
A Detailed proofs

A.1 Proof of Theorem 2

In this section, we present the proof for our main theorem (Theorem 2 in Section 3.4). We first
introduce the following definitions and lemmas to better illustrate our proof.

Lemma 1 (Lemma 3.1 in [1]). If m = Ω
(

n2

λ2
0
log
(
n
δ

))
, then with probability at least 1 − δ,

∥H(0)−H∞∥2 ≤ λ0

4 and 3
4λ0 ≤ λmin(H(0)) ≤ 5

4λ0.
Definition 1. We denote the empirical indicator matrix as W(0) with entry [W(0)]ij such that

[W(0)]ij :=
1

m

m∑
r=1

I{wT
r (0)xi ≥ 0,wT

r (0)xj ≥ 0}

and indicator matrix as W̄ with entry [W̄]ij

[W̄]ij := Ew∼N(0,I)[I{wTxi ≥ 0,wTxj ≥ 0}]

The indicator matrix W̄ has the following property.
Proposition 1. If xi ∦ xj , then [W̄]ij > 0.

Proof. If Proposition 1 does not hold, then ∃i0, j0 ∈ [n]× [n], satisfying

0 =[W̄]i0j0

=Ew∼N(0,I)[I{wTxi0 ≥ 0,wTxj0 ≥ 0}]
=Pw∼N(0,I)(w

Txi0 ≥ 0,wTxj0 ≥ 0)

Thus xi0 = −xj0 , which contradicts the hypothesis xi0 ∦ xj0 . ■

In real-world datasets, the possibility of two different data being parallel is slight. Thus, proposition 1
holds in general. We further introduce Weyl inequality as follows:
Lemma 2 (Weyl inequality [2]). Let A, B ∈ Rn×n be Hermitian matrices, and let the eigenvalues of
A, B, and A+B be {λi(A)}ni=1, {λi(B)}ni=1 and {λi(A+B)}ni=1, respectively. The eigenvalues
of each matrix are arranged in ascending order. Then we have

λi(A+B) ≤ λi+j(A) + λn−j(B), j = 0, 1, . . . , n− i (1)

for each i = 1, . . . , n, with equality for some pair i, j if and only if there is a nonzero vector x such
that Ax = λi+j(A)x, Bx = λn−j(B)x, and (A+B)x = λi(A+B)x. Also,

λi−j+1(A) + λj(B) ≤ λi(A+B), j = 1, . . . , i (2)

for each i = 1, . . . , n, with equality for some pair i, j if and only if there is a nonzero vector x such
that Ax = λi−j+1(A)x, Bx = λj(B)x, and (A + B)x = λi(A + B)x. If A and B have no
common eigenvector, then inequality (1) and (2) are strict inequality.

Now, we provide the full proof of Theorem 2.

Theorem 2. Suppose f is an NN with a single hidden layer and ReLU activation function. Assume
X ∈ Rd×n, w(0) ∼ N(0, I), P (X) ≻ 0, p0 := λmin(P (X)), and hidden nodes m = Ω

(
n6d2

λ4
0δ

3

)
,

then the following formula holds with probability at least 1− δ over the initialization

∥f(W(t),a,X)− y∥22 ≤ exp (−cp0t)∥f(W(0),a,X)− y∥22
where c is a constant depending on m and d.
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Proof. To simplify our proof, we assume µx = 0, σx = 1, and ∥x∥2 ≤ C for all x ∈ X. Recall that

[H(0)]ij = xT
i xj

1

m

m∑
r=1

I{wT
r (0)xi ≥ 0,wT

r (0)xj ≥ 0} = xT
i xj [W(0)]ij

Due to I{wT
r (0)xi ≥ 0,wT

r (0)xj ≥ 0} is an independent random variable between 0 and 1, then by
Hoeffding’s inequality [3], the following inequality holds with probability 1− δ:

[W(0)]ij ≥ [W̄]ij −
2
√
log (1/δ)√

m

Let µ0 = min(i,j)∈[n]×[n][W̄]ij , and choose m > 16 log (1/δ)
µ2
0

, then we have

[W(0)]ij ≥ µ0 −
2
√

log (1/δ)√
m

≥ 2
√

log (1/δ)√
m

=: c(m)

Define the matrix M with entry [M]ij as

[M]ij := [H(0)]ij − c(m, d)[P (X)]ij

where c(m, d) = c(m)(d− 1). We claim that if m is large enough, then M is positive definite. To
clarify this statement, we consider the gap between H(0) and M:

∥H(0)−M∥2 = ∥c(m, d)P (X)∥2 ≤ c(m, d)∥P (X)∥F ≤ c(m, d)n2C2

If we choose m > 64 log (1/δ)(d−1)2n4C4

λ2
0

, we have

∥H(0)−M∥2 ≤ λ0

4

Then the following formula holds by matrix perturbation theory (Corollary 6.3.8 in [2])

0 <
λ0

2
≤ λmin(H(0))− λ0

4
≤ λmin(M)

which indicates that M is positive definite. We next exert Lemma 2 on M and get

0 < λmin(H(0)− c(m, d)P (X)) < λmin(H(0))− λmin(c(m, d)P(X))

That means

0 < c(m, d)p0 ≤ λmin(H(0)) ≤ 5

4
λ0 (3)

Therefore, combined with Theorem 1, we have

∥f(W(t),a,X)− y∥22
≤ exp (−λ0t)∥f(W(0),a,X)− y∥22
≤ exp (−c(m, d)p0t)∥f(W(0),a,X)− y∥22

where c(m, d) is a constant depending on m and d. This completes the proof of Theorem 2. ■
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A.2 Proof of Theorem 3

Proof. By Corollary 3.10 and Remark 3.11 in [4], we have

E[L(W )] ≤ O

(
c ·
√

yT (H∞)−1y

N

)
+O

(√
log(1/δ)

N

)

According to the courant minimax principle[5], D.2 in [6], and inequality 3, we get

yT (H∞)−1y ≤ yTy

λmin(H∞)
≤ c · y

Ty

p0
.

Thus, we have

E[L(W )] ≤ O

(
c ·
√

yT (H∞)−1y

N

)
+O

(√
log(1/δ)

N

)

≤ O

c ·
√

yTy

Np0

+O

(√
log(1/δ)

N

)

■

B Zero-cost proxies

In this section, we provide the details of the baseline zero-cost proxies. Suppose L is the loss function
and θ is the parameters of an initialized network. We denote ◦ as the Hadamard product. The concrete
formulations of the existing zero-cost proxies are as follows.

• snip. Lee et al. [7] use the changes in loss caused by the parameter perturbations to measure
the importance of the parameters in an initialized network, such that

Ssnip(θ) =

∣∣∣∣∂L∂θ ◦ θ
∣∣∣∣

• grasp. Wang et al. [8] replace the loss change in snip with the change of the gradient norm
to establish the proxy, such that

Sgrasp(θ) = −(H
∂L

∂θ
) ◦ θ

where H is the Hessian.

• synflow. To avoid layer collapse, Tanaka et al. [9] utilize the product of all parameters in the
network during the parameter perturbation to represent the loss, such that

Ssynflow(θ) =
∂L

∂θ
◦ θ

• grad_norm. Abdelfattah et al. [10] adopt the l2 norm of the gradients in an initialized work
as a proxy, such that

Sgrad_norm =

∥∥∥∥∂L∂θ
∥∥∥∥
2

• jacov/NWOT. Mellor et al. [11] use the correlation of activations within a network as a
proxy to evaluate the performance of the network, such that
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Sjacov = log |KH |, KH =

NA − dH(c1, c1) · · · NA − dH(c1, cN )
...

. . .
...

NA − dH(cN , c1) · · · NA − dH(cN , cN )


where NA is the number of rectified linear units, dH(ci, cj) represents the Hamming
distance between two binary codes ci and cj .

• NTK. Chen et al. [12] propose to use the condition number of NTK to measure the
trainability of the networks, such that

κN =
λmax(Θ̂train)

λmin(Θ̂train)

where Θ̂train stands for NTK of the networks. In our paper, we calculate the Spearman
correlation coefficient between 1/κN and the test accuracy of the networks.

• zen. Lin et al. [13] propose Zen-Score, in which they design an efficient zero-cost proxy
with Gaussian random inputs, such that

Szen = log (Ex,ϵ∥f(x; θ)− f(x+ αϵ; θ)∥F ) +
∑
i

log

√∑
j

σ2
i,j/m


where σi,j is the mini-batch standard deviation statistic of the j-th channel in BN.

• NASI. Shu et al. [14] propose NASI to evaluate the networks by approximating the trace of
the NTK, such that

NASI = mγ−1

∥∥∥∥∥∥b−1
∑
x∈Xj

∇θ0(A)Lx

∥∥∥∥∥∥
2

2

where Xj is a mini-batch of data with size |Xj | = b.

• KNAS. Xu et al. [15] propose to use gradient kernel to evaluate the networks, such that

g =
1

n2

∑
i,j

(
∂yLj (t)

∂w(t)

)(
∂yLi (t)

∂w(t)

)T

where yL is the output of L-th layer.

• GradSign. Zhang and Jia [16] propose GradSign, in which they analyze the sample-wise
optimization landscape of the networks, such that

GradSign =
∑
k

|
∑
i

sign([∇θl(fθ(xi), yi)|θ0 ]k)|

• ZiCo. Li et al. [17] explore the effect of gradient properties on network performance.
They use absolute mean and standard deviation values of gradients to evaluate network
performance:

ZiCo =

D∑
l=1

log

(∑
ω∈θl

E[|∂L(Xi,yi; θ)/∂ω|]√
V ar(|∂L(Xi,yi; θ)/∂ω|)

)
, i ∈ [N ]

where N and D represent the number of batches and network layers, respectively. θl
represents the parameters of the l-th layers.
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C Algorithm of MeCo-based NAS

We slightly abuse the notation and denote MeCo as our proxy function for the network. We adopt
the Zero-Cost-PT [18] to integrate MeCo to a zero-shot NAS. The algorithm of our MeCo-based
NAS is summarized in Algorithm 1. We denote A0 as an untrained supernet, et represents the t-th
edge, which stands for mixed operation in the search cells, and et,k is the k-th operation of t-th
edge. We denote E , N , and O as the set of edges, nodes, and candidate operations in the search
cells, respectively. For any node n ∈ N , we use E(n) as the set of its input edges, and ekn is the k-th
element of E(n). Note that we can use other zero-cost proxies as described in section B to replace
MeCo in Algorithm 1.

Algorithm 1 MeCo-based NAS
Require: A0: An untrained supernet; E : The set of edges in search cells; N : The set of nodes in

search cells; O: The set of candidate operations; N : the number of candidate networks.
Ensure: The best network Abest.

1: // Stage 1: Architecture Proposal
2: C = ∅;
3: for i = 1; i ≤ N ; i++ do
4: for j = 1; j ≤ |E|; j ++ do
5: Randomly choose an un-discretized edge et
6: Choose the best edge from the supernet, s.t.

et,best = argmin
1≤k≤|O|

MeCo(A0/et,k)

7: Use operation et,best to substitute et
8: end for
9: A|E| consists of {et,best|1 ≤ t ≤ |E|}

10: for j = 1; j < |N |, j ++ do ▷ prune the edges of the obtained architecture A|E|
11: Randomly select an unselected node n ∈ N
12: for k = 1; k < |E(n)|; k ++ do
13: Calculate MeCo of the architecture A|E|/e

k
n

14: end for
15: Retain edges e1n, e2n with the 1st and 2nd best MeCo value, and remove the other edges
16: end for
17: Get the candidate networks Ai that consist of {et,best|1 ≤ t ≤ E}, and append it to the set C
18: end for
19: // Stage 2: Architecture Validation
20: Get the best network:

Abest = argmax
1≤i≤N

MeCo(Ai), s.t. Ai ∈ C

D Experimental configurations

We use the same settings for the experiments as in [18]. We summarized the configurations of the
searching phase and training phase on CIFAR-10 and CIFAR-100 in Table 1 and Table 2, respectively.
For ZiCo, we use two mini-batch of data, which has a size of 64. For the other baseline proxies, we use
one mini-batch of data. On the other hand, our MeCo only uses one random data x ∈ R1×3×32×32.

E More experimental results of ρ

E.1 MeCo on NASBench-201 and NASBench-301 with three extra datasets

We evaluate MeCo and MeCoopt on NASBench-201 and NASBench-301 with Spherical-CIFAR-100,
NinaPro, and SVHN, respectively. We only use one random data x ∈ R3×32×32 for MeCo and
MeCoopt. The results are summarized in Table 3. Our MeCo achieves competitive results on most
benchmarks and achieves the best results on NASBench-201-SVHN, where the Spearman correlation
coefficient is ρ = 0.88.
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Table 1: The settings of Zero-Cost-PT with all proxies in DARTS-CNN for CIFAR-10

Settings Searching phase Training phase

Baselines MeCo (Ours) Baselines MeCo (Ours)

batch size 64 1 96 96
cutout True False True True
cutout length 16 - 16 16
learning rate 0.025 0.025 0.025 0.025
learning rate min 0.001 0.001 - -
momentum 0.9 0.9 0.9 0.9
weight decay 3e-4 3e-4 3e-4 3e-4
grad clip 5 5 5 5
init channels 16 16 36 36
layers 8 8 20 20
drop path prob - - 0.2 0.2

Table 2: The settings of Zero-Cost-PT with all proxies in DARTS-CNN for CIFAR-100

Settings Searching phase Training phase

Baselines MeCo (Ours) Baselines MeCo (Ours)

batch size 64 1 96 96
cutout True False True True
cutout length 16 - 16 16
learning rate 0.025 0.025 0.025 0.025
learning rate min 0.001 0.001 - -
momentum 0.9 0.9 0.9 0.9
weight decay 3e-4 3e-4 3e-4 3e-4
grad clip 5 5 5 5
init channels 16 16 16 16
layers 8 8 20 20
drop path prob - - 0.2 0.2

Table 3: Comparisons of ρ with baselines using NASBench-301 and NASBench-201 on three extra
datasets

Method NASBench-301 NASBench-201
Sph-Cifar100 NinaPro SVHN Sph-Cifar100 NinaPro SVHN

grasp 0.13 0.04 0.18 -0.01 -0.01 0.62
fisher 0.00 -0.11 0.05 0.07 -0.38 0.71
grad_norm -0.00 -0.20 0.42 -0.08 -0.23 0.77
snip -0.01 -0.10 0.38 -0.09 -0.28 0.76
synflow 0.05 -0.07 0.50 0.13 0.02 0.71
l2_norm 0.12 -0.07 0.70 -0.00 0.02 0.67
#params 0.07 -0.07 0.70 -0.14 -0.11 0.72
zen 0.07 -0.09 0.68 0.23 0.15 0.18
jacov 0.08 0.13 -0.36 -0.41 0.29 0.67
nwot 0.05 0.02 0.64 -0.02 0.06 0.76

MeCo (Ours) -0.05 -0.11 0.68 -0.23 0.02 0.88
MeCoopt (Ours) 0.03 0.12 0.68 - - -
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Figure 1: Relationship between our zero-cost proxies and test accuracy for NATS-Bench-TSS and
NATS-Bench-SSS on three datasets.

E.2 MeCo on NAS-Bench-101

We present the Spearman correlation coefficient between all zero-cost proxies and the test accuracy
of the networks in NAS-Bench-101. Our MeCo uses one data of CIFAR-10, i.e., x ∈ R1×3×32×32

while the baselines adopt a batch of samples as input. The results are summarized in Table 4.

Table 4: Spearman correlation coefficients ρ between zero-cost proxies and test accuracy on NAS-
Bench-101

Baselines

Dataset MeCo grasp [8] fisher[19] grad_norm[10] snip[7] synflow [9] jacov[11] zen[13] ZiCo [17]

CIFAR-10 0.44 -0.33 -0.27 -0.32 -0.25 0.36 -0.35 0.63 0.63

MeCo achieves competitive results on NAS-Bench-101 with CIFAR-10, i.e., the Spearman correlation
coefficient obtains 0.44, which is higher than the majority of the baselines. However, zen and ZiCo
perform better than MeCo.

E.3 MeCo on TransBench-101

We further evaluate our MeCo on diverse tasks. Specifically, we compare MeCo and the other proxies
on Transbench-101-Micro and Transbench-101-Macro [20], respectively.

TransBench-101-Micro. We evaluate MeCo and MeCoopt on TransBench-101-Micro with ten tasks.
We calculate the Spearman correlation between our proxies and the accuracy of the networks. The
results are summarized in Table 5. MeCo achieves the best performance on the three tasks, i.e., Class
Objection, Spherical-Cifar100, and NinaPro, which are 0.58, 0.85, and 0.47, respectively. It can be
seen that MeCoopt effectively improves the performance of MeCo. For example, MeCoopt improves
MeCo from 0.62 to 0.77 on segmentation tasks.

TransBench-101-Macro. We compare MeCo, MeCoopt and the baselines on TransBench-101-Macro
with seven tasks. The results are summarized in Table 6. Our proxies achieve the best performance on
Autoencoding, Jigsaw, and Surface Normal, which are 0.74, 0.48, and 0.80, respectively. Our proxies
also achieve competitive results on the remaining tasks. Experimental results show that our proxies
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can be used for diverse tasks. It can be demonstrated that MeCo and MeCoopt become ineffective on
a few tasks, such as Room Layout. We would like to note that the existing proxies do not achieve a
high correlation on all tasks consistently.

Table 5: Comparisons of ρ with baselines using Transbench-101-Micro on Ten Tasks

Approach Autoencoding Class Scene Jigsaw Surface Segmantation Room Spherical NinaPro SVHNObjection Classification Normal Layout -Cifar100
grasp -0.12 -0.22 -0.43 -0.12 0.01 0.00 -0.29 -0.03 -0.20 -0.24
fisher -0.58 0.44 -0.13 0.30 0.16 0.12 0.30 0.72 0.42 0.81
grad_norm -0.32 0.39 -0.33 0.36 0.36 0.60 0.25 0.72 0.40 0.78
snip -0.27 0.45 -0.14 0.41 0.49 0.68 0.32 0.76 0.42 0.83
synflow 0.00 0.48 0.27 0.47 0.00 0.00 0.30 0.79 0.45 0.92
l2_norm 0.04 0.32 0.28 0.35 0.50 0.48 0.18 0.53 0.36 0.52
#params -0.01 0.45 0.32 0.44 0.62 0.68 0.30 0.79 0.36 0.76
zen 0.14 0.54 0.27 0.51 0.71 0.67 0.38 0.67 0.42 0.74
jacov 0.18 0.51 0.19 0.56 0.75 0.80 0.40 0.71 0.40 0.77
nwot 0.03 0.39 0.89 0.42 0.57 0.53 0.25 0.64 0.38 0.63
zico 0.35 - 0.71 0.52 0.68 - - - - -

MeCo (Ours) 0.03 0.58 0.62 0.45 0.65 0.62 -0.25 0.85 0.47 0.88
MeCoopt (Ours) 0.03 0.59 0.64 0.47 0.67 0.77 0.26 0.85 0.47 0.88

Table 6: Comparisons of ρ with baselines using Transbench-101-Macro on Seven Tasks

Approach Autoencoding Class Scene Jigsaw Surface Segmantation Room
Objection Classification Normal Layout

grasp -0.02 -0.64 -0.43 -0.26 -0.05 -0.02 -0.26
fisher -0.19 -0.30 -0.13 -0.26 0.15 0.03 -0.26
grad_norm 0.31 -0.56 -0.33 -0.27 0.35 0.21 -0.27
snip 0.20 -0.38 -0.14 -0.19 0.45 0.27 -0.19
synflow 0.00 0.12 0.27 0.34 0.00 0.00 0.34
l2_norm -0.20 0.08 0.28 0.15 0.30 0.18 0.15
#params -0.18 0.16 0.32 0.15 0.30 0.06 0.15
zen -0.01 0.10 0.27 0.24 0.38 0.27 0.24
jacov 0.45 0.07 0.19 0.19 0.50 0.57 0.19
nwot 0.67 0.83 0.89 0.48 0.78 0.80 0.76
MeCo (Ours) 0.51 0.59 0.81 0.17 0.80 0.62 0.23
MeCoopt (Ours) 0.74 0.73 0.76 0.48 0.76 0.63 0.33

E.4 MeCo on AutoFormer and MobileNet OFA

AutoFormer. Chen et al. [21] proposed a novel one-shot architecture search framework for
transformer-based models. We load the trained supernets and regenerate the candidate subnets.
We then re-evaluate the subnets to obtain the accuracy on ImageNet and compute MeCo. The
correlation of MeCo and model accuracy on AutoFormer is 0.45.

OFA. To solve the problem of efficient inference across devices and resource constraints, Cai et al.
[22] proposed to train a once-for-all (OFA) network, which supports diverse architectural settings.
We randomly sample 1,000 subnets from the OFA network and use the accuracy of the predictor
predictions as the test accuracy. The Spearman correlation between MeCo and test accuracy is 0.86.

F More experimental results of NAS with MeCo

In this section, we provide more results and comparisons of our zero-shot NAS on NATS-Bench-TSS
and DARTS-CNN. In the following descriptions, we denote multi-shot, one-shot, and zero-shot as
MS, OS, and ZS, respectively.

F.1 Results on NATS-Bench-TSS

In the NATS-Bench-TSS search space, we evaluate all networks using zero-cost proxies and choose
the Top-10 networks with the highest scores. Then we calculate the average test accuracy and
standard deviation. The results are summarized in Table 7. As shown in the table, the networks
searched by MeCo have the highest average precision on CIFAR-10, which is 0.08 higher than the
best baseline proxy ZiCo. For CIFAR-100 and ImageNet16-120, MeCo achieves competitive results,
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e.g., 70.86%±0.96% with CIFAR-100 and 42.59%±1.77% with ImageNet16-120. In all, the results
demonstrate that our MeCo has a great advantage in evaluating network performance, considering
MeCo only requires one data sample as input.

We further combine MeCo with Zero-Cost-PT [18] and search for the best architecture three times
with different seeds. The accuracy of the selected architectures as well as the comparisons with the
baseline methods are presented in Table 8. It can be shown from the results that our MeCo-based
NAS achieves competitive results with the SOTA baselines, e.g., synflow, zen, and ZiCo. However,
MeCo-based NAS invokes one data for a single forward pass, thus being more resource-saving.

Table 7: The average test accuracy of Top-10 architectures obtained by various zero-cost proxies on
NATS-Bench-TSS using CIAFR-10, CIAFR-100, and ImageNet16-120, respectively

Baselines

Dataset MeCo grasp[8] fisher [19] grad_norm[10] snip [7] synflow[9] jacov[11] NTK[12] zen[13] ZiCo[17]

CIFAR-10 93.64 89.34 89.27 89.27 89.27 93.27 91.23 92.67 58.99 93.56
±0.31 ±2.16 ±2.10 ±2.10 ±2.10 ±0.74 ±1.01 ±0.46 ±3.44 ±0.23

CIFAR-100 70.86 60.89 61.06 60.89 60.89 71.12 68.50 69.31 12.73 70.64
±0.96 ±3.88 ±4.02 ±3.88 ±3.88 ±1.59 ±1.21 ±1.17 ±1.33 ±0.28

ImageNet16-120 42.59 22.99 24.10 23.35 23.35 42.65 40.59 39.98 15.10 42.74
±1.77 ±11.01 ±11.36 ±11.44 ±11.44 ±3.59 ±1.86 ±1.73 ±0.51 ±1.78

Table 8: The test accuracy of optimal architectures obtained by Zero-Cost-PT with various zero-cost
proxies on NATS-Bench-TSS using CIAFR-10, CIFAR-100, and ImageNet16-120, respectively

Baselines

Dataset MeCo grasp[8] fisher [19] grad_norm[10] snip [7] synflow[9] jacov[11] NTK[12] zen[13] ZiCo[17]

CIFAR-10 93.76 92.59 88.39 91.64 90.11 93.76 91.92 92.61 93.76 93.76
±0 ±1.12 ±2.55 ±0.68 ±2.85 ±0 ±2.40 ±0.65 ±0 ±0

CIFAR-100 71.11 68.98 65.77 65.20 65.29 71.11 69.67 68.27 71.11 71.11
±0 ±2.69 ±0.93 ±0.56 ±0.96 ±0 ±2.39 ±2.34 ±0 ±0

ImageNet16-120 41.44 35.29 28.91 35.82 37.38 41.44 40.35 41.25 41.44 41.44
±0 ±8.03 ±5.18 ±3.99 ±4.41 ±0 ±6.56 ±2.37 ±0 ±0

F.2 Results on DARTS-CNN

For DARTS-CNN search space, we search the architectures by Zero-Cost-PT with different zero-cost
proxies on CIFAR-100. Each searched network is trained five times, and the results are summarized
in Table 9. There are two settings in our experiments on DARTS-CNN: networks initialized with 16
channels and trained as in Table 2, and networks initialized with 36 channels and trained as in [23].
It can be shown from Table 9 that MeCo achieves competitive results compared with MS, OS, and
ZS baselines. More concretely, MeCo-based NAS obtains 19.33% test error with 0.08 GPU days,
which outperforms all the ZS methods under the same settings. On the other hand, compared with the
manual, MS, and OS methods, MeCo is also competitive. For example, MeCo-based NAS achieves
83.14% accuracy, which is only 0.34% lower than the baseline method β-DARTS [24], but five times
more efficient in computation.

We further visualize the networks searched by Zero-Cost-PT with different proxies on DARTS-CNN.
The results on CIFAR-10 and CIFAR-100 are presented in Figure 3 and Figure 4, respectively.

F.3 Results on MobileNet V3

We search the architectures on MobileNet space using Algorithm 1. We retrain the searched network
using ImageNet-1K for 480 epochs with a batch size of 256 and input resolution 224 × 224. The
results are summarized in Table 10. MeCo achieves 77.8% Top-1 accuracy, which is 0.7% higher
than the SOTA baseline method ZiCo. Moreover, our method only takes 0.04 GPU days, which
outperforms the SOTA methods.

G Limitations and future works
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Table 9: Comparison of our method with SOTA NAS methods using DARTS-CNN and CIFAR-100.

Approach Test Error Search Cost Params Method(%) (GPU Days) (MB)

DenseNet-BC[25] 17.18 - 25.6 Manual
NASNet-A[26] 16.82 2000 3.3 MS
DARTS(1st)[27] 17.76 1.5 3.3 OS
SNAS [28] 17.55 1.5 2.8 OS
P-DARTS[24] 15.92± 0.18 0.4 3.7 OS
R-DARTS[29] 18.01± 0.26 - - OS
PC-DARTS[23] 16.9 0.1 3.6 OS
β-DARTS[30] 16.52± 0.03 0.4 3.83± 0.08 OS

Zero-Cost-PT†
synflow [9] 19.82± 0.35 0.04 1.2 ZS

Zero-Cost-PT†
fisher[19] 21.14± 0.24 0.06 0.7 ZS

Zero-Cost-PT†
grasp [8] 22.65± 0.30 0.13 0.7 ZS

Zero-Cost-PT†
jacov[11] 22.90± 0.35 0.04 0.6 ZS

Zero-Cost-PT†
snip[7] 19.95± 0.28 0.04 0.8 ZS

Zero-Cost-PT†
NTK[12] 20.30± 0.33 0.19 0.9 ZS

Zero-Cost-PTZiCo† [17] 19.54± 0.28 0.06 1.1 ZS

Zero-Cost-PT†
MeCo 19.33± 0.25 0.08 0.8 ZS

Zero-Cost-PT‡
MeCo 16.86± 0.30 0.08 3.7 ZS

†: networks initialized with 16 channels and trained as settings in 2.
‡: networks initialized with 36 channels and trained as settings in [23].

Table 10: Comparison of our method with SOTA NAS methods using MobileNet and ImageNet-1K.

Approach Top-1 Search Cost Params Method(%) (GPU Days) (M)

MobileNet-V3(1.0) 75.2 288 5.3 MS
PNAS 74.2 224 5.1 MS

DARTS 73.3 4 4.7 OS
PC-DARTS 75.8 3.8 - OS
SPOS 74.7 8.3 - OS
GreedyNAS 74.9 7.6 3.8 OS

TE-NAS 75.5 0.17 5.4 ZS
ZiCo 77.1 0.4 - ZS
Zero-Cost-PT 76.4 0.04 8.0 ZS
Zen-score 76.1 0.5 - ZS
MeCo (Ours) 77.8 0.08 7.9 ZS
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Figure 2: Relationship between our zero-cost proxies and test accuracy for NATS-Bench-TSS and
NATS-Bench-SSS on three datasets.

1 2 3 4 5

0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.9

# Samples

⇢

NATS-Bench-TSS

1 2 3 4 5

�0.9

�0.88

�0.86

�0.84

�0.82

�0.8

�0.78

# Samples

⇢

NATS-Bench-SSS

CIFAR-10; CIFAR-100; ImageNet16-120

Figure 3: Spearman correlation coefficients of MeCo with different #Samples on TSS and SSS,
respectively.
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Table 4: The test accuracy of Top-10 architectures obtained by various zero-cost proxies on NATS-
Bench-TSS using CIFAR-10

Baselines

Dataset MeCo grasp[? ] fisher [? ] grad_norm[? ] snip [? ] synflow[? ] jacov[? ] NTK[? ] zen[? ] ZiCo[? ]

CIFAR-10 93.64 89.34 89.27 89.27 89.27 93.27 91.23 92.67 58.99 93.56
±0.31 ±2.16 ±2.10 ±2.10 ±2.10 ±0.74 ±1.01 ±0.46 ±3.44 ±0.23

2

Figure 2: Spearman correlation coefficients of
MeCo with different number of samples on NATS-
Bench-TSS and NATS-Bench-SSS, respectively.

Finally, we demonstrate the limitations of this
work and the possible directions of our future
work. In Section 5, We propose an optimization
method to alleviate the channel-sensitive issue
of MeCo. This weight-sampling approach can
be further improved in future work. Moreover,
we would like to point out that the evaluation of
a zero-cost proxy is often tied to the availabil-
ity of benchmarks. Hench though the proxies
are “zero cost”, the evaluation of the proxies is
strongly dependent on a benchmark, which in
the first place is very expensive to create. Finally,
although MeCo achieves the highest correlation
with the test accuracy on multiple benchmarks,
it shows near zero correlations on a few tasks
(e.g., TransBench-101-Micro with Autoencod-
ing). We will leave these issues as our future
work.
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Figure 3: Cells found by Zero-Cost-PT with all zero-cost proxies on the DARTS-CNN search space
using CIFAR-10
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Figure 4: Cells found by Zero-Cost-PT with all zero-cost proxies on the DARTS-CNN search space
using CIFAR-100
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