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Abstract

Dataset Distillation is the task of synthesizing small datasets from large ones while
still retaining comparable predictive accuracy to the original uncompressed dataset.
Despite significant empirical progress in recent years, there is little understanding
of the theoretical limitations/guarantees of dataset distillation, specifically, what
excess risk is achieved by distillation compared to the original dataset, and how
large are distilled datasets? In this work, we take a theoretical view on kernel ridge
regression (KRR) based methods of dataset distillation such as Kernel Inducing
Points. By transforming ridge regression in random Fourier features (RFF) space,
we provide the first proof of the existence of small (size) distilled datasets and
their corresponding excess risk for shift-invariant kernels. We prove that a small
set of instances exists in the original input space such that its solution in the RFF
space coincides with the solution of the original data. We further show that a
KRR solution can be generated using this distilled set of instances which gives an
approximation towards the KRR solution optimized on the full input data. The size
of this set is linear in the dimension of the RFF space of the input set or alternatively
near linear in the number of effective degrees of freedom, which is a function of
the kernel, number of datapoints, and the regularization parameter λ. The error
bound of this distilled set is also a function of λ. We verify our bounds analytically
and empirically.

1 Introduction

Motivated by the growing data demands of modern deep learning, dataset distillation [ZB21,
NNXL21, ZNB22, WZTE18] aims to summarize large datasets into significantly smaller synthetic
distilled datasets, which when trained on retain high predictive accuracy, comparable to the original
dataset. These distilled datasets have applications in continual learning [ZNB22, SCCB22], architec-
ture search [SRL+19], and privacy preservation [CKF22]. Recent years have seen the development
of numerous distillation algorithms, but despite this progress, the field has remained largely empirical.
Specifically, there is little understanding of what makes one dataset “easier to distill" than another, or
whether such small synthetic datasets even exist.

This work aims to fill this gap by providing the first bounds on the sufficient size and relative error
associated with distilled datasets. Noting prior work relating neural network training to kernel
ridge regression (KRR), we consider dataset distillation in the kernel ridge regression settings with
shift-invariant kernels. By casting the problem into the Random Fourier Feature (RFF) space, we
show that: The size and relative error of distilled datasets is governed by the kernel’s “number
of effective degrees of freedom", dλk . Specifically, in Section 4, we show that distilled sets of size
Ω(dλk log d

λ
k), exist, with 12λ+ 2Lλ predictive error on the training dataset, and only 8λ error with
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respect to the optimal solution computed on the full dataset, where λ is the kernel ridge regression
regularization parameter and Lλ the KRR training error on the original dataset; see Theorem 3 and
Remark 7 for full details.

These bounds hold in practice for both real and synthetic datasets. In section 5, we validate our
theorem by distilling synthetic and real datasets with varying sizes and values of dλk , showing that in
all scenarios our bounds accurately predict the error associated with distillation.

2 Related work

Coresets. Coresets are weighted selections from a larger training dataset, which, when used for train-
ing, yield similar outcomes as if the whole dataset was used [MSSW18, MBL20, PDM22, MEM+22].
The key benefit of using coresets is that they significantly speed up the training process, unlike when
the full data set is used. Current coresets methods incorporate clustering techniques [FL11, LBK16,
BLHK16], bilevel optimization [BMK20], sensitivity analysis [MSSW18, HCB16, TMF20, MSF20],
and surrogate models for approximation [TZM+23]. Newer strategies are specifically designed for
neural networks, where before each training epoch, coresets are chosen such that their gradients align
with the gradients of the entire dataset [MBL20, PDM22, TZM+23], followed by training the model
on the chosen coreset. Although coresets are usually theoretically supported, these methods fall short
when the aim is to compute a coreset once for a full training procedure.

Dataset Distillation. To this end, dataset distillation algorithms construct synthetic datasets (not
necessarily a subset from the original input) such that gradient descent training on the synthetic data-
points results in high predictive accuracy on the real dataset. Cast as a bilevel optimization problem,
early methods involve unrolling training computation graph [WZTE18] for a few gradient descent
steps and randomly sampled weight initializations. More sophisticated methods aim to approximate
the unrolled computation using kernel methods [NCL21, NNXL21, ZNB22, LHAR22a, LHLR23a],
surrogate objectives such gradient matching [ZMB21, ZB21], trajectory matching [CWT+22] or
implicit gradients [LHLR23b]. The kernel-induced points (KIP) algorithm [NCL21, NNXL21] is
a technique that employs Neural Tangent Kernel (NTK) theory[JGH18, LHAR22b] to formulate
the ensuing loss: LKIP = 1

2∥yt −KTSK
−1
SSyS∥22. This loss signifies the predictive loss of training

infinitely wide networks on distilled datapoints XS with corresponding labels yS , on the original
training set and labels XT , yT , with K·,· being the NTK. Dataset distillation is closely related to the
use of inducing points to accelerate Gaussian Processes [SG05, TRB16], for which convergence rates
exist, but the existence of such inducing points is not unknown [BRVDW19].

From dataset distillation to kernel ridge regression. Kernel ridge regression (KRR) extends
the linear machine learning ridge regression model by using a kernel function to map input data
into higher-dimensional feature spaces, allowing for more complex non-linear relationships between
variables to be captured [Mur12]. Various methods have been proposed to improve and accelerate
the training process of kernel ridge regression. Most notably, Random Fourier Features [RR07]
approximates shift-invariant kernel functions by mapping the input data into a lower-dimensional
feature space using a randomized cosine transformation. This has been shown to work effectively
in practice due to regularizing effects [JSS+20], as well as providing approximation bounds to the
full kernel ridge regression [SS15, AKM+17, LTOS19]. Training infinite-width neural networks can
be cast as kernel ridge regression with the Neural Tangent Kernel (NTK) [JGH18], which allows a
closed-form solution of the infinite-width neural network’s predictions, enabling kernel-based dataset
distillation algorithms such as [NCL21, NNXL21, LHAR22a].

3 Background

Goal. We provide the first provable guarantees on the existence and approximation error of a small
distilled dataset in the KRR settings. We first provide notations that will be used throughout the paper.

Notations. Let H be a Hilbert space with ∥·∥H as its norm. For a vector a ∈ Rn, we use ∥a∥2 to
denote its Euclidean norm, and ai to denote its ith entry for every i ∈ [n]. For any positive integer n,
we use the convention [n] = {1, 2, · · · , n}. Let A ∈ Rn×m be a matrix, then, for every i ∈ [n] and
j ∈ [m], Ai∗ denotes the ith row of A, A∗j denotes the jth column of A, and Ai,j is the jth entry of
the ith row of A. Let B ∈ Rn×n, then we denote the trace of B by Tr(B). We use Im ∈ Rm×m to
denote the identity matrix. Finally, vectors are addressed as column vectors unless stated otherwise.
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3.1 Kernel ridge regression

Let X ∈ Rn×d be a matrix and let y ∈ Rn be a vector. Let k : Rd × Rd → [0,∞) be a kernel
function, and let K ∈ Rn×n be its corresponding kernel matrix with respect to the rows of X; i.e.,
Ki,j = k (Xi∗,Xj∗) for every i, j ∈ [n]. Let λ > 0 be a regularization parameter. The goal of
kernel ridge regression (KRR) involving X, y, k, and λ is to find

αλ
[X,y,k] ∈ argmin

α∈Rn

1

n
∥y −Kα∥22 + λαTKα. (1)

We use the notation fλ
[X,y,k] : R

d → R to denote the in-sample prediction by applying the KRR
solution obtained on X, y and λ using the kernel k, i.e., for every x ∈ Rd,

fλ
[X,y,k](x) =

n∑
i=1

αλ
[X,y,k]i

k (Xi∗, x) . (2)

To provide our theoretical guarantees on the size and approximation error for the distilled datasets,
the following assumption will be used in our theorem and proofs.

Assumption 1. We inherit the same theoretical assumptions used at [LTOS21] for handling the
KRR problem: (I) Let F be the set of all functions mapping Rd to R. Let f∗ ∈ F be the minimizer

of
n∑

i=1

|yi − f (Xi∗)|2, subject to the constraint that for every x ∈ Rd and y ∈ R, y = f∗(x) + ϵ,

where E(ϵ) = 0 and Var(ϵ) = σ2. Furthermore, we assume that y is bounded, i.e., |y| ≤ y0. (II) We

assume that
∥∥∥fλ

[X,y,k]

∥∥∥
H

≤ 1. (III) For a kernel k, denote with λ1 ≥ · · · ≥ λn the eigenvalues of

the kernel matrix K. We assume that the regularization parameter satisfies 0 ≤ nλ ≤ λ1.

The logic behind our assumptions. First, the idea behind Assumption (I) is that the pair (X, y)
can be linked through some function that can be from either the same family of kernels that we
support (i.e., shift-invariant) or any other kernel function. In the context of neural networks, the
intuition behind Assumption (I) is that there exists a network from the desired architectures that gives
a good approximation for the data. Assumption (II) aims to simplify the bounds used throughout
the paper as it is a pretty standard assumption, characteristic to the analysis of random Fourier
features [LTOS19, RR17]. Finally, Assumption (III) is to prevent underfitting. Specifically speaking,
the largest eigenvalue of K (K+ nλIn)

−1 is λ1

(λ1+nλ) . Thus, in the case of nλ > λ1, the in-sample
prediction is dominated by the term nλ. Throughout the following analysis, we will use the above
assumptions. Hence, for the sake of clarity, we will not repeat them, unless problem-specific
clarifications are required.

Connection to Dataset distillation of neural networks. Since the neural network kernel in the case
of infinite width networks describes a Gaussian distribution [JGH18], we aim at proving the existence
of small sketches (distilled sets) for the input data with respect to the KRR problem with Gaussian
kernel. However, the problem with this approach is that the feature space (in the Gaussian kernel
corresponding mapping) is rather intangible or hard to map to, and sketch (distilled set) construction
techniques require the representation of these points in the feature space.

To resolve this problem, we use a randomized approximated feature map, e.g., random Fourier
features (RFF), and weighted random Fourier features (Weighted RFF). The dot product between
every two mapped vectors in this approximated feature map aims to approximate their Gaussian
kernel function [RR07]. We now restate a result connecting ridge regression in the RFF space (or
alternatively weighted RFF), and KRR in the input space.

Theorem 2 (A result of the proof of Theorem 1 and Corollary 2 of [LTOS21]). Let X ∈ Rn×d

be an input matrix, y ∈ Rn be an input label vector, k : Rd × Rd → [0,∞) be a shift-invariant
kernel function, and K ∈ Rn×n, where ∀i, j ∈ [n] : Ki,j = k(Xi∗,Xj∗). Let λ > 0, and let

dλK = Tr
(
K (K+ nλIn)

−1
)

. Let sϕ ∈ Ω
(
dλK log

(
dλK

))
be a positive integer. Then, there exists

a pair (ϕ, X̃) such that (i) ϕ is a mapping ϕ : Rd → Rsϕ (which is based on either the weighted
RFF function or the RFF function [LTOS21]), (ii) X̃ is a matrix X̃ ∈ Rn×sϕ where for every i ∈ [n],
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X̃i∗ := ϕ (Xi∗), and (iii) (ϕ, X̃) satisfies

1

n

n∑
i=1

∣∣∣∣yi − fλ

[X̃,y,ϕ]

(
X̃i∗

)∣∣∣∣2 ≤ 1

n

n∑
i=1

∣∣∣yi − fλ
[X,y,k] (Xi∗)

∣∣∣2 + 4λ,

where fλ

[X̃,y,ϕ]
: Rsϕ → R such that for every row vector z ∈ Rsϕ , fλ

[X̃,y,ϕ]
(z) =

z
(
X̃T X̃+ λnsϕλIsϕ

)−1

X̃T y. Note that, Table 1 gives bounds on sϕ when λ ∝ 1√
n

.

Intution behind Theorem 2. Theorem 2 bounds the difference (additive approximation error)
between (i) the MSE loss between the ground truth labels and the predictions obtained by applying
Kernel Ridge regression (KRR) on the raw (original) data, and (ii) the MSE between the ground truth
labels and the predictions obtained when applying Ridge regression on the mapped (full) training
data via random Fourier features (RFF). Theorem 2 will be utilized to set the minimal dimension of
the RFF which yields the desired additive approximation, i.e., 4λ. Thus the intuition behind using
this theorem is to link the dimension of the RFF with the size of the distilled set. In other words, we
use this error bound and sufficient size (of the minimal dimension of the RFF) to provide proof of the
sufficient small size of the distilled set.

4 Main result: on the existence of small distilled sets

In what follows, we show that for any given matrix X ∈ Rn×d and a label vector y ∈ Rn, there
exists a matrix S ∈ Rsϕ×d and a label vector yS ∈ Rr such that the fitting solution in the RFF space
mapping of S is identical to that of the fitted solution on the RFF space mapping of X. With such S
and yS, we proceed to provide our main result showing that one can construct a solution for KRR
in the original space of S which provably approximates the quality of the optimal KRR solution
involving X and y. Thus, we obtain bounds on the minimal distilled set size required for computing
a robust approximation, as well as bounds on the error for such a distilled set.

We now provide Theorem 3 followed by its proof of the existence of a small distilled set. Then we
provide extensive details and intuitive explanations about the steps of the proof.

Theorem 3 (On the existence of some distilled data). Let X ∈ Rn×d be a matrix, y ∈ Rn be a label
vector, k : Rd × Rd → [0,∞) be a kernel function, Υ = (0, 1) ∪ {2}, and let sϕ and X̃ be defined
as in Theorem 2. Assume that the rank of X̃ is sϕ, then, there exists a matrix S ∈ Rsϕ×d and a label
vector yS such that

(i) the weighted RFF mapping S̃ ∈ Rsϕ×sϕ of S, satisfies that
(
X̃T X̃+ λnsϕλIsϕ

)−1

X̃T y =(
S̃T S̃+ λnsϕλIsϕ

)−1

S̃T yS, and

(ii) there exists an in-sample prediction fλ,X,y
[S,yS,k]

(not necessarily the optimal on S and ys)
satisfying

1

n

n∑
i=1

∣∣∣fλ
[X,y,k] (Xi∗)− fλ,X,y

[S,yS,k]
(Xi∗)

∣∣∣2 ≤min
τ∈Υ

(
2max

{
τ,

4

τ2

}
+

2min

{
1 + τ,

4 (1 + τ)

3τ

})
λ,

(3)

and

1

n

n∑
i=1

∣∣∣yi − fλ,X,y
[S,yS,k]

(Xi∗)
∣∣∣2 ≤ min

τ∈Υ

min
{
1 + τ, 4(1+τ)

3τ

}
n

n∑
i=1

∣∣∣yi − fλ
[X,y,k] (Xi∗)

∣∣∣2
+

(
4min

{
1 + τ,

4 (1 + τ)

3τ

}
+ 2max

{
τ,

4

τ2

})
λ.

(4)
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Proof. Let S be any matrix in Rsϕ×d such its weighted RFF mapping S̃ is of rank equal to that of X̃

and for every i ∈ [sϕ],
n∑

j=1

k (Si∗,Xi∗) ̸= 0.

Proof of (i). To ensure (i), we need to find a corresponding proper yS. We observe that(
S̃T S̃+ λnsϕλIsϕ

)(
X̃T X̃+ λnsϕλIsϕ

)−1

X̃T y = S̃T yS

Let b =
(
S̃T S̃+ λnsϕλIsϕ

)(
X̃T X̃+ λnsϕλIsϕ

)−1

X̃T y, be the left-hand side term above. b is a

vector of dimension sϕ. Hence we need to solve b = S̃T yS for yS. Since S has full rank then we
have a linear system involving sϕ variables and sϕ equations. Thus, the solution to such a system

exists and is yS =
(
S̃T

)†
b, where (·)† denotes the pseudo-inverse of the given matrix.

Proof of (ii). Inspired by [LHAR22a] and [NCL20], the goal is to find a set of instances that their
in-sample prediction with respect to the input data (X in our context) would lead to an approximation
towards the solution that one would achieve if the KRR was used only with the input data. To that
end, we introduce the following Lemm.

Lemma 4 (Restatement of Lemma 6 [LTOS21]). Under Assumption 1 and the definitions
in Theorem 2, for every f ∈ H with ∥f∥H ≤ 1, with constant probability, it holds that

inf√
sϕ∥β∥2≤

√
2

β∈Rsϕ

n∑
i=1

1
n

∣∣∣f (Xi∗)− X̃i∗β
∣∣∣2 ≤ 2λ.

Note that Lemma 4 shows that for every in-sample prediction function with respect to X, there
exists a query β ∈ Rsϕ in the RFF space of that input data such that the distance between the in-
prediction sample function in the input space and the in-sample prediction in the RFF space is at 2λ.

Furthermore, at [LTOS21] it was shown that β is defined as β = 1
sϕ
X̃T

(
X̃X̃T + nλIsϕ

)−1

f [X],

where f [X]i = f (Xi∗) for every i ∈ [n].

We thus set out to find an in-sample prediction function that is defined over S such that by its infimum
by Lemma 4 would be the same solution β that the ridge regression on X̃ attains with respect to the
y. Specifically speaking, we want to find an in-sample prediction fλ,X,y

[S,yS,k]
(·) such that

β =
1

sϕ
X̃T

(
1

sϕ
X̃X̃T + nλIsϕ

)−1

fS[X], (5)

where (i) fS[X] ∈ Rn such that for every i ∈ [n], fS[X]i = fλ,X,y
[S,yS,k]

(Xi∗), and

(ii) fλ,X,y
[S,yS,k]

(·) =
sϕ+1∑
i=1

αik (Si∗, ·) such that α ∈ Rsϕ .

Hence we need to find an in-sample prediction function fλ,X,y
[S,yS,k]

satisfying 5. Now, notice that

β ∈ Rsϕ , fS[X] ∈ Rn and X̃T
(

1
sϕ
X̃X̃T + nλIn

)−1

∈ Rsϕ×n. Due to the fact that we aim to find

fλ,X,y
[S,yS,k]

, such a task boils down to finding α ∈ Rsϕ which defines fλ,X,y
[S,yS,k]

as in (ii). The above
problem can be reduced to a system of linear equations where the number of equalities is sϕ, while
the number of variables is sϕ.

To do so, we denote 1
sϕ
X̃T

(
1
sϕ
X̃X̃T + nλIn

)−1

by Â, and observe that we aim to solve

β = Âfλ
S [X] = Â



sϕ∑
i=1

αik (Si∗,X1∗)

sϕ∑
i=1

αik (Si∗,X2∗)

...
sϕ∑
i=1

αik (Si∗,Xn∗)


.
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We now show that every entry bj (j ∈ [sϕ]) in β can be rewritten as inner products between another
pair of vectors in Rsϕ instead of the inner product between two vectors in Rn. Formally, for every
j ∈ [sϕ], it holds that

βj = Âj∗



sϕ∑
i=1

αik (Si∗,X1∗)

sϕ∑
i=1

αik (Si∗,X2∗)

...
sϕ∑
i=1

αik (Si∗,Xn∗)


=

[
n∑

t=1
Âj,tk (S1∗,Xt∗) , · · · ,

n∑
t=1

Âj,tk
(
S(sϕ)∗,Xt∗

)] α1

...
αsϕ

 .

Thus, for every j ∈ [sϕ], define Aj∗ =

[
n∑

t=1
Âj,tk (S1∗,Xt∗) , · · · ,

n∑
t=1

Âj,tk
(
Ssϕ∗,Xt∗

)]
∈ Rsϕ .

In other words, A is a the result of a Hadamard multiplication of Â and a 1-rank matrix G such that

each of its rows is equal to
[

n∑
t=1

k (S1∗,Xt∗) , · · · ,
n∑

t=1
k
(
Ssϕ∗,Xt∗

)]
.

Since the rank of Â is full, i.e., rank (A) = rank

(
X̃T

(
1
sϕ
X̃X̃T + nλIn

)−1
)

= rank
(
X̃
)
= sϕ

by assumption, then it holds that

rank (A) = rank
(
Â ◦G

)
= rank

(
DvÂDu

)
= rank

(
Â
)
,

where the first equality holds by definition of A and ◦ denoting the Hadamard multiplication product,
the second inequality holds since by construction of S and G = uvT such that u, v ∈ Rsϕ are vector
with non-zero entries, and Du, Dv ∈ Rsϕ×sϕ are diagonal matrices where their diagonal are u and v
respectively. The last inequality holds by property of rank function, i.e., the rank of any product of
pair of square matrices C and D such that D is of full rank is equal to the rank of C.

The right-hand side of (5) can reformulated as

1

sϕ
X̃T

(
1

sϕ
X̃X̃T + nλIn

)−1

fS[X] = Aα, (6)

where now we only need to solve β = Aα. Such a linear system of equations has a solution since we
have sϕ variables (the length of α) and sϕ equations and the rank A is equal to sϕ. For simplicity, a
solution to the above equality would be α := (A)

†
β. To proceed in proving (ii) with all of the above

ingredients, we utilize the following tool.

Lemma 5 (Special case of Definition 6.1 from [BFL+16]). Let X be a set, and let
(
X, ∥·∥22

)
be a

2-metric space i.e., for every x, y, z ∈ X , ∥x− y∥22 ≤ 2
(
∥x− z∥22 + ∥y − z∥22

)
. Then, for every

ε ∈ (0, 1), and x, y, z ∈ X ,

(1− ε) ∥y − z∥22 −
4

ε2
∥x− z∥22 ≤ ∥x− y∥22 ≤ 4

ε2
∥x− z∥22 + (1 + ε) ∥y − z∥22 . (7)

We note that Lemma 5 implies that x, y, z ∈ Rd

∥x− y∥22 ≤ min
τ∈Υ

max

{
τ,

4

τ2

}
∥x− z∥22 +min

{
1 + τ,

4 (1 + τ)

3τ

}
∥y − z∥22 . (8)

where for τ = 2 we get the inequality associated with the property of 2-metric, and for any τ ∈ (0, 1),
we obtain the inequality (7).
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We thus observe that

1

n

n∑
i=1

∣∣∣fλ
[X,y,k] (Xi∗)− fλ,X,y

[S,yS,k]
(Xi∗)

∣∣∣2
=

1

n

n∑
i=1

∣∣∣∣fλ
[X,y,k] (Xi∗)− fλ

[X̃,y,ϕ]

(
X̃i∗

)
+ fλ

[X̃,y,ϕ]

(
X̃i∗

)
− fλ,X,y

[S,yS,k]
(Xi∗)

∣∣∣∣2
≤ min

τ∈Υ

max
{
τ, 4

τ2

}
n

n∑
i=1

∣∣∣∣fλ
[X,y,k] (Xi∗)− fλ

[X̃,y,ϕ]

(
X̃i∗

)∣∣∣∣2 +
min

{
1 + τ, 4(1+τ)

3τ

}
n

n∑
i=1

∣∣∣∣fλ

[X̃,y,ϕ]

(
X̃i∗

)
− fλ,X,y

[S,yS,k]
(Xi∗)

∣∣∣∣2
≤ min

τ∈Υ
2max

{
τ,

4

τ2

}
λ+ 2min

{
1 + τ,

4 (1 + τ)

3τ

}
λ

= min
τ∈Υ

(
2max

{
τ,

4

τ2

}
+ 2min

{
1 + τ,

4 (1 + τ)

3τ

})
λ,

where the first equality holds by adding and subtracting the same term, the first inequality holds by
Lemma 5, and the second inequality holds by combining the way fλ,X,y

[S,yS,k]
was defined and Theorem 2.

Finally, to conclude the proof of Theorem 3, we derive 4

1

n

n∑
i=1

∣∣∣yi − fλ,X,y
[S,yS,k]

(Xi∗)
∣∣∣2 =

1

n

n∑
i=1

∣∣∣∣yi − fλ

[X̃,y,ϕ]

(
X̃i∗

)
+ fλ

[X̃,y,ϕ]

(
X̃i∗

)
− fλ,X,y

[S,yS,k]
(Xi∗)

∣∣∣∣2

≤ min
τ∈Υ

min
{
1 + τ, 4(1+τ)

3τ

}
n

n∑
i=1

∣∣∣∣yi − fλ

[X̃,y,ϕ]

(
X̃i∗

)∣∣∣∣2
+

max
{
τ, 4

τ2

}
n

n∑
i=1

∣∣∣∣fλ

[X̃,y,ϕ]

(
X̃i∗

)
− fλ,X,y

[S,yS,k]
(Xi∗)

∣∣∣∣2

≤ min
τ∈Υ

min
{
1 + τ, 4(1+τ)

3τ

}
n

n∑
i=1

∣∣∣∣yi − fλ

[X̃,y,ϕ]

(
X̃i∗

)∣∣∣∣2 + 2max

{
τ,

4

τ2

}
λ

≤ min
τ∈Υ

min
{
1 + τ, 4(1+τ)

3τ

}
n

n∑
i=1

∣∣∣yi − fλ
[X,y,k] (Xi∗)

∣∣∣2
+

(
4min

{
1 + τ,

4 (1 + τ)

3τ

}
+ 2max

{
τ,

4

τ2

})
λ,

(9)

where the equality holds by adding and subtracting the same term, the first inequality holds by (8),
and the second inequality follows as a result of the way fλ

S was constructed and the fact that β is its
infimum based on Lemma 4, and the last inequality holds by Theorem 2.

Intuition behind Theorem 3. The goal of Theorem 3 is to prove the existence of a small distilled set
S (its size is a function of the minimal dimension of the RFF mapping required to ensure the provable
additive approximation stated in Theorem 2) satisfying that: (i) The Ridge regression model trained
on the mapped training data via RFF is identical to that of the Ridge regression model trained on the
mapped small distilled set via RFF, (ii) more importantly there exists a KRR solution formulated
for S with respect to the loss of the whole big data X, which approximates the KRR solution on
the whole data X (which is the goal of KRR-based dataset distillation techniques). Thus, (iii) we
derive bounds on the difference (approximation error) between (1) The MSE between the ground
truth labels of the full data and their corresponding predictions obtained by the specific KRR model
(we previously described) on our distilled set and (2) The MSE between the ground truth labels and
the predictions obtained when applying KRR on the whole data X.
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The heart of our approach lies in connecting the minimal dimension of the RFF required for
provable additive approximation and the size of the distilled set. This is first done by showing that the
distilled set can be any set S of instances from the input space (e.g., images) and their corresponding
labels, as long as the corresponding labels must maintain a certain property. Specifically speaking,
the labels of the distilled set need to be in correlation with the normal of the best hyperplane
found to fit the mapped training data via RFF X̃ via the Ridge regression model trained on

(
X̃, y

)
,

i.e.,
(
S̃T S̃+ λnsϕλIsϕ

)(
X̃T X̃+ λnsϕλIsϕ

)−1

X̃T y = S̃T yS. From here, the idea hinges upon
showing the existence of a KRR model (represented by a prediction function) that would be dependent
on the prediction function that can be obtained from applying the Ridge regression problem to the
mapped full training data via RFF. With such a model, the idea is to retrieve the predictions obtained
when using the Ridge regression problem from the mapped training data via RFF via the use of some
KRR model used on the distilled set. We thus show that through careful mathematical derivations,
equation reformulation (involving ), and solving a system of equations, one is able to show the
existence of a KRR solution that would allow us to use Theorem 2. Finally, to obtain our bounds, we
also rely on the use of the weak triangle inequality. To that end, we now utilize the described KRR
model on the distilled data together with Theorem 2 to achieve (iii).

Remark 6. Note that the assumption that X̃ is of full rank (i.e., sϕ) can be dropped easily from
Theorem 3, and as a result, we obtain that S can contain r (rank of X̃) instances (rows of S). For
additional details, please refer to Section E in the Appendix.

To simplify the bounds stated at Theorem 3, we provide the following remark.
Remark 7. By fixing τ := 2, the bounds in Theorem 3 become

1

n

n∑
i=1

∣∣∣fλ
[X,y,k] (Xi∗)− fλ,X,y

[S,yS,k]
(Xi∗)

∣∣∣2 ≤ 8λ,

and
1

n

n∑
i=1

∣∣∣yi − fλ,X,y
[S,yS,k]

(Xi∗)
∣∣∣2 ≤ 2

n

n∑
i=1

∣∣∣yi − fλ
[X,y,k] (Xi∗)

∣∣∣2 + 12λ.

As for fixing τ := ε ∈ (0, 1), we obtain that

1

n

n∑
i=1

∣∣∣yi − fλ,X,y
[S,yS,k]

(Xi∗)
∣∣∣2 ≤ 1 + ε

n

n∑
i=1

∣∣∣yi − fλ
[X,y,k] (Xi∗)

∣∣∣2 + (
4 (1 + ε) +

8

ε2

)
λ.

5 Experimental Study

To validate our theoretical bounds, we performed distillation on three datasets: two synthetic datasets
consisting of data generated from a Gaussian Random Field, and classification of two clusters, and
one real dataset of MNIST binary and multi-class classification. Full experimental details for all
experiments are available in the appendix.

2d Gaussian Random Fields. We first test our bounds by distilling data generated from the Gaussian
Process prior induced by a kernel, k on 2d data. We use a squared exponential kernel with lengthscale

parameter l = 1.5: k(x, x′) = e−
||x−x′||22

2l2 . For X, we sample n = 105 datapoints from N (0, σ2
x),

with σx ∈ [0.25, 5.0]. We then sample y ∼ N (0,KXX + σ2
yIn), σy = 0.01. We fix λ = 10−5 and

distill down to s = dλk log d
λ
k . The resulting values of dλk , s, and compression ratios are plotted in

fig. 2. We additionally plot the predicted upper bound given by Remark 7 and the actual distillation
loss. Our predicted upper bound accurately bounds the actual distillation loss. To better visualize
how distillation affects the resulting KRR prediction, we show the KRR predictive function fλ

X and
the distilled predictive fλ

S for σx = 5.0 in fig. 1b and fig. 1c.

Two Gaussian Clusters Classification. Our second synthetic dataset is one consisting of two
Gaussian clusters centered at (−2, 0) and (2, 0), with labels −1 and +1, respectively. Each cluster
contains 5000 datapoints so that n = 105. Each cluster as standard deviation σx ∈ [0.25, 5.0].
Additionally, two allow the dataset to be easily classified, we clip the x coordinates of clusters 1 and
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Figure 1: (a) visualizes the two clusters dataset with n = 300 and σx = 1.5. (b) and (c) visualizing
the KRR predictive functions generated by the original dataset (b) and the distilled dataset (c) for
the Gaussian Random Field experiment for σx = 5.0. The distilled dataset is able to capture all the
nuances of the original dataset with a fraction of the datapoints.
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Figure 2: Distillation results for synthetic data generated by a Gaussian Random Field (n = 3)

clusters 2 to not exceed/drop below −0.4 and 0.4, for the two clusters, respectively. This results in a
margin between the two classes. We visualize the dataset for n = 300 and σ = 1.5 in fig. 1a. We use
the same squared exponential kernel as before with l = 1.5, fix λ = 10−5, and distill with the same
protocol as before. We likewise plot dλk , s, and compression ratios and distillation losses in fig. 3,
again with our bound accurately containing the true distillation loss.
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Figure 3: Distillation results for synthetic data of two Gaussian clusters (n = 3)

Real Word Datasets Classification. For our next test, we first consider binary classification on (i)
MNIST 0 and 1 digits, (ii) SVHN 0 and 1 digit, and (iii) CIFAR-10 ship vs deer; all with labels
−1 and +1, respectively. We use the same squared-exponential kernel with l = 13.9, l = 3.0, and
l = 8.0, for MNIST, SVHN and CIFAR-10, respectively, which was chosen to maximize the marginal-
log-likelihood, treating the problem as Gaussian Process regression. We vary n ∈ [500, 10000], with
an equal class split, and perform the same distillation protocol. Here, we additionally scale λ ∝ 1√

n

such that λ = 10−4 when n = 5000. Distilling yields fig. 4, fig. 5, and fig. 6, showing that our
bounds can accurately predict distillation losses for real-world datasets. In fig. 7 and fig. 8 in the
appendix, we test our bound for the multi-class case on MNIST 0,1,2 digits with similar settings as in
the binary classification case. The results justify our bounds.
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Figure 4: Distillation results for MNIST binary 0 vs. 1 classification (n = 3)

Figure 5: Distillation results for SVHN binary 0 vs. 1 classification (n = 3)
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Figure 6: Distillation results for CIFAR-10 binary deer vs. ship classification (n = 3)

6 Conclusion

In this study, we adopt a theoretical perspective to provide bounds on the (sufficient) size and
approximation error of distilled datasets. By leveraging the concept of random Fourier features (RFF),
we prove the existence of small distilled datasets and we bound their corresponding excess risk when
using shift-invariant kernels. Our findings indicate that the size of the guaranteed distilled data is a
function of the "number of effective degrees of freedom," which relies on factors like the kernel, the
number of points, and the chosen regularization parameter, λ, which also controls the excess risk. In
particular, we demonstrate the existence of a small subset of instances within the original input space,
where the solution in the RFF space coincides with the solution found using the input data in the RFF
space. Subsequently, we show that this distilled subset of instances can be utilized to generate a KRR
solution that approximates the KRR solution obtained from the complete input data. To validate these
findings, we conducted empirical examinations on both synthetic and real-world datasets supporting
our claim. While this study provides a vital first step in understanding the theoretical limitations of
dataset distillation, the proposed bounds are not tight, as seen by the gap between the theoretical
upper bound and the empirical distillation loss in section 5. Future work could look at closing this
gap, as well as better understanding the tradeoff between distillation size and relative error.
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A Experiment Details

All experiments unless otherwise stated present the average/standard deviations of n = 3 runs. Each
run consists of a random subset of MNIST 0/1 digits for MNIST binary classification, or random
positions of sampled datapoints for synthetic data, and different samples from the GP for the Gaussian
Random Field experiment. Distilled datasets are initialized as subsets of the original training data.
We distill for 20000 iterations with Adam optimizer with a learning rate of 0.002 optimizing both
images/data positions and labels. We use full batch gradient descent for the synthetic datasets and a
maximum batch size of 2000 for the MNIST experiment. For the MNIST experiment we found that
particularly for larger values of n, with minibatch training, we could obtain lower distillation losses
by optimizing for longer, so the closing of the gap between the upper bound and experiment values in
fig. 4 may be misleading: longer optimization could bring the actual distillation loss lower.

To ensure that assumption (II) is fulfilled, we scale the labels such that
∥∥∥fλ

[X,y,k]

∥∥∥
H

= 1. For

example, if we are working with MNIST binary classification, with labels {+1,−1}, we first
compute

∥∥∥fλ
[X,y,k]

∥∥∥
H

= r using {+1,−1} labels, then rescale the labels by 1/r so that the labels are

{+ 1
r ,−

1
r}. Suppose this results in some upper bound LU and some real distillation loss LR. For

the corresponding plots in figs. 2 to 4, we plot r2LU and r2LR. We do this because the r values for
different parameters (such as n or σx) could be different, and scaling for the plots allows the values
to be comparable.

In the figures for the upper bounds on the distillation loss we plot the smallest value of the upper
bounds in remark 7.

A.1 Code

Code is available in the supplementary material.

B Proof of Technical Results

B.1 Proof of Theorem 2

Note that the proof of Theorem 2 follows from the proofs of Theorem 1 and Corollary 1 of [LTOS21].
For completeness, we provide the following proof.
Theorem 2 (A result of the proof of Theorem 1 and Corollary 2 of [LTOS21]). Let X ∈ Rn×d

be an input matrix, y ∈ Rn be an input label vector, k : Rd × Rd → [0,∞) be a shift-invariant
kernel function, and K ∈ Rn×n, where ∀i, j ∈ [n] : Ki,j = k(Xi∗,Xj∗). Let λ > 0, and let

dλK = Tr
(
K (K+ nλIn)

−1
)

. Let sϕ ∈ Ω
(
dλK log

(
dλK

))
be a positive integer. Then, there exists

a pair (ϕ, X̃) such that (i) ϕ is a mapping ϕ : Rd → Rsϕ (which is based on either the weighted
RFF function or the RFF function [LTOS21]), (ii) X̃ is a matrix X̃ ∈ Rn×sϕ where for every i ∈ [n],
X̃i∗ := ϕ (Xi∗), and (iii) (ϕ, X̃) satisfies

1

n

n∑
i=1

∣∣∣∣yi − fλ

[X̃,y,ϕ]

(
X̃i∗

)∣∣∣∣2 ≤ 1

n

n∑
i=1

∣∣∣yi − fλ
[X,y,k] (Xi∗)

∣∣∣2 + 4λ,

where fλ

[X̃,y,ϕ]
: Rsϕ → R such that for every row vector z ∈ Rsϕ , fλ

[X̃,y,ϕ]
(z) =

z
(
X̃T X̃+ λnsϕλIsϕ

)−1

X̃T y. Note that, Table 1 gives bounds on sϕ when λ ∝ 1√
n

.

Proof. First, let β ∈ Rsϕ be the ridge regression solution involving X̃ and y, i.e.,

β ∈ argmin
x∈Rsϕ

1

n

n∑
i=1

∣∣∣yi − X̃i∗x
∣∣∣2 + λs ∥x∥22 .

Note that, by construction, for every i ∈ [n], fλ

[X̃,y,ϕ]

(
X̃i∗

)
is equal to X̃i∗ · β.
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Thus,

1

n

n∑
i=1

∣∣∣∣yi − fλ

[X̃,y,ϕ]

(
X̃i∗

)∣∣∣∣2 =
1

n

n∑
i=1

∣∣∣yi − X̃i∗β
∣∣∣2 = inf

∥f̃∥H
≤
√
2

1

n

n∑
i=1

∣∣∣yi − f̃ (Xi∗)
∣∣∣2 (10)

where the first equality holds by definition of fλ

[X̃,y,ϕ]

(
X̃i∗

)
for every i ∈ [n], and the second

equality follows from the proof of Lemma 6 of [LTOS21] which indicates that s ∥β∥22 ≤ 2.

Note that,

inf
∥f̃∥H

≤
√
2

1

n

n∑
i=1

∣∣∣yi − f̃ (Xi∗)
∣∣∣2

= inf
∥f̃∥H

≤
√
2

1

n

n∑
i=1

∣∣∣yi − fλ
[X,y,k] (Xi∗) + fλ

[X,y,k] (Xi∗)− f̃ (Xi∗)
∣∣∣2

= inf
∥f̃∥H

≤
√
2

1

n

n∑
i=1

∣∣∣yi − fλ
[X,y,k] (Xi∗)

∣∣∣2 + 1

n

n∑
i=1

∣∣∣f̃ (Xi∗)− fλ
[X,y,k] (Xi∗)

∣∣∣2
+

2

n

n∑
i=1

(
yi − fλ

[X,y,k] (Xi∗)
)(

fλ
[X,y,k] (Xi∗)− f̃ (Xi∗)

)
(11)

where the first equality holds by adding and subtracting the same amount, while the last equality
holds by simple expansion.

To properly bound the terms above, we rely on Lemma 7 of [LTOS21].

Lemma 8 (Restatement of Lemma 7 [LTOS21]). Under Assumption 1 and the definitions in Theo-
rem 2, and for

f̃λ ∈ argmin
f̃∈H̃

1

n

n∑
i=1

∣∣∣fλ
[X,y,k] (Xi∗)− f̃ (Xi∗)

∣∣∣2 + λ
∥∥∥f̃∥∥∥

H̃
,

where H̃ is the corresponding RKHS space of X̃, it holds that

1

n

n∑
i=1

(
yi − fλ

[X,y,k] (Xi∗)
)(

fλ
[X,y,k] (Xi∗)− f̃λ (Xi∗)

)
≤ λ.

Hence, combining Lemma 8 with (11) yields

inf
∥f̃∥H

≤
√
2

1

n

n∑
i=1

∣∣∣yi − f̃ (Xi∗)
∣∣∣2

≤ 1

n

n∑
i=1

∣∣∣yi − fλ
[X,y,k] (Xi∗)

∣∣∣2 + 2λ+ inf
∥f̃∥H

≤
√
2

1

n

n∑
i=1

∣∣∣f̃ (Xi∗)− fλ
[X,y,k] (Xi∗)

∣∣∣2
≤ 1

n

n∑
i=1

∣∣∣yi − fλ
[X,y,k] (Xi∗)

∣∣∣2 + 4λ

(12)

where the last inequality holds by Lemma 4 (or equivalently Lemma 6 of [LTOS21]), and thus
concluding Theorem 2.

C Regarding sϕ

In what follows, we discuss cases for determining the quantity sϕ. To quantify sϕ which in turn
determines the size of the distilled set, we need to measure dK which is the trace of K (K+ nλIn)

−1:
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Table 1: Table 1 from [LTOS19]. The trade-off in the worst case for the squared error loss.
SAMPLING SCHEME SPECTRUM NUMBER OF FEATURES

WEIGHTED RFF

finite rank sϕ ∈ Ω(1)
λi ∝ Ai sϕ ∈ Ω(log n · log logn)

λi ∝ i−2t (t ≥ 1) sϕ ∈ Ω(n1/2t · log n)
λi ∝ i−1 sϕ ∈ Ω(

√
n · log n)

PLAIN RFF

finite rank sϕ ∈ Ω(
√
n)

λi ∝ Ai sϕ ∈ Ω(
√
n · log log n)

λi ∝ i−2t (t ≥ 1) sϕ ∈ Ω(
√
n · log n)

λi ∝ i−1 sϕ ∈ Ω(
√
n · log n)

• For the case where K has a finite rank, i.e., the number of positive eigenvalues is lower than
n, then sϕ ∈ Ω(1).

• As for the exponential decay, it occurs when the kernel is Gaussian and the marginal
distribution of the input data (e.g., images) is sub-Gaussian. In such a case, it was shown
in [Bac17] that dK ∈ O

(
log 1

λ

)
. Thus sϕ is poly-logarithmic in n when λ := O

(
1√
n

)
.

• For the case where the Hilbert space H is also a Sobolov space of order γ larger or equal to
1, then dK ∈ O

(
1

λ2γ

)
which in the case of λ := O

(
1√
n

)
, we have sϕ ∈ Ω

(
n

1
4γ

)
.

• In the general case, where the decay of the eigenvalues admits λi ∝ O(i−1), then dk in
the worst case is bounded by O( 1

lambda , and thus, via Theorem 2, we can deduce that
sϕ ∈ O(

√
n log n) for the case of λ ∈ O( 1√

n
).

Note that the choice of λ ∈ O( 1√
n
) is used in the literature of KRR to ensure that the learning rate is

1√
n

as shown in [RR17].

D Multi-class Experiments

In fig. 7 and fig. 8 we test our bound for the multi-class case on MNIST 0,1,2 digits with similar
settings as in the binary classification case. The results justify our bounds.

Figure 7: Distillation results for MNIST multi class 0, 1, 2 classification (n = 3)

Figure 8: Distillation results for MNIST multi class 0, 1, 2 classification (n = 3); testing the 8λ bound
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E On the rank of X̃ and its connection to the distilled set S

First, recall that X̃ is the RFF image of X . There are mainly two cases connecting the rank of X̃ to
S:

(I) The rank of X̃ is sϕ, i.e., X̃ is of full rank.

(II) Otherwise.

Regarding Case (I). For such a case, Theorem 3 is exactly what we need to prove the existence of
a distilled set S.

Handling Case (II). For this case as well, one can also choose to ensure that the rank of S (matrix
form of S) is sϕ (full rank) and apply the same derivations done in the proof of Theorem 3 without
any violation from the perspective of the validity of our proof. However, due to the nature of this case,
one can also ensure that the size of S (number of instances) is much smaller than sϕ, specifically, r
(the rank of X̃). To that end, must ensure that

(A) the following equation(
S̃T S̃+ λnsϕλIsϕ

)(
X̃T X̃+ λnsϕλIsϕ

)−1

X̃T y = S̃T yS,

has a solution, i.e., yS exists, and also

(B) we need to ensure that (6) also has a solution, i.e., there exists α ∈ Rr such that

1

sϕ
X̃T

(
1

sϕ
X̃X̃T + nλIn

)−1

fS[X] = Aα.

We observe that since X̃ is rank deficient adds some obstacles to our proofs;
when attempting to ensure both (A) and (B). Specifically speaking, the rank of(
S̃T S̃+ λnsϕλIsϕ

)(
X̃T X̃+ λnsϕλIsϕ

)−1

X̃T is equal to the rank of X̃ (due to proper-
ties of rank function) and since we aim to maintain that S has exactly that number of rows while also
its RFF image S̃ has a rank equal to that of X̃, we obtain that the linear system of equations in (A)
might have no solution at all. This is unless the row span of S̃ coincides with that of X̃.

Having an S such that the row span of its RFF image coincides with the row span of X̃, also ensures
the existence of a solution concerning the linear system of equations present at (B).

F One of many ways to construct S

Following the previous section, to properly construct S that would satisfy the proof of Theorem 3,
we discuss two possible constructions:

• If X̃ is of full rank (the rank is sϕ), then there exists a subset S of the rows of X such that its
image in the RFF space is a linearly independent subset S̃ of the rows of X̃ . Such a subset
is of full rank as it is linearly independent. Such an algorithm can be accessed via [J23].

• If X̃ is rank deficient, i.e., r < sϕ where r denotes the rank of X̃ , then the problem by it

self requires r independent vectors, i.e, one can represent
(
X̃T X̃ + λnsϕλIsϕ

)−1

X̃T y by

Az where A ∈ Rsϕ×r and z ∈ Rr. This is since the rank of
(
X̃T X̃ + λnsϕλIsϕ

)−1

X̃T

is at max the minimum between the rank of
(
X̃T X̃ + λnsϕλIsϕ

)−1

and the rank of X̃T .

Such rank is bounded from above by r since the rank of
(
X̃T X̃ + λnsϕλIsϕ

)−1

is sϕ.
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To this end, we can invoke the first case with respect to (B, z). Thus, by choosing S to contain the r

linearly independent rows in X̃ and an additional row from X̃ (not already in S), there exists yS such
that, (

S̃T S̃ + λnsϕλIsϕ

)
Bz = S̃T yS.

Connection to subset selection and label solve. Observe that according to this section, we showed
that our bounds in Theorem 3 hold for a subset of the data but with different (potentially learned)
labels (not necessarily from the set of input labels) which can be thought of as a hybrid between
distillation and subset selection. Intuitively, this justifies the label-solve approach of [NCL20], where
here we showed that a subset of the data can achieve similar bounds but with learning the labels.
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