
Dream the Impossible:679

Outlier Imagination with Diffusion Models (Appendix)680

A Broader Impact681

Our project aims to improve the reliability and safety of modern machine learning models. Our682

study on using diffusion models to synthesize outliers can lead to direct benefits and societal impacts,683

particularly when auxiliary outlier datasets are costly to obtain, such as in safety-critical applications684

i.e., autonomous driving and healthcare data analysis. Nowadays, research on diffusion models685

is prevalent, which provides various promising opportunities for exploring the off-the-shelf large686

models for our research. Our study does not involve any violation of legal compliance. Through our687

study and releasing our code, we hope to raise stronger research and societal awareness towards the688

problem of data synthesis for out-of-distribution detection in real-world settings.689

B Details of datasets690

ImageNet-100. We randomly sample 100 classes from IMAGENET-1K [12] to create IMAGENET-100.691

The dataset contains the following categories: n01498041, n01514859, n01582220, n01608432, n01616318, n01687978,692

n01776313, n01806567, n01833805, n01882714, n01910747, n01944390, n01985128, n02007558, n02071294, n02085620, n02114855,693

n02123045, n02128385, n02129165, n02129604, n02165456, n02190166, n02219486, n02226429, n02279972, n02317335, n02326432,694

n02342885, n02363005, n02391049, n02395406, n02403003, n02422699, n02442845, n02444819, n02480855, n02510455, n02640242,695

n02672831, n02687172, n02701002, n02730930, n02769748, n02782093, n02787622, n02793495, n02799071, n02802426, n02814860,696

n02840245, n02906734, n02948072, n02980441, n02999410, n03014705, n03028079, n03032252, n03125729, n03160309, n03179701,697

n03220513, n03249569, n03291819, n03384352, n03388043, n03450230, n03481172, n03594734, n03594945, n03627232, n03642806,698

n03649909, n03661043, n03676483, n03724870, n03733281, n03759954, n03761084, n03773504, n03804744, n03916031, n03938244,699

n04004767, n04026417, n04090263, n04133789, n04153751, n04296562, n04330267, n04371774, n04404412, n04465501, n04485082,700

n04507155, n04536866, n04579432, n04606251, n07714990, n07745940.701

OOD datasets. Huang et.al. [40] curated a diverse collection of subsets from iNaturalist [98],702

SUN [109], Places [118], and Texture [9] as large-scale OOD datasets for IMAGENET-1K, where the703

classes of the test sets do not overlap with IMAGENET-1K. We provide a brief introduction for each704

dataset as follows.705

iNaturalist contains images of natural world [98]. It has 13 super-categories and 5,089 sub-categories706

covering plants, insects, birds, mammals, and so on. We use the subset that contains 110 plant classes707

which are not overlapping with IMAGENET-1K.708

SUN stands for the Scene UNderstanding Dataset [109]. SUN contains 899 categories that cover709

more than indoor, urban, and natural places with or without human beings appearing in them. We use710

the subset which contains 50 natural objects not in IMAGENET-1K.711

Places is a large scene photographs dataset [118]. It contains photos that are labeled with scene712

semantic categories from three macro-classes: Indoor, Nature, and Urban. The subset we use contains713

50 categories that are not present in IMAGENET-1K.714

Texture stands for the Describable Textures Dataset [9]. It contains images of textures and abstracted715

patterns. As no categories overlap with IMAGENET-1K, we use the entire dataset as in [40].716

ImageNet-A contains 7,501 images from 200 classes, which are obtained by collecting new data and717

keeping only those images that ResNet-50 models fail to correctly classify [34]. In our paper, we718

evaluate on the 41 overlapping classes with IMAGENET-100 which consist of a total of 1,852 images.719

ImageNet-v2 used in our paper is sampled to match the MTurk selection frequency distribution of the720

original IMAGENET validation set for each class [75]. The dataset contains 10,000 images from 1,000721

classes. During testing, we evaluate on the 100 overlapping classes with a total of 1,000 images.722
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C Formulation of Zm(κ)723

The normalization factor Zm(κ) in Equation (3) is defined as:724

Zm(κ) =
κm/2−1

(2π)m/2Im/2−1(κ)
, (8)

where Iv is the modified Bessel function of the first kind with order v. Zm(κ) can be calculated in725

closed form based on κ and the feature dimensionality m.726

D Additional Visualization of the Imagined Outliers727

In addition to Section 4.2, we provide additional visualizations on the imagined outliers under different728

variance σ2 in Figure 8. We observe that a larger variance consistently translates into outliers that729

are more deviated from ID data. Using a mild variance value σ2 = 0.03 generates both empirically730

(Figure 7 (b)) and visually meaningful outliers for model regularization on IMAGENET-100.731
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(a) Imagined outliers for ID class Beaver (b)     Imagined outliers for ID class Apron (c)     Imagined outliers for ID class Strawberry

Figure 8: Visualization of the imageined outliers for the beaver, apron, strawberry class with different
variance values σ2.

E Visualization of Outlier Generation by Embedding Interpolation732

We visualize the generated outlier images by interpolating token embeddings from different classes733

in Figure 9. The result shows that interpolating different class token embeddings tends to generate734

images that are still in-distribution rather than images with semantically mixed or novel concepts,735

which is aligned with the observations in Liew et.al. [51]. Therefore, regularizing the model using736

such images is not effective for OOD detection (Table 2).
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Figure 9: Visualization of the generated outlier images by interpolating token embeddings from different
classes. We show the results with different interpolation weight α.

737
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F Visualization of the Outlier Generation by Adding Noise738

As in Table 2 in the main paper, we visualize the generated outlier images by adding Gaussian and739

learnable noise to the token embeddings in Figure 10. We observe that adding Gaussian noise tends740

to generate either ID images or images that are far away from the given ID class. In addition, adding741

learnable noise to the token embeddings will generate images that are completely deviated from the742

ID data. Both of them are less effective in regularizing the model’s decision boundary.743

(a) Generated outliers by adding Gaussian noise 
                          for ID class Beaver

(b)     Generated outliers by adding Gaussian noise 
                                for ID class Apron

(c)     Generated outliers by adding Gaussian noise 
                        for ID class Strawberry

(d)   Generated outliers by adding learnable noise 
                          for ID class Beaver

(e)   Generated outliers by adding learnable noise 
                                for ID class Apron

(f)    Generated outliers by adding learnable noise 
                        for ID class Strawberry

Figure 10: Visualization of the generated outlier images by adding Gaussian and learnable noise to the token
embeddings from different classes.

G Comparison with Training w/ real Outlier Data.744

We compare with training using real outlier data on CIFAR-100, i.e., 300K Random Images [32],745

which contains 300K preprocessed images that do not belong to CIFAR-100 classes. The result746

shows that DREAM-OOD (FPR95: 40.31%, AUROC: 90.15%) can match or even outperform outlier747

exposure with real OOD images (FPR95: 54.32%, AUROC: 91.34%) under the same training748

configuration while using fewer synthetic OOD images for OOD regularization (100K in total).749

H Visualization of Generated Inlier Images750

We show in Figure 11 the visual comparison among the original IMAGENET images, the generated751

images by our DREAM-ID, and the generated ID images using generic prompts "A high-quality photo752

of a [cls]" where "[cls]" denotes the class name. Interestingly, we observe that the prompt-based753

generation produces object-centric and distributionally dissimilar images from the original dataset.754

In contrast, our approach DREAM-ID generates inlier images that can resemble the original ID data,755

which helps model generalization.756
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Figure 11: Visual comparison between our DREAM-ID vs. prompt-based image generation on four
different classes.

I Experimental Details for Model Generalization757

We provide experimental details for Section 4.3 in the main paper. We use ResNet-34 [27] as the758

network architecture, trained with the standard cross-entropy loss. For both the CIFAR-100 and759

IMAGENET-100 datasets, we train the model for 100 epochs, using stochastic gradient descent with760

the cosine learning rate decay schedule, a momentum of 0.9, and a weight decay of 5e−4. The initial761

learning rate is set to 0.1 and the batch size is set to 160. We generate 1, 000 new ID samples per class762

using Stable Diffusion v1.4, which result in 100, 000 synthetic images. For both the baselines and763

our method, we train on a combination of the original IMAGENET/CIFAR samples and synthesized764

ones. To learn the feature encoder hθ, we set the temperature t in Equation (2) to 0.1. Extensive765

ablations on hyperparameters σ and k are provided in Appendix K.766
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J Implementation Details of Baselines for Model Generalization767

For a fair comparison, we implement all the data augmentation baselines by appending the original768

IMAGENET-100 dataset with the same amount of augmented images (i.e., 100k) generated from769

different augmentation techniques. We follow the default hyperparameter setting as in their original770

papers.771

• For RandAugment [11], we set the number of augmentation transformations to apply772

sequentially to 2. The magnitude for all the transformations is set to 9.773

• For AutoAugment [10], we set the augmentation policy as the best one searched on IMA-774

GENET.775

• For CutMix [115], we use a CutMix probability of 1.0 and set β in the Beta distribution to776

1.0 for the label mixup.777

• For AugMix [33], we randomly sample 3 augmentation chains and set α = 1 for the778

Dirichlet distribution to mix the images.779

• For DeepAugment [30], we directly use the corrupted images for data augmentation provided780

in their Github repo 3.781

• For MEMO [116], we follow the original paper and use the marginal entropy objective782

for test-time adaptation, which disentangles two distinct self-supervised learning signals:783

encouraging invariant predictions across different augmentations of the test point and784

encouraging confidence via entropy minimization.785

Methods IMAGENET IMAGENET-A IMAGENET-V2
Original (no aug) 87.28 8.69 77.80

RandAugment 87.56 11.07 79.20
AutoAugment 87.40 10.37 79.00

CutMix 87.64 11.33 79.70
AugMix 87.22 9.39 77.80

DREAM-ID (Ours) 88.46±0.1 12.13±0.1 80.40±0.1

Table 5: Model generalization performance (accuracy, in %), using IMAGENET-100 as the training data.
The baselines are implemented by directly applying the augmentations on IMAGENET-100.

We also provide the comparison in Table 5 with baselines that are directly trained by applying the786

augmentations on IMAGENET without appending the original images. The model trained with the787

images generated by DREAM-ID can still outperform all the baselines by a considerable margin.788

K Ablation Studies on Model Generalization789

In this section, we provide additional analysis of the hyperparameters and designs of DREAM-ID for790

ID generation and data augmentation. For all the ablations, we use the IMAGENET-100 dataset as the791

in-distribution training data.792

Ablation on the variance value σ2. We show in Table 6 the effect of σ2 — the number of the793

variance value for the Gaussian kernel (Section 3.2). We vary σ2 ∈ {0.005, 0.01, 0.02, 0.03}. A794

small-mild variance value σ2 is more beneficial for model generalization.

σ2 IMAGENET IMAGENET-A IMAGENET-V2

0.005 87.62 11.39 78.50
0.01 88.46 12.13 80.40
0.02 87.72 10.85 77.70
0.03 87.28 10.91 78.20

Table 6: Ablation study on the variance value σ2 in the Gaussian kernel for model generalization.
795

3https://github.com/hendrycks/imagenet-r/blob/master/DeepAugment
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Ablation on k in calculating k-NN distance. In Table 7, we analyze the effect of k, i.e., the796

number of nearest neighbors for non-parametric sampling in the latent space. In particular, we vary797

k = {100, 200, 300, 400, 500}. We observe that our method is not sensitive to this hyperparameter,798

as k varies from 100 to 500.

k IMAGENET IMAGENET-A IMAGENET-V2

100 88.51 12.11 79.92
200 88.35 12.04 80.01
300 88.46 12.13 80.40
400 88.43 12.01 80.12
500 87.72 11.78 80.29

Table 7: Ablation study on the k for k-NN distance for model generalization.

799

L Software and hardware800

We run all experiments with Python 3.8.5 and PyTorch 1.13.1, using NVIDIA GeForce RTX 2080Ti801

GPUs.802
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