
MeCo: Zero-Shot NAS with One Data and Single
Forward Pass via Minimum Eigenvalue of Correlation

Tangyu Jiang†
School of Artificial Intelligence

Beijing Normal University
jty@mail.bnu.edu.cn

Haodi Wang†

School of Artificial Intelligence
Beijing Normal University
whd@mail.bnu.edu.cn

Rongfang Bie∗
School of Artificial Intelligence

Beijing Normal University
rfbie@bnu.edu.cn

Abstract

Neural Architecture Search (NAS) is a promising paradigm in automatic archi-
tecture engineering. Zero-shot NAS can evaluate the network without training
via some specific metrics called zero-cost proxies. Though effective, the existing
zero-cost proxies either invoke at least one backpropagation or depend highly on
the data and labels. To alleviate the above issues, in this paper, we first reveal how
the Pearson correlation matrix of the feature maps impacts the convergence rate and
the generalization capacity of an over-parameterized neural network. Enlightened
by the theoretical analysis, we propose a novel zero-cost proxy called MeCo, which
requires only one random data for a single forward pass. We further propose an
optimization approach MeCoopt to improve the performance of our method. We
design comprehensive experiments and extensively evaluate MeCo on multiple
popular benchmarks. MeCo achieves the highest correlation with the ground truth
(e.g., 0.89 on NATS-Bench-TSS with CIFAR-10) among all the state-of-the-art
proxies, which is also fully independent of the data and labels. Moreover, we
integrate MeCo with the existing generation method to comprise a complete NAS.
The experimental results illustrate that MeCo-based NAS can select the archi-
tecture with the highest accuracy and a low search cost. For instance, the best
network searched by MeCo-based NAS achieves 97.31% on CIFAR-10, which is
0.04% higher than the baselines under the same settings. Our code is available at
https://github.com/HamsterMimi/MeCo.

1 Introduction

Deep Neural Networks (DNNs) have been ubiquitously adopted in various fields due to their ability
in hierarchical feature extraction [1–5]. It is a common consensus that the architecture of DNN is
essential in model performance. Unfortunately, the manual trial-and-error method is non-scalable and
inefficient, making it infeasible to find the globally optimal structure. Thanks to the development of
the Neural Architecture Search (NAS), it is possible to automatically select the network architecture
with the best performance.

*Corresponding author.
†These authors contributed equally to this work.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/HamsterMimi/MeCo

There are abundant works proposed to improve the performance of NAS. The most fundamental
observation is to fully or partially train the candidate networks with specific data and select the
network with the highest accuracy. Though effective, these multi-shot NAS methods are inevitably
resource-consuming, thus, are non-trivial to be adopted in real-world applications. To address this
issue, the one-shot NAS has been proposed in which a supernet is designed and only requires one-time
full training [6]. In 2020, Mellor et al. [7] proposed the zero-shot NAS and realized an efficient
approach in which a zero-cost proxy is proposed to evaluate the networks without training.

Despite the effectiveness of the existing zero-cost proxies, there are some critical issues that remain to
be solved. (i) Almost all current proxies are established from the network gradients. As a consequence,
computing these proxies requires at least one backpropagation, which is resource-consuming. (ii)
The majority of the currently used proxies rely highly on the input data and labels. The reliance on
the input samples underestimates the evaluation of the network’s intrinsic characteristics, and the
incorrect labels (which are commonly occurred in real-world datasets) may obfuscate the ranking
results. (iii) Although various zero-cost proxies have been proposed, the performance of those proxies
can still be promoted in network evaluation.

Objectives. The main objective of this paper is to design a novel zero-cost proxy with better perfor-
mance than the current methods. The proposed proxy should be easily computed by a small number
of data without backpropagation. Furthermore, to estimate the intrinsic trait of the architectures and
avoid the label influence, our proxy should be label-independent.

Our Contributions. To this end, in this paper, we craft a novel zero-cost proxy for zero-shot
NAS from a new perspective. The proposed proxy, called MeCo, outperforms the State-Of-The-Art
(SOTA) zero-cost proxies in NAS and only requires one data sample for a single forward pass.
Specifically, we harness a novel observation on the multi-channel convolutional layers and view
them as the “multi-sample fully-connected layers with constraints”. This insight permits MeCo to be
computed by only one data. Moreover, we rigorously analyze how the Pearson correlation matrix
of the feature maps impacts the training convergence rate and the generalization capacity of the
networks, which theoretically proves the effectiveness of MeCo. Unlike the existing methods [7–9],
MeCo is established upon each layer of the feature maps and hence requires only a single forward
pass. Based on our design, we further propose an optimization approach MeCoopt to promote the
performance of our method. The experimental results show that both MeCo and MeCoopt achieve a
higher correlation with the network ground truth than the SOTA methods. For example, the Spearman
correlation coefficients of MeCo on NATS-Bench-TSS with CIFAR-10 and CIFAR-100 are 0.89 and
0.88, respectively, which are 0.09 and 0.08 higher than the best baseline method. Our MeCo-based
zero-shot NAS also acquires the highest accuracy among all the existing approaches, e.g., MeCo-
based NAS selects the network with 97.31% accuracy, which is 0.04% higher than the SOTA work.
In all, our major contributions are as follows.

• We theoretically analyze how the Pearson correlation matrix of the feature maps impact
the training convergence rate and the generalization capacity of the networks, based on the
characteristics of the multi-channel convolutional layers.

• We propose MeCo , a novel zero-cost proxy for zero-shot NAS that achieves better perfor-
mance than SOTA methods. Through systematic analysis, we further proposed MeCoopt
as an optimization approach. Our proxy is fully training-free and data-independent, which
requires only one data sample with a single forward pass.

• We rigorously implement our MeCo and extensively design the experiments to evaluate
its performance on several popular benchmarks (e.g., NAS-Bench-101, NATS-Bench-TSS,
NATS-Bench-SSS, NAS-Bench-301, and Transbench-101) with diverse datasets and random
data samples. The experimental results show that our zero-cost proxy outperforms the
existing methods, and MeCo-based NAS can select the network with the highest accuracy.

2 Related work

2.1 Zero-shot NAS and zero-cost proxy

Zero-shot NAS uses specific metrics called zero-cost proxies to evaluate the networks. Unlike the
traditional multi-shot and one-shot strategies [10, 6, 11–19], zero-shot NAS eliminates the training
procedure thus significantly improves the efficiency. Various studies have been brought forward to

2

promote the quality of the zero-cost proxies, and most of them are based on the gradients. Mellor et al.
[7] firstly evaluated the performance of the initialized networks using the activation overlaps between
data points. Abdelfattah et al. [8] proposed a series of parameter-pruning based proxies including
snip [20], grasp [21], synflow [22], and fisher [23]. Recently, Li et al. [9] proposed ZiCo, which firstly
works better than the parameter amounts. These approaches need at least one backpropagation and
rely on the data labels to compute the proxies. Another line of work [24–26] is based on the theory
of deep learning such as NTK, which is independent of the labels yet still needs backpropagation.
For example, Chen et al. [24] utilized the condition number of NTK to evaluate the trainability of
the networks. Finally, there are a few works that do not require backpropagation or data labels. For
instance, Lin et al. [27] proposed Zen-Score, in which they design an efficient zero-cost proxy with
Gaussian random inputs. However, Zen-Score requires multiple forward passes while our MeCo only
needs a single forward pass.

2.2 Over-parameterized networks

Over-parameterized networks have received a lot of attention due to their outstanding effect and
ease of optimization. Jacot et al. [28] demonstrated that the training dynamic of an infinite-width
network follows a kernel called NTK [29, 30]. For finite-width networks, the training dynamic can
be illustrated by a gram matrix [31, 32]. Further, Du et al. [31] proved that the loss of an over-
parameterized network could converge to a global minimum [33–35], and the training convergence
rate could be characterized by the minimum eigenvalue of the gram matrix. Some works also discuss
the optimization of the training convergence rate [36] and the topological properties of DNNs [37].

3 MeCo: minimum eigenvalue of correlation on feature maps

3.1 Preliminaries

Notations. We define [n] = {1, 2, . . . , n}. The lower and uppercase bold font represent vectors and
matrices, respectively, e.g., x is a vector with entry xi, and M is a matrix with entry [M]ij . The
minimum eigenvalue of M is denoted as λmin(M). We define A ◦B as Hadamard product between
two same-sized matrices A and B. 1m×n represents a m× n matrix filled by ones and ∥ · ∥2 is used
to represent the l2 norm of a vector. N(0, I) and U{S} represent the standard Gaussian distribution
and uniform distribution over a set S, respectively. We denote by X = {(xi, yi)|xi ∈ Rd×1, yi ∈
R, i ∈ [n]} the training set, where xi and yi represent the i-th data and label. I{·} is defined as the
indicator function that demonstrates the event occurrence, such that for event A, I{A} = 1 if and
only if A happened, otherwise it equals to 0.

For input x ∈ Rd×1, weight vector w ∈ Rd×1 in the weight matrix W ∈ Rd×m, and output weight
a ∈ Rm×1, we denote f(W,a,x) as a neural network with a single hidden layer such that

f(W,a,x) =
1√
m

∑m

r=1
arσ(w

T
r x) (1)

where σ is the activation function. In this paper, we mainly consider the ReLU function due to its
effectiveness, i.e., σ(z) = zI{z > 0}. Given a training set X, the optimization goal is to minimize
the empirical risk loss function

L(W,a) =
∑n

i=1

1

2
(f(W,a,xi)− yi)

2 (2)

We follow the definitions in [31] and define the matrices H(t) and H∞ as follows.
Definition 1 (Gram Matrix). For a neural network with a single hidden layer, the gram matrix
H(t) ∈ Rn×n induced by the ReLU activation function on a training set X := {(xi, yi)}ni=1 with
entry [H(t)]ij is defined as:

[H(t)]ij =
1

m

∑m

r=1
xT
i xjI{wT

r (t)xi ≥ 0,wT
r (t)xj ≥ 0} (3)

where wr(t) is a vector that depends on t. We further construct H∞ with entry [H∞]ij such that

[H∞]ij = Ew∼N(0,I)[x
T
i xjI{wTxi ≥ 0,wTxj ≥ 0}] (4)

We denote λ0 := λmin(H
∞).

3

Input Filters Output Inputs Hidden nodes Output

Zero Operation
Full Connection
Sum operation

Feature map

Figure 1: Conversion between the multi-channel convolution and multi-sample fully-connected
operation. The input size is 3× w × h and each filter size is 3× 3× 3. Each input channel can be
flattened with size d × 1, d = w × h. We collect the three flattened samples to obtain the output
with constrained fully-connected operations (dot lines for zero operations and solid lines for full
connection). The final output is computed by a sum operation (dashed lines) from the hidden nodes.

Remark 1. Gram matrix H(t) reflects the prediction dynamic at the t-th iteration of the network
training. Du et al. [31] proved that for all t ≥ 0, ∥H(t)−H∞∥2 → 0 as m → ∞. Moreover, the
gram matrix H∞ has the following key property: if xi ∦ xj ,∀i ̸= j, then λ0 > 0. The proof of this
property can be found in Theorem 3.1 in [31].

Definition 2 (Pearson Correlation Matrix). P (X) is a Pearson correlation matrix with the (i, j)-th
entry [P (X)]ij as

[P (X)]ij = ρ(xi,xj) =
E[(xi − µxi)(xj − µxj)]

σxi
σxj

(5)

where µx and σx are the mean and standard deviation of x, respectively.

Remark 2. Pearson correlation matrix P (X) is closely related to H(t). For instance, suppose
x1,x2 ∼ N(0, I), xi ∈ Rd×1 and wT

r (t)xi ≥ 0, for r ∈ [m] and i ∈ [2], then [H(t)]12 =
(d− 1)[P (X)]12. We will use this characteristic to approximate the training convergence rate and
generation capacity of the networks when designing our proxy.

3.2 The construction of MeCo

To present the theoretical analysis, we first approximate the Convolutional Neural Network (CNN) to
an over-parameterized Neural Network (NN) and then craft our proxy.

3.2.1 Back to convolution

The convolutional layers are the fundamental parts of CNN. Suppose we have the input xin ∈
Rcin×w×h and the filter w ∈ Rcin×k×k. We set the stride size to one and retain the size of the feature
maps via zero padding, then the convolutional layer can be formally expressed as:

[xout]i,j =
∑cin

c=1

∑p

a=−p

∑p

b=−p
[wc]a+p+1,b+p+1 · [xc

in]a+i,b+j (6)

where xc
in (resp. wc) represents the c-th channel of xin (resp. w), p = (k − 1)/2, i ∈ [w], j ∈ [h]. In

this paper, we observe that xout and xc
in can be flattened to one-dimensional vectors x̃out ∈ Rd×1 and

[x̃c
in] ∈ Rd×1, where c ∈ [cin], d = w × h. More concretely, we have the following transformations:

x̃out =
∑cin

c=1
Acσ((Bc ◦W)T x̃c

in) (7)

s.t. Ac ∈ Rd×dh , [Ac]ij = I{j = (c− 1)d+ i}
Bc ∈ Rdh×d, [Bc]ij = I{(c− 1)d < i ≤ cd}, (8)
Bc ◦W satisfies weight sharing constraints

4

where dh = cin × d, W ∈ Rd×dh is the weight matrix. Hence, the convolutional layer in CNN is
equivalent to a fully-connected layer with constraints, i.e., shown in Equation 8. To further simplify
the problem, we relax the second constraint to Bc = 1dh×d and ignore the last constraint. As a
consequence, we obtain a multi-sample fully-connected network in which each flattened channel x̃c

in
is regarded as an independent data sample, and the total number of samples is cin. To better illustrate
our insight, we present an example of the conversion procedure in Figure 1.

3.2.2 Over-parameterized neural networks

The over-parameterized NNs are competitive in hierarchical feature extraction due to a large number
of parameters. One of the typical architectures is the networks with wide hidden layers, which
is proved to be tractable in training [38]. In the previous subsection, we convert a multi-channel
convolutional layer to a multi-sample fully-connected layer with constraints. We further argue
that if the number of hidden nodes in the transformed fully-connected layer is large enough, then
it can be viewed as an over-parameterized NN layer. Therefore, the characteristics of the over-
parameterized NN can be transferred to CNN. To this end, we present the following theorem [31]
about the convergence rate of the fully-connected NN with a single hidden layer as follows.
Theorem 1. If gram matrix H∞ ≻ 0, ∥xi∥2 = 1, |yi| < C for some constant C and i ∈ [n], hidden

nodes m = Ω
(

n6

λ4
0δ

3

)
, and i.i.d. initialize wr ∼ N(0, I), ar ∼ U{[−1, 1]} for r ∈ [m], then with

probability at least 1− δ over the initialization, the following inequality holds:

∥f(W(t),a,X)− y∥22 ≤ exp (−λ0t)∥f(W(0),a,X)− y∥22 (9)

Remark 3. This inequality shows that λ0 positively affects the training convergence rate of the
network. We further point out that the convergence rate of the network is independent of the label
y, which makes it possible to measure the network performance with only a single forward pass.
Based on this observation, we establish our proxy on the intermediate feature maps to measure the
performance of the network.

Based on Theorem 1 and Remark 2, we further analyze the relationship between the minimum
eigenvalue of the matrix P (X) and the training convergence rate of the over-parameterized network.
We summarize our results in the following theorem:
Theorem 2. Suppose f is an NN with a single hidden layer and ReLU activation function. Assume
X ∈ Rd×n, w(0) ∼ N(0, I), P (X) ≻ 0, p0 := λmin(P (X)), and hidden nodes m = Ω

(
n6d2

λ4
0δ

3

)
,

then the following formula holds with probability at least 1− δ over the initialization

∥f(W(t),a,X)− y∥22 ≤ exp (−cp0t)∥f(W(0),a,X)− y∥22 (10)

where c is a constant depending on m, and d.

Proof sketch. The key of the proof is to find the relationship between λ0 and p0 by Hoeffding’s
inequality and Weyl inequalities [39]. We provide the full proof in Appendix A.1. Theorem 2 shows
that p0 can reflect the convergence rate of the network to a certain extent. The advantage of P (X)
over H(t) is that its computation only depends on the data. Therefore, it is feasible to estimate the
training convergence rate of the network only through the feature maps.

Other than the convergence rate, we also analyze the relationship between p0 and the generalization
capacity of the over-parameterized NN. We present the results in the following theorem:
Theorem 3. For an over-parameterized neural network with the loss on the testing set as L(W).
Let y = (y1, ..., yN)T , and γ be the step of SGD, γ = κC1

√
yT (H∞)−1y/(m

√
N) for some small

enough absolute constant κ. Under the assumption of Theorem 2, for any δ ∈ (0, e−1], there exists
m∗(δ,N, λ0), such that if m ≥ m∗, then with probability at least 1− δ, we have

E[L(W)] ≤ O(C ′

√
yTy

p0N
) +O(

√
log(1/δ)

N
) (11)

where C,C ′, δ are constants.

Proof sketch. The proof of the above theorem derives from the Corollary 3.10 of [40] and Section
D.2 of [26]. We present the detailed proof in Appendix A.2.

5

3.2.3 New zero-cost proxy: MeCo

The above theorem and analysis indicate the following key insights:

• A multi-channel CNN layer can be viewed as a multi-sample over-parameterized NN layer.

• The minimum eigenvalue of P (X) positively affects the training convergence rate and the
generalization capacity of an NN, which is independent of the labels.

Enlightened by these observations, we harness the Minimum eigenvalue of the Pearson Correlation
matrix upon each layer of the feature maps to craft our novel zero-cost proxy called MeCo, such that

Definition 3 (MeCo). Assume the NN f(·; θ) has a total of D layers, then MeCo is defined as

MeCo :=
∑D

i=1
λmin(P (f i(X; θ))) (12)

where f i(X; θ) represents the i-th feature map with the initialized parameters θ on dataset X.

Remark 4. Note that the Pearson correlation matrix contains the process of data normalization, thus
our MeCo eliminates the deviation caused by the data, which is more conducive to discovering the
essence of the network architectures.

4 Experiments and evaluations

We evaluate MeCo from three aspects: (i) The correlation with the ground truth and comparison
with the baseline proxies; (ii) The dependency on data/labels; (iii) Performance of MeCo-based NAS
scheme. We first describe the experimental configurations and then give the detailed performance.

4.1 Experimental configurations

Hardware. We fully implement our MeCo in Python. We evaluate MeCo on a desktop with an Inter
Core i7-12700F CPU and GeForce RTX 3090.

Benchmarks. We use several popular benchmarks in NAS. (i) NATS-Bench-TSS [41, 42] contains
15,625 CNN architectures with different topologies. We demonstrate the performance of the zero-cost
proxied on NATS-Bench-TSS with CIFAR-10 [43], CIFAR-100 [43], ImageNet16-120[44], and three
extra datasets [45] in Appendix E.1. (ii) NATS-Bench-SSS [42] contains 32,768 CNN architectures
with the same topology but with different numbers of channels. We show the results on NATS-Bench-
SSS with CIFAR-10, CIFAR-100, and ImageNet16-120. (iii) NAS-Bench-301 [46] is a surrogate
NAS benchmark for the DARTS search space. We illustrate the results with CIFAR-10 and the extra
three datasets in Appendix E.1. (iv) TransBench-101 [47] is a benchmark composed of two subsets,
i.e., TransBench-101-Micro and TransBench-101-Macro. The former is evaluated with 10 datasets
and the latter with 7 datasets. We present these results in Appendix E.3. (v) NAS-Bench-101 [48]
includes 423,624 cell-based CNN architectures, which are trained and evaluated on the CIFAR-10
dataset and shown in Appendix E.2. (vi) AutoFormer [49] and MobileNet OFA [50]. The description
and results are shown in Appendix E.4.

Baselines. The baselines for zero-cost proxies include the number of parameters #Param, grasp [21],
fisher [23], snip [20], synflow [22], jacov [7], grad_norm [8], NTK [24], zen [27], NASWOT [7],
KNAS [51], NASI [52], GradSign [53], and ZiCo [9]. Specific forms of these proxies are provided in
Appendix B. We adopt the Spearman rank correlation coefficient ρ between zero-cost proxies and the
dataset ground truth to measure their performance.

4.2 Performance of our MeCo and comparisons

We evaluate ρ between MeCo and the ground truth, and compare it with the baseline zero-cost proxies
on various benchmarks. We present the results on NATS-Bench-TSS and NATS-Bench-SSS in Table
1, and the results on NAS-Bench-301 are provided in Table 2. We run MeCo for ten times with
different inputs and present the mean and standard deviation.

NATS-Bench-TSS. We run our MeCo and all baseline proxies on 15,625 networks of NATS-Bench-
TSS with three public datasets. As we can see in Table 1, MeCo achieves 0.894±0.003, 0.883±0.005,

6

Table 1: Spearman correlation coefficients ρ of proxies on NATS-Bench-TSS and NATS-Bench-SSS

Approach NATS-Bench-TSS NATS-Bench-SSS

CIFAT-10 CIFAR-100 ImageNet16 CIFAT-10 CIFAR-100 ImageNet16

grasp 0.39 0.46 0.45 -0.13 0.01 0.42
fisher 0.40 0.46 0.42 0.44 0.55 0.47
grad_norm 0.42 0.49 0.47 0.51 0.49 0.67
snip 0.43 0.49 0.48 0.59 0.62 0.76
synflow 0.74 0.76 0.75 0.81 0.80 0.57
#Param 0.72 0.73 0.69 0.72 0.73 0.84
NWOT 0.77 0.80 0.77 0.45 0.43 0.42
jacov 0.73 0.70 0.70 0.30 0.13 0.30
NTK 0.76 0.75 0.72 0.34 0.29 0.28
zen 0.38 0.36 0.40 0.69 0.71 0.87
KNAS 0.20 0.35 0.42 0.25 0.12 0.32
NASI 0.44 0.43 0.63 0.17 0.04 0.20
GradSign 0.77 0.79 0.78 0.21 0.16 0.04
ZiCo 0.80 0.81 0.79 0.73 0.75 0.88
MeCo (Ours) 0.894±0.003 0.883±0.005 0.845±0.004 -0.79±0.01 -0.87±0.01 -0.86±0.02
MeCoopt (Ours) 0.901±0.002 0.890±0.003 0.850±0.003 0.89±0.002 0.83±0.004 0.89±0.003

and 0.845±0.004 correlation on CIFAR-10, CIFAR-100, and ImageNet16-120, respectively. The
variation shows that our method is stable and independent of the input samples. The Spearman
correlation coefficients are significantly higher than the baselines, e.g., the SOTA proxy ZiCo [9] only
achieves 0.80, 0.81, 0.79 on three datasets, which is 0.06 to 0.09 lower than ours. Note that ZiCo
is the first proxy that is proved to be consistently better than the naive proxy #Param and requires
a batch of input data. On the other hand, we surpass all the previous works and only use one data
sample. The high correlation coefficients demonstrate the effectiveness of MeCo, which is consistent
with the theoretical analysis. To make our results more intuitive, we sample 2,000 networks randomly
and present the relationship between MeCo and the ground truth on three public datasets. The results
are shown in Figure 4(a) in the Appendix E, where the trend in the scatter charts effectively proves
that our zero-cost proxy has a highly strong correlation with the architecture quality.

0 200 400

0.2

0.4

0.6

0.8

1

Number of Channels

M
in

im
u
m

E
ig

en
va

lu
e

Channels v.s. Eigenvalue

Figure 2: The influence of different channel
numbers of data on the minimum eigenvalue.

NATS-Bench-SSS. The results of MeCo on 32,768
networks of NATS-Bench-SSS are summarized in
Table 1. Among all the datasets, MeCo shows the
highest correlation with the ground truth on CIFAR-
100, i.e., ρ = −0.87 ± 0.01, which is 0.07 higher
than the best baseline synflow. MeCo also achieves
stable and competitive results on CIFAR-10 and
ImageNet16-120 with one data as input. We find
that MeCo is highly negatively correlated with the
test accuracy, which is somehow counterintuitive.
In fact, MeCo is sensitive to the number of channels
(#channels) that cause this phenomenon. Specifi-
cally, the channels are viewed as the data samples
as described in Section 3.2.1, This leads to the fact
that the more channels contained, the larger the
Pearson matrix, which will lead to smaller p0. On
the other hand, larger #channels will normally lead
to higher accuracy of the architectures (yet lower
convergence rate). Thus, the variation of #channels in NATS-Bench-SSS(chosen from 8 to 64)
leads to a negative correlation on this benchmark. In NATS-Bench-TSS, however, all the networks
share the same #channels at each stage, thus MeCo does not show a negative correlation. To verify
this, we generate random data with different numbers of channels and calculated p0 respectively,
and demonstrate the results in Figure 2. We also sample 2,000 networks randomly and present the
correlation of MeCo v.s. test accuracy in Figure 4(b) in the Appendix E.

7

NATS-Bench-301. We demonstrate the results of MeCo and the baseline proxies on NATS-Bench-
301 with CIFAR-10 in Table 2. It can be shown from the results that MeCo and MeCoopt also achieve
the highest correlation with the testing accuracy on NATS-Bench-301, which is 0.04-0.05 higher than
the SOTA approach ZiCo. More experimental results of MeCo can be found in Appendix E

Table 2: ρ between zero-cost proxies and test accuracy on NAS-Bench-301 with CIFAR-10

Baselines

Dataset MeCo MeCoopt grasp fisher grad_norm snip synflow l2_norm #Param zen jacov nwot ZiCo

CIFAR-10 0.7±0.01 0.71±0.01 0.34 -0.28 -0.04 -0.05 0.18 0.45 0.46 0.43 -0.04 0.47 0.66

4.3 Dependency on data

MeCo is designed to be fully data-independent due to the characteristics of Pearson correlation matrix
(Theorem 2). To further illustrate this attribute, we generate a random dataset and use it as the input
of MeCo and NTK [24], which is also independent of the data and labels. We compute the Spearman
correlation coefficients between MeCo and the test accuracy on three public datasets, and compare
them with the baseline approach. All the results for MeCo is ran ten times with random inputs.

More concretely, the random data is generated following a Gaussian distribution and fed into the
initialized network. Note that the baseline method requires a batch of random data as input, while
MeCo only uses one. We present the results for NATS-Bench-TSS and NATS-Bench-SSS in Table 3.

Table 3: Spearman correlation coefficients of
MeCo and NTK with random data on NATS-
Bench-TSS and NATS-Bench-SSS

NTAS-Bench-TSS NATS-Bench-SSS

Dataset MeCo NTK[24] MeCo NTK[24]

CIFAR-10 0.87±0.001 0.78 -0.87±0.000 0.23
CIFAR-100 0.85±0.001 0.79 -0.88±0.001 0.16
ImageNet16-120 0.83±0.001 0.76 -0.94±0.000 0.20

The results show that even if we use random data
as the inputs, MeCo is still able to maintain a
high correlation with the corresponding ground
truth. For example, ρ = 0.87 on NATS-Bench-
TSS with CIFAR-10 and ρ = −0.93 on NATS-
Bench-SSS with ImageNet16-120, which are
significantly higher than the data-independent
proxy NTK. Note that most existing proxies rely
on the gradients and backpropagation. Hence
they cannot utilize the random input data for
architecture evaluation, such as ZiCo and jacov.

4.4 NAS with MeCo

16 32 64 128 256

0.83
0.84
0.85
0.86
0.87
0.88
0.89

data size

ρ

NATS-Bench-TSS

16 32 64 128 256

−0.9

−0.8

−0.7

−0.6

−0.5

data size

ρ

NATS-Bench-SSS

CIFAR-10; CIFAR-100; ImageNet16-120

Figure 3: Spearman correlation coefficients of
MeCo with different data size on NATS-Bench-
TSS and NATS-Bench-SSS, respectively.

We integrate our MeCo with the existing search
space and generation strategy to comprise a com-
plete NAS method. Specifically, we use NATS-
Bench-TSS, DARTS-CNN [6], and MobileNet
V3 [54] as the search spaces to demonstrate the
performance. We use the Zero-Cost-PT [55] as
the generation strategy. The algorithm of MeCo-
based NAS and the results on MobileNet V3 are
presented in Appendix C and F.3, respectively.

NATS-Bench-TSS. We directly evaluate all net-
works in NATS-Bench-TSS using MeCo and
baseline proxies. The average test accuracy of
the Top-10 networks on three datasets is summa-
rized in Table 12 in Appendix F.1. As shown in
the table, the average test accuracy on CIFAR-10
of MeCo is 0.08% higher than the best baseline
ZiCo. Moreover, we further search the networks using Zero-Cost-PT with different proxies and run
the search algorithm three times. The networks we searched have the highest average test accuracy
on three public datasets, that is, 93.76%, 71.11%, and 41.44% on CIFAR-10, CIFAR-100, and
ImageNet16-120, respectively. The results are provided in Table 13 in Appendix F.1.

DARTS-CNN. We compare our MeCo-based NAS with multi-shot, one-shot, and zero-shot NAS
schemes in DARTS-CNN spaces. All the NAS schemes are executed on CIFAR-10 and CIFAR-100

8

datasets, respectively, to compare the Top-1 errors and the search cost. For zero-shot NAS, we
use Zero-Cost-PT as the generation strategy due to its effectiveness. The results on CIFAR-10 are
summarized in Table 4, where we denote multi-shot, one-shot, and zero-shot as MS, OS, and ZS,
respectively. We present the CIFAR-100 results in Appendix F.2. The results demonstrate that
our MeCo-based NAS outperforms the existing baseline methods. More concretely, for zero-shot
methods, MeCo outperforms all the baselines for 0.04% to 0.43% on Top-1 error with a similar level
of search cost under the same generation strategy. For training-based methods, MeCo-based NAS
achieves competitive accuracy but with much less search cost. For instance, our approach requires
only 0.08 GPU days and obtains 97.31% accuracy, while DARTS-PT costs 10× GPU days than ours
with 0.08% higher accuracy.

Table 4: Comparisons of MeCo-based NAS with baselines using DARTS-CNN and CIFAR-10

Approach Test Error Search Cost Params Method(%) (GPU Days) (M)

AmoebaNet-A [56] 3.34± 0.06 3150 3.2 MS
PNAS [57] 3.41± 0.09 225 3.2 MS
DARTS (1st) [6] 3.00± 0.14 1.5 3.3 OS
DARTS-PT[58] 2.61± 0.08 0.8 3.0 OS
SDARTS-RS [59] 2.67± 0.03 0.4 3.4 OS
SGAS (Cri.1)[60] 2.66± 0.24 0.8 3.7 OS
Eigen-NAS[26] 7.4 - - ZS
TE-NAS [24] 2.63± 0.064 0.05 3.8 ZS

Zero-Cost-PTsynflow[22] 2.96± 0.11 0.03 5.1 ZS
Zero-Cost-PTfisher[23] 3.12± 0.16 0.05 2.5 ZS
Zero-Cost-PTgrasp [21] 2.73± 0.10 0.1 3.3 ZS
Zero-Cost-PTjacov[7] 2.88± 0.15 0.04 3.5 ZS
Zero-Cost-PTsnip [20] 2.90± 0.03 0.04 4.0 ZS
Zero-Cost-PTNTK [24] 2.89± 0.09 0.21 4.1 ZS
Zero-Cost-PTZiCo[9] 2.80± 0.03 0.04 5.1 ZS
Zero-Cost-PTMeCo(Ours) 2.69± 0.05 0.08 4.2 ZS

We remark that the experimental results in this section demonstrate the following properties of MeCo:
(i) High correlation with the ground truth; (ii) Requies only one data without labels for a single
forward pass. That is because MeCo is established upon the observations over the multi-channel
CNN layers. Moreover, the minimum eigenvalue of the Pearson correlation matrix is independent of
the data labels, and thus we exert MeCo on the feature maps instead of the gradients.

5 Discussion and Optimization

5.1 Optimization method MeCoopt

In the previous sections, we illustrated the theoretical basis of MeCo and evaluated our proposed
proxy on various benchmarks. However, as described in Section 4.2, the negative correlation on
NATS-Bench-SSS and some other tasks (e.g., Transbench-101 in the appendix) reflect that MeCo is
highly sensitive to the number of channels. Although this phenomenon does not contradict the
theoretical results or undermine the effectiveness of MeCo, it might be problematic when p0 = 0. To
this end, we present an optimization method on top of MeCo to alleviate the channel-sensitive trait.

Specifically, for convolutional layers, p0 is strictly greater than zero if for ∀i ̸= j, xi ∦ xj , and
c < w × h, where c is the number of channels, w, h are the size of the inputs. Thus, in real-world
applications, MeCo might lose efficacy during the down-sampling procedure. To address this issue,
instead of flattening all the channels of the feature map as described in Section 3.2.1, we randomly
sample a fixed number of channels and flatten them as matrix P ′. We then compute the final result by
multiplying the minimum eigenvalue of P′ with a channel weight, such that

MeCoopt :=
∑D

i=1

c(i)

n
· λmin(P

′) (13)

9

where c(i) is the number of channels in the i-th layer, and n is the fixed sampling numbers. The
high-level idea of this optimization is to limit the dimension of the Pearson correlation matrix by
constraining #channels. Instead of computing upon a large matrix, we calculate the minimum
eigenvalue upon a fixed-sized matrix and then enlarge it with corresponding constants. Note that the
bonus of this optimization is that the time cost can be controlled because the matrix dimension is
significantly reduced compared to the original one.

To show the effectiveness of MeCoopt, we calculate the Spearman correlation coefficients of MeCoopt
on NATS-Bench-TSS, NATS-Bench-SSS (Table 1), NATS-Bench-301 (Table 2 and Table 8), and
Transbench-101 (Table 10 and Table 11). All the experiments are conducted under n = 8. The results
demonstrate that MeCoopt effectively solves the negative correlation issue on multiple benchmarks,
e.g., NATS-Bench-SSS and TransBench-101. Meanwhile, the majority of the positive correlations
are promoted up to 0.23, and the remaining results are not impacted.

5.2 Ablation study

Sample size. We consider the effect of the sample size on the performance of MeCo. We select the
size of data from {16, 32, 64, 128, 256}, respectively, and calculate the Spearman rank correlation
coefficient ρ between MeCo and the test accuracy of the networks on three public datasets. The
results are summarized in Figure 3. For NATS-Bench-TSS, ρ increases rapidly before size 64 and
grows slowly after that. The maximum value is acquired at size 128, which is slightly higher than size
64. On the other hand, the overall fluctuation is relatively large on NATS-Bench-SSS. The Spearman
correlation coefficients are low when the size is smaller than 32, and reach higher at 32. Then ρ
reduces as the sample size grows larger. The ablation results show that the most appropriate size of
random data is around 32 and 64, which is also adopted in our settings.

Sample numbers. We explore the performance of MeCo regarding the sample numbers that are used
as the inputs. We randomly choose a different number of samples to evaluate the architectures in
the entire NATS-Bench-TSS and NATS-Bench-SSS, respectively. The results are shown in Figure
5. It can be demonstrated from the figure that MeCo is relatively stable when varying the number
of samples. The performance of MeCo fluctuates around 0.01 throughout the experiments. These
results support that MeCo only requires one data sample.

Fixed channel numbers n. We conduct an ablation study on n v.s. MeCoopt with NATS-Bench-
TSS and NATS-Bench-SSS to illustrate the best choice of n. The results are shown in Table 5.

Table 5: Spearman correlation coefficients ρ of proxies on NATS-Bench-TSS and NATS-Bench-SSS

Approach NATS-Bench-TSS NATS-Bench-SSS

CIFAT-10 CIFAR-100 ImageNet16 CIFAT-10 CIFAR-100 ImageNet16

n = 4 0.87± 0.003 0.88± 0.002 0.84± 0.005 0.88±0.005 0.82± 0.003 0.84± 0.003
n = 6 0.88± 0.004 0.88± 0.001 0.84± 0.004 0.88± 0.007 0.83± 0.002 0.85± 0.006
n = 8 0.90± 0.002 0.89± 0.003 0.85± 0.003 0.89± 0.002 0.83± 0.004 0.89± 0.003

The results show that with n growing larger, MeCoopt increases by 0.1 to 0.5. We set n = 8 in our
experiments to obtain the best performance.

6 Conclusion

In this work, we propose a novel feature-based zero-cost proxy called MeCo and its optimization
method MeCoopt. Unlike the existing methods, our zero-cost proxies require only one data for a
single forward pass. Specifically, we theoretically approximate a multi-channel convolution layer to
an over-parameterized NN layer. We then harness the relationship between the theoretical properties
and the minimum eigenvalue of the Pearson correlation matrix to craft our new proxies. We rigorously
implement our proxies and extensively design the experiments. The experimental results show that
MeCo and MeCoopt significantly outperforms the SOTA zero-cost proxies, which is also independent
of the data and labels. Moreover, MeCo can be integrated into a complete NAS and enables us to
efficiently find the architecture with the highest accuracy.

10

Acknowledgment

We sincerely thank all the reviewers of NeurIPS’23 for their constructive suggestions which signifi-
cantly improve the quality of our paper. The work was supported by National Key R&D Program of
China [Grant No. 2022ZD0115901], in part by the National Natural Science Foundation of China
(Grant No. 62177007), and the China-Central Eastern European Countries High Education Joint
Education Project (Grant No. 202012).

References
[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” in International Conference on Learning Representations, 2015.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.
770–778.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time
object detection,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 779–788.

[4] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,
no. 8, pp. 1735–1780, 1997.

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems,
vol. 30, 2017.

[6] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture search,” in International
Conference on Learning Representations, 2019.

[7] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley, “Neural architecture search without training,”
in International Conference on Machine Learning. PMLR, 2021, pp. 7588–7598.

[8] M. S. Abdelfattah, A. Mehrotra, Ł. Dudziak, and N. D. Lane, “Zero-cost proxies for lightweight
nas,” in International Conference on Learning Representations, 2021.

[9] G. Li, Y. Yang, K. Bhardwaj, and R. Marculescu, “Zico: Zero-shot NAS via inverse coefficient of
variation on gradients,” in The Eleventh International Conference on Learning Representations,
2023.

[10] B. Zoph and Q. Le, “Neural architecture search with reinforcement learning,” in International
Conference on Learning Representations, 2017.

[11] L. Xie and A. Yuille, “Genetic cnn,” in 2017 IEEE International Conference on Computer
Vision (ICCV), 2017, pp. 1388–1397.

[12] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures for scalable
image recognition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 8697–8710.

[13] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and A. Kurakin,
“Large-scale evolution of image classifiers,” in International Conference on Machine Learning.
PMLR, 2017, pp. 2902–2911.

[14] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka: Combined selection
and hyperparameter optimization of classification algorithms,” in Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining, 2013, pp.
847–855.

[15] Y. Geifman and R. El-Yaniv, “Deep active learning with a neural architecture search,” Advances
in Neural Information Processing Systems, vol. 32, 2019.

11

[16] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective neural architecture search via
lamarckian evolution,” in International Conference on Learning Representations, 2019.

[17] M. Javaheripi, G. de Rosa, S. Mukherjee, S. Shah, T. Religa, C. C. Teodoro Mendes, S. Bubeck,
F. Koushanfar, and D. Dey, “Litetransformersearch: Training-free neural architecture search for
efficient language models,” Advances in Neural Information Processing Systems, vol. 35, pp.
24 254–24 267, 2022.

[18] I. Fedorov, R. Matas, H. Tann, C. Zhou, M. Mattina, and P. Whatmough, “Udc: Unified dnas
for compressible tinyml models for neural processing units,” Advances in Neural Information
Processing Systems, vol. 35, pp. 18 456–18 471, 2022.

[19] X. Wang, W. Guo, J. Su, X. Yang, and J. Yan, “Zarts: On zero-order optimization for neural
architecture search,” in Advances in Neural Information Processing Systems, S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35. Curran Associates, Inc.,
2022, pp. 12 868–12 880.

[20] N. Lee, T. Ajanthan, and P. Torr, “Snip: Single-shot network pruning based on connection
sensitivity,” in International Conference on Learning Representations, 2019.

[21] C. Wang, G. Zhang, and R. Grosse, “Picking winning tickets before training by preserving
gradient flow,” in International Conference on Learning Representations, 2020.

[22] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli, “Pruning neural networks without any data
by iteratively conserving synaptic flow,” Advances in Neural Information Processing Systems,
vol. 33, pp. 6377–6389, 2020.

[23] J. Turner, E. J. Crowley, M. O’Boyle, A. Storkey, and G. Gray, “Blockswap: Fisher-guided block
substitution for network compression on a budget,” in International Conference on Learning
Representations, 2020.

[24] W. Chen, X. Gong, and Z. Wang, “Neural architecture search on imagenet in four gpu hours: A
theoretically inspired perspective,” in International Conference on Learning Representations
(ICLR), 2021.

[25] Y. Shu, Z. Dai, Z. Wu, and B. K. H. Low, “Unifying and boosting gradient-based training-free
neural architecture search,” in Advances in Neural Information Processing Systems, A. H. Oh,
A. Agarwal, D. Belgrave, and K. Cho, Eds., 2022.

[26] Z. Zhu, F. Liu, G. Chrysos, and V. Cevher, “Generalization properties of nas under activation
and skip connection search,” Advances in Neural Information Processing Systems, vol. 35, pp.
23 551–23 565, 2022.

[27] M. Lin, P. Wang, Z. Sun, H. Chen, X. Sun, Q. Qian, H. Li, and R. Jin, “Zen-nas: A zero-shot
nas for high-performance image recognition,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 347–356.

[28] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Convergence and generalization in
neural networks,” Advances in neural information processing systems, vol. 31, 2018.

[29] S. Arora, S. S. Du, W. Hu, Z. Li, R. R. Salakhutdinov, and R. Wang, “On exact computation
with an infinitely wide neural net,” Advances in neural information processing systems, vol. 32,
2019.

[30] J. Lee, L. Xiao, S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, and J. Pennington, “Wide
neural networks of any depth evolve as linear models under gradient descent,” Advances in
neural information processing systems, vol. 32, 2019.

[31] S. S. Du, X. Zhai, B. Poczos, and A. Singh, “Gradient descent provably optimizes over-
parameterized neural networks,” in International Conference on Learning Representations,
2019.

[32] B. Hanin and M. Nica, “Finite depth and width corrections to the neural tangent kernel,” in
International Conference on Learning Representations, 2020.

12

[33] S. Du, J. Lee, H. Li, L. Wang, and X. Zhai, “Gradient descent finds global minima of deep neural
networks,” in International conference on machine learning. PMLR, 2019, pp. 1675–1685.

[34] D. Zou and Q. Gu, “An improved analysis of training over-parameterized deep neural networks,”
Advances in neural information processing systems, vol. 32, 2019.

[35] Q. N. Nguyen and M. Mondelli, “Global convergence of deep networks with one wide layer
followed by pyramidal topology,” Advances in Neural Information Processing Systems, vol. 33,
pp. 11 961–11 972, 2020.

[36] N. Lee, T. Ajanthan, S. Gould, and P. H. S. Torr, “A signal propagation perspective for pruning
neural networks at initialization,” in International Conference on Learning Representations,
2020. [Online]. Available: https://openreview.net/forum?id=HJeTo2VFwH

[37] K. Bhardwaj, G. Li, and R. Marculescu, “How does topology influence gradient propagation
and model performance of deep networks with densenet-type skip connections?” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 13 498–
13 507.

[38] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss landscape of neural
nets,” Advances in neural information processing systems, vol. 31, 2018.

[39] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press, 2012.

[40] Y. Cao and Q. Gu, “Generalization bounds of stochastic gradient descent for wide and deep
neural networks,” Advances in neural information processing systems, vol. 32, 2019.

[41] X. Dong and Y. Yang, “Nas-bench-201: Extending the scope of reproducible neural architecture
search,” in International Conference on Learning Representations, 2020.

[42] X. Dong, L. Liu, K. Musial, and B. Gabrys, “Nats-bench: Benchmarking nas algorithms for
architecture topology and size,” IEEE transactions on pattern analysis and machine intelligence,
2021.

[43] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images.”
Toronto, ON, Canada, 2009.

[44] P. Chrabaszcz, I. Loshchilov, and F. Hutter, “A downsampled variant of imagenet as an alternative
to the cifar datasets,” arXiv preprint arXiv:1707.08819, 2017.

[45] A. R. Zamir, A. Sax, W. Shen, L. J. Guibas, J. Malik, and S. Savarese, “Taskonomy: Disentan-
gling task transfer learning,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 3712–3722.

[46] A. Zela, J. N. Siems, L. Zimmer, J. Lukasik, M. Keuper, and F. Hutter, “Surrogate nas bench-
marks: Going beyond the limited search spaces of tabular nas benchmarks,” in International
Conference on Learning Representations, 2022.

[47] Y. Duan, X. Chen, H. Xu, Z. Chen, X. Liang, T. Zhang, and Z. Li, “Transnas-bench-101:
Improving transferability and generalizability of cross-task neural architecture search,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021,
pp. 5251–5260.

[48] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter, “Nas-bench-101: Towards
reproducible neural architecture search,” in International Conference on Machine Learning.
PMLR, 2019, pp. 7105–7114.

[49] M. Chen, H. Peng, J. Fu, and H. Ling, “Autoformer: Searching transformers for visual recogni-
tion,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp.
12 270–12 280.

[50] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train one network and specialize
it for efficient deployment,” in International Conference on Learning Representations, 2020.
[Online]. Available: https://openreview.net/forum?id=HylxE1HKwS

13

https://openreview.net/forum?id=HJeTo2VFwH
https://openreview.net/forum?id=HylxE1HKwS

[51] J. Xu, L. Zhao, J. Lin, R. Gao, X. Sun, and H. Yang, “Knas: green neural architecture search,”
in International Conference on Machine Learning. PMLR, 2021, pp. 11 613–11 625.

[52] Y. Shu, S. Cai, Z. Dai, B. C. Ooi, and B. K. H. Low, “NASI: Label- and data-agnostic neural
architecture search at initialization,” in International Conference on Learning Representations,
2022. [Online]. Available: https://openreview.net/forum?id=v-v1cpNNK_v

[53] Z. Zhang and Z. Jia, “Gradsign: Model performance inference with theoretical insights,”
in International Conference on Learning Representations, 2022. [Online]. Available:
https://openreview.net/forum?id=HObMhrCeAAF

[54] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang,
V. Vasudevan et al., “Searching for mobilenetv3,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2019, pp. 1314–1324.

[55] L. Xiang, Ł. Dudziak, M. S. Abdelfattah, T. Chau, N. D. Lane, and H. Wen, “Zero-cost proxies
meet differentiable architecture search,” arXiv preprint arXiv:2106.06799, 2021.

[56] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for image classifier
architecture search,” in Proceedings of the aaai conference on artificial intelligence, vol. 33,
no. 01, 2019, pp. 4780–4789.

[57] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, and
K. Murphy, “Progressive neural architecture search,” in Proceedings of the European conference
on computer vision (ECCV), 2018, pp. 19–34.

[58] R. Wang, M. Cheng, X. Chen, X. Tang, and C.-J. Hsieh, “Rethinking architecture selection in
differentiable nas,” in International Conference on Learning Representation, 2021.

[59] X. Chen and C.-J. Hsieh, “Stabilizing differentiable architecture search via perturbation-based
regularization,” in International conference on machine learning. PMLR, 2020, pp. 1554–1565.

[60] G. Li, G. Qian, I. C. Delgadillo, M. Muller, A. Thabet, and B. Ghanem, “Sgas: Sequential
greedy architecture search,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020.

[61] W. Hoeffding, “Probability inequalities for sums of bounded random variables,” The collected
works of Wassily Hoeffding, pp. 409–426, 1994.

[62] G. H. Golub and C. F. Van Loan, Matrix computations. JHU press, 2013.

[63] Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, and H. Xiong, “Pc-darts: Partial channel
connections for memory-efficient architecture search,” in International Conference on Learning
Representations, 2020.

[64] X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive differentiable architecture search: Bridging
the depth gap between search and evaluation,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2019, pp. 1294–1303.

[65] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional
networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
2017, pp. 4700–4708.

[66] S. Xie, H. Zheng, C. Liu, and L. Lin, “SNAS: stochastic neural architecture search,” in Interna-
tional Conference on Learning Representations, 2019.

[67] A. Zela, T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hutter, “Understanding and robustify-
ing differentiable architecture search,” in International Conference on Learning Representations,
2020.

[68] P. Ye, B. Li, Y. Li, T. Chen, J. Fan, and W. Ouyang, “β-darts: Beta-decay regularization for
differentiable architecture search,” in 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2022, pp. 10 864–10 873.

14

https://openreview.net/forum?id=v-v1cpNNK_v
https://openreview.net/forum?id=HObMhrCeAAF

A Detailed proofs

A.1 Proof of Theorem 2

In this section, we present the proof for our main theorem (Theorem 2 in Section 3.4). We first
introduce the following definitions and lemmas to better illustrate our proof.

Lemma 1 (Lemma 3.1 in [31]). If m = Ω
(

n2

λ2
0
log
(
n
δ

))
, then with probability at least 1 − δ,

∥H(0)−H∞∥2 ≤ λ0

4 and 3
4λ0 ≤ λmin(H(0)) ≤ 5

4λ0.
Definition 4. We denote the empirical indicator matrix as W(0) with entry [W(0)]ij such that

[W(0)]ij :=
1

m

m∑
r=1

I{wT
r (0)xi ≥ 0,wT

r (0)xj ≥ 0}

and indicator matrix as W̄ with entry [W̄]ij

[W̄]ij := Ew∼N(0,I)[I{wTxi ≥ 0,wTxj ≥ 0}]

The indicator matrix W̄ has the following property.
Proposition 1. If xi ∦ xj , then [W̄]ij > 0.

Proof. If Proposition 1 does not hold, then ∃i0, j0 ∈ [n]× [n], satisfying

0 =[W̄]i0j0

=Ew∼N(0,I)[I{wTxi0 ≥ 0,wTxj0 ≥ 0}]
=Pw∼N(0,I)(w

Txi0 ≥ 0,wTxj0 ≥ 0)

Thus xi0 = −xj0 , which contradicts the hypothesis xi0 ∦ xj0 . ■

In real-world datasets, the possibility of two different data being parallel is slight. Thus, proposition 1
holds in general. We further introduce Weyl inequality as follows:
Lemma 2 (Weyl inequality [39]). Let A, B ∈ Rn×n be Hermitian matrices, and let the eigenvalues
of A, B, and A+B be {λi(A)}ni=1, {λi(B)}ni=1 and {λi(A+B)}ni=1, respectively. The eigenvalues
of each matrix are arranged in ascending order. Then we have

λi(A+B) ≤ λi+j(A) + λn−j(B), j = 0, 1, . . . , n− i (14)

for each i = 1, . . . , n, with equality for some pair i, j if and only if there is a nonzero vector x such
that Ax = λi+j(A)x, Bx = λn−j(B)x, and (A+B)x = λi(A+B)x. Also,

λi−j+1(A) + λj(B) ≤ λi(A+B), j = 1, . . . , i (15)

for each i = 1, . . . , n, with equality for some pair i, j if and only if there is a nonzero vector x such
that Ax = λi−j+1(A)x, Bx = λj(B)x, and (A + B)x = λi(A + B)x. If A and B have no
common eigenvector, then inequality (14) and (15) are strict inequality.

Now, we provide the full proof of Theorem 2.

Theorem 2. Suppose f is an NN with a single hidden layer and ReLU activation function. Assume
X ∈ Rd×n, w(0) ∼ N(0, I), P (X) ≻ 0, p0 := λmin(P (X)), and hidden nodes m = Ω

(
n6d2

λ4
0δ

3

)
,

then the following formula holds with probability at least 1− δ over the initialization

∥f(W(t),a,X)− y∥22 ≤ exp (−cp0t)∥f(W(0),a,X)− y∥22
where c is a constant depending on m and d.

15

Proof. To simplify our proof, we assume µx = 0, σx = 1, and ∥x∥2 ≤ C for all x ∈ X. Recall that

[H(0)]ij = xT
i xj

1

m

m∑
r=1

I{wT
r (0)xi ≥ 0,wT

r (0)xj ≥ 0} = xT
i xj [W(0)]ij

Due to I{wT
r (0)xi ≥ 0,wT

r (0)xj ≥ 0} is an independent random variable between 0 and 1, then by
Hoeffding’s inequality [61], the following inequality holds with probability 1− δ:

[W(0)]ij ≥ [W̄]ij −
2
√
log (1/δ)√

m

Let µ0 = min(i,j)∈[n]×[n][W̄]ij , and choose m > 16 log (1/δ)
µ2
0

, then we have

[W(0)]ij ≥ µ0 −
2
√

log (1/δ)√
m

≥ 2
√

log (1/δ)√
m

=: c(m)

Define the matrix M with entry [M]ij as

[M]ij := [H(0)]ij − c(m, d)[P (X)]ij

where c(m, d) = c(m)(d− 1). We claim that if m is large enough, then M is positive definite. To
clarify this statement, we consider the gap between H(0) and M:

∥H(0)−M∥2 = ∥c(m, d)P (X)∥2 ≤ c(m, d)∥P (X)∥F ≤ c(m, d)n2C2

If we choose m > 64 log (1/δ)(d−1)2n4C4

λ2
0

, we have

∥H(0)−M∥2 ≤ λ0

4

Then the following formula holds by matrix perturbation theory (Corollary 6.3.8 in [39])

0 <
λ0

2
≤ λmin(H(0))− λ0

4
≤ λmin(M)

which indicates that M is positive definite. We next exert Lemma 2 on M and get

0 < λmin(H(0)− c(m, d)P (X)) < λmin(H(0))− λmin(c(m, d)P(X))

That means

0 < c(m, d)p0 ≤ λmin(H(0)) ≤ 5

4
λ0 (16)

Therefore, combined with Theorem 1, we have

∥f(W(t),a,X)− y∥22
≤ exp (−λ0t)∥f(W(0),a,X)− y∥22
≤ exp (−c(m, d)p0t)∥f(W(0),a,X)− y∥22

where c(m, d) is a constant depending on m and d. This completes the proof of Theorem 2. ■

16

A.2 Proof of Theorem 3

Proof. By Corollary 3.10 and Remark 3.11 in [40], we have

E[L(W)] ≤ O

(
c ·
√

yT (H∞)−1y

N

)
+O

(√
log(1/δ)

N

)

According to the courant minimax principle[62], D.2 in [26], and inequality 16, we get

yT (H∞)−1y ≤ yTy

λmin(H∞)
≤ c · y

Ty

p0
.

Thus, we have

E[L(W)] ≤ O

(
c ·
√

yT (H∞)−1y

N

)
+O

(√
log(1/δ)

N

)

≤ O

c ·
√

yTy

Np0

+O

(√
log(1/δ)

N

)

■

B Zero-cost proxies

In this section, we provide the details of the baseline zero-cost proxies. Suppose L is the loss function
and θ is the parameters of an initialized network. We denote ◦ as the Hadamard product. The concrete
formulations of the existing zero-cost proxies are as follows.

• snip. Lee et al. [20] use the changes in loss caused by the parameter perturbations to measure
the importance of the parameters in an initialized network, such that

Ssnip(θ) =

∣∣∣∣∂L∂θ ◦ θ
∣∣∣∣

• grasp. Wang et al. [21] replace the loss change in snip with the change of the gradient norm
to establish the proxy, such that

Sgrasp(θ) = −(H
∂L

∂θ
) ◦ θ

where H is the Hessian.

• synflow. To avoid layer collapse, Tanaka et al. [22] utilize the product of all parameters in
the network during the parameter perturbation to represent the loss, such that

Ssynflow(θ) =
∂L

∂θ
◦ θ

• grad_norm. Abdelfattah et al. [8] adopt the l2 norm of the gradients in an initialized work
as a proxy, such that

Sgrad_norm =

∥∥∥∥∂L∂θ
∥∥∥∥
2

• jacov/NWOT. Mellor et al. [7] use the correlation of activations within a network as a
proxy to evaluate the performance of the network, such that

17

Sjacov = log |KH |, KH =

NA − dH(c1, c1) · · · NA − dH(c1, cN)
...

. . .
...

NA − dH(cN , c1) · · · NA − dH(cN , cN)

where NA is the number of rectified linear units, dH(ci, cj) represents the Hamming
distance between two binary codes ci and cj .

• NTK. Chen et al. [24] propose to use the condition number of NTK to measure the
trainability of the networks, such that

κN =
λmax(Θ̂train)

λmin(Θ̂train)

where Θ̂train stands for NTK of the networks. In our paper, we calculate the Spearman
correlation coefficient between 1/κN and the test accuracy of the networks.

• zen. Lin et al. [27] propose Zen-Score, in which they design an efficient zero-cost proxy
with Gaussian random inputs, such that

Szen = log (Ex,ϵ∥f(x; θ)− f(x+ αϵ; θ)∥F) +
∑
i

log

√∑
j

σ2
i,j/m

where σi,j is the mini-batch standard deviation statistic of the j-th channel in BN.

• NASI. Shu et al. [52] propose NASI to evaluate the networks by approximating the trace of
the NTK, such that

NASI = mγ−1

∥∥∥∥∥∥b−1
∑
x∈Xj

∇θ0(A)Lx

∥∥∥∥∥∥
2

2

where Xj is a mini-batch of data with size |Xj | = b.

• KNAS. Xu et al. [51] propose to use gradient kernel to evaluate the networks, such that

g =
1

n2

∑
i,j

(
∂yLj (t)

∂w(t)

)(
∂yLi (t)

∂w(t)

)T

where yL is the output of L-th layer.

• GradSign. Zhang and Jia [53] propose GradSign, in which they analyze the sample-wise
optimization landscape of the networks, such that

GradSign =
∑
k

|
∑
i

sign([∇θl(fθ(xi), yi)|θ0]k)|

• ZiCo. Li et al. [9] explore the effect of gradient properties on network performance. They use
absolute mean and standard deviation values of gradients to evaluate network performance:

ZiCo =

D∑
l=1

log

(∑
ω∈θl

E[|∂L(Xi,yi; θ)/∂ω|]√
V ar(|∂L(Xi,yi; θ)/∂ω|)

)
, i ∈ [N]

where N and D represent the number of batches and network layers, respectively. θl
represents the parameters of the l-th layers.

18

C Algorithm of MeCo-based NAS

We slightly abuse the notation and denote MeCo as our proxy function for the network. We adopt
the Zero-Cost-PT [55] to integrate MeCo to a zero-shot NAS. The algorithm of our MeCo-based
NAS is summarized in Algorithm 1. We denote A0 as an untrained supernet, et represents the t-th
edge, which stands for mixed operation in the search cells, and et,k is the k-th operation of t-th
edge. We denote E , N , and O as the set of edges, nodes, and candidate operations in the search
cells, respectively. For any node n ∈ N , we use E(n) as the set of its input edges, and ekn is the k-th
element of E(n). Note that we can use other zero-cost proxies as described in section B to replace
MeCo in Algorithm 1.

Algorithm 1 MeCo-based NAS
Require: A0: An untrained supernet; E : The set of edges in search cells; N : The set of nodes in

search cells; O: The set of candidate operations; N : the number of candidate networks.
Ensure: The best network Abest.

1: // Stage 1: Architecture Proposal
2: C = ∅;
3: for i = 1; i ≤ N ; i++ do
4: for j = 1; j ≤ |E|; j ++ do
5: Randomly choose an un-discretized edge et
6: Choose the best edge from the supernet, s.t.

et,best = argmin
1≤k≤|O|

MeCo(A0/et,k)

7: Use operation et,best to substitute et
8: end for
9: A|E| consists of {et,best|1 ≤ t ≤ |E|}

10: for j = 1; j < |N |, j ++ do ▷ prune the edges of the obtained architecture A|E|
11: Randomly select an unselected node n ∈ N
12: for k = 1; k < |E(n)|; k ++ do
13: Calculate MeCo of the architecture A|E|/e

k
n

14: end for
15: Retain edges e1n, e2n with the 1st and 2nd best MeCo value, and remove the other edges
16: end for
17: Get the candidate networks Ai that consist of {et,best|1 ≤ t ≤ E}, and append it to the set C
18: end for
19: // Stage 2: Architecture Validation
20: Get the best network:

Abest = argmax
1≤i≤N

MeCo(Ai), s.t. Ai ∈ C

D Experimental configurations

We use the same settings for the experiments as in [55]. We summarized the configurations of the
searching phase and training phase on CIFAR-10 and CIFAR-100 in Table 6 and Table 7, respectively.
For ZiCo, we use two mini-batch of data, which has a size of 64. For the other baseline proxies, we use
one mini-batch of data. On the other hand, our MeCo only uses one random data x ∈ R1×3×32×32.

E More experimental results of ρ

E.1 MeCo on NASBench-201 and NASBench-301 with three extra datasets

We evaluate MeCo and MeCoopt on NASBench-201 and NASBench-301 with Spherical-CIFAR-100,
NinaPro, and SVHN, respectively. We only use one random data x ∈ R3×32×32 for MeCo and
MeCoopt. The results are summarized in Table 8. Our MeCo achieves competitive results on most
benchmarks and achieves the best results on NASBench-201-SVHN, where the Spearman correlation
coefficient is ρ = 0.88.

19

Table 6: The settings of Zero-Cost-PT with all proxies in DARTS-CNN for CIFAR-10

Settings Searching phase Training phase

Baselines MeCo (Ours) Baselines MeCo (Ours)

batch size 64 1 96 96
cutout True False True True
cutout length 16 - 16 16
learning rate 0.025 0.025 0.025 0.025
learning rate min 0.001 0.001 - -
momentum 0.9 0.9 0.9 0.9
weight decay 3e-4 3e-4 3e-4 3e-4
grad clip 5 5 5 5
init channels 16 16 36 36
layers 8 8 20 20
drop path prob - - 0.2 0.2

Table 7: The settings of Zero-Cost-PT with all proxies in DARTS-CNN for CIFAR-100

Settings Searching phase Training phase

Baselines MeCo (Ours) Baselines MeCo (Ours)

batch size 64 1 96 96
cutout True False True True
cutout length 16 - 16 16
learning rate 0.025 0.025 0.025 0.025
learning rate min 0.001 0.001 - -
momentum 0.9 0.9 0.9 0.9
weight decay 3e-4 3e-4 3e-4 3e-4
grad clip 5 5 5 5
init channels 16 16 16 16
layers 8 8 20 20
drop path prob - - 0.2 0.2

Table 8: Comparisons of ρ with baselines using NASBench-301 and NASBench-201 on three extra
datasets

Method NASBench-301 NASBench-201
Sph-Cifar100 NinaPro SVHN Sph-Cifar100 NinaPro SVHN

grasp 0.13 0.04 0.18 -0.01 -0.01 0.62
fisher 0.00 -0.11 0.05 0.07 -0.38 0.71
grad_norm -0.00 -0.20 0.42 -0.08 -0.23 0.77
snip -0.01 -0.10 0.38 -0.09 -0.28 0.76
synflow 0.05 -0.07 0.50 0.13 0.02 0.71
l2_norm 0.12 -0.07 0.70 -0.00 0.02 0.67
#params 0.07 -0.07 0.70 -0.14 -0.11 0.72
zen 0.07 -0.09 0.68 0.23 0.15 0.18
jacov 0.08 0.13 -0.36 -0.41 0.29 0.67
nwot 0.05 0.02 0.64 -0.02 0.06 0.76

MeCo (Ours) -0.05 -0.11 0.68 -0.23 0.02 0.88
MeCoopt (Ours) 0.03 0.12 0.68 - - -

20

0 20 40 60 80

20

40

60

80

MeCo

T
es

t
ac

c

CIFAR-10 (0.89)

0 20 40 60 80

0

20

40

60

80

MeCo

T
es

t
ac

c

CIFAR-100 (0.88)

0 20 40

0

20

40

MeCo

T
es

t
ac

c

ImageNet16-120 (0.85)

(a) Performance on NATS-Bench-TSS

10 20 30

85

90

MeCo

T
es

t
ac

c

CIFAR-10 (-0.80)

0 10 20

40

50

60

70

MeCo

T
es

t
ac

c

CIFAR-100 (-0.89)

10 20 30

20

30

40

50

MeCo

T
es

t
ac

c

ImageNet16-120 (-0.88)

(b) Performance on NATS-Bench-SSS

Figure 4: Relationship between our zero-cost proxies and test accuracy for NATS-Bench-TSS and
NATS-Bench-SSS on three datasets.

E.2 MeCo on NAS-Bench-101

We present the Spearman correlation coefficient between all zero-cost proxies and the test accuracy
of the networks in NAS-Bench-101. Our MeCo uses one data of CIFAR-10, i.e., x ∈ R1×3×32×32

while the baselines adopt a batch of samples as input. The results are summarized in Table 9.

Table 9: Spearman correlation coefficients ρ between zero-cost proxies and test accuracy on NAS-
Bench-101

Baselines

Dataset MeCo grasp [21] fisher[23] grad_norm[8] snip[20] synflow [22] jacov[7] zen[27] ZiCo [9]

CIFAR-10 0.44 -0.33 -0.27 -0.32 -0.25 0.36 -0.35 0.63 0.63

MeCo achieves competitive results on NAS-Bench-101 with CIFAR-10, i.e., the Spearman correlation
coefficient obtains 0.44, which is higher than the majority of the baselines. However, zen and ZiCo
perform better than MeCo.

E.3 MeCo on TransBench-101

We further evaluate our MeCo on diverse tasks. Specifically, we compare MeCo and the other proxies
on Transbench-101-Micro and Transbench-101-Macro [47], respectively.

TransBench-101-Micro. We evaluate MeCo and MeCoopt on TransBench-101-Micro with ten tasks.
We calculate the Spearman correlation between our proxies and the accuracy of the networks. The
results are summarized in Table 10. MeCo achieves the best performance on the three tasks, i.e.,
Class Objection, Spherical-Cifar100, and NinaPro, which are 0.58, 0.85, and 0.47, respectively. It
can be seen that MeCoopt effectively improves the performance of MeCo. For example, MeCoopt
improves MeCo from 0.62 to 0.77 on segmentation tasks.

TransBench-101-Macro. We compare MeCo, MeCoopt and the baselines on TransBench-101-Macro
with seven tasks. The results are summarized in Table 11. Our proxies achieve the best performance
on Autoencoding, Jigsaw, and Surface Normal, which are 0.74, 0.48, and 0.80, respectively. Our
proxies also achieve competitive results on the remaining tasks. Experimental results show that

21

our proxies can be used for diverse tasks. It can be demonstrated that MeCo and MeCoopt become
ineffective on a few tasks, such as Room Layout. We would like to note that the existing proxies do
not achieve a high correlation on all tasks consistently.

Table 10: Comparisons of ρ with baselines using Transbench-101-Micro on Ten Tasks

Approach Autoencoding Class Scene Jigsaw Surface Segmantation Room Spherical NinaPro SVHNObjection Classification Normal Layout -Cifar100
grasp -0.12 -0.22 -0.43 -0.12 0.01 0.00 -0.29 -0.03 -0.20 -0.24
fisher -0.58 0.44 -0.13 0.30 0.16 0.12 0.30 0.72 0.42 0.81
grad_norm -0.32 0.39 -0.33 0.36 0.36 0.60 0.25 0.72 0.40 0.78
snip -0.27 0.45 -0.14 0.41 0.49 0.68 0.32 0.76 0.42 0.83
synflow 0.00 0.48 0.27 0.47 0.00 0.00 0.30 0.79 0.45 0.92
l2_norm 0.04 0.32 0.28 0.35 0.50 0.48 0.18 0.53 0.36 0.52
#params -0.01 0.45 0.32 0.44 0.62 0.68 0.30 0.79 0.36 0.76
zen 0.14 0.54 0.27 0.51 0.71 0.67 0.38 0.67 0.42 0.74
jacov 0.18 0.51 0.19 0.56 0.75 0.80 0.40 0.71 0.40 0.77
nwot 0.03 0.39 0.89 0.42 0.57 0.53 0.25 0.64 0.38 0.63
zico 0.35 - 0.71 0.52 0.68 - - - - -

MeCo (Ours) 0.03 0.58 0.62 0.45 0.65 0.62 -0.25 0.85 0.47 0.88
MeCoopt (Ours) 0.03 0.59 0.64 0.47 0.67 0.77 0.26 0.85 0.47 0.88

Table 11: Comparisons of ρ with baselines using Transbench-101-Macro on Seven Tasks

Approach Autoencoding Class Scene Jigsaw Surface Segmantation Room
Objection Classification Normal Layout

grasp -0.02 -0.64 -0.43 -0.26 -0.05 -0.02 -0.26
fisher -0.19 -0.30 -0.13 -0.26 0.15 0.03 -0.26
grad_norm 0.31 -0.56 -0.33 -0.27 0.35 0.21 -0.27
snip 0.20 -0.38 -0.14 -0.19 0.45 0.27 -0.19
synflow 0.00 0.12 0.27 0.34 0.00 0.00 0.34
l2_norm -0.20 0.08 0.28 0.15 0.30 0.18 0.15
#params -0.18 0.16 0.32 0.15 0.30 0.06 0.15
zen -0.01 0.10 0.27 0.24 0.38 0.27 0.24
jacov 0.45 0.07 0.19 0.19 0.50 0.57 0.19
nwot 0.67 0.83 0.89 0.48 0.78 0.80 0.76
MeCo (Ours) 0.51 0.59 0.81 0.17 0.80 0.62 0.23
MeCoopt (Ours) 0.74 0.73 0.76 0.48 0.76 0.63 0.33

E.4 MeCo on AutoFormer and MobileNet OFA

AutoFormer. Chen et al. [49] proposed a novel one-shot architecture search framework for
transformer-based models. We load the trained supernets and regenerate the candidate subnets.
We then re-evaluate the subnets to obtain the accuracy on ImageNet and compute MeCo. The
correlation of MeCo and model accuracy on AutoFormer is 0.45.

OFA. To solve the problem of efficient inference across devices and resource constraints, Cai et al.
[50] proposed to train a once-for-all (OFA) network, which supports diverse architectural settings.
We randomly sample 1,000 subnets from the OFA network and use the accuracy of the predictor
predictions as the test accuracy. The Spearman correlation between MeCo and test accuracy is 0.86.

F More experimental results of NAS with MeCo

In this section, we provide more results and comparisons of our zero-shot NAS on NATS-Bench-TSS
and DARTS-CNN. In the following descriptions, we denote multi-shot, one-shot, and zero-shot as
MS, OS, and ZS, respectively.

F.1 Results on NATS-Bench-TSS

In the NATS-Bench-TSS search space, we evaluate all networks using zero-cost proxies and choose
the Top-10 networks with the highest scores. Then we calculate the average test accuracy and
standard deviation. The results are summarized in Table 12. As shown in the table, the networks
searched by MeCo have the highest average precision on CIFAR-10, which is 0.08 higher than the
best baseline proxy ZiCo. For CIFAR-100 and ImageNet16-120, MeCo achieves competitive results,

22

e.g., 70.86%±0.96% with CIFAR-100 and 42.59%±1.77% with ImageNet16-120. In all, the results
demonstrate that our MeCo has a great advantage in evaluating network performance, considering
MeCo only requires one data sample as input.

We further combine MeCo with Zero-Cost-PT [55] and search for the best architecture three times
with different seeds. The accuracy of the selected architectures as well as the comparisons with the
baseline methods are presented in Table 13. It can be shown from the results that our MeCo-based
NAS achieves competitive results with the SOTA baselines, e.g., synflow, zen, and ZiCo. However,
MeCo-based NAS invokes one data for a single forward pass, thus being more resource-saving.

Table 12: The average test accuracy of Top-10 architectures obtained by various zero-cost proxies on
NATS-Bench-TSS using CIAFR-10, CIAFR-100, and ImageNet16-120, respectively

Baselines

Dataset MeCo grasp[21] fisher [23] grad_norm[8] snip [20] synflow[22] jacov[7] NTK[24] zen[27] ZiCo[9]

CIFAR-10 93.64 89.34 89.27 89.27 89.27 93.27 91.23 92.67 58.99 93.56
±0.31 ±2.16 ±2.10 ±2.10 ±2.10 ±0.74 ±1.01 ±0.46 ±3.44 ±0.23

CIFAR-100 70.86 60.89 61.06 60.89 60.89 71.12 68.50 69.31 12.73 70.64
±0.96 ±3.88 ±4.02 ±3.88 ±3.88 ±1.59 ±1.21 ±1.17 ±1.33 ±0.28

ImageNet16-120 42.59 22.99 24.10 23.35 23.35 42.65 40.59 39.98 15.10 42.74
±1.77 ±11.01 ±11.36 ±11.44 ±11.44 ±3.59 ±1.86 ±1.73 ±0.51 ±1.78

Table 13: The test accuracy of optimal architectures obtained by Zero-Cost-PT with various zero-cost
proxies on NATS-Bench-TSS using CIAFR-10, CIFAR-100, and ImageNet16-120, respectively

Baselines

Dataset MeCo grasp[21] fisher [23] grad_norm[8] snip [20] synflow[22] jacov[7] NTK[24] zen[27] ZiCo[9]

CIFAR-10 93.76 92.59 88.39 91.64 90.11 93.76 91.92 92.61 93.76 93.76
±0 ±1.12 ±2.55 ±0.68 ±2.85 ±0 ±2.40 ±0.65 ±0 ±0

CIFAR-100 71.11 68.98 65.77 65.20 65.29 71.11 69.67 68.27 71.11 71.11
±0 ±2.69 ±0.93 ±0.56 ±0.96 ±0 ±2.39 ±2.34 ±0 ±0

ImageNet16-120 41.44 35.29 28.91 35.82 37.38 41.44 40.35 41.25 41.44 41.44
±0 ±8.03 ±5.18 ±3.99 ±4.41 ±0 ±6.56 ±2.37 ±0 ±0

F.2 Results on DARTS-CNN

For DARTS-CNN search space, we search the architectures by Zero-Cost-PT with different zero-cost
proxies on CIFAR-100. Each searched network is trained five times, and the results are summarized
in Table 14. There are two settings in our experiments on DARTS-CNN: networks initialized with 16
channels and trained as in Table 7, and networks initialized with 36 channels and trained as in [63]. It
can be shown from Table 14 that MeCo achieves competitive results compared with MS, OS, and
ZS baselines. More concretely, MeCo-based NAS obtains 19.33% test error with 0.08 GPU days,
which outperforms all the ZS methods under the same settings. On the other hand, compared with the
manual, MS, and OS methods, MeCo is also competitive. For example, MeCo-based NAS achieves
83.14% accuracy, which is only 0.34% lower than the baseline method β-DARTS [64], but five times
more efficient in computation.

We further visualize the networks searched by Zero-Cost-PT with different proxies on DARTS-CNN.
The results on CIFAR-10 and CIFAR-100 are presented in Figure 6 and Figure 7, respectively.

F.3 Results on MobileNet V3

We search the architectures on MobileNet space using Algorithm 1. We retrain the searched network
using ImageNet-1K for 480 epochs with a batch size of 256 and input resolution 224 × 224. The
results are summarized in Table 15. MeCo achieves 77.8% Top-1 accuracy, which is 0.7% higher
than the SOTA baseline method ZiCo. Moreover, our method only takes 0.04 GPU days, which
outperforms the SOTA methods.

G Limitations and future works

23

Table 14: Comparison of our method with SOTA NAS methods using DARTS-CNN and CIFAR-100.

Approach Test Error Search Cost Params Method(%) (GPU Days) (MB)

DenseNet-BC[65] 17.18 - 25.6 Manual
NASNet-A[12] 16.82 2000 3.3 MS
DARTS(1st)[6] 17.76 1.5 3.3 OS
SNAS [66] 17.55 1.5 2.8 OS
P-DARTS[64] 15.92± 0.18 0.4 3.7 OS
R-DARTS[67] 18.01± 0.26 - - OS
PC-DARTS[63] 16.9 0.1 3.6 OS
β-DARTS[68] 16.52± 0.03 0.4 3.83± 0.08 OS

Zero-Cost-PT†
synflow [22] 19.82± 0.35 0.04 1.2 ZS

Zero-Cost-PT†
fisher[23] 21.14± 0.24 0.06 0.7 ZS

Zero-Cost-PT†
grasp [21] 22.65± 0.30 0.13 0.7 ZS

Zero-Cost-PT†
jacov[7] 22.90± 0.35 0.04 0.6 ZS

Zero-Cost-PT†
snip[20] 19.95± 0.28 0.04 0.8 ZS

Zero-Cost-PT†
NTK[24] 20.30± 0.33 0.19 0.9 ZS

Zero-Cost-PTZiCo† [9] 19.54± 0.28 0.06 1.1 ZS

Zero-Cost-PT†
MeCo 19.33± 0.25 0.08 0.8 ZS

Zero-Cost-PT‡
MeCo 16.86± 0.30 0.08 3.7 ZS

†: networks initialized with 16 channels and trained as settings in 7.
‡: networks initialized with 36 channels and trained as settings in [63].

Table 15: Comparison of our method with SOTA NAS methods using MobileNet and ImageNet-1K.

Approach Top-1 Search Cost Params Method(%) (GPU Days) (M)

MobileNet-V3(1.0) 75.2 288 5.3 MS
PNAS 74.2 224 5.1 MS

DARTS 73.3 4 4.7 OS
PC-DARTS 75.8 3.8 - OS
SPOS 74.7 8.3 - OS
GreedyNAS 74.9 7.6 3.8 OS

TE-NAS 75.5 0.17 5.4 ZS
ZiCo 77.1 0.4 - ZS
Zero-Cost-PT 76.4 0.04 8.0 ZS
Zen-score 76.1 0.5 - ZS
MeCo (Ours) 77.8 0.08 7.9 ZS

24

0 20 40 60 80

20

40

60

80

MeCo

T
es

t
ac

c

CIFAR-10 (0.89)

0 20 40 60 80

0

20

40

60

80

MeCo

T
es

t
ac

c

CIFAR-100 (0.88)

0 20 40

0

20

40

MeCo

T
es

t
ac

c

ImageNet16-120 (0.85)

(a) Performance on NATS-Bench-TSS

10 20 30

85

90

MeCo

T
es

t
ac

c

CIFAR-10 (-0.80)

0 10 20

40

50

60

70

MeCo

T
es

t
ac

c

CIFAR-100 (-0.89)

10 20 30

20

30

40

50

MeCo

T
es

t
ac

c

ImageNet16-120 (-0.88)

(b) Performance on NATS-Bench-SSS

Figure 2: Relationship between our zero-cost proxies and test accuracy for NATS-Bench-TSS and
NATS-Bench-SSS on three datasets.

1 2 3 4 5

0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.9

Samples

⇢

NATS-Bench-TSS

1 2 3 4 5

�0.9

�0.88

�0.86

�0.84

�0.82

�0.8

�0.78

Samples

⇢

NATS-Bench-SSS

CIFAR-10; CIFAR-100; ImageNet16-120

Figure 3: Spearman correlation coefficients of MeCo with different #Samples on TSS and SSS,
respectively.

2 Ablation experiment6

3 Conclusion7

4 ResultsinRebuttal8

Table 4: The test accuracy of Top-10 architectures obtained by various zero-cost proxies on NATS-
Bench-TSS using CIFAR-10

Baselines

Dataset MeCo grasp[?] fisher [?] grad_norm[?] snip [?] synflow[?] jacov[?] NTK[?] zen[?] ZiCo[?]

CIFAR-10 93.64 89.34 89.27 89.27 89.27 93.27 91.23 92.67 58.99 93.56
±0.31 ±2.16 ±2.10 ±2.10 ±2.10 ±0.74 ±1.01 ±0.46 ±3.44 ±0.23

2

Figure 5: Spearman correlation coefficients of
MeCo with different number of samples on NATS-
Bench-TSS and NATS-Bench-SSS, respectively.

Finally, we demonstrate the limitations of this
work and the possible directions of our future
work. In Section 5, We propose an optimization
method to alleviate the channel-sensitive issue
of MeCo. This weight-sampling approach can
be further improved in future work. Moreover,
we would like to point out that the evaluation of
a zero-cost proxy is often tied to the availabil-
ity of benchmarks. Hench though the proxies
are “zero cost”, the evaluation of the proxies is
strongly dependent on a benchmark, which in
the first place is very expensive to create. Finally,
although MeCo achieves the highest correlation
with the test accuracy on multiple benchmarks,
it shows near zero correlations on a few tasks
(e.g., TransBench-101-Micro with Autoencod-
ing). We will leave these issues as our future
work.

25

c_{k-2}

0

sep_conv_5x5 2

sep_conv_5x5

3

sep_conv_5x5

c_{k-1} sep_conv_5x5 1
sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5
c_{k}

Normal Cell

c_{k-2}
0

sep_conv_5x5

1sep_conv_5x5
2

sep_conv_5x5 3

sep_conv_5x5

c_{k-1}

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5 c_{k}

Reduction Cell
(a) synflow

c_{k-2}

0
avg_pool_3x3

1
avg_pool_3x3

2avg_pool_3x3

3
sep_conv_5x5

c_{k-1}

avg_pool_3x3

dil_conv_3x3

skip_connect

c_{k}

dil_conv_3x3

Normal Cell

c_{k-2}

0
sep_conv_3x3

1max_pool_3x3
2sep_conv_3x3

3sep_conv_5x5

c_{k-1} sep_conv_5x5 max_pool_3x3

sep_conv_3x3
c_{k}dil_conv_5x5

Reduction Cell
(b) fisher

c_{k-2} 0sep_conv_3x3

1

dil_conv_5x5

c_{k-1}
avg_pool_3x3

sep_conv_5x5 2

dil_conv_3x3

3
sep_conv_3x3

c_{k}

sep_conv_3x3

sep_conv_5x5

Normal Cell

c_{k-2}

0sep_conv_5x5

1
avg_pool_3x3

2sep_conv_3x3 3

dil_conv_3x3

c_{k-1}
sep_conv_5x5

sep_conv_5x5

skip_connect
c_{k}

sep_conv_3x3

Reduction Cell
(c) snip

c_{k-2}

0

avg_pool_3x3
1

skip_connect

c_{k-1} avg_pool_3x3

sep_conv_5x5

2dil_conv_3x3 sep_conv_3x3

3sep_conv_5x5
c_{k}

sep_conv_3x3

Normal Cell

c_{k-2}

0

sep_conv_3x3

1

avg_pool_3x3
2

sep_conv_5x5

c_{k-1}
skip_connect

skip_connect

skip_connect

3
max_pool_3x3

c_{k}
sep_conv_3x3

Reduction Cell
(d) grasp

c_{k-2}

0
max_pool_3x3

1dil_conv_3x3 2

dil_conv_3x3 3

sep_conv_5x5

c_{k-1} dil_conv_3x3 sep_conv_3x3
c_{k}sep_conv_3x3

dil_conv_3x3

Normal Cell

c_{k-2}
0

sep_conv_3x3

1

max_pool_3x3

c_{k-1}

max_pool_3x3

avg_pool_3x3
2sep_conv_3x3

3dil_conv_3x3

c_{k}sep_conv_5x5
sep_conv_3x3

Reduction Cell
(e) jacov

c_{k-2} 0dil_conv_5x5

1sep_conv_3x3

2

sep_conv_3x3

3
dil_conv_5x5

c_{k-1}

dil_conv_3x3

sep_conv_5x5

sep_conv_5x5

dil_conv_5x5

c_{k}

Normal Cell

c_{k-2}

0

sep_conv_3x3 3

sep_conv_5x5

c_{k-1} sep_conv_3x3
1

sep_conv_5x5

dil_conv_3x3

sep_conv_5x5
2dil_conv_5x5
c_{k}

sep_conv_5x5

Reduction Cell
(f) NTK

c_{k-2}

0

sep_conv_5x5 2

sep_conv_5x5

3

sep_conv_5x5

c_{k-1} sep_conv_3x3 1
sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5
c_{k}

Normal Cell

c_{k-2}
0

sep_conv_3x3

1sep_conv_5x5
2

sep_conv_5x5 3

skip_connect

c_{k-1}

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5 c_{k}

Reduction Cell
(g) ZiCo

26

c_{k-2}

0

dil_conv_5x5
1

sep_conv_5x5

2

dil_conv_5x5

c_{k-1} sep_conv_5x5

skip_connect

sep_conv_3x3

3sep_conv_3x3
c_{k}

sep_conv_5x5

Normal Cell

c_{k-2}

0

dil_conv_5x5

1

sep_conv_5x5

2
dil_conv_5x5c_{k-1}

sep_conv_5x5

sep_conv_5x5

dil_conv_5x5
3

dil_conv_5x5

c_{k}
sep_conv_3x3

Reduction Cell
(h) MeCo

Figure 6: Cells found by Zero-Cost-PT with all zero-cost proxies on the DARTS-CNN search space
using CIFAR-10

c_{k-2}

0

sep_conv_5x5 2

sep_conv_5x5

3

sep_conv_5x5

c_{k-1} sep_conv_5x5 1
sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5
c_{k}

Normal Cell

c_{k-2}
0

sep_conv_5x5

1sep_conv_5x5
2

sep_conv_5x5 3

sep_conv_5x5

c_{k-1}

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5 c_{k}

Reduction Cell
(a) synflow

c_{k-2}

0

sep_conv_3x3

1

sep_conv_5x5
3

dil_conv_5x5

c_{k-1}
max_pool_3x3

max_pool_3x3 2
dil_conv_3x3

skip_connect

c_{k}
skip_connect

Normal Cell

c_{k-2}
0

sep_conv_5x5

2
sep_conv_5x5

c_{k-1}

sep_conv_3x3
1sep_conv_3x3

sep_conv_3x3 3max_pool_3x3

dil_conv_3x3

c_{k}

sep_conv_3x3

Reduction Cell
(b) fisher

c_{k-2} 0sep_conv_5x5
2

skip_connect

3
dil_conv_3x3

c_{k-1} skip_connect 1
sep_conv_3x3

sep_conv_5x5

sep_conv_3x3

c_{k}

max_pool_3x3

Normal Cel

c_{k-2}

0
dil_conv_3x3

1

sep_conv_3x3

2

skip_connect

c_{k-1}
sep_conv_5x5

3dil_conv_5x5

skip_connect

skip_connect

sep_conv_5x5
c_{k}

Reduction Cell
(c) snip

c_{k-2}

0

max_pool_3x3
1

avg_pool_3x3
3

avg_pool_3x3

c_{k-1} avg_pool_3x3

sep_conv_3x3

2
sep_conv_5x5 c_{k}
sep_conv_3x3 sep_conv_3x3

Normal Cell

c_{k-2}

0

max_pool_3x3
1

dil_conv_3x3

2

skip_connect

c_{k-1}
sep_conv_3x3

dil_conv_3x3

3dil_conv_3x3

dil_conv_3x3

sep_conv_3x3 c_{k}

Reduction Cell
(d) grasp

c_{k-2}

0max_pool_3x3

1dil_conv_3x3

2
avg_pool_3x3

c_{k-1}

avg_pool_3x3

dil_conv_5x5

3

dil_conv_5x5

c_{k}avg_pool_3x3 dil_conv_5x5

Normal Cell

c_{k-2} 0
skip_connect 1

avg_pool_3x3

2sep_conv_5x5

3
dil_conv_3x3

c_{k-1}

sep_conv_5x5

sep_conv_3x3

dil_conv_5x5

skip_connect
c_{k}

Reduction Cell
(e) jacov

27

c_{k-2}

0

dil_conv_5x5 1
dil_conv_5x5

2

dil_conv_3x3 3

sep_conv_3x3

c_{k-1}
dil_conv_5x5
sep_conv_5x5

c_{k}dil_conv_5x5
sep_conv_5x5

Normal Cell

c_{k-2}

0

sep_conv_5x5 1

sep_conv_3x3

3

dil_conv_5x5

c_{k-1} sep_conv_5x5

sep_conv_5x5
2

sep_conv_3x3

sep_conv_5x5

sep_conv_3x3
c_{k}

Reduction Cell
(f) NTK

c_{k-2}

0sep_conv_5x5

1sep_conv_3x3

2
sep_conv_5x5 3

sep_conv_3x3

c_{k-1}
sep_conv_5x5

sep_conv_3x3

sep_conv_5x5

c_{k}
sep_conv_3x3

Normal Cell

c_{k-2} 0sep_conv_5x5

1sep_conv_5x5

2

sep_conv_5x5

3
sep_conv_3x3

c_{k-1}

sep_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_3x3

c_{k}

Reduction Cell
(g) ZiCo

c_{k-2} 0dil_conv_3x3

1sep_conv_5x5

3dil_conv_5x5

c_{k-1}

sep_conv_3x3

dil_conv_5x5
2sep_conv_5x5

sep_conv_3x3
c_{k}

sep_conv_3x3

Normal Cell

c_{k-2}

0
avg_pool_3x3

1sep_conv_5x5
2

sep_conv_3x3
3dil_conv_3x3

c_{k-1}
sep_conv_3x3

sep_conv_3x3

dil_conv_5x5

c_{k}
sep_conv_3x3

Reduction Cell
(h) MeCo

Figure 7: Cells found by Zero-Cost-PT with all zero-cost proxies on the DARTS-CNN search space
using CIFAR-100

28

	Introduction
	Related work
	Zero-shot NAS and zero-cost proxy
	Over-parameterized networks

	MeCo: minimum eigenvalue of correlation on feature maps
	Preliminaries
	The construction of MeCo
	Back to convolution
	Over-parameterized neural networks
	New zero-cost proxy: MeCo

	Experiments and evaluations
	Experimental configurations
	Performance of our MeCo and comparisons
	Dependency on data
	NAS with MeCo

	Discussion and Optimization
	Optimization method MeCoopt
	Ablation study

	Conclusion
	Detailed proofs
	Proof of Theorem 2
	Proof of Theorem 3

	Zero-cost proxies
	Algorithm of MeCo-based NAS
	Experimental configurations
	More experimental results of
	MeCo on NASBench-201 and NASBench-301 with three extra datasets
	MeCo on NAS-Bench-101
	MeCo on TransBench-101
	MeCo on AutoFormer and MobileNet OFA

	More experimental results of NAS with MeCo
	Results on NATS-Bench-TSS
	Results on DARTS-CNN
	Results on MobileNet V3

	Limitations and future works

