
A Proofs of Theorems and Derivations

A.1 Proof of Lemma 1

In this section, we prove Lemma 1 in the main paper. This lemma indicates that we can directly imply
Linear Mode Connectivity (LMC, see Definition 1) from Layerwise Linear Feature Connectivity
(LLFC, see Definition 2) applied to last layer.
Definition 1 (Linear Mode Connectivity). Given a test dataset D and two modes θA and θB such
that ErrD (θA) ≈ ErrD (θB), we say θA and θB are linearly connected if they satisfy

ErrD (αθA + (1− α)θB) ≈ ErrD (θA) , ∀α ∈ [0, 1].

Definition 2 (Layerwise Linear Feature Connectivity). Given dataset D and two modes θA, θB

of an L-layer neural network f , the modes θA and θB are said to be layerwise linearly feature
connected if they satisfy

∀ℓ ∈ [L],∀α ∈ [0, 1],∃c > 0, s.t. cf (ℓ) (αθA + (1− α)θB) = αf (ℓ) (θA) + (1− α) f (ℓ) (θB) .

Lemma 1. Suppose two modes θA, θB satisfy LLFC on a dataset D and

max {ErrD (θA) ,ErrD (θB)} ≤ ϵ,

then we have

∀α ∈ [0, 1],ErrD (αθA + (1− α)θB) ≤ 2ϵ.

Proof. Note that the classification depends on the relative order of the entries in the output of the
final layer. As a consequence, for each data point in the dataset D, the linear interpolation of the
outputs of the models makes the correct classification if both models make the correct classification.
Therefore, only if one of the model makes the incorrect classification, the linear interpolation of the
outputs of the models would possibly make the incorrect classification, i.e,

ErrD (αf(θA) + (1− α) f(θB)) ≤ ErrD (θA) + ErrD (θB) .

Since θA and θB satisfy LLFC, then at last layer we have

f (αθA + (1− α)θB) = αf (θA) + (1− α) f (θB) ,

then have

ErrD (αθA + (1− α)θB) ≤ ErrD (θA) + ErrD (θB) .

According to the condition that

max {ErrD (θA) ,ErrD (θB)} ≤ ϵ,

which indicates

ErrD (αθA + (1− α)θB) ≤ 2ϵ,

and this finishes the proof.

A.2 Proof of Theorem 1

In this section, we prove Theorem 1 in the main paper. Theorem 1 indicates that we can derive LLFC
from two simple conditions: weak additivity for ReLU activations (Definition 3) and commutativity
(Definition 4). Note that though we consider a multi-layer perceptron (MLP) for convenience, our
proof and results can be easily adopted to any feed-forward structure, e.g., a convolutional neural
network (CNN).
Definition 3 (Weak Additivity for ReLU Activations). Given a dataset D, two modes θA and θB

are said to satisfy weak additivity for ReLU activations if

∀ℓ ∈ [L], σ
(
H̃

(ℓ)

A + H̃
(ℓ)

B

)
= σ

(
H̃

(ℓ)

A

)
+ σ

(
H̃

(ℓ)

B

)
.
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Definition 4 (Commutativity). Given a dataset D, two modes θA and θB are said to satisfy
commutativity if

∀ℓ ∈ [L], W
(ℓ)
A H

(ℓ−1)
A +W

(ℓ)
B H

(ℓ−1)
B = W

(ℓ)
A H

(ℓ−1)
B +W

(ℓ)
B H

(ℓ−1)
A .

Theorem 1. Given a dataset D, if two modes θA and θB satisfy weak additivity for ReLU activations
(Definition 3) and commutativity (Definition 4), then

∀α ∈ [0, 1],∀ℓ ∈ [L], f (ℓ) (αθA + (1− α)θB) = αf (ℓ) (θA) + (1− α) f (ℓ) (θB) .

Proof. Before delving into the proof, let us denote the forward propagation in each layer ℓ by

g̃(ℓ)
(
θ;H(ℓ−1)

)
= W (ℓ)H(ℓ−1) + b(ℓ)1⊤

dℓ

g(ℓ)
(
θ;H(ℓ−1)

)
= σ

(
g̃(ℓ)

(
θ;H(ℓ−1)

))
= H(ℓ)

Given θA and θB that satisfy the commutativity property, then ∀ℓ ∈ [L] and ∀α ∈ [0, 1], we have

W
(ℓ)
A H

(ℓ−1)
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(ℓ)
B H

(ℓ−1)
B =W
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A H
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(ℓ)
B H

(ℓ−1)
A

g̃(ℓ)
(
θA;H

(ℓ−1)
A

)
+ g̃(ℓ)

(
θB ;H

(ℓ−1)
B

)
=g̃(ℓ)

(
θA;H

(ℓ−1)
B

)
+ g̃(ℓ)

(
θB ;H

(ℓ−1)
A

)
α (1− α)

(
g̃(ℓ)

(
θA;H

(ℓ−1)
A

)
+ g̃(ℓ)

(
θB ;H

(ℓ−1)
B

))
=α (1− α)

(
g̃(ℓ)

(
θA;H

(ℓ−1)
B

)
+ g̃(ℓ)

(
θB ;H

(ℓ−1)
A

))
αg̃(ℓ)

(
θA;H

(ℓ−1)
A

)
+ (1− α)g̃(ℓ)

(
θB ;H

(ℓ−1)
B

)
=α2g̃(ℓ)

(
θA;H

(ℓ−1)
A

)
+ (1− α)2g̃(ℓ)

(
θB ;H

(ℓ−1)
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Additionally, we can easily verify that

g̃(ℓ)
(
αθA + (1− α)θB ;H

(ℓ)
)
= αg̃(ℓ)

(
θA;H

(ℓ)
)
+ (1− α) g̃(ℓ)

(
θB ;H

(ℓ)
)

g̃(ℓ)
(
θ;αH

(ℓ)
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(ℓ)
B
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(
θ;H

(ℓ)
A

)
+ (1− α) g̃(ℓ)

(
θ;H

(ℓ)
B

)
Subsequently,

αg̃(ℓ)
(
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(ℓ−1)
A

)
+ (1− α) g̃(ℓ)

(
θB ;H
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B

)
=αg̃(ℓ)

(
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.

Given the weak additivity for ReLU activation is satisfied for θA and θB , then we have

σ
(
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To conclude, ∀ℓ ∈ [L] and ∀α ∈ [0, 1], we have

αH
(ℓ)
A + (1− α)H

(ℓ)
B = g(ℓ)

(
αθA + (1− α)θB ;αH

(ℓ−1)
A + (1− α)H

(ℓ−1)
B

)
(10)

For the right hand side of Equation (10), recursively, we can have

g(ℓ)
(
αθA + (1− α)θB ;αH

(ℓ−1)
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(
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= · · ·
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)
(αθA + (1− α)θB ;X)

=f (ℓ) (αθA + (1− α)θB ;X) ,
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where X denotes the input data matrix.

Recall we denote H(ℓ) = f (ℓ) (θ;X) which indicates

αf (ℓ) (θA;X) + (1− α) f (ℓ) (θB ;X) = f (ℓ) (αθA + (1− α)θB ;X) ,

and this finishes the proof.

A.3 Derivation of Quadratic Assignment Problem

In this section, we aim to show that minimizing
∑L

ℓ=1

∥∥∥(W (ℓ)
A − P (ℓ)W

(ℓ)
B P (ℓ−1)⊤

)(
H

(ℓ−1)
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B

)∥∥∥2
F

includes solving Quadratic Assignment Problems (QAPs), known to be NP-hard.
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Consider its first term, i.e.,
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is in the form of Koopmans-Beckmann’s QAP [14] for each P (ℓ−1) and known as NP-hard. Thus,
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is to solve L− 1 QAPs in parallel.
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Similarly, consider the second term, i.e,
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,

which also gives rise to Koopmans-Beckmann’s QAPs.

For the last term, i.e,
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which entails solving bi-level matching problems.

Therefore, the objective can be rewritten as the summation of QAPs and bi-level matching problems
and cannot be further simplified, which is NP-hard.

B More Experimental Details and Results

B.1 Detailed Experimental Settings

In this section, we introduce the detailed experimental setup. Before delving into details, recall that
unless otherwise specified, in this paper we consider models trained on a training set, and then all the
investigations are evaluated on a test set.

B.1.1 Spawning Method

Multi-Layer Perceptrons on the MNIST Dataset. In accordance with the settings outlined by
Ainsworth et al. [1], we train multi-layer perceptron networks with three hidden layers, each consisting
of 512 units, on the MNIST dataset. We adopt the ReLU activation between layers. Optimization is
done with the Adam algorithm and a learning rate of 1.2× 10−4. The batch size is set to 60 and the
total number of training epochs is 30. To find the modes that satisfy LMC, we start spawning from a
common initialization θ(0).
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VGG-16 and ResNet-20 on the CIFAR-10 Dataset. In accordance with the settings outlined by
Frankle et al. [9], we train the VGG-16 architecture [29] and the ResNet-20 architecture [12] on
the CIFAR-10 dataset. Data augmentation techniques include random horizontal flips and random
32× 32 pixel crops. Optimization is done using SGD with momentum (momentum set to 0.9). A
weight decay of 1× 10−4 is applied. The learning rate is initialized at 0.1 and is dropped by 10 times
at 80 and 120 epochs. The total number of epochs is 160. To find the modes that satisfy LMC, we
start spawning after training 5 epochs for both VGG-16 and ResNet-20.

ResNet-50 on the Tiny-ImageNet Dataset. In accordance with the settings outlined by Frankle
et al. [9], we train the ResNet-50 architecture [12] on the Tiny-ImageNet dataset. Data augmentation
techniques include random horizontal flips and random 32× 32 pixel crops. Optimization is done
using SGD with momentum (momentum set to 0.9). A weight decay of 1 × 10−4 is applied. The
learning rate is set to 0.4 and warmed up for 5 epochs and then is dropped by 10 times at 30, 60 and
80 epochs. The total number of epochs is 90. To find the modes that satisfy LMC, we start spawning
after training 14 epochs.

B.1.2 Permutation Method

For the permutation method, we follow the experimental settings of Ainsworth et al. [1] strictly,
which are described below.

Multi-Layer Perceptrons on MNIST and CIFAR-10. Similar to the spawning method, we use
multi-layer perceptron (MLP) networks with three hidden layers, each consisting of 512 units. For
MNIST, optimization is performed using Adam with a learning rate of 1 × 10−3. For CIFAR-10,
optimization is performed using SGD with a learning rate of 0.1. Both activation matching and
weight matching are used to identify modes that satisfy LMC.

ResNet-20 on CIFAR-10. To achieve LMC, we modify the ResNet-20 architecture by incorporating
LayerNorms in place of BatchNorms. Furthermore, we increase the width of ResNet-20 by a factor
of 32. Data augmentation techniques include random horizontal flips, random 32× 32 pixel crops,
random resizes of the image between 0.8× and 1.2×, and random rotations between ±30◦. The
optimization process involves using SGD with momentum (set to 0.9). A weight decay regularization
term of 5× 10−4 is applied. A single cosine decay schedule with a linear warm-up is applied, where
the learning rate is initialized to 1× 10−6 and gradually increased to 0.1 over the course of an epoch,
and then a single cosine decay schedule is applied for the remaining training. Only weight matching
is used to identify modes that satisfy LMC.

Unlike the spawning method, VGG models are not used in the permutation method due to their
inability to achieve LMC. Additionally, Ainsworth et al. [1] open-sourced their source code and pre-
trained checkpoints. Therefore, we directly use the pre-trained checkpoints provided by Ainsworth
et al. [1].

B.2 Verification of LLFC Co-Occuring with LMC

In this section, we provide extensive experimental results to verify that LLFC consistently co-occurs
with LMC, and conduct a new experiment to demonstrate that the constant c is close to 1 in most cases.
Both the spawning method and the permutation method are utilized to obtain linearly connected
modes θA and θB . As shown in Figures 8 to 13 and 15, we include experimental results for MLP
on the MNIST dataset (spawning method, activation matching, and weight matching), MLP on the
CIFAR-10 dataset (both activation matching and weight matching), VGG-16 on the CIFAR-10 dataset
(spawning method), ResNet-20 on the CIFAR-10 dataset (spawning method and weight matching)
and ResNet-50 on the Tiny-ImageNet dataset (spawning method). In particular, in Figure 14, we
include experimental results of Straight-Trough Estimator (STE) [1]. STE method tries to learn a
permutation with STE that could minimize the loss barrier between one mode and the other permuted
mode.

To verify the LLFC property on each data point xi in the test set D, we measure cosineα(xi) =
cos[f (ℓ)(αθA + (1 − α)θB ;xi), αf

(ℓ)(θA;xi) + (1 − α)f (ℓ)(θB ;xi)]. We compare this to the
baseline cosine similarity cosineA,B(xi) = cos[f (ℓ)(θA;xi), f

(ℓ)(θB ;xi)]. In Figures 8 to 15, we
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Figure 8: Comparison between ED[1− cosineα(xi)] and ED[1− cosineA,B(xi)] and demonstration
of ED[1− coefα(xi)]. The spawning method is used to obtain two linearly connected modes θA and
θB . Results are presented for different layers of MLP on MNIST dataset, with α ∈ {0.25, 0.5, 0.75}.
Standard deviations across the dataset are reported by error bars.

1 − cosine0.25 1 − cosine0.50 1 − cosine0.751 − cosine𝐴,𝐵

cosine𝛼 = cos⟨𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙(𝜃𝐵)⟩
cosine𝐴.𝐵 = cos 𝑓𝑙 𝜃𝐴 , 𝑓𝑙 𝜃𝐵

coef𝛼 = 𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙 𝜃𝐵 /||𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙 𝜃𝐵 ||2

coef0.50 coef0.75coef0.25

VGG16 on CIFAR10

Conv 1-1 Conv 1-2 Conv 2-1 Conv 2-2 Conv 3-1 Conv 3-2 Conv 3-3 Conv 4-1

FC 1 FC 2 FC 3Conv 4-2 Conv 4-3 Conv 5-1 Conv 5-2 Conv 5-3

Conv 1-1 Conv 1-2 Conv 2-1 Conv 2-2 Conv 3-1 Conv 3-2 Conv 3-3 Conv 4-1

FC 1 FC 2 FC 3Conv 4-2 Conv 4-3 Conv 5-1 Conv 5-2 Conv 5-3

Figure 9: Comparison between ED[1− cosineα(xi)] and ED[1− cosineA,B(xi)] and demonstration
of ED[1 − coefα(xi)]. The spawning method is used to obtain two linearly connected modes
θA and θB . Results are presented for different layers of VGG-16 on the CIFAR-10 dataset, with
α ∈ {0.25, 0.5, 0.75}. Standard deviations across the dataset are reported by error bars.

conclude that the values of ED[1−cosineα(xi)] are close to 0 compared with ED[1−cosineA,B(xi)],
and thus verify our claim.

To show that the constant c is close to 1 in most cases, for each data point xi in the test set
D, we measure coefα(xi) = ∥f (ℓ)(αθA + (1 − α)θB ;xi)∥cosineα(xi)/∥αf (ℓ)(θA;xi) + (1 −
α)f (ℓ)(θB ;xi)]∥, where ∥f (ℓ)(αθA+(1−α)θB ;xi)∥cosineα(xi) denotes the length of f (ℓ)(αθA+
(1− α)θB ;xi) projected on αf (ℓ)(θA;xi) + (1− α)f (ℓ)(θB ;xi)]. In Figures 8 to 15, we conclude
that the values of ED[coefα(xi)] are close to 1 in most cases, and thus verify our claim.
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Figure 10: Comparison between ED[1−cosineα(xi)] and ED[1−cosineA,B(xi)] and demonstration
of ED[1 − coefα(xi)]. The spawning method is used to obtain two linearly connected modes θA

and θB . Results are presented for different layers of ResNet-20 on the CIFAR-10 dataset, with
α ∈ {0.25, 0.5, 0.75}. Standard deviations across the dataset are reported by error bars.
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ResNet50 on Tiny-ImageNet

Figure 11: Comparison between ED[1−cosineα(xi)] and ED[1−cosineA,B(xi)] and demonstration
of ED[1 − coefα(xi)]. The spawning method is used to obtain two linearly connected modes θA

and θB . Results are presented for different layers of ResNet-50 on the Tiny-ImageNet dataset, with
α ∈ {0.25, 0.5, 0.75}. Standard deviations across the dataset are reported by error bars.

B.3 Verification of Commutativity

In this section, we provide more experimental results on various datasets and model architectures to
verify the commutativity property for modes that satisfy LLFC. As shown in Figures 16 to 18, we
include more experiments results for VGG-16 on the CIFAR-10 dataset (spawning method), MLP
on the MNIST dataset (activation matching) and MLP on the CIFAR-10 dataset (both activation
matching and weight matching).
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Figure 12: Comparison between ED[1−cosineα(xi)] and ED[1−cosineA,B(xi)] and demonstration
of ED[1 − coefα(xi)]. The activation matching and the weight matching are used to obtain two
linearly connected modes θA and θB . Results are presented for different layers of MLP on the
MNIST dataset, with α ∈ {0.25, 0.5, 0.75}. Standard deviations across the dataset are reported by
error bars.
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Figure 13: Comparison between ED[1−cosineα(xi)] and ED[1−cosineA,B(xi)] and demonstration
of ED[1 − coefα(xi)]. The activation matching and the weight matching are used to obtain two
linearly connected modes θA and θB . Results are presented for different layers of MLP on the
CIFAR-10 dataset, with α ∈ {0.25, 0.5, 0.75}. Standard deviations across the dataset are reported by
error bars.

To verify the commutativity generally holds for modes that satisfy LLFC, for test set D, we compute
Distcom = dist

(
vec(W (ℓ)

A H
(ℓ−1)
A +W

(ℓ)
B H

(ℓ−1)
B ), vec(W (ℓ)

A H
(ℓ−1)
B +W

(ℓ)
B H

(ℓ−1)
A )

)
8. Fur-

thermore, we compare Distcom with DistW = dist
(

vec(W (ℓ)
A ), vec(W (ℓ)

B )
)

and DistH =

dist
(

vec(H(ℓ−1)
A ), vec(H(ℓ−1)

B )
)

, respectively. In Figures 16 to 18, Distcom is negligible com-
pared with DistW and DistH , confirming the commutativity condition.

Furthermore, we add baselines of models that are not linearly connected to further validate the
commutativity condition. In Figure 19, we include experimental results for ResNet-20 on CIFAR-10
dataset (both spawning and weight matching method). Specifically, we measure Distcom,LMC of two
linearly connected modes and Distcom,not LMC of two independently trained modes. In Figure 19,
the values of Distcom,LMC are negligible compared with Distcom,not LMC , which confirms the
commutativity condition.

8We also conduct experiments on CNNs. For a Conv layer, the forward propagation will be denoted as WH
similar to a linear layer.
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Figure 14: Comparison between ED[1−cosineα(xi)] and ED[1−cosineA,B(xi)] and demonstration
of ED[1 − coefα(xi)]. The Straight-Through Estimator (STE) [1] are used to obtain two linearly
connected modes θA and θB . Results are presented for different layers of MLP on both MNIST and
CIFAR-10 dataset, with α ∈ {0.25, 0.5, 0.75}. Standard deviations across the dataset are reported by
error bars.
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Figure 15: Comparison between ED[1−cosineα(xi)] and ED[1−cosineA,B(xi)] and demonstration
of ED[1− coefα(xi)]. The weight matching is used to obtain two linearly connected modes θA and
θB . Results are presented for different layers of ResNet-20 (32x) on the CIFAR-10 dataset, with
α ∈ {0.25, 0.5, 0.75}. Standard deviations across the dataset are reported by error bars.
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Figure 16: Comparison of Distcom, DistW , and DistH . The spawning method is used to obtain two
modes that satisfy LLFC, θA and θB . The results are presented for different layers of VGG-16 on
the CIFAR-10 dataset.
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Figure 17: Comparison of Distcom, DistW , and DistH . The activation matching is used to obtain two
modes that satisfy LLFC, θA and θB . The results are presented for different layers of MLP on the
MNIST dataset.
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Figure 18: Comparison of Distcom, DistW , and DistH . Both the activation matching and weight
matching are used to obtain two modes that satisfy LLFC, θA and θB . The results are presented for
different layers of MLP on the CIFAR10 dataset.

Verification of Commutativity
Version 2

FCBlock 2-3 Block 3-1 Block 3-2 Block 3-3 FC Block 2-3 Block 3-1 Block 3-2 Block 3-3

ResNet20 on CIFAR10 (Spawning) ResNet20 (32 x) on CIFAR10 (Weight Matching)

Dist𝑐𝑜𝑚 =
|| 𝑊1

𝑙𝐻1
𝑙−1 + 𝑊2

𝑙𝐻2
𝑙−1 − (𝑊1

𝑙𝐻2
𝑙−1 + 𝑊2

𝑙𝐻1
𝑙−1)||2

||𝑊1
𝑙𝐻1

𝑙−1 + 𝑊2
𝑙𝐻2

𝑙−1|| ||𝑊1
𝑙𝐻2

𝑙−1 + 𝑊2
𝑙𝐻1

𝑙−1||
Dist𝑊 =

||𝑊1
𝑙 − 𝑊2

𝑙||2

||𝑊1
𝑙|| ||𝑊2

𝑙||
Dist𝐻 =

||𝐻1
𝑙−1 − 𝐻2

𝑙−1||2

||𝐻1
𝑙−1|| ||𝐻2

𝑙−1||

Dist𝑐𝑜𝑚, 𝐿𝑀𝐶 Dist𝑐𝑜𝑚, 𝑛𝑜𝑡 𝐿𝑀𝐶

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

Figure 19: Comparison between Distcom,LMC and Distcom,not LMC . Both the spawning and permu-
tation methods are used to obtain two linearly connected modes.

Layer ℓ FC 1 FC 2 FC 3

ErrD(B>ℓ◦A≤ℓ) 2.69 2.11 1.92

Table 1: Error rates (%) of stitched MLP on the MNIST test set. The model stitching is employed in
different layers. The spawning method is used to obtain two neural networks that satisfy LLFC, i.e.,
A and B. Error rates (%) of A and B are 1.9 and 1.77, respectively.

Notably, the experiments are not conducted on the first Conv/Linear layer of the model because the
commutativity condition is naturally satisfied for the first layer where H

(0)
A = H

(0)
B = X where X

is the input data matrix.

B.4 Experiments on Model Stitching

Model stitching [19, 3] is commonly employed to analyze neural networks’ internal representations.
Let A and B represent neural networks with identical architectures. Given a loss function L, model
stitching involves finding a stitching layer s (e.g., a linear 1 × 1 convolutional layer) such that the
minimization of L(B>ℓ ◦ s ◦A≤ℓ) is achieved. Here, B>ℓ denotes the mapping from the activations
of the ℓ-th layer of network B to the final output, A≤ℓ denotes the mapping from the input to the
activations of the ℓ-th layer of network A, and ◦ represents function composition.

In this section, we explore a stronger form of model stitching. Specifically, given two neural networks
A and B that satisfy LLFC, we evaluate the arruacy of B>ℓ ◦A≤ℓ over the test set D without finding
a stitching layer, i.e., ErrD(B>ℓ◦A≤ℓ). As shown in Tables 1 to 3, we include experimental results for
MLP on the MNIST dataset, VGG-16 on CIFAR-10 the dataset and ResNet-20 on the CIFAR-10
dataset. Only the spawning method is utilized to find modes that satisfy LLFC. The results depicted
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Layer ℓ Conv 1-1 Conv 1-2 Conv 2-1 Conv 2-2 Conv 3-1

ErrD(B>ℓ◦A≤ℓ) 7.2 8.43 8.39 9.91 11.84

Layer ℓ Conv 3-2 Conv 3-3 Conv 4-1 Conv 4-2 Conv 4-3

ErrD(B>ℓ◦A≤ℓ) 9.55 8.22 7.61 6.99 7.05

Layer ℓ Conv 5-1 Conv 5-2 Conv 5-3 FC 1 FC 2

ErrD(B>ℓ◦A≤ℓ) 6.91 6.88 6.88 7.07 6.92

Table 2: Error rates (%) of stitched VGG-16 on the CIFAR-10 test set. The model stitching is
employed in different layers. The spawning method is used to obtain two neural networks that satisfy
LLFC, i.e., A and B. Error rates (%) of A and B are 6.87 and 7.1, respectively.

Layer ℓ Block 1-1 Block 1-2 Block 1-3 Block 2-1 Block 2-2 Block 2-3 Block 3-1 Block 3-2 Block 3-3

ErrD(B>ℓ◦A≤ℓ) 10.88 10.57 13.35 10.64 10.74 10.55 12.27 11.8 8.99

Table 3: Error rates (%) of stitched ResNet-20 on the CIFAR-10 test set. The model stitching is
employed in different layers. The spawning method is used to obtain two neural networks that satisfy
LLFC, i.e., A and B. Error rates (%) of A and B are 8.69 and 8.58, respectively.
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MLP on CIFAR10

ResNet20 (32 x) on CIFAR10

Block 3-3 Conv 2Block 3-1 Conv 2 Block 3-2 Conv 1 Block 3-2 Conv 2 Block 3-3 Conv 1

Figure 20: Singular values of weight matrix W (ℓ) of ℓ-th layer of θ in a descending order. Here, θ
can be used to achieve LMC with weight matching.The results are presented for different layers of
various model architectures and datasets.

in Tables 1 to 3 demonstrate that the error rates of the stitched model on the test set closely resemble
the error rates of the original models A and B, regardless of the dataset or model architecture. This
observation suggests that models that satisfy LLFC encode similar information, which can be decoded
across different models. Subsequently, the experiments of model stitching provides new insights
towards the commutativity property, i.e, ∀ℓ ∈ [L],W

(ℓ)
B H

(ℓ−1)
A ≈ W

(ℓ)
B H

(ℓ−1)
B .

B.5 Discussion on Git Re-basin [1]

In this section, we investigate the ability of permutation methods to achieve LMC. While we have
interpreted the activation matching and weight matching methods proposed by Ainsworth et al. [1]
as guaranteeing the commutativity property, we have yet to address why permutation methods can
ensure the satisfaction of this property. Thus, in order to delve into the capability of permutation
methods, we must address the question of why these methods are capable of ensuring the satisfaction
of the commutativity property.

Low-rank model weights and activations contribute to ensure the commutativity property. We now
consider a stronger form of the commutativity property, where given two modes θA and θB and a
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MLP on CIFAR10

Figure 21: Singular values of post-activations H(ℓ) of ℓ-th layer of θ over the whole test set D in
a descending order. Here, θ can be used to achieve LMC with activation matching.The results are
presented for different layers of MLP on the CIFAR-10 dataset.

𝛽 denotes the smallest principal angle between spaces spanned by top 5% column vector of 𝑈

ResNet20 (32 x) on CIFAR10

srank(𝑾𝑻
(ℓ)
) srank(𝑾𝟏

(ℓ)
)

Block 3-1 Conv1 Block 3-3 Conv2Block 3-1 Conv2 Block 3-2 Conv1 Block 3-2 Conv2 Block 3-3 Conv1

Figure 22: Comparion between the stable rank srank(W
(ℓ)
T ) and srank(W

(ℓ)
1 ). Here, W (ℓ)

T denotes
the weight matrix of the ℓ-th layer of the model θT in the terminal phase of training. Similarly, W (ℓ)

1
denotes the weight matrix of the ℓ-th layer of the model θ1 in the early stage of training (1 epoch
indeed). Also, the stable rank can be calculated as srank(W ) =

∥W ∥2
F

∥W ∥2
2

. The results are presented
for different layers of ResNet-20 (32x) on the CIFAR-10 dataset.

dataset D, we have:

∀ℓ ∈ [L],W
(ℓ)
A H

(ℓ−1)
A = W

(ℓ)
A H

(ℓ−1)
B ∧W

(ℓ)
B H

(ℓ−1)
B = W

(ℓ)
B H

(ℓ−1)
A .

Thus, to satisfy the commutativity property for a given layer ℓ, we can employ the permutation
method to find a permutation matrix P (ℓ−1) such that:

W
(ℓ)
A

(
H

(ℓ−1)
A − P (ℓ−1)H

(ℓ−1)
B

)
= 0 ∧ P (ℓ)W

(ℓ)
B

(
H

(ℓ−1)
B − P (ℓ−1)⊤H

(ℓ−1)
A

)
= 0.

In a homogeneous linear system WX = 0, a low-rank matrix W allows for a larger solution space
for X . Therefore, if the ranks of W (ℓ)

A and W
(ℓ)
B are low, it becomes easier to find a permutation

matrix P (ℓ−1) that satisfies the commutativity property. Similarly, if we consider another form of
commutativity property:

∀ℓ ∈ [L],W
(ℓ)
A H

(ℓ−1)
A = W

(ℓ)
B H

(ℓ−1)
A ∧W

(ℓ)
B H

(ℓ−1)
B = W

(ℓ)
A H

(ℓ−1)
B .

Then, to ensure the commutativity property, we need to find P (ℓ−1) and P (ℓ) such that(
W

(ℓ)
A − P (ℓ)W

(ℓ)
B P (ℓ−1)⊤

)
H

(ℓ−1)
A = 0 ∧

(
P (ℓ)W

(ℓ)
B P (ℓ−1)⊤ −W

(ℓ)
A

)
P (ℓ−1)H

(ℓ−1)
B = 0.

Then, if the ranks of H(ℓ−1)
A and H

(ℓ−1)
B are low, it is easier to find the permutation matrices to satisfy

the condition. In real scenarios, both model weights (see Figure 20) and activations (see Figure 21)
are approximately low-rank, which helps the permutation methods satisfy the commutativity property.

Additionally, Ainsworth et al. [1] mentioned two instances where permutation methods can fail:
models with insufficient width and models in the early stages of training. In both cases, the model
weights often fail to satisfy the low-rank model weight condition. In the first scenario, when the
model lacks sufficient width, meaning that the dimension of the weight matrix approaches the rank of
the weight matrix, the low-rank condition may not be met. For example, compared the singular values
of ResNet-20 (32x) (see Figure 20) with singular values of ResNet-20 (1x) (see ??), it is evident that
in the wider architecture, the proportion of salient singular values is smaller. In the second scenario,
during the initial stages of training, the weight matrices resemble random matrices and may not
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exhibit low-rank characteristics. For example, as shown in Figure 22, the stable ranks of weight
matrices of the model after convergence are significantly smaller than those of the model in the early
stage of training. Consequently, permutation methods may struggle to find suitable permutations that
fulfill the commutativity property, resulting in the inability to obtain modes that satisfy LMC.
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