

ηt

]
.
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Noting that Mt →M∞, for any ϵ > 0 there exists T > 0 such that the smallest eigenvalue γt/α of
Mt satisfies γt ≥ γ − ϵ for any t > T , where γ/α is the smallest eigenvalue of M∞.

Moreover, by Lemma K.2 we have[
vec⊤(St) ηt

] [vec(St)
ηt

]
≥ 2α(KL(ρθ ∥ ρ∗)−KL(ρ∞ ∥ ρ∗)).

Thus, for t > T the derivative of KL divergence is controlled, i.e.,

−∂tKL(ρt ∥ ρ∗) ≥ 2(γ − ϵ)(KL(ρθ ∥ ρ∗)−KL(ρ∞ ∥ ρ∗)).

By Grönwall’s inequality we know

KL(ρθ ∥ ρ∗)−KL(ρ∞ ∥ ρ∗) = O(e−2(γ−ϵ)t).

By Lemma K.3 this implies
W2

2 (ρθ, ρθ∗) = O(e−2(γ−ϵ)t).

Noting that

W2
2 (ρθ, ρθ∗) = ∥µ− µ∗∥22 + tr

(
(Σ1/2 − (Σ∗)1/2)2

)
,

we conclude

∥µt − µ∗∥ = O(e−(γ−ϵ)t), ∥Σt − Σ∗∥ = O(e−(γ−ϵ)t), ∀ϵ > 0.

Finally, we provide a lower bound on γ. Note that for any u > 0 if µ∗ ̸= 0 we have
1

1 + u
Id ⊗ Σ∗ µ∗ ⊗ (Σ∗)1/2

µ∗⊤ ⊗ (Σ∗)1/2 (1 + u)µ∗⊤µ∗Id

 ⪰ 0.

Thus, [
Id ⊗ Σ∗ µ∗ ⊗ (Σ∗)1/2

µ∗⊤ ⊗ (Σ∗)1/2 (1 + µ∗⊤µ∗)Id

]
⪰
[ u
1+uId ⊗ Σ∗

(1− uµ∗⊤µ∗)Id

]
=: Ωu.

Since Σ∗ satisfies that
Eρθ∗ [∇

2V (x)]− (Σ∗)−1 = 0,

and ∇2V (x) ⪯ βId, we know the smallest eigenvalue of Σ∗ is at least 1/β. Thus, the smallest
eigenvalue of Ωu is

min

{
u

β(1 + u)
, 1− ur

}
, where u > 0, r = µ∗⊤µ∗.

We find u such that this quantity is maximized and get

γ

α
≥ max

u>0
min

{
u

β(1 + u)
, 1− ur

}
=

2

1 + β(1 + r) +
√
(1 + β(1 + r))2 − 4β

>
1

β(1 + r) + 1
.

If µ∗ = 0, we still have
γ

α
= min

{
1

β
, 1

}
>

1

β + 1
.

L Proofs of Uniform in Time Convergence

To show Theorem 3.7 we need a lemma on the convergence of empirical measures in the i.i.d. setting.
There are results for general measures on this given by [25, 47, 24] but for our purpose we always
have a Gaussian distributions as the limit and there are tight results with faster convergence rates as
shown in [9, 45, 46]:
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Lemma L.1 (Convergence of empirical measures for Gaussian distributions). Fix the dimension
d ≥ 1. There exists a constant Cd such that for all N ≥ 1, with µN = 1

N

∑N
k=1 δXk

where {Xk} is
i.i.d. sequence drawn from µ ∼ N (0, Id), we have

E
[
W2

2 (µN , µ)
]
≤ Cd ×

 N−1 log logN if d = 1
N−1(logN)2 if d = 2

N−2/d if d ≥ 3
.

Proof of Theorem 3.7. Suppose the sample mean and covariance at time t is mt and Ct, and that
the mean and covariance of the mean-field limit is µt and Σt. We bound E[W2

2 (ζ
(t)
N , ρt)] using

Theorems 3.1 and 3.6 and Lemma L.1 in six steps.

Step I. We prove that (x(t)
i ) has the same distribution as

(
x̃
(t)
i

)
where x̃

(t)
i = C

1/2
t C

−1/2
0 (x

(0)
i −

m0) +mt. Note that according to Theorem 3.6, where we have x(t)
i = At(x

(0)
i −m0) +mt. Here

At is the unique (matrix) solution of the linear system

Ȧt =
(
I −Q−1(Ct + µtµ

⊤
t ) +Q−1bµ⊤

t

)
At, A0 = I, (84)

and mt and Ct are the unique solution of the ODE system{
ṁt = (I −Q−1Ct)mt − (1 +m⊤

t mt)Q
−1(mt − b)

Ċt = 2Ct − Ct
(
Ct +mt(mt − b)⊤

)
Q−1 −Q−1

(
Ct + (mt − b)m⊤

t

)
Ct

. (85)

Since Ct is the sample covariance, we have

AtC0A
⊤
t = Ct,

which simplies that
(C

−1/2
t AtC

1/2
0 )(C

−1/2
t AtC

1/2
0 )⊤ = I.

Thus, Pt = C
−1/2
t AtC

1/2
0 is an orthogonal matrix, and we have

At = C
1/2
t PtC

−1/2
0 .

Since the multivariate Gaussian distribution N (0, Id) is invariant under orthogonal transformation,
the joint distribution of

(
C

−1/2
0 (x

(0)
i −m0)

)N
i=1

is also invariant under Pt. Thus, we have (x(t)
i −mt)

has the same distribution as
(
x̃
(t)
i −mt

)
and Step I is proven.

Step II. Establish uniform decay rates for ∥Ct − Q∥F and ∥mt − b∥. We begin by checking the
energy function

0 ≤ E(mt, Ct) =
1

2

(
tr(Q−1Ct)− log det(Q−1Ct)− d+ (mt − b)⊤Q−1(mt − b)

)
.

As shown in the proof of Theorem 3.1, we have

Ė(mt, Ct) = −
∥∥CtQ−1 − I +mt(mt − b)⊤Q−1

∥∥2
F
− ∥Q−1(mt − b)∥2 ≤ 0.

Thus, E(mt, Ct) ≤ E(m0, C0) for any t ≥ 0. Furthermore, similar to the proof of Theorem 3.1 we
check that

− Ė(mt, Ct)

=
[
vec⊤

(
Q−1Ct − I

)
(mt − b)⊤Q−1

] [ Id2 mt ⊗ Id
m⊤
t ⊗ Id (1 +m⊤

t mt)Id

] [
vec
(
Q−1C−1

t − I
)

Q−1(mt − b)

]
≥γt

[
vec⊤

(
Q−1Ct − I

)
(mt − b)⊤Q−1

] [Id2
2Q

] [
vec
(
Q−1Ct − I

)
Q−1(mt − b)

]
=γt tr

(
(Q−1Ct − I)⊤(Q−1Ct − I)

)
+ 2γt(mt − b)⊤Q(mt − b)

≥2γt ·
(
tr(Q−1Ct − I)− log det(Q−1Ct) + (mt − b)⊤Q(mt − b)

)
=4γtE(mt, Ct).
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where γt is the smallest eigenvalue of[
Id2

1√
2
mt ⊗Q−1/2

1√
2
m⊤
t ⊗Q−1/2 1

2 (1 +m⊤
t mt)Q

−1

]
,

and as shown in the proof of Theorem 3.1 it has a lower bound

γt >
1

1 +m⊤
t mt + qmax

,

where qmax is the largest eigenvalue of Q. Now since

1

2
(mt − b)⊤Q−1(m− b) ≤ E(mt, Ct) ≤ E(m0, C0),

we know (mt− b)⊤(mt− b) ≤ 2qmaxE(m0, C0). Thus, ∥mt∥ is upper bounded by some quantity
F1 = F1;Q,b,C0,m0

. Hence γt is uniformly lower bounded by

γ∗ := inf
t≥0

γt ≥
1

1 + F 2
1 + qmax

.

Thus, by Grönwall’s inequality we have E(mt, Ct) ≤ e−4γ∗tE(m0, C0). There exists F2 =
F2;Q,b,C0,m0

such that ∥mt − b∥ ≤ e−2γ∗tF2.

Now similarly

0 ≤ 1

2

(
tr(Q−1Ct − 1)− log det(Q−1Ct)

)
≤ E(mt, Ct) ≤ e−4γ∗tE(m0, C0)

also renders an upper bound for ∥Ct−Q∥F with exponential decay noting that tr(A)−log det(I+A)
is quadratic in ∥A∥F when ∥A∥F is small, i.e., there exists F3 = F3;Q,b,C0,m0 such that

∥Ct −Q∥F ≤ e−2γ∗tF3.

By Theorem 3.1 we know that µt,Σt satisfy the same ODEs as mt, Ct:{
µ̇t = (I −Q−1Σt)µt − (1 + µ⊤

t µt)Q
−1(µt − b)

Σ̇t = 2Σt − Σt
(
Σt + µt(µt − b)⊤

)
Q−1 −Q−1

(
Σt + (µt − b)µ⊤

t

)
Σt

. (86)

Thus, similarly we have

∥µt − b∥ ≤ e−2γ∗tF ′
2, ∥Σt −Q∥F ≤ e−2γ∗tF ′

3.

Step III. Show that ∥Ct − Σt∥F and ∥mt − µt∥ can be controlled after sufficient time.

For any ϵ > 0 we define

Θϵ :=
{
(v, S) ∈ Rd × Sym+(d,R) : ∥v − b∥ ≤ ϵ, and (1− ϵ)Q ⪯ S ⪯ (1 + ϵ)Q

}
,

and consider the relative energy function

E(mt, Ct,µt,Σt) =
1

2

(
tr
(
C−1
t Σt − I

)
− log det(C−1

t Σt) + (mt − µt)
⊤Q−1(mt − µt)

)
.

We show that for ϵ small enough if (mt, Ct), (µt,Σt) ∈ Θϵ, then

Ė(mt, Ct,µt,Σt) ≤ 0.

We derive that

Ė(mt, Ct,µt,Σt)

=
1

2
tr
(
C−1
t (Σt − Ct)

(
Σ−1
t Σ̇t − C−1

t Ċt

))
+ (mt − µt)

⊤Q−1(ṁt − µ̇t).
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Here note that

− C−1
t (Σt − Ct)

(
Σ−1
t Σ̇t − C−1

t Ċt

)
tr
=C−1

t (Σt − Ct)
(
(Σt + µt(µt − b)⊤ − Ct −mt(mt − b)⊤)Q−1

+Σ−1
t Q−1(Σt + (µt − b)µ⊤

t )Σt − C−1
t Q−1(Ct + (mt − b)m⊤

t )Ct

)
tr
=2(Ct − Σt)

2Q−1C−1
t

+ 2(Ct − Σt)
(
mt(mt − b)⊤ − µt(µt − b)⊤

)
Q−1C−1

t

tr
≥(Ct − Σt)

2Q−1C−1
t

−
(
mt(mt − b)⊤ − µt(µt − b)⊤

)2
Q−1C−1

t

tr
≥(Ct − Σt)

2Q−1C−1
t

− 1

1− ϵ
(
µt(mt − µt)

⊤ + (mt − µt)(mt − b)⊤
)2
Q−2.

On the other hand, we have

− (mt − µt)
⊤Q−1(ṁt − µ̇t)

=(mt − µt)
⊤(Q−2 −Q−1)(mt − µt) + (mt − µt)

⊤Q−2(Ctmt − Σtµt)

− (m⊤
t mt − µ⊤

t µt)(mt − µt)
⊤Q−2b+ (mt − µt)

⊤Q−2(mtm
⊤
t mt − µtµ

⊤
t µt)

=:I1 + I2 + I3 + I4.

Here we have

I2 = (mt − µt)
⊤Q−2Ct(mt − µt) + (mt − µt)

⊤Q−2(Ct − Σt)µt

≥ (1− ϵ)(mt − µt)
⊤Q−1(mt − µt) + (mt − µt)

⊤Q−2(Ct − Σt)µt

≥ (1− ϵ)(mt − µt)
⊤Q−1(mt − µt)−

1

2
tr
(
(Ct − Σt)

2Q−1C−1
t

)
− 1

2
tr
(
(µt(mt − µt)

⊤)2Q−3Ct
)

≥ (1− ϵ)(mt − µt)
⊤Q−1(mt − µt)−

1

2
tr
(
(Ct − Σt)

2Q−1C−1
t

)
− 1

2
(1 + ϵ) tr

(
(µt(mt − µt)

⊤)2Q−2
)
,

and

I3 + I4 =(mt − µt)
⊤Q−2

(
µtµ

⊤
t (mt − µt) + (mtm

⊤ − µtµ
⊤
t )(mt − b)

)
.

Combining all these together we have

− Ė(mt, Ct,µt,Σt)

≥(mt − µt)
⊤(Q−2 − ϵQ−1)(mt − µt)−

1

2
(1 + ϵ) tr

(
(µt(mt − µt)

⊤)2Q−2
)

− 1

2(1− ϵ)
tr

((
µt(mt − µt)

⊤ + (mt − µt)(mt − b)⊤
)2
Q−2

)
+ (mt − µt)

⊤Q−2
(
µtµ

⊤
t (mt − µt) + (mtm

⊤ − µtµ
⊤
t )(mt − b)

)
=(mt − µt)

⊤
(
Q−2 − ϵQ−1 − ϵ(2− ϵ)

2(1− ϵ)
Q−2µtµ

⊤
t

)
(mt − µt) +O(ϵ2).

Since 0 < qminI ⪯ Q ⪯ qmaxI , and ∥mt∥ and ∥µt∥ are bounded by F1 as shown in Step II, there
exists ϵ0 = ϵQ,b,C0,m0,Σ0,µ0

(ϵ0 can be seen as a continuous function) such that for any ϵ ≤ ϵ0 we
have Ė(mt, Ct,µt,Σt) ≤ 0 as long as we have (mt, Ct) ∈ Θϵ and (µt,Σt) ∈ Θϵ.
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Given Q, b, C0,mt,Σ0,µ0 suppose at time t0 we have (mt0 , Ct0) ∈ Θϵ0 and (µt0 ,Σt0) ∈ Θϵ0 .
Then for any t > t0 we know

E(mt, Ct,µt,Σt) ≤ E(mt0 , Ct0 ,µt0 ,Σt0)

≤1

4
tr((Ct0 − Σt0)

2C−2
t0 ) + (mt0 − µt0)

⊤Q−1(mt0 − µt0)

≤ 1

4(1− ϵ0)2q2min

∥Ct0 − Σt0∥2F +
1

qmin
∥mt0 − µt0∥

2.

Note that

lim
∥A∥F→0

tr(A)− log det(I +A)

tr(A⊤A)
=

1

2
.

Fixing any δ > 0 as long as ϵ0 is small enough we have

E(mt, Ct,µt,Σt) ≥
1

4 + δ
tr((Ct − Σt)

2C−2
t ) + (mt − µt)

⊤Q−1(mt − µt)

≥ 1

(4 + δ)(1 + ϵ0)2q2max

∥Ct − Σt∥2F +
1

qmax
∥mt − µt∥2.

Therefore, we conclude that for any given Q, b, C0, m0, Σ0 and µ0 there exists ϵ0 as stated above
and F4 = F4;Q,b,C0,m0,Σ0,µ0

> 0 such that as long as (mt0 , Ct0) ∈ Θϵ0 and (µt0 ,Σt0) ∈ Θϵ0 then
for any t > t0

∥Ct − Σt∥2F ≤ F4

(
∥Ct0 − Σt0∥2F + ∥mt0 − µt0∥

2
)
,

∥mt − µt∥2 ≤ F4

(
∥Ct0 − Σt0∥2F + ∥mt0 − µt0∥

2
)
.

Step IV. Uniformly bound ∥Ct − Σt∥2F and ∥mt − µt∥2 using ∥C0 − Σ0∥2F + ∥m0 − µ0∥2.

Note that by definition of the Frobenius norm (or any matrix norm), given ϵ0 > 0 there exists
ϵ1 ∈ (0, ϵ0) such that for any S ∈ Sym(d,R) as long as the norm is small enough, i.e., ∥S −
Q∥F ≤ ϵ1, then we have (1 − ϵ0)Q ⪯ S ⪯ (1 + ϵ0)Q. Then by Step II we know that if we set
F5 = max{F2, F3, F

′
2, F

′
3} and t0 > − 1

2γ∗ log ϵ1
F5

then the following bounds hold:

∥mt − b∥ < ϵ1, ∥Ct −Q∥F < ϵ1, ∥µt − b∥ < ϵ1, ∥Σt −Q∥F < ϵ1.

Now it is straight forward to check from (85) and (86) and the results in Step II that there exists
F6 = F6;Q,b,C0,m0,Σ0,µt

such that for any t ≥ 0

d

dt
∥mt − µt∥2 ≤ F6∥mt − µt∥,

d

dt
∥Ct − Σt∥2F ≤ F6∥Ct − Σt∥2F .

Thus, by Grönwall’s inequality we have

∥mt − µt∥2 ≤ eF6t∥m0 − µ0∥2, ∥Ct − Σt∥2F ≤ eF6t∥C0 − Σ0∥2F .

Combining this with Step III, we know for any t ≥ 0, there exists F7 = eF6t0F4 (only depending on
Q, b, C0,m0,Σ0,µ0) such that

∥Ct − Σt∥2F ≤ F7

(
∥C0 − Σ0∥2F + ∥m0 − µ0∥2

)
,

∥mt − µt∥2 ≤ F7

(
∥C0 − Σ0∥2F + ∥m0 − µ0∥2

)
.

Step V. Let y
(t)
i := Σ

1/2
t Σ

−1/2
0 (x

(0)
i − µ0) + µt. Define ξ(t)N = 1

N

∑N
i=1 δy(t)

i
and ζ̃

(t)
N =

1
N

∑N
i=1 δx̃(t)

i
. We show that

E
[
W2

2

(
ξ
(t)
N , ζ̃

(t)
N

)] ◦
≤ E

[
1

N

N∑
i=1

∥∥∥x̃(t)
N − y

(t)
N

∥∥∥2] ⋄
= o

(
log logN

N

)
.
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Since ◦ is trivial by the definition of the Wasserstein metric, we only need to check ⋄. In fact,

1

N

N∑
i=1

∥∥∥x̃(t)
N − y

(t)
N

∥∥∥2
≤ 3

N

N∑
i=1

∥∥∥(Σ1/2
t Σ

−1/2
0 − C1/2

t C
−1/2
0

)(
x
(0)
i − µ0

)∥∥∥2
+ 3

∥∥∥C1/2
t C

−1/2
0 (m0 − µ0)

∥∥∥2 + 3∥µt −mt∥2

=3
∥∥∥Σ1/2

t Σ
−1/2
0 C

1/2
0 − C1/2

t

∥∥∥2
F
+ 3

∥∥∥C1/2
t C

−1/2
0 (m0 − µ0)

∥∥∥2 + 3∥µt −mt∥2

= : I5 + I6 + I7.

Note that

I6 ≤ 3∥Ct∥F ∥C−1
0 ∥F ∥m0 − µ0∥2,

I7 ≤ 3F7

(
∥C0 − Σ0∥2F + ∥m0 − µ0∥2

)
.

By the central limit theorem
√
N(m0 − µ0) converges to N (0,Σ0) in distribution. Thus,√

N
log logN (m0 −µ0) converges to 0 in distribution and hence also in probability. (There could even

be almost sure results using the law of iterated logarithm but converge in probability is good enough.)

Similarly by CLT every entries of
√
N(C0 − Σ0) converges to a Gaussian distribution. Thus,√

N
log logN (C0 − Σ0) converges to zero matrix in probability. Therefore, we have N

log logN ∥Ct −
Σt∥2F → 0 in probability.

By Step II, we have ∥Ct∥F ≤ ∥Q∥F + F3. All these constants here (F3, F7, ∥C−1
0 ∥F ) can be seen

or chosen as a continuous function of Q, b, C0,m0,Σ0,µ0 and by continuous mapping theorem they
converge to the values of the same function with C0 = Σ0 and m0 = µ0. Thus, we conclude that

N
log logN (I6 + I7)→ 0 in probability.

Now we derive that

I5 ≤
∥∥∥(Σ1/2

t − C1/2
t )Σ

−1/2
0 C

1/2
0 + C

1/2
t Σ

−1/2
0 (C

1/2
0 − Σ

1/2
0 )

∥∥∥2
F

≤2∥Σ1/2
t − C1/2

t ∥2F ∥Σ−1
0 ∥F ∥C0∥F + ∥Ct∥F ∥Σ−1

0 ∥F ∥C
1/2
0 − Σ

1/2
0 ∥2F .

Now we show a lemma: Suppose A,B ∈ Sym+(d,R) are two positive definite matrices. Then we
have ∥A1/2 −B1/2∥ ≤ 1

2
√
λ
∥A−B∥ where λ is the smallest eigenvalue of A and B. Note that we

are using the spectral norm here.

In fact, denote the largest eigenvector of A1/2 − B1/2 by η, and let x ∈ Rd be the corresponding
eigenvector such that x⊤x = 1. We have

∥A−B∥ ≥ x⊤(A−B)x

=x⊤A1/2(A1/2 −B1/2)x+ x⊤(A1/2 −B1/2)B1/2x

=ηx⊤(A1/2 +B1/2)x ≥ 2η
√
λ.

Thus, we have that ∥A1/2 −B1/2∥ = η ≤ 1
2
√
λ
∥A−B∥. Moreover, the Frobenius norm is bounded

by

∥A1/2 −B1/2∥F ≤
√
d∥A1/2 −B1/2∥ ≤

√
d

2
√
λ
∥A−B∥ ≤

√
d

2
√
λ
∥A−B∥F .

Applying this lemma, we know∥∥∥C1/2
0 − Σ

1/2
0

∥∥∥
F
≤
√
d

2
√
λ
∥Σ0 − C0∥F ,
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where λ is the smallest eigenvalue of C0 and Σ0, which converges to the smallest eigenvalue of Σ0

as N goes to infinity.

Next we need to show that the smallest eigenvalue of Ct and Σt are uniformly (in time) lower
bounded by some λ′ > 0 (depending on Q, b, C0,m0,Σ0,µ0). We revisit Step II, where we show
that E(mt, Ct) ≤ E(m0, Ct). Then

tr(Q−1Ct − I)− log det(Q−1Ct) ≤ 2E(m0, C0)

leads to a uniform lower bound of the smallest eigenvalue of Ct since tr(Q−1Ct − I) −
log det(Q−1Ct)→∞ as the smallest eigenvalue of Ct goes down to zero. Thus, we have∥∥∥C1/2

t − Σ
1/2
t

∥∥∥2
F
≤ d

4λ′
∥Σt − Ct∥2F ≤

dF7

4λ′
(∥C0 − Σ0∥2F + ∥m0 − µ0∥2).

Following similar arguments we conclude that N
log logN I5 → 0 in probability as N →∞. Therefore,

in probability

N

log logN

1

N

N∑
i=1

∥∥∥x̃(t)
i − y

(t)
i

∥∥∥ ≤ N

log logN
(I5 + I6 + I7)→ 0,

which implies that

E
[
W2

2

(
ξ
(t)
N , ζ̃

(t)
N

)]
= o

(
log logN

N

)
.

Step VI. Apply Lemma L.1 to get the final result. Note that x(t)
i are i.i.d. from N (0, I) and y

(t)
i

is a linear function of x(t)
t (unlike mt and Ct which are random, µt and Σt are deterministic). By

Lemma L.1 and Step II (µt and Σt are uniformly bounded) we have

E
[
W2

2

(
ξ
(t)
N , ρt

)]
≤ CQ,b,Σ0,µ0

×

 N−1 log logN if d = 1
N−1(logN)2 if d = 2

N−2/d if d ≥ 3
. (87)

Thus, we derive that

E
[
W2

2 (ζ
(t)
N , ρt)

]
(∗)
= E

[
W2

2 (ζ̃
(t)
N , ρt)

]
(∗∗)
≤ E

[(
W2(ζ̃

(t)
N , ξ

(t)
N ) +W2(ξ

(t)
N , ρt)

)2]
≤ 2E

[
W2

2

(
ξ
(t)
N , ζ̃

(t)
N

)]
+ 2E

[
W2

2

(
ξ
(t)
N , ρt

)]
(∗∗∗)
≤ CQ,b,Σ0,µ0

×

 N−1 log logN if d = 1
N−1(logN)2 if d = 2

N−2/d if d ≥ 3
.

Note that we have used Step I in (∗), the triangle inequality in (∗∗), and Step V along with (87) in
(∗ ∗ ∗).

Proof of Theorem F.4. The proof is roughly similar to that of Theorem 3.7. But Step III is a little
different (can be strengthened and simplified at the same time).

We show the global contraction of ∥mt−µt∥ and also the contraction of ∥Ct−Σt∥F after sufficient
time. Note here ∥·∥F is the Frobenius norm.

Frist we check the derivative of squared Euclidean norm of mt − µt.

1

2

d

dt
∥mt − µt∥2 = (mt − µt)

⊤(ṁt − µ̇t)

=− (mt − µt)
⊤Q−1(mt − µt) ≤ −

1

qmax
∥mt − µt∥2.
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Thus, ∥mt − µt∥ ≤ e
− t

qmax ∥m0 − µ0∥.
To bound ∥Ct − Σt∥F we define

Sϵ :=
{
S ∈ Sym+(d,R) : (1− ϵ)Q ⪯ S ⪯ (1 + ϵ)Q

}
.

This time we do not need the relative energy but can directly check the derivative of the squared
Frobenius norm:

1

2

d

dt
∥Ct − Σt∥2F =

1

2

d

dt
tr((Ct − Σt)

2)
tr
= (Ct − Σt)(Ċt − Σ̇t)

tr
=2(Ct − Σt)

2 − 2(Ct − Σt)(C
2
t − Σ2

t )Q
−1

tr
=2(Ct − Σt)

2 − (Ct − Σt)(Ct +Σt)(Ct − Σt)Q
−1 − (Ct − Σt)

2(Ct +Σt)Q
−1

tr
=2(Ct − Σt)

2 − (Ct − Σt)
2 (Ct +Σt)Q

−1 − (Ct − Σt)(Ct +Σt)(Ct − Σt)Q
−1. (88)

where tr
= denotes equal in trace. Now if Ct,Σt ∈ Sϵ then

tr
(
(Ct − Σt)(Ct +Σt)(Ct − Σt)Q

−1
)
= tr

(
Q−1/2(Ct − Σt)(Ct +Σt)(Ct − Σt)Q

−1/2
)

≥ tr
(
2(1− ϵ)Q−1/2(Ct − Σt)Q(Ct − Σt)Q

−1/2
) ⋄
≥ 2(1− ϵ) tr

(
(Ct − Σt)

2
)
, (89)

and

tr
(
(Ct − Σt)

2(Ct +Σt)Q
−1
)
− 2(1− ϵ) tr

(
(Ct − Σt)

2
)

=tr
(
(Ct − Σt)

2(Ct +Σt − 2(1− ϵ)Q)Q−1
)

=
1

2
tr
(
(Ct − Σt)

(
(Ct +Σt − 2(1− ϵ)Q)Q−1 +Q−1(Ct +Σt − 2(1− ϵ)Q)

)
(Ct − Σt)

)
≥ 0.

(90)

Note that ⋄ is not trivially true. We show it as a lemma: Suppose A is a symmetric matrix and B is a
positive definite symmetric matrix. Then tr(ABAB−1) ≥ tr(A2).

In fact, we write B = PΛP⊤ where P is an orthogonal matrix and Λ = diag{λ2, · · · , λd} is a
diagonal matrix. Then

tr(ABAB−1) = tr(APΛP⊤APΛ−1P⊤) =
∥∥Λ1/2P⊤APΛ−1/2

∥∥2
F
.

Denoting P⊤AP = (aij) we get

∥∥Λ1/2P⊤APΛ−1/2
∥∥2
F
=

d∑
i,j=1

(√
λi√
λj
aij

)2

=
1

2

d∑
i,j=1

(
λi
λj
a2ij +

λj
λi
a2ji

)
≥

d∑
i,j=1

a2ij = tr(A2).

Thus, substituting (90) and (89) into (88) we get

d

dt
∥Ct − Σt∥2F = −2 tr

(
(Ct − Σt)(Ċt − Σ̇t)

)
≤ −4(1− 2ϵ)∥Ct − Σt∥2F ≤ 0.

Suppose at time t0 both Ct0 and Σt0 lie in Sϵ. Then for any t ≥ t0 we have

∥Ct − Σt∥F ≤ e−2(1−2ϵ)(t−t0)∥Ct0 − Σt0∥F .
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