
Supplementary Material428

“Do Not Marginalize Mechanisms, Rather Consolidate!”429

A Evaluation of Partitioned SCM430

A partitioned SCMMA consists of several sub SCMMA, that, in sum, cover all variables and431

structural equations of an initial SCMM. Thus, evaluation of a partitioned SCM yields the same set432

of values v ∈ V as the originalM. Similar to the evaluation of structural equation in the initialM,433

sub SCM need to be evaluated in a specific order to guarantee all u ∈M′
U exist. As such, sub SCM434

can be considered multivariate variables that establish another high-level DAG. The evaluation order435

is determined via the relation RX as defined in Sec. 3.1 and depends on the graph partition A and the436

order of X imposed by the the initial SCM.437

Algorithm 1 Evaluation of partitioned SCM
1: procedure PARTITIONEDSCMEVAL(MA,u, I)
2: x← u ▷ x will gradually collect all values x ∈ X ofM
3: for A in sort(A,RX) do ▷ Sort Clusters by strict partial order imposed byM
4: M′

A ←M
′
A′ ∈MA whereA′ = A

5: u′ ← {xi ∈ x |Xi ∈M′
U}

6: I′ ← ψA(I)

7: v =M′ I′
A (u′)

8: x = x ∪ v
9: end for

10: v = {xi ∈ x |Xi ∈M′
V} ▷ Filter all u ∈ U to get v ∈ V

11: return v
12: end procedure

Algorithm 1 shows the evaluation of partitioned SCM, whereMA is the partitioned SCM we want to438

evaluate, u are the values of exogenous variables to the initial modelM and I is the set of applied439

interventions. The outcomes of sub SCM that are not related via RX are invariant to the evaluation440

order among each other. Even though RX defines the ordering of sub SCM only up to some partial441

order, sort(A,RX) can pick any total ordering that is valid with RX.442

Proof 1 (Consistency of Partitioned SCM Evaluation) Evaluations ofM′
A every, in step 7, com-443

pute all variables Vi ∈ A by evaluating fi of the original SCM, yielding the same values as the444

evaluation of A inM. Therefore PM′
A

= PMA
. By Def. 4 every variable V ∈ V is contained445

within some sub SCMM′
A. The evaluation of PartitionedSCMEval is complete, in the sense that446

all V =
⋃
A =

⋃
A∈A A are evaluated, as the evaluation of allM′

A ∈ MA is guaranteed by447

iterating over all A in step 2. Finally PM′
A
=

⋃
A∈A PM′

A
=

⋃
A∈A PMA

= PMV
.448

B Complexity reduction in function composition449

Reduction of encoding length might vary depending on the type and structure of the equations under450

consideration. No compression of structural equation is gained when the system of consolidated451

equations is already minimal. Compression of equation to an identity function is showcased in the452

following.453

B.1 Compression of chained inverses454

Reduction to constant complexity for the unintervened system is reached in the case of fB = f−1
A .455

Consider the equation chain of X → A → B with A getting marginalized. Immediately f ′B :=456

fB ◦ fA = f−1
A ◦ fA = Id follows. Therefore, B := X , which is a single assignment of the value(s)457

of X into B. Remaining complexity within the consolidated function is then only due to conditional458

branching in cases of do(A = a), do(B = b) ∈ I.459

12

B.2 Matrix composition is not sufficient for compressing equations460

The operation of matrix multiplication, as a way of expressing composition of linear functions, stays461

within the class of matrices. Matrix multiplication, therefore, serves as a possible candidate to be462

considered when consolidating equations and reducing the encoding length of a linear structural463

systems. When written down an a ‘high-level’ view, matrices can expressed in terms of single464

variables A,B ∈ RM×N and matrix multiplication × : RM×N × RN×O → RM×O. Assuming465

equations fY := A × X and fZ := B × X , we can reduce the length of the composed equation466

f ′Z := A × B × X by multiply the matrices A and B together, fi = C × X with C = A × B.467

While we effectively reduced the number of high-level symbols written in the equation, we are hiding468

computational complexity in the structure of the matrix C. The following simple counterexample469

demonstrates a situation where the size, as well as, the number of non-zero entries even increases:470

C A B[
0 1 1
0 1 1
0 1 1

]
=

[
0 1
0 1
0 1

]
×

[
0 0 0
0 1 1

]
Thus, proving that pure matrix multiplication, is not suitable to keep, or even minimize, the size of471

composed function representations.472

B.3 Compression over Finite Discrete Domains473

Consolidation may reduce the number of variables within a graph, but burdens the remaining equations474

with the complexity of the consolidated variables. Without the need to explicitly compute values of475

consolidated variables, we might leverage cancellation effects to simplify equations, as outlined in476

the main paper. In terms of compression, no guarantees can be given in the general case. However,477

we will now show, that the often considered case of chained maps between finite discrete domains478

simplifies or at least preserves complexity.479

The cardinality of the image of a deterministic function f : X → Y between two finite discrete sets480

X , Y is bounded by the cardinality of its domain: | Img(f)| ≤ |Dom(f)| ≤ |X |, where Img(f) is481

the image and Dom(f) the domain of f . In particular, the strict inequality | Img(f)| < |Dom(f)|482

holds for all non-injective maps. Function composition may further reduce the ‘effective’ domain483

Domeffective(f) of a function, by only considering values of the image of the previous map as484

inputs to the next function. In contrast considering to all possible values of X in the case of the485

non-composed map, the image of the previous function may only be a subset of X . Therefore,486

f2 ◦ f1⇒| Imgeffective(f2)| ≤ |Domeffective(f2)| = | Img(f1)| ≤ |Dom(f1)|. In particular, the487

effective image of a composition chain fn ◦ · · · ◦ f1 is bounded by the function with the smallest488

image: | Imgeffective(fn ◦ · · · ◦ f1)| ≤ min | Img(fi)|. Thus, equation chains over finite discrete489

domains strictly preserve or reduce the effective size of the image, allowing for a possibly simpler490

combined representation in comparison to representing the functions individually.491

C Reparameterization of non-deterministic structural equations.492

Consolidation of structural equations might lead to duplication of non-deterministic terms within493

consolidated systems. For example when consolidating fork structures (compare to Sec. 4.1). Without494

further precautions, different values might be sampled from the duplicated non-deterministic equa-495

tions. An example where consolidating a variable B with a non-deterministic equation fB (indicated496

by a squiggly line) leads to inconsistent behaviour is shown in 5. InM1, C and D both copy on the497

value of B. Therefore, c = d yields always.M1′ shows a graph where B is consolidated fromM1.498

As a result the non-deterministic equation fB is duplicated into the equations of C and D, such that499

fC := Bern(A) and fD := Bern(A). Within the consolidated modelM1′ different values might be500

be sampled from the different noise terms Bern(A) in fC and fD. Consequently c ̸= d might occur501

inM1′ . To obtain consistent behaviour with the initialM1, we need to ensure agreement about the502

value of Bern(A) across all instances of the duplicated equation. To do so, we reparameterizeM1503

and explicitly store a fixed value, sampled from Bern(A), into a new exogenous variable R. The504

equation fB is then reparameterized into a deterministic structural equation taking the variable R as505

an additional argument, resulting inM2. When consolidating B withinM2, all instances of fB now506

yield the same value, as the noise term is fixed via R and finally PM′
2
= PM1

.507

13

B

A

C D
(1) Non-Determistic
Model. Yields C=D

(2) Inconsistent
Behaviour: ♢C≠D

A

C D
(4) Consistent Model

Behaviour: C=D

A R

C D
(3) Reparameterization

to Deterministic Eqs.

A R

C D

B

Figure 5: Reparameterization of non-deterministic models. The SCM M1 contains a non-
deterministic equation B := Bern(A) (marked with a squiggly line). With C := B and D := B,
M1 always yields C = D. Simply consolidating (or marginalizing) B creates a modelM1′ with
C := Bern(A) and D := Bern(A), such that possibly C ̸= D. Reparameterizing fB by introducing
an exogenous random variable R := U(0, 1) and B := A < R, yields the SCM M2 with only
deterministic equations. Consolidating (or marginalizing)B inM2 leads toM2′ where C := A < R
and D := A < R, thus always C = D.

D Consolidation Examples508

In this section we show further detailed applications of consolidation. Section D.1 presents the worked509

out consolidation of the dominoes motivating example of the paper, with regard to generalizing510

abilities of consolidates models. Section D.2 considers consolidation of the classical firing squad511

example. In contrast to the other examples, we focus on consolidating graphs with multiple edges512

in the causal graph. Lastly we provide the causal graph and structural equations of the game agent513

policy discussed in the main paper, in Section D.3.514

D.1 Motivating Example: Dominoes515

While we applied consolidation to a particular SCMs in the main paper, we will discuss the motivating516

example with focus on obtaining representations that cover generalize over populations of SCM. We517

demonstrate this on the particular example of a rows of dominoes, as a simple SCM with highly518

homogenous structure. Regardless of whether the SCM is obtained by using methods for direct519

identification of causal graphs from image data, as presented by Brehmer et al. [2022], or abstracting520

physical simulation using τ -abstractions [Beckers and Halpern, 2019]; we assume to be provided521

with a binary representation of the domino stones. The state of every domino Si indicates whether522

it is standing up or getting pushed over. In this case, the structural equations for all dominoes are523

the same: fi := Si−1. As a result tipping over the first stone in a row will lead to all stones falling.524

Also, we are only interested in the final outcome of the chain. That is, whether the last stone will525

fall or not (E = {Sn}). Again, we use consolidation to collapse the structural equations in the526

unintervened case: Sn := fn ◦ · · · ◦ f1 := S1. We consider a single active allowed intervention of527

holding up any of the dominoes or tipping it over, I = {do(Si = 0), do(Si = 1)}. Upon evaluation,528

the unconsolidated model needs to check for every domino if it is being intervened or not, requiring529

n conditional branches. Using the fact that perfect interventions ‘overwrite’ the variable state for the530

following dominoes, we introduce a first order quantifier that handles all intervention in a unified way.531

Finally, by combining the formulas of the intervened and unintervened case, we find the following532

simple equation:533

Sn :=

{
xi if ∃ do(Si = xi) ∈ I

S1 else

The resulting equation no longer has a notion of the actual number of dominoes and, in fact, it is534

invariant to it. We realise that introducing the first-order for-all ∀ and exists ∃ quantifiers allows for a535

unified representation of arbitrary chains of dominoes. Similar observations are discussed in Peters536

and Halpern [2021] and Halpern and Peters [2022] which introduce generalized SEM (GSEM). As537

intermediate the equations are no longer computed explicitly, the structural equations of consolidated538

models for different row lengths only differ in the set of allowed interventions I. That is, for a539

row of three domino stones I = {do(V1 = v1), do(V2 = v1), do(V3 = v1)}, while for four stones540

the additional do(V4 = v1) is defined. As set out in the introduction of this paper, we consider541

14

consolidation as a tool for obtaining more interpretable SCM. Towards this end, consolidation might542

help us in detecting similar structures within an SCM. Doing so eases understanding of causal systems,543

as the user only has to understand the general mechanisms of a particular SCM once and is then able544

to apply the gained knowledge to all newly appearing SCM of the same type.545

D.2 Firing Squad Example546

While the dominoes and tool wear examples where mainly considering the consolidation of sequential547

structures, we want to briefly demonstrate the consolidation of structural equations that are arranged548

in a parallel fashion. We consider a variation of the well known firing squad example [Hopkins549

and Pearl, 2007] with a variable number N of rifleman. A commander (C) gives orders to rifleman550

(Ri, i ∈ {1 . . . N}), which shoot accurately and the prisoner (P) dies. For the sequential stacking551

of equations we found that interventions exert an ‘overwriting’ effect. That is, every intervention552

fixes the value of a variable, making the unfolding of the following equations independent of553

all previous computations. To yield a similar effect for parallel equations we need to block all554

paths between the cause and effect. In this scenario, this can easily be expressed by using an555

all-quantifier. When consolidating the SCM, we consider only the captain C and prisoner P ,556

E = {C,P}, while allowing for any combination of interventions that prevent the rifleman from557

shooting I = P({do(Ri = 0)}i∈{1...N}). After consolidation, we obtain the following equation:558

P :=

{
lives if C = 0 ∨ (∀Si. do(Si = 0) ∈ I)

dies else

As with the dominoes example, we are again in a situation where the consolidated equation intuitively559

summarizes the effects of individual: “The prisoner lives if the captain does not give orders, or if all560

riflemen are prevented from shooting”.561

D.3 Revealing Agent Policy: Causal Graph and Equations562

In this section we explicitly list the structural equations representing observed interactions between a563

platformer environment and a possible rule based agent. The resulting causal graph is shown in Fig.6564

at the end of the appendix. Except for the parentless variables ‘coin_reward’, ‘powerup_reward’,565

‘enemy_reward’, ‘flag_reward’, ‘player_position’, ‘position_coin’, ‘position_powerup’, ‘posi-566

tion_enemy’, ‘position_flag’ and ‘target_flag’, which are exogenous and determined by the en-567

vironment, all variables are considered endogenous:568

player_position, position_coin, position_powerup, position_enemy, position_flag ∈ [0..1]2

coin_reward := 3; powerup_reward := 1; enemy_reward := 9;flag_reward := 2

With X in {coin, powerup, enemy,flag} :
distance_X := ∥position_X − player_position_X∥2
near_X := distance_X < 3.0

targeting_cost_X := 1.0 + 0.5× distance_X
target_coin := targeting_cost_coin < enemy_reward
target_powerup := targeting_cost_powerup < powerup_reward
target_enemy := targeting_cost_enemy < enemy_reward ∧ powered_up
target_flag := True
powered_up := target_powerup

towards_coin := target_coin ∧ coin_reward > max({X_reward|target_X}X∈{powerup,enemy,flag})

towards_powerup := target_powerup ∧ powerup_reward > max({X_reward|target_X}X∈{coin,enemy,flag})

towards_enemy := target_enemy ∧ enemy_reward > max({X_reward|target_X}X∈{enemy,powerup,flag})

towards_flag := target_flag ∧ flag_reward > max({X_reward|target_X}X∈{coin,powerup,enemy})

jump := near_enemy ∧ ¬powered_up

15

569

planning_sequencei :=



finished if towards_flag ∧ (flag ∈
i−1⋃
j=1

planning_sequence_j)

coin if towards_coin ∧ (coin /∈
i−1⋃
j=1

planning_sequence_j)

powerup if towards_powerup ∧ (powerup /∈
i−1⋃
j=1

planning_sequence_j)

enemy if towards_enemy ∧ (enemy /∈
i−1⋃
j=1

planning_sequence_j)

flag if towards_flag ∧ (flag /∈
i−1⋃
j=1

planning_sequence_j)

finished else
570

score := 20− time_taken
+ coin_reward if coin ∈ planning_sequencei
+ powerup_reward if powerup ∈ planning_sequencei
+ enemy_reward if enemy ∈ planning_sequencei ∧ powerup ∈ planning_sequencei
+ flag_reward if flag ∈ planning_sequencei

E Mathematical symbols and notation571

The following table contains mathematical functions and notation used throughout the paper.572

Notation Meaning
X; X A (set of) variable(s).
x; x Value(s) of X;X.
Xi The i-th variable of X.
XS The subset {Xi : i ∈ S} of X.
PX A probability distribution over variables X.
x ∼ PX A value x sampled from a distribution over X .
P(·) The power set.
f ◦ g Function composition, (f ◦ g)(x) = f(g(x)).∏

Xi∈X Xi N-ary Cartesian product over the domain of X.
∥·∥2 l2 vector norm.
U(a, b) Uniform Distribution.
N (µ, σ2) Normal Distribution.
Bern(p) Bernoulli distribution; Takes value 1 with probability p and 0 otherwise.
PM Probability distribution over the SCMM.
PI
M Probability distribution over the SCMM under intervention I.

Vi An endogenous variable of an SCMM.
Ui An exogenous variable of an SCMM.
fi Structural equation of the variable Xi.

573

16

ta
rg

et
_c

oi
n

ta
rg

et
_e

ne
m

y
ta

rg
et

_p
ow

er
up

to
w

ar
ds

_c
oi

n
to

w
ar

ds
_e

ne
m

y
to

w
ar

ds
_p

ow
er

up
to

w
ar

ds
_�

ag

ta
rg

et
_�

ag

di
st

an
ce

_c
oi

n
ne

ar
_c

oi
n

po
si

tio
n_

co
in

ta
rg

et
in

g_
co

st
_c

oi
n

di
st

an
ce

_p
ow

er
up

ne
ar

_p
ow

er
up

po
si

tio
n_

po
w

er
up

ta
rg

et
in

g_
co

st
_p

ow
er

up

di
st

an
ce

_�
ag

ne
ar

_�
ag

po
si

tio
n_

�a
g

ta
rg

et
in

g_
co

st
_�

ag

di
st

an
ce

_e
ne

m
y

ne
ar

_e
ne

m
y

po
si

tio
n_

en
em

y

ta
rg

et
in

g_
co

st
_e

ne
m

y

pl
an

ni
ng

_s
eq

ue
nc

e_
1

pl
an

ni
ng

_s
eq

ue
nc

e_
2

pl
an

ni
ng

_s
eq

ue
nc

e_
3

pl
an

ni
ng

_s
eq

ue
nc

e_
4

pl
ay

er
_p

os
iti

on

po
w

er
ed

_u
p

co
in

_r
ew

ar
d

po
w

er
up

_r
ew

ar
d

en
em

y_
re

w
ar

d
�a

g_
re

w
ar

d

ju
m

p

Fi
gu

re
6:

C
au

sa
lg

ra
ph

of
an

ag
en

tp
ol

ic
y.

T
he

ca
us

al
gr

ap
h

of
a

gr
ee

dy
ag

en
ti

ns
id

e
an

pl
at

fo
rm

er
en

vi
ro

nm
en

t.
T

he
pa

re
nt

le
ss

va
ri

ab
le

s
ar

e
ex

og
en

ou
s.

T
he

ir
va

lu
e

is
de

te
rm

in
ed

vi
a

th
e

ga
m

e
en

vi
ro

nm
en

t.
T

he
fin

al
‘s

co
re

’v
ar

ia
bl

e
is

le
ft

ou
tf

or
cl

ar
ity

.

17

