
On the Constrained Time-Series Generation Problem

Andrea Coletta
J.P. Morgan AI Research

London, UK

Sriram Gopalakrishan
J.P. Morgan AI Research

New York, USA

Daniel Borrajo
J.P. Morgan AI Research

Madrid, ESP

Svitlana Vyetrenko
J.P. Morgan AI Research

New York, USA

Abstract

Synthetic time series are often used in practical applications to augment the his-
torical time series dataset, amplify the occurrence of rare events and also create
counterfactual scenarios. Distributional-similarity (which we refer to as realism) as
well as the satisfaction of certain numerical constraints are common requirements
for counterfactual time series generation. For instance, the US Federal Reserve
publishes synthetic market stress scenarios given by the constrained time series
for financial institutions to assess their performance in hypothetical recessions.
Existing approaches for generating constrained time series usually penalize training
loss to enforce constraints, and reject non-conforming samples. However, these
approaches would require re-training if we change constraints, and rejection sam-
pling can be computationally expensive, or impractical for complex constraints. In
this paper, we propose a novel set of methods to tackle the constrained time series
generation problem and provide efficient sampling while ensuring the realism of
generated time series. In particular, we frame the problem using a constrained
optimization framework and then we propose a set of generative methods including
“GuidedDiffTime”, a guided diffusion model. We empirically evaluate our work on
several datasets for financial and energy data, where incorporating constraints is
critical. We show that our approaches outperform existing work both qualitatively
and quantitatively, and that “GuidedDiffTime” does not require re-training for new
constraints, resulting in a significant carbon footprint reduction, up to 92% w.r.t.
existing deep learning methods.

1 Introduction

In recent years, synthetic time series (TS) have gained popularity in various applications such as data
augmentation, forecasting, and imputation of missing values [1, 2, 3, 4, 5]. Additionally, synthetic TS
are extremely useful to generate unseen and counterfactual scenarios, where we can test hypotheses
and algorithms before employing them in real settings [6]. For example, in financial markets, it can
be very useful to test trading strategies on unseen hypothetical markets scenarios, as poorly tested
algorithms can lead to large losses for investors, as well as to overall market instability [7, 8]. In
order to be useful, such hypothetical market stress scenarios need to be realistic - i.e., the synthetic
market TS need to have statistical properties similar to the historical ones. They also need to satisfy
certain constraints supplied by experts on how hypothetical market shock scenarios can potentially
unfold. For instance, in order to ensure financial market stability, the US Federal Reserve annually
assesses the market conditions and publishes a set of constrained market stress scenarios that financial
institutions must subject their portfolios to, in order to estimate and adjust for their losses in case of
market downturns [9].

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

(a) Unconstrained (b) Trend (c) Fixed value (d) Global minimum (e) Multivariate

Figure 1: An example of synthetic stock market time-series under different constraints: (a) uncon-
strained generation; (b) a time-series following a trend constraint; (c) the final value of the TS has
to hold a specific value; (d) the global minimum must be at a given time point; (e) multi-variate TS
where the High and Low dimensions have the maximum and minimum values, respectively.

Our work targets the problem of generating constrained TS that are both statistically similar to
historical times series and match a given set of constraints. These constraints can be imposed by the
underlying physical process that generates the data. For example, synthetic energy data should adhere
to the principle of ’energy conservation’ [10]. Or, as in the preceding example of the US Federal
Reserve stress scenarios, constraints can be used to generate counterfactual synthetic TS with some
given conditions, e.g., a stock market index decreases by 5% [9, 11].

Related work: Existing work employs deep generative models (DGMs) to capture the statistical data
properties and temporal dynamics of TS [1, 12, 13, 14, 15], and additional constraints are usually
introduced by penalizing the generative model proportionally to the mass it allocates to invalid
data [16, 17, 18]; or by adding a regularization term to the loss function [19, 20]. Other approaches
condition the generative process by encoding constraints and feeding them into the model [10]; or
they reject and re-sample TS that do not match the constraints [21]. Finally, a different line of work
proposes special-purpose solutions, with ad-hoc architectures or sampling methods, which however
tackle specific applications (not TS generation) [22, 23, 24, 25]. In general, while most of these
models are able to reproduce the real data statistics, complex constraints can still be challenging to
be guaranteed. Most importantly, as DGMs incorporate constraints during training, a change to the
constraints may require re-training since the learned distribution of a DGM may no longer cover the
target distribution, and thus even rejection sampling would not be effective [26].

In this paper, we tackle the constrained TS generation problem for different constraint types, and
we present and compare a set of methods that can incorporate constraints into TS generation. First,
we present an optimization-based approach in which we compile the problem into a constrained
optimization problem (COP) [27] and generate synthetic data from an explicit formulation of data
properties and constraints. To overcome the need for an explicit definition of data properties, we
employ a DGM that can implicitly capture data properties from training data. In particular, we
introduce DiffTime, an approach based on conditional denoising diffusion models [28] where several
constraints can condition the data generation. In addition, we show that any kind of constraint can be
applied to diffusion models by penalizing the model proportionally to the constraint violation during
training. This approach, called Loss-DiffTime, shows good performance with efficient sampling, but
requires re-training upon a new constraint. Finally, to increase computational efficiency and reduce
the carbon footprint of the model [29], we propose a guided diffusion model Guided-DiffTime that
does not require re-training upon changes in the constraints —- at inference, it can adjust the TS
generation process based on the input constraints.

Our main contributions can be summarized as follows:

• We formally define the constrained TS problem, and characterize different types of con-
straints for synthetic TS.

• We propose and compare different approaches to generate synthetic TS. We evaluate their
advantages and disadvantages with respect to different measures of performance and con-
straint types. We show how COP can also be used for post-hoc fine-tuning of TS, such that
synthetic TS generated by any DGM can be adjusted to guarantee constraint satisfaction.

• We empirically demonstrate that our approaches outperform existing work in many TS
domains, both qualitatively and quantitatively. We show that DiffTime outperforms existing
state-of-art models in unconstrained TS generation, while Guided-DiffTime is the only
solution where re-training for new constraints is not necessary, resulting in a significant
carbon footprint reduction.

2

2 Definitions and Problem Formulation

The constrained TS generation problem requires generating synthetic TS data, where each TS is
defined in the sample space χ = RL×K where L is the length of the TS and K is the number of
features. Our goal is to generate synthetic data such that the synthetic distribution approximates the
input data distribution, and each TS also conforms to user-specified constraints. The problem input
is a tuple ⟨D = {xi}Ni=1, C⟩ consisting of a dataset D of N time series xi ∈ χ, i ∈ [1..N] and a list
of constraints C that a synthetic TS should conform to. The constraints include realism constraints
(see Section 3.1). Henceforth, we will drop the sample index for x unless needed, and only keep the
position and feature indices. We also shortly denote [K] ≜ {0, . . . ,K} and [L] ≜ {0, . . . , L}.
Constraints — like those in Figure 1 — are defined as tuples of the form ⟨t, f⟩ ∈ C, where t can be
either soft or hard and a differentiable function f . If the constraint type is hard, then f can be an
inequality or an equality constraint. An inequality constraint is of the form f(x̂) ≤ 0 where x̂ is the
generated synthetic TS. An equality constraint is of the form f(x̂) = 0. Hard constraints are required
to hold in a generated TS. Otherwise, the TS is rejected. Soft constraints are of the form f : χ→ R
whose value we would like to optimize (minimize) for. Therefore, by definition, soft constraints do
not require sample rejection. The constraints can be defined with respect to individual synthetic TS
samples x̂, or at the dataset level (distribution-related constraints). As a type of soft constraint, we
define trend-lines (see Figure 1.b) as a time series s ∈ χ. This constraint tells a generative method
to minimize the L2 distance between the trend and the corresponding points of the synthetic TS.
Formally, the synthetic TS x̂ would be optimized as to minimize ∥s− x̂∥22.

Additionally, both soft and hard constraints can be categorized into local and global constraints.
Global constraints are those that compare across all the points in the TS. For example, we can enforce
that xi,j ≤ x3,0, ∀(i, j) ∈ [L]× [K] such that the maximum value is at x3,0. Local constraints are
those that only refer only to a subset of points. For instance, requiring (xi,j = 2.5) for a given point
(i, j) ∈ [L]× [K]. We refer to this kind of constraint as fixed-point constraints (see Figure 1.c) since
they require that the value of the TS is fixed at that point to a specific value. The set of all fixed-point
constraints isR, where each element ri,j ∈ R and (i, j) ∈ [L]× [K].

The aforementioned types of constraints are explicit. Additionally, the problem of synthetic data
generation requires statistical similarity between the input and the synthetic datasets, which can either
be built-in into the data generating method (e.g., by design GANs generate data that is distributionally
similar to the input [2]) or specified explicitly as constraints in the model (e.g., autocorrelation
similarity can be an explicit constraint). The methods presented herein assume that the constraints
are differentiable. This is needed for deep generative methods, such as diffusion models, where
constraints need to be incorporated into the training or inference process. If the functions are
differentiable, then a straightforward approach [30] to incorporate them into the loss is:

loss(x, x̂) = objective_loss(x, x̂) + λgReLU(g(x̂)) + λhh(x̂)
2 (1)

where g(x̂) and h(x̂) are the inequality and an equality constraint respectively, which are added
as soft constraints into the loss function with penalty terms λg and λh. However, incorporating
constraints into the loss function may not guarantee constraint-conforming solutions, but good
candidate or starting solutions that we can then fine-tune (i.e., adjust to guarantee constraints). If
the constraints are not differentiable, one can use approaches that compute the loss for such a “rule”
using perturbations [10].

3 Constrained Time-Series Generation - Proposed Approaches

In this section, we introduce several approaches to tackle the constrained TS generation problem. In
particular, we discuss their advantages and disadvantages, and how they handle different scenarios
and constraints.

3.1 Constrained Optimization Problem (COP)

Our first model tackles the synthetic TS generation problem as a Constrained Optimization Problem
(COP) in which we treat each point xi,j ∈ x as a decision variable to be optimized. We will refer to
this method simply as “COP-method”. A COP problem is defined by an objective function that a
solution is optimized for, and set of constraints that need to be satisfied by the solution.

3

We can use COP in two ways, as a generative method, and as a fine-tuning method. If COP is used for
generating synthetic TS, then we take as input a real sample x from D as the starting TS (i.e., seed)
for generation, and set the objective to maximize the difference between the seed and the synthetic
TS. Formally, we maximize the L2 norm of the TS difference: obj(x, x̂) = ∥(x− x̂)∥2, where x
is the seed TS and x̂ is the generated TS. COP can also be used for fine-tuning candidate solutions
generated by other methods, such as by a diffusion model. When using COP as a fine-tuning method,
the candidate solution generated by the other method becomes the seed TS, and the objective simply
changes from maximizing the L2 difference to minimizing it; this is to preserve the information
from the candidate TS and just search in the space of nearby solutions for one that satisfies all the
constraints (if any failed). This can be helpful in fixing almost correct solutions, rather than using
rejection sampling.

The constraints for the COP formulation come from C. Additionally, when using COP as a generative
process we need to add constraints to satisfy the desired distributional properties that methods like
GANs would implicitly handle, such as preserving the distribution of the autocorrelation of returns
for stock data. This is done by constraining the COP solver to try and match the desired statistical
properties of the seed TS; by matching the property at the sample level, we seek to match the
distribution of that property at the dataset level. We do this by computing the target value from
the seed TS and comparing it with the corresponding value from the synthetic TS. Specifically,
we constrain the COP to limit the magnitude of the error between the property value computed
for x̂ and x within an allowed amount (a budget for error tolerance). This is done by using an
inequality constraint as follows: e(z(x̂), z(x))− b ≤ 0, where b is the budget we set (b = 0.1 in our
experiments), z(.) is the function that computes the desired property, and e(.) is the error function
that measures the error between the target and generated values. For example, for autocorrelation
of returns in stock data, the TS property is a vector, so the e(.) is the L2-norm of the difference. If
the COP solver cannot find a solution within the allowed error tolerance, we double the budget and
repeat the process for up to a fixed number of η repeats (we set η = 10 in our experiments). In the
supplementary material, we show how distributional constraints can be learned directly from the input
data, by training a Wasserstein-GAN [31, 32] and using the GAN critic in the objective function.

Once we define the objective function and constraints for COP, we can employ one of the many
solvers available to compute the synthetic TS. In our experiments, we use the Sequential Least
Squares Programming (SLSQP) solver [27] in Scipy’s optimization module [33].

3.2 DiffTime - Conditional Diffusion Model for Time Series generation

In the previous section, we introduced using COP to generate synthetic TS while guaranteeing the
input constraints and data properties. However, such COP problems may be non-linear, and solving a
non-linear problem is in general difficult and computationally expensive, especially with multi-variate
and long time-series (see Section 4). In this section, we introduce a conditional diffusion model named
DiffTime that leverages the latest advancements in score-based diffusion models [5, 34, 28, 35] to
generate synthetic TS. Our model can generate realistic TS and cope with Trend and Fixed Points
constraints by conditioning the generative model.

Denoising diffusion models Denoising Diffusion models are latent variable models which are
trained to generate samples by gradually removing noise — denoising — from samples corrupted
by Gaussian noise [28]. These models approximate a real data distribution q(x0) by learning a
model distribution pθ(x0) :=

∫
pθ(x0:T) dx1:T , where the latent variables x1:T are defined in the

same space X of the sample x0. The training follows: a forward process that progressively adds
noise to the sample x0; and a reverse process where the generative process gradually denoises a
noisy observation. The forward process is described with the following Markov chain with Gaussian
transitions parameterized by β1:T :

q(x1:T | x0) :=

T∏
t=1

q(xt | xt−1), q(xt | xt−1) := N
(√

1− βtxt−1, βtI
)

(2)

It admits the following close form q(xt | x0) = N (xt;
√
α̂tx0, (1 − α̂t)I), where αt := 1 − βt

and α̂t :=
∏t

i=1 αi, which allows sampling xt at any arbitrary diffusion step t. The generation is

4

performed by the reverse process defined as a Markov Chain starting at p(xT) = N (xT ;0, I):

pθ(x0:T) := p(xT)

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (3)

Following the formulation of Denoising Diffusion Probabilistic Models (DDPM) [28] we parameterize
the reverse process as follows:

µθ(xt, t) =
1√
α̂t

(
xt −

βt√
1− α̂t

ϵθ(xt, t)

)
, Σθ(xt, t) = σ2I, where σ2 =

√
βt (4)

where ϵθ is a trainable denoising function that predicts ϵ from xt, and the choice of β corresponds to
the upper bound on the reverse process entropy [35]. This function is approximated through a deep
neural network trained according to the following objective:

L(θ) := Et,x0,ϵ

∥∥∥ϵ− ϵθ(
√

α̂tx0 +
√

1− α̂tϵ, t)
∥∥∥2 (5)

where t is uniformly sampled between 1 and T , and the noise is Gaussian ϵ ∼ N (0, I). The
diffusion steps T and variances βt control the expressiveness of the diffusion process and they
are important hyperparameters to guarantee that the forward and reverse processes have the same
functional form [35].

Conditional diffusion models Our DiffTime model – which is a conditional diffusion model
— supports both trend and fixed point constraints that were defined in Section 2. To constrain a
particular trend, we condition the diffusion process using a trend TS s ∈ χ. Following recent work
on conditional diffusion models [5], we define the following model distribution:

pθ(x0:T |s) := p(xT)

T∏
t=1

pθ(xt−1|xt, s), pθ(xt−1 | xt, s) := N (xt−1;µθ(xt, t|s),Σθ(xt, t|s)).

(6)
which we learn by extending the parametrization in Eq. 4 with a conditional denoising function ϵθ:

µθ(xt, t | s) =
1√
α̂t

(
xt −

βt√
1− α̂t

ϵθ(xt, t | s)
)

(7)

where the Σθ(xt, t | s) = σ2I. In this formulation, the trend is provided during each diffusion step t,
without any noise added to the conditioning trend. During the training, we extract the trend s directly
from the input TS x0, which can be a simple linear or polynomial interpolation; during inference, the
trend can be defined by the user at inference time. We recall that this is a soft constraint, meaning
that we do not expect the generated TS to exactly retrace the trend. In particular, during training, we
provide a trend that is a low-order polynomial approximation of x0 to avoid the model from copying
the trend s. Figure 1.b shows an example of the trend constraint.

Thus, the DiffTime training procedure minimizes the following revised loss function:

L(θ) := Et,x0,ϵ

∥∥∥ϵ− ϵθ(
√
α̂tx0 +

√
1− α̂tϵ, t | s)

∥∥∥2 (8)

Fixed Points. To satisfy the fixed point constraints, which are hard constraints, we modify the
reverse process of DiffTime to explicitly include them in the latent variables x1:T . We recall thatR is
the set of fixed point constraints, such that a fixed point constraint ri,j ∈ R with (i, j) ∈ [L]× [K].
Thus, at each diffusion step t we explicitly enforce the fixed-points values in the noisy time-series
xt, such that ∀ ri,j ∈ R, xi,j = ri,j where xi,j ∈ xt. This approach would guarantee that the
generated TS have the desired fixed-point values. Most importantly, we experimentally validated that
the forward process generates consistent neighboring points (around the constrained fixed-points)
which means that the synthetic samples are conditioned by the fixed points, and preserve the realism
of the original input data. During training, we randomly sample the fixed points from the input TS(x0)
and require the diffusion process to conform to those fixed points. At inference, the fixed points can
be provided by the user. Figure 1.c shows an example of a fixed point at the end of the TS, where the
TS adapts to deal with the fixed point.

In the supplementary material, we provide additional details, network architecture, and the algorithm
pseudo-codes.

5

3.3 Loss-DiffTime - Constrained generation with diffusion models

In DiffTime, we leverage conditional diffusion models to support trend and fixed values for generating
TS. However, just by conditioning the model generation is not possible to encode all the constraints.
A common solution is to penalize the generative model proportionally to how much the generated TS
violates the input constraint [36].

In this section, we propose Loss-DiffTime where a constraint penalty is applied to deal with any kind
of constraint. The penalty function fc : X → R is added to the learning objective of the diffusion
model, and it evaluates whether the generated TS x̂ meets the input constraint. We discuss the
penalty function fc for constraints in Section 2 and in Equation 1. With fc in the loss, the greater the
constraint violation is, the greater the model loss during training will be. However, the optimization
problem in Eq. 5 predicts the noise component for the sample x0, into which we cannot directly feed
to our penalty function. Moreover, we cannot apply fc(x) to a noisy sample xt as the constraints may
be evaluated only on the final sample. Therefore, to apply our penalty function, we re-parametrize
the optimization problem and force the diffusion model to explicitly model the final sample x̂0 at
every step as follows:

L(θ) := Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t | s)∥2 + ρfc(x̂0)

]
(9)

where xt =
√
α̂tx0 +

√
1− α̂tϵ and x̂0 = 1√

αt

(
xt − 1−αt√

1−α̂t
ϵθ(xt, t)

)
. We consider that any

constraint in C can be differentiable (as discussed in Section 2). So, we can train our diffusion
model following Eq. 9 where ρ is a scale parameter used to adjust the importance of the constraint
loss. The conditional information of the trend s can be removed if we do not need to enforce any
trend constraint. Figure 1.d and Figure 1.e show two examples of more complex constraints with
Loss-DiffTime.

3.4 Guided-DiffTime - Guided Diffusion models for constrained generation

The Loss-DiffTime model is now able to generate real TS while dealing with any constraint. However,
we notice two major drawbacks: 1) since we translate constraints to penalty terms in the loss, we
need to re-train the model for new constraints; and 2) the diffusion models usually require several
iterative steps T which can make it slower and expensive for TS generation. Our final proposed
approach, namely Guided-DiffTime, solves these two problems and can dramatically reduce the
carbon footprint when using DGM for constrained TS generation. In particular, it adopts a Denoising
Diffusion Implicit Model (DDIM) [37] which requires fewer diffusion steps at inference. Moreover,
by following the groundbreaking work of [38, 39], which shows how to guide a diffusion model using
a noisy classifier, we demonstrate how a pre-trained diffusion model can be guided (conditioned)
using gradients from differentiable constraints.

DDIM is a class of non-Markovian diffusion processes with the same training objective of classic
DDPMs [28], but fewer diffusion steps to generate high-quality samples. In particular, DDIMs keep
the same training procedure as DDPMs defined in Section 3.2 while the sampling can be accelerated
by using the following re-parametrization of the reverse process:

xt−1 =
√
α̂t−1

(
xt −

√
1− α̂t · ϵθ(xt, t)√

α̂t

)
+

√
1− α̂t−1 − σ2

t · ϵθ(xt, t) + σtϵ (10)

where α̂0 := 1 and different parametrizations of σt lead to different generative processes. We set
σt = 0,∀t ∈ [0, T] to have a deterministic forward process from latent variables to the sample
x0 (since the noise term σtϵ is zeroed out). This deterministic forward process defines the DDIM
which can use fewer diffusion steps to generate realistic samples. This diffusion steps are defined
by a sequence τ of length V which is a sub-sequence of [1, . . . , T] with the last value as T , i.e.,
τV = T [37]. For example, τ = [1, 4, 9, ..., T]. Moreover, this parametrization is a generalization
of DDPM as setting σt =

√
(1− αt−1)/(1− αt)

√
1− αt/αt−1 describes the original DDPM [37]

and the DDIM work showed that re-training of the DDPM model is unnecessary when we change the
value of σ or the diffusion steps τ .

Given the DDIM, we can then apply the recent results from guided diffusion models [38, 39] to
condition each sampling step with the information given by the gradients of the differentiable
constraint fc (see Section 3.3). Algorithm 1 shows the sampling procedure which computes the

6

Algorithm 1 Guided-DiffTime

Input: differentiable constraint fc : X → R, scale parameter ρ
Output: new TS, x0

xT ← sample from N (0, I)
for all t from T to 1 do
ϵ̂← ϵθ(xt, t)
ϵ̂← ϵ̂− ρ

√
1− α̂t∇xt

fc(
1√
α̂t
(xt − ϵ̂

√
1− α̂t))

xt−1 ←
√

α̂t−1

(
xt−

√
1−α̂t ϵ̂√
α̂t

)
+

√
1− α̂t−1ϵ̂

end for
return x0

gradients w.r.t. to the input TS xt. We recall that the constraint is applied on the final sample x̂0,
computed according to the DDIM reverse process. Again, this approach does not require re-training
of the original diffusion model to deal with new constraints, which can be applied just at inference
time. Hence, we reduce the carbon footprint of the model, and get a faster time-series generation.

4 Experiments

In this section we evaluate our approaches, showing their advantages and disadvantages when applied
to different domains and constraints. In particular, we follow the five scenarios shown in Figure 1
while considering multiple real-world and synthetic datasets. For COP we use a subset of the original
TS as starting solution (seed), we leave in the supplementary material the analysis of different seeds.

Baselines We compare our approaches against existing TS generative models, including GT-
GAN[12], TimeGAN [1], RCGAN [40], C-RNN-GAN [41], a Recurrent Neural Networks (RNN) [1]
trained with T-Forcing and P-Forcing [42, 43], WaveNET [44], and WaveGAN [45]. For the con-
strained scenarios, we extend the benchmark architectures to cope with constraints, by introducing a
penalty loss [18, 16] or by conditioning the generation process. We also employ rejection-sampling
and fine-tuning with COP on their generated synthetic TS.

Datasets We consider three datasets with different characteristics such as periodicity, noise, correla-
tion, and number of features: 1) daily stocks which uses daily historical Google stock data from 2004
to 2019 with open, high, low, close, adjusted close, and volume features [1]; 2) energy data from
the UCI Appliances energy prediction dataset [46] containing 28 features with noisy periodicity and
correlation; 3) sines a synthetic multivariate sinusoidal TS with different frequencies and phases [1].

Evaluation metrics For each experimental scenario, we evaluate the generative models and TS
along different quantitative and qualitative dimensions. First, we evaluate the realism through
a discriminative score [1], which measures how much the generated samples resemble (i.e., are
indistinguishable from) the real data using a post-hoc RNN trained to distinguish between real and
generated samples. We evaluate the distributional-similarity between the synthetic data and real
data by applying t-SNE [47] on both real and synthetic samples; t-SNE shows (in a 2-dimensional
space) how well the synthetic distribution covers the original input distribution. Then, we evaluate
the usefulness of generated samples — how the synthetic data supports a downstream task such
as prediction —- by training an RNN on synthetic data and testing its prediction performance on
real data (i.e., predictive-score [1]). To evaluate how the model satisfies different constraints, we
introduce the following metrics: Perc. error distance which measures how much the synthetic data
follows a trend constraint by evaluating the L2 distance between the TS and the trend; satisfaction
rate which measures the percentage of time a synthetic TS meets the input constraints; the inference
time measured as the average seconds required to generate a new sample with a given constraint; and
finally the fine-tuning time which is the average time, in seconds, needed to enforce constraints over
a generated sample, using COP to fine-tune it.
We provide further experiments, including details on the baselines, datasets, metrics, and algorithm
hyperparameters in the supplementary material.

7

4.1 Unconstrained Generation

First, we compare the ability of DiffTime and COP to generate unconstrained TS against exist-
ing benchmark datasets and algorithms. In Figure 2 we evaluate the realism with respect to the
distributional-similarity, where red dots represent the original TS and blue dots the generated TS. The
figure shows that our approaches have significantly better performance with better overlap between
red and blue samples.1

(a) COP (b) DiffTime (c) GT-GAN (d) TimeGAN (e) RCGAN (f) C-RNN-GAN

Figure 2: t-SNE visualizations on multivariate stock data, where a greater overlap of blue and red dots
shows a better distributional-similarity between the generated data and original data. Our approaches
show the best performance.

In Table 1 we measure the usefulness and realism through the predictive and discriminative scores,
respectively. DiffTime consistently generates the most useful data with the best predictive score
for both Sines and Stocks datasets, while keeping remarkable realism (i.e., discriminative score).
COP generates excellent synthetic samples as well, indistinguishable from real data with the best
discriminative score for both Stocks and Energy. However, we acknowledge COP is advantaged by
the original time series as an input seed.

Table 1: Unconstrained Time-Series Generation (Bold indicates best performance).
Metric Method Sines Stocks Energy

Discriminative
Score

(Lower the Better)

DiffTime (Ours) .013 ± .006 .097 ± .016 .445 ± .004
COP (Ours) .020 ± .001 .050 ± .017 .101 ± .019
GT-GAN .012 ± .014 .077 ± .031 .221 ± .068
TimeGAN .011 ± .008 .102 ± .021 .236 ± .012
RCGAN .022 ± .008 .196 ± .027 .336 ± .017
C-RNN-GAN .229 ± .040 .399 ± .028 .449 ± .001
T-Forcing .495 ± .001 .226 ± .035 .483 ± .004
P-Forcing .430 ± .227 .257 ± .026 .412 ± .006
WaveNet .158 ± .011 .232 ± .028 .397 ± .010
WaveGAN .277 ± .013 .217 ± .022 .363 ± .012

Predictive
Score

(Lower the Better)

DiffTime (Ours) .093 ± .000 .038 ± .001 .252 ± .000
COP (Ours) .095 ± .002 .041 ± .001 .250 ± .003
GT-GAN .097 ± .000 .040 ± .000 .312 ± .002
TimeGAN .093 ± .019 .038 ± .001 .273 ± .004
RCGAN .097 ± .001 .040 ± .001 .292 ± .004
C-RNN-GAN .127 ± .004 .038 ± .000 .483 ± .005
T-Forcing .150 ± .022 .038 ± .001 .315 ± .005
P-Forcing .116 ± .004 .043 ± .001 .303 ± .005
WaveNet .117 ± .008 .042 ± .001 .311 ± .006
WaveGAN .134 ± .013 .041 ± .001 .307 ± .007

Original .094 ± .001 .036 ± .001 .250 ± .003

4.2 Constrained Generation

We now evaluate the performance of our approaches against the constraints shown in Figure 1 using
daily stock data. For univariate constraints (i.e., trend, fixed values, and global minimum) we consider
only the Open value from the daily stock dataset. We consider as benchmarks the best three SoA
approaches from Table 1 (i.e., GT-GAN, TimeGAN, and RCGAN). For trend- and fixed-values
constraints we condition their generative process so that different trends and values can be used at
inference time. For the other constraints, we add a penalty term in the training loss [18, 16].

1We report only the top 6 models, leaving the full evaluation to the Supplementary material.

8

Soft Constraints In table 2 we constrain the synthetic TS to follow a given trend, computed as a
3-degree polynomial approximation from the original samples. Our approaches generate synthetic
data that are closer to the input trend, with the smallest relative distance (i.e., perc. error distance).
Moreover, our approaches are among the best in terms of realism and usefulness. In the supplementary
material we investigate the use of sinusoidal trends, including additional evaluation metrics.

Table 2: Soft Constraints (Trend) Time-Series Generation (Bold indicates best performance).
Algo Discr-Score Pred-Score Inference-Time Perc. Error Distance
COP (Ours) 0.01±0.01 0.20±0.00 0.73±0.05 0.015±0
DiffTime (Ours) 0.01±0.01 0.20±0.00 0.02±0.00 0.018±0
GT-GAN 0.04±0.03 0.22±0.00 0.00±0.00 1.378±2
TimeGAN 0.02±0.02 0.20±0.00 0.00±0.00 0.073±0
RCGAN 0.02±0.01 0.20±0.00 0.00±0.00 0.071±0

Hard Constraints In Table 3 we evaluate all the approaches against hard constraints (see Fixed
Points, Global Min, and Multivariate in Figure 1). For Global Min almost all approaches have a
great satisfaction rate. However, our approaches are above 0.90 and have the best discriminative and
predictive score. Additionally, while 100% of the synthetic time-series generated by TimeGAN and
RCGAN guarantee this type of constraint, they do not approximate the input distribution well(see
Figure 3). For most complex constraints like the multivariate one, the satisfaction rate drops for most
of the benchmarks while for our GuidedDiffTime and COP the satisfaction rate is still very high, with
great realism and usefulness. Finally, when we employ the fixed point constraints, we fix the values
of the points at index 6 and 18. All the benchmarks fail to satisfy these constraints, while we show
instead that DiffTime is able to always guarantee this constraint, by enforcing it during the diffusion
steps. Most importantly, it achieves very good discriminative and predictive scores with low inference
time. To summarize our results: COP achieves almost always the best realism and usefulness scores,
but with higher inference time and using original input TS as seed (which makes the generated TS
very similar to the input data); diffusion models are also very powerful with lower inference time and
use random noise as input seed as opposed to a real TS (this gives us better variety in TS compared to
COP); and GuidedDiffTime is able to enforce new constraints without any re-training yet achieving
excellent performance.

Table 3: Hard Constraints Time-Series Generation (Bold indicates best performance).
Constraint Algo Discr-Score Pred-Score Inference-Time Satisfaction Rate Fine-Tuning Time

Global Min

COP (Ours) 0.02±0.01 0.20±0.00 19.1±1.01 1.00±0.00 0.00±0.00
GuidedDiffTime (Ours) 0.03±0.02 0.21±0.00 0.03±0.00 0.90±0.01 3.01±0.10
LossDiffTime (Ours) 0.22±0.03 0.38±0.00 0.02±0.00 0.99±0.00 6.00±0.60
GT-GAN 0.04±0.02 0.22±0.00 0.00±0.00 0.87±0.02 9.30±1.30
TimeGAN 0.03±0.02 0.21±0.00 0.00±0.00 1.00±0.00 0.00±0.00
RCGAN 0.23±0.03 0.20±0.00 0.00±0.00 1.00±0.00 0.00±0.00

Multivariate (OHLC)

COP (Ours) 0.04±0.02 0.04±0.00 2.17±0.10 1.00±0.00 0.00±0.00
GuidedDiffTime (Ours) 0.08±0.00 0.04±0.10 0.15±0.00 0.72±0.02 31.0±1.50
LossDiffTime (Ours) 0.35±0.04 0.04±0.01 0.14±0.00 0.69±0.01 57.5±5.01
GT-GAN 0.22±0.07 0.05±0.00 0.00±0.00 0.05±0.01 44.5±3.01
TimeGAN 0.24±0.03 0.05±0.00 0.00±0.00 0.51±0.02 16.1±1.30
RCGAN 0.35±0.04 0.04±0.00 0.00±0.00 0.00±0.00 95.1±4.03

Two Fixed Points

COP (Ours) 0.02±0.02 0.20±0.00 0.56±0.11 1.00±0.00 0.00±0.00
DiffTime (Ours) 0.04±0.03 0.21±0.00 0.01±0.00 1.00±0.00 0.00±0.00
GT-GAN 0.04±0.03 0.21±0.00 0.00±0.00 0.00±0.00 0.99±0.10
TimeGAN 0.03±0.01 0.20±0.00 0.00±0.00 0.00±0.00 0.84±0.00
RCGAN 0.02±0.02 0.20±0.00 0.00±0.00 0.00±0.00 0.87±0.20

(a) COP (b) Guided DiffTime (c) LossDiffTime (d) GT-GAN (e) TimeGAN (f) RCGAN

Figure 3: t-SNE visualizations on Global-Min constrained data, where a greater overlap of blue and
red dots implies a better distributional-similarity between the generated data and original data. Our
approaches show the best performance.

9

5 Conclusions

In summary, we defined the problem of generating synthetic TS data with both soft and hard
constraints, and we presented a set of novel methods. We evaluated our approaches on different
datasets and we compared their performance against existing state-of-art methods. We showed that
our approaches outperform existing work both qualitatively and quantitatively. Most importantly, we
introduced GuidedDiffTime to handle new constraints without re-training, and we showed that the
COP-method can be used to fine-tune candidate solutions. Please refer to the supplementary material
for more details on experiments comparing the methods presented herein.

Disclaimer

This paper was prepared for informational purposes by the Artificial Intelligence Research group
of JPMorgan Chase & Coȧnd its affiliates (“JP Morgan”), and is not a product of the Research
Department of JP Morgan. JP Morgan makes no representation and warranty whatsoever and
disclaims all liability, for the completeness, accuracy or reliability of the information contained herein.
This document is not intended as investment research or investment advice, or a recommendation,
offer or solicitation for the purchase or sale of any security, financial instrument, financial product or
service, or to be used in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such solicitation under
such jurisdiction or to such person would be unlawful.

References
[1] Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series generative adversarial

networks. Advances in neural information processing systems, 32, 2019.

[2] Eoin Brophy, Zhengwei Wang, Qi She, and Tomás Ward. Generative adversarial networks in
time series: A systematic literature review. ACM Computing Surveys, 55(10):1–31, 2023.

[3] Yan Li, Xinjiang Lu, Yaqing Wang, and Dejing Dou. Generative time series forecasting with
diffusion, denoise, and disentanglement. Advances in Neural Information Processing Systems,
35:23009–23022, 2022.

[4] James Jordon, Daniel Jarrett, Evgeny Saveliev, Jinsung Yoon, Paul Elbers, Patrick Thoral, Ari
Ercole, Cheng Zhang, Danielle Belgrave, and Mihaela van der Schaar. Hide-and-seek privacy
challenge: Synthetic data generation vs. patient re-identification. In NeurIPS 2020 Competition
and Demonstration Track, pages 206–215. PMLR, 2021.

[5] Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: Conditional score-based
diffusion models for probabilistic time series imputation. Advances in Neural Information
Processing Systems, 34:24804–24816, 2021.

[6] Andrea Coletta, Matteo Prata, Michele Conti, Emanuele Mercanti, Novella Bartolini, Aymeric
Moulin, Svitlana Vyetrenko, and Tucker Balch. Towards realistic market simulations: a
generative adversarial networks approach. In Proceedings of the Second ACM International
Conference on AI in Finance, pages 1–9, 2021.

[7] Jean-Philippe Bouchaud, Julius Bonart, Jonathan Donier, and Martin Gould. Trades, quotes
and prices: financial markets under the microscope. Cambridge University Press, 2018.

[8] Andrei Kirilenko, Albert S Kyle, Mehrdad Samadi, and Tugkan Tuzun. The flash crash:
High-frequency trading in an electronic market. The Journal of Finance, 72(3):967–998, 2017.

[9] https://www.federalreserve.gov/publications/2023-stress-test-scenarios.htm.

[10] Sungyong Seo, Sercan Arik, Jinsung Yoon, Xiang Zhang, Kihyuk Sohn, and Tomas Pfister. Con-
trolling neural networks with rule representations. Advances in Neural Information Processing
Systems, 34:11196–11207, 2021.

[11] Jonathan Kinlay. Synthetic market data and its applications. Available at SSRN 4380552, 2023.

10

[12] Jinsung Jeon, Jeonghak Kim, Haryong Song, Seunghyeon Cho, and Noseong Park. Gt-gan:
General purpose time series synthesis with generative adversarial networks. Advances in Neural
Information Processing Systems, 35:36999–37010, 2022.

[13] Linqi Zhou, Michael Poli, Winnie Xu, Stefano Massaroli, and Stefano Ermon. Deep latent state
space models for time-series generation. In International Conference on Machine Learning,
pages 42625–42643. PMLR, 2023.

[14] Ali Seyfi, Jean-Francois Rajotte, and Raymond Ng. Generating multivariate time series with
common source coordinated gan (cosci-gan). Advances in Neural Information Processing
Systems, 35:32777–32788, 2022.

[15] Daniel Jarrett, Ioana Bica, and Mihaela van der Schaar. Time-series generation by contrastive
imitation. Advances in Neural Information Processing Systems, 34:28968–28982, 2021.

[16] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Broeck. A semantic loss function
for deep learning with symbolic knowledge. In International conference on machine learning,
pages 5502–5511. PMLR, 2018.

[17] Gabriel Lima Guimaraes, Benjamin Sanchez-Lengeling, Carlos Outeiral, Pedro Luis Cunha
Farias, and Alán Aspuru-Guzik. Objective-reinforced generative adversarial networks (organ)
for sequence generation models. arXiv preprint arXiv:1705.10843, 2017.

[18] Luca Di Liello, Pierfrancesco Ardino, Jacopo Gobbi, Paolo Morettin, Stefano Teso, and Andrea
Passerini. Efficient generation of structured objects with constrained adversarial networks.
Advances in neural information processing systems, 33:14663–14674, 2020.

[19] Kuzman Ganchev, Joao Graça, Jennifer Gillenwater, and Ben Taskar. Posterior regularization for
structured latent variable models. The Journal of Machine Learning Research, 11:2001–2049,
2010.

[20] Naoya Takeishi and Yoshinobu Kawahara. Knowledge-based regularization in generative
modeling. In Proceedings of the Twenty-Ninth International Conference on International Joint
Conferences on Artificial Intelligence, pages 2390–2396, 2021.

[21] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In 2016 IEEE
International Conference on Data Science and Advanced Analytics (DSAA), pages 399–410.
IEEE, 2016.

[22] Jike Wang, Chang-Yu Hsieh, Mingyang Wang, Xiaorui Wang, Zhenxing Wu, Dejun Jiang,
Benben Liao, Xujun Zhang, Bo Yang, Qiaojun He, et al. Multi-constraint molecular generation
based on conditional transformer, knowledge distillation and reinforcement learning. Nature
Machine Intelligence, 3(10):914–922, 2021.

[23] Ruben Rodriguez Torrado, Ahmed Khalifa, Michael Cerny Green, Niels Justesen, Sebastian
Risi, and Julian Togelius. Bootstrapping conditional gans for video game level generation. In
2020 IEEE Conference on Games (CoG), pages 41–48. IEEE, 2020.

[24] Yexiang Xue and Willem-Jan van Hoeve. Embedding decision diagrams into generative
adversarial networks. In Integration of Constraint Programming, Artificial Intelligence, and
Operations Research: 16th International Conference, CPAIOR 2019, Thessaloniki, Greece,
June 4–7, 2019, Proceedings 16, pages 616–632. Springer, 2019.

[25] Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular
graphs. arXiv preprint arXiv:1805.11973, 2018.

[26] Roger D Peng. Advanced statistical computing. Work in progress, page 121, 2018.

[27] Nocedal Jorge and J Wright Stephen. Numerical optimization, 2006.

[28] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

[29] Payal Dhar. The carbon impact of artificial intelligence. Nat. Mach. Intell., 2(8):423–425, 2020.

11

[30] Priya Donti, David Rolnick, and J Zico Kolter. Dc3: A learning method for optimization with
hard constraints. In International Conference on Learning Representations, 2021.

[31] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications
of the ACM, 63(11):139–144, 2020.

[32] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In International conference on machine learning, pages 214–223. PMLR, 2017.

[33] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020.

[34] Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denois-
ing diffusion models for multivariate probabilistic time series forecasting. In International
Conference on Machine Learning, pages 8857–8868. PMLR, 2021.

[35] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International Conference on Machine
Learning, pages 2256–2265. PMLR, 2015.

[36] Yoshua Bengio, Ian Goodfellow, and Aaron Courville. Deep learning, volume 1. MIT press
Cambridge, MA, USA, 2017.

[37] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations, 2021.

[38] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in Neural Information Processing Systems, 34:8780–8794, 2021.

[39] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021.

[40] Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued (medical) time series
generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633, 2017.

[41] Olof Mogren. C-rnn-gan: Continuous recurrent neural networks with adversarial training. arXiv
preprint arXiv:1611.09904, 2016.

[42] Alex M Lamb, Anirudh Goyal ALIAS PARTH GOYAL, Ying Zhang, Saizheng Zhang, Aaron C
Courville, and Yoshua Bengio. Professor forcing: A new algorithm for training recurrent
networks. Advances in neural information processing systems, 29, 2016.

[43] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

[44] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative
model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[45] Chris Donahue, Julian McAuley, and Miller Puckette. Adversarial audio synthesis. arXiv
preprint arXiv:1802.04208, 2018.

[46] Luis M Candanedo, Véronique Feldheim, and Dominique Deramaix. Data driven prediction
models of energy use of appliances in a low-energy house. Energy and buildings, 140:81–97,
2017.

[47] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

12

	Introduction
	Definitions and Problem Formulation
	Constrained Time-Series Generation - Proposed Approaches
	Constrained Optimization Problem (COP)
	DiffTime - Conditional Diffusion Model for Time Series generation
	Loss-DiffTime - Constrained generation with diffusion models
	Guided-DiffTime - Guided Diffusion models for constrained generation

	Experiments
	Unconstrained Generation
	Constrained Generation

	Conclusions

