
A Path and Node Transitivity

Theorem A.1. For ∀(v1, v2, v3) ∈ V and (b1, b2, b3) ∈ B:

[[pbM (b1, b2) ∧ pbM (b2, b3)] =⇒ pbM (b1, b3)]] ⇐⇒
[[pvM (v1, v2) ∧ pvM (v2, v3)] =⇒ pvM (v1, v3)]

(13)

Proof. Consider three paths only contain one node respectively: b1 = {v1}, b2 = {v2}, b3 = {v3}.
For (b1, b2, b3) ∈ B:

pbM (b1, b2) = pvM (v1, v2) (14)

pbM (b2, b3) = pvM (v2, v3) (15)

pbM (b1, b3) = pvM (v1, v3) (16)

If the condition is reversed, the equation can also hold. Consider three arbitrary branches (sibling
branches of common nodes are omitted): b1 = {v1, v2}, b2 = {v3, v4}, b3 = {v5, v6}.

s.t. pvM (v1, v2) ∧ pvM (v2, v3) =⇒ pvM (v1, v3)

According to the definition of branch predicate:

pbM (b1, b2) = pvM (v1, v3) ∧ pvM (v2, v4) (17)

pbM (b2, b3) = pvM (v3, v5) ∧ pvM (v4, v6) (18)

pbM (b1, b2) ∧ pbM (b2, b3)

= pvM (v1, v3) ∧ pvM (v2, v4) ∧ pvM (v3, v5) ∧ pvM (v4, v6)

= pvM (v1, v5) ∧ pvM (v2, v6)

= pbM (b1, b3)

(19)

B Probability of Transitivity

Proposition B.1. The probability of transitivity for ϕQψα can be computed as:

P{(pbM (b1, b2) ∧ pbM (b2, b3) =⇒ pbM (b1, b3))} =

P{ϕQψα (b1) = ϕQψα (b2)}P{ϕQψα (b2) = ϕQψα (b3)}
P{ϕQψα (b1) = ϕQψα (b3)}+ (1− P{ϕQψα (b1) = ϕQψα (b3)})
(1− P{ϕQψα (b1) = ϕQψα (b2)}P{ϕQψα (b2) = ϕQψα (b3)})

(20)

Proof. All cases can be divided into two categories:

• pbM (b1, b3) = 1

• pbM (b1, b3) = 0

If pbM (b1, b3) = 1, pbM (b1, b2) = 1 and pbM (b2, b3) = 1.

P1 = P{ϕQψα (b1) = ϕQψα (b2)}P{ϕQψα (b2) = ϕQψα (b3)}
P{ϕQψα (b1) = ϕQψα (b3)}

(21)

If pbM (b1, b3) = 0, pbM (b1, b2) = 0 or pbM (b2, b3) = 0.

P2 = (1− P{ϕQψα (b1) = ϕQψα (b3)})
(1− P{ϕQψα (b1) = ϕQψα (b2)}P{ϕQψα (b2) = ϕQψα (b3)})

(22)

13

(a) Parallelism Framework (b) Algorithm Flow

Figure 6: Parallelism framework of PTSAZero implementation and PTSAZero algorithm flow.

P{(pbM (b1, b2) ∧ pbM (b2, b3) =⇒ pbM (b1, b3))} = P1 + P2 =

P{ϕQψα (b1) = ϕQψα (b2)}P{ϕQψα (b2) = ϕQψα (b3)}
P{ϕQψα (b1) = ϕQψα (b3)}+ (1− P{ϕQψα (b1) = ϕQψα (b3)})
(1− P{ϕQψα (b1) = ϕQψα (b2)}P{ϕQψα (b2) = ϕQψα (b3)})

(23)

C Aggregation Error Bound of PTSA

Theorem C.1. Considering a general tree state abstraction ϕ with a transitive predicate p(Lϕ ≤ ζ),
the aggregation error in Alg. 1 under balanced search is bounded as:

Eϕ < log|A|(Ns + 1)ζ (24)

If predicate p(Lϕ ≤ ζ) is not transitive, the aggregation error is bounded as:

Eϕ < (|A| − 1) log|A|(Ns + 1)ζ (25)

Proof. Assuming an action space of size A and expansion of one child node per simulation, the
search tree under balanced search in MuZero algorithm can be viewed as an A-ary tree. The average
depth of the tree can be approximated as:

D ≈ logA(N + 1)

, where (N + 1) represents the total number of nodes in the search tree, with +1 compensating for
the root node that is not included in the depth calculation.

Considering transitivity among all searched paths, it is possible to aggregate at most two paths,
resulting in a maximum aggregation error equal to the cumulative error of all nodes on these two
paths:

Eϕmax ≤ log|A|(Ns + 1)ζ (26)

Eϕ
r

< Eϕ
r
max ≤ log|A|(Ns + 1)ζ (27)

Considering non-transitivity among all searched paths, all paths should be considered for aggregation,
the maximum number of subtrees under the root node in MuZero algorithm is limited by |A|.
Therefore, the maximum aggregation error after merging is determined by the cumulative error of all
nodes in the largest subtrees under the root node:

Eϕ
r

< Eϕ
r
max ≤ (|A| − 1) log|A|(Ns + 1)ζ (28)

D Implementation

All experiments are run on Intel Xeon ICX Platinum 8358 and GeForce RTX 3090. The im-
plementation of MuZero is based on the code from muzero-general (https://github.com/werner-
duvaud/muzero-general) and model-based-rl (https://github.com/JimOhman/
model-based-rl). The modification of SMuZero has three improvements over MuZero:

14

0 100 200 300 400
Time(min)

20

10

0

10

20

Ti
m

e
R

et
ur

n

Time-Return: Pong-ramNoFrameskip-v4

SMuZero
PTSAZero
PTSAZero =0.5
PTSAZero =0.6
PTSAZero =0.7

=0.3

(a) Pong

0 50 100 150 200 250 300
Time(min)

0

5

10

15

20

25

30

Ti
m

e
R

et
ur

n

Time-Return: Freeway-ramNoFrameskip-v4

SMuZero
PTSAZero
PTSAZero =0.5

=0.6
=0.7

=0.3

PTSAZero
PTSAZero

(b) Freeway

Figure 7: Experiment results of different parameters in probability state abstraction on Atari bench-
marks.

0k 20k 40k 60k 80k 100k 120k 140k
Training Steps

3.0

3.2

3.4

3.6

3.8

Se
ar

ch
 D

ep
th

Search Depth: Pong-ramNoFrameskip-v4

PTSAZero =0.7
PTSAZero =0.5
PTSAZero =0.3
SMuZero

Figure 8: Comparison of average search depth in Pong. The average search depth represents the
average path length of the search tree.

• When expanding nodes, the MCTS only considers a set of sampled actions from the original
action space, instead of enumerating all actions. The proposal distribution βp(a|s) is based
on the policy network, which is consistent with [21].

• The UCB formula does not use the raw prior π, but instead the sample-based equivalent π̂π .

• Instead of utilizing the distribution of all actions, the policy is updated on the sampled
actions.

The implementation of EfficientZero is based on the code from EfficientZero
(https://github.com/YeWR/ EfficientZero). The network structures of all methods are modi-
fied as SMuZerO [21] in Atari benchmarks for a fair comparison.

The parallelism implementations of all methods are based on ray library [31]. The parallelism
framework and algorithm flow of PTSAZero are shown in Figure 6 for better reproduction.

E Hyperparameters

Conducting experiments on Atari game tasks, the setting of hyperparameters is shown in Table.3.
Typically, hyperparameters include learning rate, optimizer, batch size, discount factor, experience
replay buffer size, and more. The frame size of the Atari game denotes the pixel size of the observation.
In the MuZero-based algorithm, each actor can interact with the environment and collect experience
independently, which can increase the amount of experience and reduce the time needed for learning.
To ensure equal parallel processing capabilities across all algorithms, we have set the number of

15

Parameter Setting
frame size 96× 96

number of actors 7
max history length 500

visit softmax temperatures 1.0,0.5,0.25
root dirichlet alpha 0.25

root exploration fraction 0.25
pb c base 19652
pb c init 1.25

buffer size 10000
batch size 256
td steps 50

num unroll steps 5
send weights frequency 500
weight sync frequency 1000

discount 0.997
optimizer AdamW

lr init 0.0008
Table 3: Specific parameters in Atari benchmark.

0 100 200 300 400 500 600 700 800
Time

200

400

600

800

1000

1200

1400

1600

Ti
m

e
R

et
ur

n

Time-Return: Assault-ramNoFrameskip-v4
MuZero N=30
MuZero N=18
SMuZero N=18
SMuZero N=30
EfficientZero N=30
PTSAZero N=18
PTSAZero N=30

(a) Assault

0 200 400 600 800 1000
Time

0

250

500

750

1000

1250

1500

1750

2000

Ti
m

e
R

et
ur

n

0MuZero N=3
8MuZero N=1
18SMuZero N=

SMuZero N=30
N=30EfficientZero

PTSAZero N=18
PTSAZero N=30

Time-Return: Seaquest-ramNoFrameskip-v4

(b) Seaquest

0 200 400 600 800 1000 1200 1400
Time

500

1000

1500

2000

2500

Ti
m

e
R

et
ur

n

Time-Return: MsPacman-ramNoFrameskip-v4
MuZero N=30
MuZero N=18
SMuZero N=18
SMuZero N=30
EfficientZero N=30
PTSAZero N=18
PTSAZero N=30

(c) MsPacman

0 200 400 600 800 1000 1200 1400 1600
Time

0

100

200

300

400

500

600

700

Ti
m

e
R

et
ur

n

Time-Return: Breakout-ramNoFrameskip-v4
MuZero N=30
MuZero N=18
SMuZero N=18
SMuZero N=30
EfficientZero N=30
PTSAZero N=18
PTSAZero N=30

(d) Breakout

Figure 9: More experimental results on Atari benchmarks.

actors to 7 for each method. This uniform setting helps to ensure that each method can effectively
utilize parallel processing resources.

F Additional Experiments

For a clear numerical comparison, Table 4 shows the average computation time of collecting 1k
frames with different simulation times on Atari benchmarks. Compared to other algorithms, PTSA
introduces an acceptable decrease in trajectory collection efficiency (less than 8% on average), which
results in a significant reduction in the whole training time. Additionally, we compare different α
in probability tree state abstraction, and results are shown in Figure 7. Results demonstrate that the
algorithm’s convergence speed improves as the parameter α increases.

16

Table 4: Average computation time (seconds) of collecting 1k frames in Atari benchmarks. Box.
denotes Boxing, Free. denotes Freeway, Ten. denotes Tennis, Break. denotes Breakout, MsP. denotes
MsPacman, and Sea. denotes Seaquest tasks respectively. Ave. denotes Average computation time.

Methods Box. Free. Pong Alien Ten. Assault Break. MsP. Sea. Ave.
MuZero N=30 6.31 3.47 4.56 8.85 3.86 3.41 3.24 3.43 3.18 4.48

SMuZero N=30 6.89 4.43 4.44 8.89 4.02 3.47 3.33 3.50 3.35 4.70
PTSAZero N=30 6.74 3.85 4.81 9.04 4.11 3.58 3.50 3.63 3.37 4.74
MuZero N=18 3.06 2.39 2.46 3.49 3.42 1.71 1.61 1.92 1.69 2.42

SMuZero N=18 4.12 2.41 2.11 3.07 3.45 1.76 1.97 1.98 1.72 2.51
PTSAZero N=18 3.41 1.96 3.16 3.37 3.55 1.85 1.86 2.05 1.84 2.56

Moreover, the comparison results of average search depth between SMuZero and PTSAZero with
different α are shown in Figure 8. Since the search space of MCTS is reduced by tree state abstraction,
the search depth of PTSAZero is deeper than that of SMuZero with same number of simulations.

17

