
Going Beyond Linear Mode Connectivity:
The Layerwise Linear Feature Connectivity

Zhanpeng Zhou1, Yongyi Yang2, Xiaojiang Yang1, Junchi Yan1∗, Wei Hu2†
1 Dept. of Computer Science and Engineering & MoE Key Lab of AI, Shanghai Jiao Tong University

2 Dept. of Electrical Engineering & Computer Science, University of Michigan
{zzp1012,yangxiaojiang,yanjunchi}@sjtu.edu.cn

{yongyi,vvh}@umich.edu

Abstract

Recent work has revealed many intriguing empirical phenomena in neural network
training, despite the poorly understood and highly complex loss landscapes and
training dynamics. One of these phenomena, Linear Mode Connectivity (LMC),
has gained considerable attention due to the intriguing observation that different
solutions can be connected by a linear path in the parameter space while maintaining
near-constant training and test losses. In this work, we introduce a stronger notion
of linear connectivity, Layerwise Linear Feature Connectivity (LLFC), which
says that the feature maps of every layer in different trained networks are also
linearly connected. We provide comprehensive empirical evidence for LLFC
across a wide range of settings, demonstrating that whenever two trained networks
satisfy LMC (via either spawning or permutation methods), they also satisfy
LLFC in nearly all the layers. Furthermore, we delve deeper into the underlying
factors contributing to LLFC, which reveal new insights into the permutation
approaches. The study of LLFC transcends and advances our understanding of
LMC by adopting a feature-learning perspective. We released our source code at
https://github.com/zzp1012/LLFC.

1 Introduction

Despite the successes of modern deep neural networks, theoretical understanding of them still lags
behind. Efforts to understand the mechanisms behind deep learning have led to significant interest in
exploring the loss landscapes and training dynamics. While the loss functions used in deep learning
are often regarded as complex black-box functions in high dimensions, it is believed that these
functions, particularly the parts encountered in practical training trajectories, contain intricate benign
structures that play a role in facilitating the effectiveness of gradient-based training [36, 4, 39]. Just
like in many other scientific disciplines, a crucial step toward formulating a comprehensive theory of
deep learning lies in meticulous empirical investigations of the learning pipeline, intending to uncover
quantitative and reproducible nontrivial phenomena that shed light on the underlying mechanisms.

One intriguing phenomenon discovered in recent work is Mode Connectivity [10, 5, 11]: Different
optima found by independent runs of gradient-based optimization are connected by a simple path in
the parameter space, on which the loss or accuracy is nearly constant. This is surprising as different
optima of a non-convex function can very well reside in different and isolated “valleys” and yet
this does not happen for optima found in practice. More recently, an even stronger form of mode

∗Corresponding author. SJTU authors are partly supported by NSFC(62222607, 61972250, U19B2035) and
Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102).

†Wei Hu acknowledges support from the Google Research Scholar Program.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/zzp1012/LLFC

Overview
Version 3

∝ 𝛼 +(1 − 𝛼)
Feature maps of model 𝜃𝛼 are proportional to

linear interpolation of feature maps of model 𝜃𝐴
and 𝜃𝐵, where 𝜃𝛼 = 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵.

𝛼 = 1 𝛼 = 0𝛼 =
3

4
𝛼 =

1

2
𝛼 =

1

4

𝑓(ℓ) 𝜃𝛼; =

Feature maps of 𝜃𝐵Feature maps of 𝜃𝐴 Feature maps of interpolated model 𝜃𝛼

Figure 1: Illustration of Layerwise Linear Feature Connectivity (LLFC). Each tensor comprises three
feature maps when provided with three input images.

connectivity called Linear Mode Connectivity (LMC) was discovered [24, 9]. It depicts that different
optima can be connected by a linear path of constant loss/accuracy. Although LMC typically does
not happen for two independently trained networks, it has been consistently observed in the following
scenarios:

• Spawning [9, 7]: A network is randomly initialized, trained for a small number of epochs (e.g. 5
epochs for both ResNet-20 and VGG-16 on the CIFAR-10 dataset), and then spawned into two copies
which continue to be independently trained using different SGD randomnesses (i.e., for mini-batch
order and data augmentation).

• Permutation [6, 1]: Two networks are independently trained, and the neurons of one model
are permuted to match the neurons of the other model while maintaining a functionally equivalent
network.

The study of LMC is highly motivated due to its ability to unveil nontrivial structural properties
of loss landscapes and training dynamics. Furthermore, LMC has significant relevance to various
practical applications, such as pruning and weight-averaging methods.

On the other hand, the success of deep neural networks is related to their ability to learn useful
features, or representations, of the data [27], and recent work has highlighted the importance of
analyzing not only the final outputs of a network but also its intermediate features [20]. However, this
crucial perspective is absent in the existing literature on LMC and weight averaging. These studies
typically focus on interpolating the weights of different models and examining the final loss and
accuracy, without delving into the internal layers of the network.

In this work, we take a feature-learning perspective on LMC and pose the question: what happens
to the internal features when we linearly interpolate the weights of two trained networks? Our
main discovery, referred to as Layerwise Linear Feature Connectivity (LLFC), is that the features
in almost all the layers also satisfy a strong form of linear connectivity: the feature map in the
weight-interpolated network is approximately the same as the linear interpolation of the feature maps
in the two original networks. More precisely, let θA and θB be the weights of two trained networks,
and let f (ℓ)(θ) be the feature map in the ℓ-th layer of the network with weights θ. Then we say that
θA and θB satisfy LLFC if

f (ℓ)(αθA + (1− α)θB) ∝ αf (ℓ)(θA) + (1− α)f (ℓ)(θB), ∀α ∈ [0, 1],∀ℓ. (1)

See Figure 1 for an illustration. While LLFC certainly cannot hold for two arbitrary θA and θB , we
find that it is satisfied whenever θA and θB satisfy LMC. We confirm this across a wide range of
settings, as well as for both spawning and permutation methods that give rise to LMC.

LLFC is a much finer-grained characterization of linearity than LMC. While LMC only concerns loss
or accuracy, which is a single scalar value, LLFC (1) establishes a relation for all intermediate feature
maps, which are high-dimensional objects. Furthermore, it is not difficult to see that LLFC applied to
the output layer implies LMC when the two networks have small errors (see Lemma 1); hence, LLFC
can be viewed as a strictly stronger property than LMC. The consistent co-occurrence of LLFC and
LMC suggests that studying LLFC may play a crucial role in enhancing our understanding of LMC.

2

Subsequently, we delve deeper into the underlying factors contributing to LLFC. We identify two
critical conditions, weak additivity for ReLU function and a commutativity property between two
trained networks. We prove that these two conditions collectively imply LLFC in ReLU networks,
and provide empirical verification of these conditions. Furthermore, our investigation yields novel
insights into the permutation approaches: we interpret both the activation matching and weight
matching objectives in Git Re-Basin [1] as ways to ensure the satisfaction of commutativity property.

In summary, our work unveils a richer set of phenomena that go significantly beyond the scope of
LMC, and our further investigation provides valuable insights into the underlying mechanism behind
LMC. Our results demonstrate the value of opening the black box of neural networks and taking a
feature-centric viewpoint in studying questions related to loss landscapes and training dynamics.

2 Related Work

(Linear) Mode Connectivity. Freeman and Bruna [10], Draxler et al. [5], Garipov et al. [11] observed
Mode Connectivity, i.e., different optima/modes of the loss function can be connected through a
non-linear path with nearly constant loss. Nagarajan and Kolter [24] first observed Linear Mode
Connectivity (LMC), i.e., the near-constant-loss connecting path can be linear, on models trained on
MNIST starting from the same random initialization. Later, Frankle et al. [9] first formally defined
and thoroughly investigate the LMC problem. Frankle et al. [9] observed LMC on harder datasets,
for networks that are jointly trained for a short amount of time before going through independent
training (we refer to this as the spawning method). Frankle et al. [9] also demonstrated a connection
between LMC and the Lottery Ticket Hypothesis [8]. Fort et al. [7] used the spawning method to
explore the connection between LMC and the Neural Tangent Kernel dynamics. Lubana et al. [23]
studied the mechanisms of DNNs from mode connectivity and verified the mechanistically dissimilar
models cannot be linearly connected. Yunis et al. [38] showed that LMC also extends beyond two
optima and identified a high-dimensional convex hull of low loss between multiple optima. On the
theory side, several papers [10, 21, 32, 26, 25, 16] were able to prove non-linear mode connectivity
under various settings, but there has not been a theoretical explanation of LMC to our knowledge.

Permutation Invariance. Neural network architectures contain permutation symmetries [13]: one
can permute the weights in different layers while not changing the function computed by the network.
Ashmore and Gashler [2] utilized the permutation invariance of DNNs to align the topological
structure of two neural networks. Tatro et al. [31] used permutation invariance to align the neurons of
two neural networks, resulting in improved non-linear mode connectivity. In the context of LMC,
Entezari et al. [6], Ainsworth et al. [1] showed that even independently trained networks can be
linearly connected when permutation invariance is taken into account. In particular, Ainsworth et al.
[1] approached the neuron alignment problem by formulating it as bipartite graph matching and
proposed two matching methods: activation matching and weight matching. Notably, Ainsworth et al.
[1] achieved the LMC between independently trained ResNet models on the CIFAR-10 dataset using
weight matching.

Model Averaging Methods. LMC also has direct implications for model averaging methods, which
are further related to federated learning and ensemble methods. Wang et al. [33] introduced a novel
federated learning algorithm that incorporates unit permutation before model averaging. Singh
and Jaggi [30], Liu et al. [22] approached the neuron alignment problem in model averaging by
formulating it as an optimal transport and graph matching problem, respectively. Wortsman et al.
[35] averaged the weights of multiple fine-tuned models trained with different hyper-parameters and
obtained improved performance.

3 Background and Preliminaries

Notation and Setup. Denote [k] = {1, 2, . . . , k}. We consider a classification dataset D =
{(xi, yi)}ni=1, where xi ∈ Rd0 represents the input and yi ∈ [c] represents the label of the i-th data
point. Here, n is the dataset size, d0 is the input dimension and c is the number of classes. Moreover,
we use X ∈ Rd0×n to stack all the input data into a matrix.

We consider an L-layer neural network of the form f(θ;x), where θ represents the model parameters,
x is the input, and f(θ;x) ∈ Rc. Let the ℓ-th layer feature (post-activation) of the network be
f (ℓ)(θ;x) ∈ Rdℓ , where dℓ is the dimension of the ℓ-th layer (0 ≤ ℓ ≤ L) and dL = c. Note that

3

f (0)(θ;x) = x and f (L)(θ;x) = f(θ;x). For an input data matrix X , we also use f(θ;X) ∈ Rc×n

and f (ℓ)(θ;X) ∈ Rdℓ×n to denote the collection of the network outputs and features on all the
datapoints, respectively. When X is clear from the context, we simply write f (ℓ)(θ) = f (ℓ)(θ;X)
and f(θ) = f(θ;X). Unless otherwise specified, in this paper we consider models trained on a
training set, and then all the investigations are evaluated on a test set.

We use ErrD(θ) to denote the classification error of the network f(θ; ·) on the dataset D.

Linear Mode Connectivity (LMC). We recall the notion of LMC in Definition 1.
Definition 1 (Linear Mode Connectivity). Given a test dataset D and two modes3 θA and θB such
that ErrD(θA) ≈ ErrD(θB), we say θA and θB are linearly connected if they satisfy

ErrD(αθA + (1− α)θB) ≈ ErrD(θA), ∀α ∈ [0, 1]. (2)

As Definition 1 shows, θA and θB satisfy LMC if the error metric on the linear path connecting their
weights is nearly constant. There are two known methods to obtain linearly connected modes, the
spawning method [9, 7] and the permutation method [6, 1].

Spawning Method. We start from random initialization θ(0) and train the model for k steps to
obtain θ(k). Then we create two copies of θ(k) and continue training the two models separately using
independent SGD randomnesses (mini-batch order and data augmentations) until convergence. By
selecting a proper value of k (usually a small fraction of the total training steps), we can obtain two
linearly connected modes.

Permutation Method. Due to permutation symmetry, it is possible to permute the weights in a
neural network appropriately while not changing the function being computed. Given two modes
θA and θB which are independently trained (and not linearly connected), the permutation method
aims to find a permutation π such that the permuted mode θ′

B = π(θB) is functionally equivalent to
θB and that θ′

B and θA are linearly connected. In other words, even if two modes are not linearly
connected in the parameter space, they might still be linearly connected if permutation invariance is
taken into account.

Among existing permutation methods, Git Re-Basin [1] is a representative one, which successfully
achieved linear connectivity between two independently trained ResNet models on CIFAR-10.
Specifically, a permutation π that maintains functionally equivalent network can be formulated by a set
of per-layer permutations π = {P (ℓ)}L−1

ℓ=1 where P (ℓ) ∈ Rdℓ×dℓ is a permutation matrix. Ainsworth
et al. [1] proposed two distinct matching objectives for aligning the neurons of independently trained
models via permutation: weight matching and activation matching:

Weight matching: min
π

∥θA − π(θB)∥2. (3)

Activation matching: min
π

L−1∑
ℓ=1

∥H(ℓ)
A − P (ℓ)H

(ℓ)
B ∥2F . (4)

Here, H(ℓ)
A = f (ℓ)(θA;X) is the ℓ-th layer feature matrix, and H

(ℓ)
B is defined similarly.

Main Experimental Setup. In this paper, we use both the spawning method and the permutation
method to obtain linearly connected modes. Following Frankle et al. [9], Ainsworth et al. [1], we
perform our experiments on commonly used image classification datasets MNIST [18], CIFAR-
10 [15], and Tiny-ImageNet[17], and with the standard network architectures ResNet-20/50 [12],
VGG-16 [29], and MLP. We follow the same training procedures and hyper-parameters as in Frankle
et al. [9], Ainsworth et al. [1]. Due to space limit, we defer some of the experimental results to the
appendix. Notice that [1] increased the width of ResNet by 32 times in order to achieve zero barrier,
and we also followed this setting in the experiments of the permutation method. The detailed settings
and hyper-parameters are also described in Appendix B.1.

4 Layerwise Linear Feature Connectivity (LLFC)

In this section, we formally describe Layerwise Linear Feature Connectivity (LLFC) and provide
empirical evidence of its consistent co-occurrence with LMC. We also show that LLFC applied to the
last layer directly implies LMC.

3Following the terminology in literature, a mode refers to an optimal solution obtained at the end of training.

4

Verification of Additivity
Version 5

MLP on MNIST

FC 1 FC 2 FC 3 FC 4

ResNet20 on CIFAR10

Block 1-2 Block 1-3 Block 2-2 Block 2-3 Block 3-2 Block 3-3 FC

Block 2-4 Block 3-1 Block 3-2 Block 3-3 Block 3-4 Block 3-5 Block 3-6 Block 4-1 Block 4-2 Block 4-3 FC

1 − cosine0.25 1 − cosine0.50 1 − cosine0.751 − cosine𝐴,𝐵

𝐸
𝐷
[1

−
co
si
n
e
𝒙
𝑖
]

Dist𝛼 = 1 − cos⟨𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙(𝜃𝐵)⟩
Dist𝐴.𝐵 = 1 − cos⟨𝑓𝑙 𝜃𝐴 , 𝑓𝑙(𝜃𝐵)⟩

𝑓𝑙 ∈ 𝑅𝑛×𝑑

𝐸
𝐷
[1

−
co
si
n
e
𝒙
𝑖
]

Conv 4-2 Conv 4-3 Conv 5-2 Conv 5-3 FC 1 FC 2 FC 3Conv 1-2 Conv 2-2 Conv 3-2 Conv 3-3𝐸
𝐷
[1

−
co
si
n
e
𝒙
𝑖
] VGG16 on CIFAR10

ResNet50 on Tiny ImageNet

Figure 2: Comparison of ED[1− cosineα(xi)] and ED[1− cosineA,B(xi)]. The spawning method
is used to obtain two linearly connected modes θA and θB . Results are presented for different layers
of various model architectures on different datasets, with α ∈ {0.25, 0.5, 0.75}. Standard deviations
across the dataset are reported by error bars. More results are in Appendix B.2.

Verification of Additivity
Version 5

Dist𝛼 = 1 − cos⟨𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙(𝜃𝐵)⟩
Dist𝐴.𝐵 = 1 − cos⟨𝑓𝑙 𝜃𝐴 , 𝑓𝑙(𝜃𝐵)⟩

𝑓𝑙 ∈ 𝑅𝑛×𝑑

ResNet20 (32 x) on CIFAR-10 (Weight Matching)

Block 1-1 Block 1-2 Block 1-3 Block 2-1 Block 2-2 Block 3-1 Block 3-2 Block 3-3 FCBlock 2-3

1 − cosine0.25 1 − cosine0.50 1 − cosine0.751 − cosine𝐴,𝐵

𝐸
𝐷
[1

−
co
si
n
e
𝒙
𝑖
]

MLP on MNIST (Activation Matching)

FC 1 FC 2 FC 3 FC 4

MLP on MNIST (weight matching)

FC 1 FC 2 FC 3 FC 4𝐸
𝐷
[1

−
co
si
n
e
𝒙
𝑖
]

𝐸
𝐷
[1

−
co
si
n
e
𝒙
𝑖
]

MLP on CIFAR-10 (Activation Matching)

FC 1 FC 2 FC 3 FC 4

MLP on CIFAR-10 (weight matching)

FC 1 FC 2 FC 3 FC 4𝐸
𝐷
[1

−
co
si
n
e
𝒙
𝑖
]

𝐸
𝐷
[1

−
co
si
n
e
𝒙
𝑖
]

Figure 3: Comparison of ED[1−cosineα(xi)] and ED[1−cosineA,B(xi)]. The permutation method
is used to obtain two linearly connected modes θA and θB . Results are presented for different layers
of various model architectures on different datasets, with α ∈ {0.25, 0.5, 0.75}. Standard deviations
across the dataset are reported by error bars. More results are in Appendix B.2.

Definition 2 (Layerwise Linear Feature Connectivity). Given dataset D and two modes θA, θB

of an L-layer neural network f , the modes θA and θB are said to be layerwise linearly feature
connected if they satisfy

∀ℓ ∈ [L],∀α ∈ [0, 1],∃c > 0, s.t. cf (ℓ)(αθA + (1− α)θB) = αf (ℓ)(θA) + (1− α)f (ℓ)(θB).
(5)

LLFC states that the per-layer feature of the interpolated model θα = αθA + (1 − α)θB has the
same direction as the linear interpolation of the features of θA and θB . This means that the feature
map f (ℓ) behaves similarly to a linear map (up to a scaling factor) on the line segment between θA

and θB , even though it is a nonlinear map globally.

LLFC Co-occurs with LMC. We now verify that LLFC consistently co-occurs with LMC across
different architectures and datasets. We use the spawning method and the permutation method
described in Section 3 to obtain linearly connected modes θA and θB . On each data point xi in the
test set D, we measure the cosine similarity between the feature of the interpolated model θα and

5

Verification of Additivity
Version 5

ResNet20 (32 x) on CIFAR10 (Weight Matching)

Block 2-3 Block 3-1 Block 3-2 Block 3-3 FC Block 3-1 Block 3-2 Block 3-3 FCBlock 2-3

Dist𝛼 = 1 − cos⟨𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙(𝜃𝐵)⟩
Dist𝐴.𝐵 = 1 − cos⟨𝑓𝑙 𝜃𝐴 , 𝑓𝑙(𝜃𝐵)⟩

𝑓𝑙 ∈ 𝑅𝑛×𝑑

1 − cosine𝐿𝑀𝐶1 − cosine𝑛𝑜𝑡 𝐿𝑀𝐶

𝐸
𝐷

[1
−

co
si

n
e

𝒙
𝑖

] ResNet20 on CIFAR10 (Spawning)

Figure 4: Comparison of ED[1 − cosineLMC(xi)] and ED[1 − cosinenot LMC(xi)]. Both the
spawning and permutation methods are used to obtain two linearly connected modes. Standard
deviations across the dataset are reported by error bars.

linear interpolations of the features of θA and θB in each layer ℓ, as expressed as cosineα(xi) =
cos[f (ℓ)(αθA + (1 − α)θB ;xi), αf

(ℓ)(θA;xi) + (1 − α)f (ℓ)(θB ;xi)]. We compare this to the
baseline cosine similarity between the features of θA and θB in the corresponding layer, namely
cosineA,B(xi) = cos[f (ℓ)(θA;xi), f

(ℓ)(θB ;xi)]. The results for the spawning method and the
permutation method are presented in Figures 2 and 3, respectively. They show that the values of
ED[1−cosineα(xi)] are close to 0 across different layers, architectures, datasets, and different values
of α, which verifies the LLFC property. The presence of small error bars indicates consistent behavior
for each data point. Moreover, the values of ED[1− cosineA,B(xi)] are not close to 0, which rules
out the trivial case that f (ℓ)(θA) and f (ℓ)(θB) are already perfectly aligned.

To further verify, we also compare the values of ED[1−cosineα(xi)] of two linearly connected modes
with those of two modes that are independently trained (not satisfying LMC). We measure cosine0.5
of the features of two modes that are linearly connected and two modes that are independently
trained, denoted as cosineLMC and cosinenot LMC correspondingly. In Figure 4, the values of
ED[1− cosineLMC(xi)] are negligible compared to ED[1− cosinenot LMC(xi)]. The experimental
results align with Figures 2 and 3 and thus we firmly verify the claim that LLFC co-occurs with LMC.

LLFC Implies LMC. Intuitively, LLFC is a much stronger characterization than LMC since it
establishes a linearity property in the high-dimensional feature map in every layer, rather than just for
the final error. Lemma 1 below formally establishes that LMC is a consequence of LLFC by applying
LLFC on the output layer.
Lemma 1 (Proof in Appendix A.1). Suppose two modes θA, θB satisfy LLFC on a dataset D and
max{ErrD(θA),ErrD(θB)} ≤ ϵ, then we have

∀α ∈ [0, 1],ErrD(αθA + (1− α)θB) ≤ 2ϵ. (6)

In summary, we see that the LMC property, which was used to study the loss landscapes in the entire
parameter space, extends to the internal features in almost all the layers. LLFC offers much richer
structural properties than LMC. In Section 5, we will dig deeper into the contributing factors to LLFC
and leverage the insights to gain new understanding of the spawning and the permutation methods.

5 Why Does LLFC Emerge?

We have seen that LLFC is a prevalent phenomenon that co-occurs with LMC, and it establishes
a broader notion of linear connectivity than LMC. In this section, we investigate the root cause of
LLFC, and identify two key conditions, weak additivity for ReLU activations and commutativity. We
verify these conditions empirically and prove that they collectively imply LLFC. From there, we
provide an explanation for the effectiveness of the permutation method, offering new insights into
LMC.

5.1 Underlying Factors of LLFC

For convenience, we consider a multi-layer perceptron (MLP) in Section 5, though the results can
be easily adapted to any feed-forward structure, e.g., a convolutional neural network4 (CNN). For

4We also conduct experiments on CNNs. For a Conv layer, the forward propagation will be de-
noted as WH similar to a linear layer. Typically, the weight W for a Conv layer has shape
(# of output channels, # of input channels, height,width) and we reshape W to a matrix with dimensions
(# of output channels, # of input channels × height × width).

6

Dist𝜎 =
||𝜎 ෩𝒉1 + ෩𝒉2 − 𝒉1 − 𝒉2||

2

||𝜎 ෩𝒉1 + ෩𝒉2 || ||𝒉1 + 𝒉2||

Dist𝜎 =
||𝜎 𝒓1 + 𝒓2 − 𝒓1 − 𝒓2||

2

||𝜎 𝒓1 + 𝒓2 || ||𝒓1 + 𝒓2||

MLP on MNIST

FC 1
D

is
ta

n
ce

D
is
t 𝜎

Conv 5-3

D
is

ta
n

ce
D
is
t 𝜎

FC 2

D
is

ta
n

ce
D
is
t 𝜎

FC 3

D
is

ta
n

ce
D
is
t 𝜎

Conv 4-1

D
is

ta
n

ce
D
is
t 𝜎

Conv 4-2

D
is

ta
n

ce
D
is
t 𝜎

Conv 4-3

D
is

ta
n

ce
D
is
t 𝜎

Conv 5-1

D
is

ta
n

ce
D
is
t 𝜎

Conv 5-2

D
is

ta
n

ce
D
is
t 𝜎

VGG16 on CIFAR10

Dist𝜎(෩𝒉𝑖,𝐴, ෩𝒉𝑖,𝐵) Dist𝜎(෩𝒉𝑖,𝐶 , ෩𝒉𝑖,𝐷)

Figure 5: Comparison between the distribution of the normalized distance Distσ(h̃i,A, h̃i,B) and
Distσ(h̃i,C , h̃i,D). Here, h̃i,A and h̃i,B are features of two linearly connected modes, i.e., θA and
θB (founded by the spawning method). h̃i,C and h̃i,D comes from two modes that are independently
trained. Results are presented for different layers of MLP on MNIST and VGG-16 on CIFAR-10.

FC 1

D
is

ta
n

ce
D
is
t 𝜎

FC 2

D
is

ta
n

ce
D
is
t 𝜎

FC 3

D
is

ta
n

ce
D
is
t 𝜎

Dist𝜎 =
||𝜎 ෩𝒉1 + ෩𝒉2 − 𝒉1 − 𝒉2||

2

||𝜎 ෩𝒉1 + ෩𝒉2 || ||𝒉1 + 𝒉2||

Dist𝜎 =
||𝜎 𝒓1 + 𝒓2 − 𝒓1 − 𝒓2||

2

||𝜎 𝒓1 + 𝒓2 || ||𝒓1 + 𝒓2||

MLP on MNIST

Block 1-1

D
is

ta
n

ce
D
is
t 𝜎

Block 1-2

D
is

ta
n

ce
D
is
t 𝜎

Block 2-1

D
is

ta
n

ce
D
is
t 𝜎

Block 2-2

D
is

ta
n

ce
D
is
t 𝜎

Block 3-1

D
is

ta
n

ce
D
is
t 𝜎

Block 3-2

D
is

ta
n

ce
D
is
t 𝜎

ResNet20 (32 x) on CIFAR10

Dist𝜎(෩𝒉𝑖,𝐶 , ෩𝒉𝑖,𝐷𝑎𝑐𝑡) Dist𝜎(෩𝒉𝑖,𝐶 , ෩𝒉𝑖,𝐷𝑤𝑔𝑡
) Dist𝜎(෩𝒉𝑖,𝐶 , ෩𝒉𝑖,𝐷)

Figure 6: Comparison among the distribution of the normalized distance Distσ(h̃i,C , h̃i,Dact),
Distσ(h̃i,C , h̃i,Dwgt

) and Distσ(h̃i,C , h̃i,D). Here, h̃i,C and h̃i,D are features of two modes that
are independently trained, i.e., θC and θD. h̃i,Dact

and h̃i,Dwgt
comes from θDact

(permuted θD

using the activation matching) and θDwgt
(permuted θD using the weight matching), correspondingly.

For ResNet-20, the values of Distσ are calculated in the first Conv layer of each block. Results are
presented for different layers of MLP on MNIST and ResNet-20 on CIFAR-10.

an L-layer MLP f with ReLU activation, the weight matrix in the ℓ-th linear layer is denoted
as W (ℓ) ∈ Rdℓ×dℓ−1 , and b(ℓ) ∈ Rdℓ is the bias in that layer. For a given input data matrix
X ∈ Rd0×n, denote the feature (post-activation) in the ℓ-th layer as H(ℓ) = f (ℓ)(θ;X) ∈ Rdℓ×n,

and correspondingly pre-activation as H̃
(ℓ) ∈ Rdℓ×n. The forward propagation in the ℓ-th layer is:

H(ℓ) = σ(H̃
(ℓ)

), H̃
(ℓ)

= W (ℓ)H(ℓ−1) + b(ℓ)1⊤
dℓ
.

Here, σ denotes the ReLU activation function, and 1dℓ
∈ Rdℓ denotes the all-one vector. Additionally,

we use h(ℓ)
i to denote the i-th row of H(ℓ), and h̃

(ℓ)

i to denote the i-th row of H̃
(ℓ)

, which correspond
to the post- and pre-activations of the i-th input at layer ℓ, respectively.

Condition I: Weak Additivity for ReLU Activations.5

Definition 3 (Weak Additivity for ReLU Activations). Given a dataset D, two modes θA and θB

are said to satisfy weak additivity for ReLU activations if

∀ℓ ∈ [L],∀α ∈ [0, 1], σ(αH̃
(ℓ)

A + (1− α)H̃
(ℓ)

B) = ασ(H̃
(ℓ)

A) + (1− α)σ(H̃
(ℓ)

B). (7)

Definition 3 requires the ReLU activation function to behave like a linear function for the pre-
activations in each layer of the two networks. Although this cannot be true in general since ReLU is a
nonlinear function, we verify it empirically for modes that satisfy LMC and LLFC.

We conduct experiments on various datasets and architectures to validate the weak additivity for
ReLU activations. Specifically, given two modes θA and θB and a data point xi in the test set D, we
compute the normalized distances between the left-hand side and the right-hand side of Equation (7)
for each layer ℓ, varying the values of α. We denote the maximum distance across the range of α
as Distσ(h̃i,A, h̃i,B) = maxα∈[0,1] dist(σ

(
αh̃i,A + (1− α)h̃i,B

)
, ασ(h̃i,A) + (1 − α)σ(h̃i,B)),

where dist(x,y) := ∥x− y∥2/(∥x∥ · ∥y∥). To validate the weak additivity condition, we compare
the values of Distσ of two modes that are linearly connected with those of two modes that are
independently trained.

5Weak additivity has no relation to stable neurons [28]. Stable neuron is defined as one whose output is the
constant value zero or the pre-activation output on all inputs, which is a property concerning a single network.
On the other hand, weak additivity concerns a relation between two networks.

7

Verification of Commutativity
Version 2

MLP on MNIST ResNet20 on CIFAR10

FCFC 2 FC 3 FC 4 Block 1-2 Block 1-3 Block 2-2 Block 2-3 Block 3-2 Block 3-3

FCFC 2 FC 3 FC 4 Block 1-2 Block 1-3 Block 2-2 Block 2-3 Block 3-2 Block 3-3

MLP on MNIST (Weight Matching) ResNet20 (32 x) on CIFAR10 (Weight Matching)

Dist𝑐𝑜𝑚 =
|| 𝑊1

𝑙𝐻1
𝑙−1 +𝑊2

𝑙𝐻2
𝑙−1 − (𝑊1

𝑙𝐻2
𝑙−1 +𝑊2

𝑙𝐻1
𝑙−1)||2

||𝑊1
𝑙𝐻1

𝑙−1 +𝑊2
𝑙𝐻2

𝑙−1|| ||𝑊1
𝑙𝐻2

𝑙−1 +𝑊2
𝑙𝐻1

𝑙−1||
Dist𝑊 =

||𝑊1
𝑙 −𝑊2

𝑙||2

||𝑊1
𝑙|| ||𝑊2

𝑙||
Dist𝐻 =

||𝐻1
𝑙−1 −𝐻2

𝑙−1||2

||𝐻1
𝑙−1|| ||𝐻2

𝑙−1||

Dist𝑐𝑜𝑚 Dist𝑊 Dist𝐻

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

Figure 7: Comparison of Distcom, DistW , and DistH . In the first row, the spawning method is used
to acquire modes that satisfy LLFC, whereas the permutation method is used for the second row.
For ResNet-20, Distcom, DistW are calculated in the first Conv layer of each block. The results are
presented for different layers of MLP on the MNIST and ResNet-20 on the CIFAR-10. More results
are in Appendix B.3.

Both spawning and permutation methods are shown to demonstrate the weak additivity condition.
For spawning method, we first obtain two linearly connected modes, i.e, θA and θB , and then two
independently trained modes, i.e, θC and θD (not satisfying LMC/LLFC). We compare the values of
Distσ of θA and θB with those of θC and θD. In Figure 5, we observe that across different datasets
and model architectures, at different layers, Distσ(h̃i,A, h̃i,B) are negligible (and much smaller than
the baseline Distσ(h̃i,C , h̃i,D)). For permutation methods, given two independently trained modes,
i.e., θC and θD, we permute the θD such that the permuted π(θD) are linearly connected with θC .
Both activation matching and weight matching are used and the permuted π(θD) are denoted as θDact

and θDwgt
respectively. In Figure 6, the values of Distσ(h̃i,C , h̃i,Dact

) and Distσ(h̃i,C , h̃i,Dwgt
) are

close to zero compared to Distσ(h̃i,C , h̃i,D). Therefore, we verify the weak additivity condition for
both spawning and permutation methods.

Condition II: Commutativity.
Definition 4 (Commutativity). Given a dataset D, two modes θA and θB are said to satisfy
commutativity if

∀ℓ ∈ [L], W
(ℓ)
A H

(ℓ−1)
A +W

(ℓ)
B H

(ℓ−1)
B = W

(ℓ)
A H

(ℓ−1)
B +W

(ℓ)
B H

(ℓ−1)
A . (8)

Commutativity depicts that the next-layer linear transformations applied to the internal features of
two neural networks can be interchanged. This property is crucial for improving our understanding
of LMC and LLFC. In Section 5.2, we will use the commutativity property to provide new insights
into the permutation method.

We conduct experiments on various datasets and model architectures to verify the com-
mutativity property for modes that satisfy LLFC. Specifically, for a given dataset D
and two modes θA and θB that satisfy LLFC, we compute the normalized distance be-
tween the left-hand side and the right-hand side of Equation (8), denoted as Distcom =

dist
(

vec(W (ℓ)
A H

(ℓ−1)
A +W

(ℓ)
B H

(ℓ−1)
B), vec(W (ℓ)

A H
(ℓ−1)
B +W

(ℓ)
B H

(ℓ−1)
A)

)
. Furthermore, we

compare Distcom with the normalized distance between the weight matrices of the current layer ℓ,
denoted as DistW , and the normalized distances between the post-activations of the previous layer
ℓ− 1, denoted as DistH . These distances are expressed as DistW = dist

(
vec(W (ℓ)

A), vec(W (ℓ)
B)

)
and DistH = dist

(
vec(H(ℓ−1)

A), vec(H(ℓ−1)
B)

)
, respectively. Figure 7 shows that for both spawning

and permutation methods, Distcom is negligible compared with DistW and DistH , which confirms
the commutativity condition. Note that we also rule out the trivial case where either the weight
matrices or the post-activations in the two networks are already perfectly aligned, as weights and
post-activations often differ significantly. We also add more baseline experiments for comparison
(see Appendix B.3 for more results).

Additionally, we note that commutativity has a similarity to model stitching [19, 3]. In Appendix B.4,
we show that a stronger form of model stitching (without an additional trainable layer) works for two
networks that satisfy LLFC.

8

Conditions I and II Imply LLFC. Theorem 1 below shows that weak additivity for ReLU activations
(Definition 3) and commutativity (Definition 4) imply LLFC.
Theorem 1 (Proof in Appendix A.2). Given a dataset D, if two modes θA and θB satisfy weak
additivity for ReLU activations (Definition 3) and commutativity (Definition 4), then

∀α ∈ [0, 1],∀ℓ ∈ [L], f (ℓ) (αθA + (1− α)θB) = αf (ℓ)(θA) + (1− α)f (ℓ)(θB).

Note that the definition of LLFC (Definition 2) allows a scaling factor c, while Theorem 1 establishes
a stronger version of LLFC where c = 1. We attribute this inconsistency to the accumulation of
errors6 in weak additivity and commutativity conditions, since they are only approximated satisfied
in practice. Yet in most cases, we observe that c is close to 1 (see Appendix B.2 for more results).

5.2 Justification of the Permutation Methods

In this subsection, we provide a justification of the permutation methods in Git Re-Basin [1]: weight
matching (3) and activation matching (4). Recall from Section 3 that given two modes θA and
θB , the permutation method aims to find a permutation π = {P (ℓ)}L−1

ℓ=1 such that the permuted
θ′
B = π(θB) and θA are linearly connected, where P (ℓ) is a permutation matrix applied to the

ℓ-th layer feature. Concretely, with a permutation π, we can formulate W ′
B
(ℓ) and H ′

B
(ℓ) of θ′

B

in each layer ℓ as W ′
B
(ℓ)

= P (ℓ)W
(ℓ)
B P (ℓ−1)⊤ and H ′

B
(ℓ)

= P (ℓ)H
(ℓ)
B [1].7 In Section 5.1, we

have identified the commutativity property as a key factor contributing to LLFC. The commutativity
property (8) between θA and θ′

B can be written as(
W

(ℓ)
A −W ′

B
(ℓ)

)(
H

(ℓ−1)
A −H ′

B
(ℓ−1)

)
= 0,

or (
W

(ℓ)
A − P (ℓ)W

(ℓ)
B P (ℓ−1)⊤

)(
H

(ℓ−1)
A − P (ℓ−1)H

(ℓ−1)
B

)
= 0. (9)

We note that the weight matching (3) and activation matching (4) objectives can be written as

minπ
∑L

ℓ=1

∥∥∥W (ℓ)
A − P (ℓ)W

(ℓ)
B P (ℓ−1)⊤

∥∥∥2
F

and minπ
∑L−1

ℓ=1

∥∥∥H(ℓ)
A − P (ℓ)H

(ℓ)
B

∥∥∥2
F

, respectively,
which directly correspond to the two factors in Equation (9). Therefore, we can interpret Git Re-Basin
as a means to ensure commutativity. Extended discussion on Git Re-basin [1] can be found in
Appendix B.5.

6 Conclusion and Discussion

We identified Layerwise Linear Feature Connectivity (LLFC) as a prevalent phenomenon that co-
occurs with Linear Mode Connectivity (LMC). By investigating the underlying contributing factors
to LLFC, we obtained novel insights into the existing permutation methods that give rise to LMC.
The consistent co-occurrence of LMC and LLFC suggests that LLFC may play an important role if
we want to understand LMC in full. Since the LLFC phenomenon suggests that averaging weights
is roughly equivalent to averaging features, a natural future direction is to study feature averaging
methods and investigate whether averaging leads to better features.

We note that our current experiments mainly focus on image classification tasks, though aligning
with existing literature on LMC. We leave the exploration of empirical evidence beyond image
classification as future direction. We also note that our Theorem 1 predicts LLFC in an ideal case,
while in practice, a scaling factor c is introduced to Definition 2 to better describe the experimental
results. Realistic theorems and definitions (approximated version) are defered to future research.

Finally, we leave the question if it is possible to find a permutation directly enforcing the commutativ-

ity property (9). Minimizing ∥(W (ℓ)
A − P (ℓ)W

(ℓ)
B P (ℓ−1)⊤)(H

(ℓ−1)
A − P (ℓ−1)H

(ℓ−1)
B)∥F entails

solving Quadratic Assignment Problems (QAPs) (See Appendix A.3 for derivation), which are known
NP-hard. Solving QAPs calls for efficient techniques especially seeing the progress in learning to
solve QAPs [37, 34].

6we find that employing a scaling factor c enables a much better description of the practical behavior than
other choices (e.g. an additive error term).

7Note that both P (0) and P (L) are identity matrices.

9

References
[1] Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo

permutation symmetries. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=CQsmMYmlP5T.

[2] Stephen Ashmore and Michael Gashler. A method for finding similarity between multi-layer perceptrons
by forward bipartite alignment. In 2015 International Joint Conference on Neural Networks (IJCNN),
pages 1–7. IEEE, 2015.

[3] Yamini Bansal, Preetum Nakkiran, and Boaz Barak. Revisiting model stitching to compare neural repre-
sentations. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021. URL https://openreview.net/forum?id=ak06J5jNR4.

[4] Yuan Cao, Zixiang Chen, Misha Belkin, and Quanquan Gu. Benign overfitting in two-layer convolutional
neural networks. Advances in neural information processing systems, 35:25237–25250, 2022.

[5] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers in
neural network energy landscape. In International conference on machine learning, pages 1309–1318.
PMLR, 2018.

[6] Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation invariance
in linear mode connectivity of neural networks. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=dNigytemkL.

[7] Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy, and Surya
Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time
evolution of the neural tangent kernel. Advances in Neural Information Processing Systems, 33:5850–5861,
2020.

[8] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJl-b3RcF7.

[9] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode connectivity
and the lottery ticket hypothesis. In International Conference on Machine Learning, pages 3259–3269.
PMLR, 2020.

[10] C. Daniel Freeman and Joan Bruna. Topology and geometry of half-rectified network optimization. In
International Conference on Learning Representations, 2017. URL https://openreview.net/forum?
id=Bk0FWVcgx.

[11] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information processing
systems, 31, 2018.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.
doi: 10.1109/CVPR.2016.90.

[13] Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. 1990.

[14] Tjalling C Koopmans and Martin Beckmann. Assignment problems and the location of economic activities.
Econometrica: journal of the Econometric Society, pages 53–76, 1957.

[15] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[16] Rohith Kuditipudi, Xiang Wang, Holden Lee, Yi Zhang, Zhiyuan Li, Wei Hu, Rong Ge, and Sanjeev Arora.
Explaining landscape connectivity of low-cost solutions for multilayer nets. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/file/46a4378f835dc8040c8057beb6a2da52-Paper.pdf.

[17] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

[18] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

10

https://openreview.net/forum?id=CQsmMYmlP5T
https://openreview.net/forum?id=ak06J5jNR4
https://openreview.net/forum?id=dNigytemkL
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=Bk0FWVcgx
https://openreview.net/forum?id=Bk0FWVcgx
https://proceedings.neurips.cc/paper_files/paper/2019/file/46a4378f835dc8040c8057beb6a2da52-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/46a4378f835dc8040c8057beb6a2da52-Paper.pdf

[19] Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their equivariance and
equivalence. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
991–999, 2015.

[20] Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent learning: Do
different neural networks learn the same representations? In Dmitry Storcheus, Afshin Rostamizadeh,
and Sanjiv Kumar, editors, Proceedings of the 1st International Workshop on Feature Extraction: Modern
Questions and Challenges at NIPS 2015, volume 44 of Proceedings of Machine Learning Research, pages
196–212, Montreal, Canada, 11 Dec 2015. PMLR. URL https://proceedings.mlr.press/v44/
li15convergent.html.

[21] Shiyu Liang, Ruoyu Sun, Yixuan Li, and Rayadurgam Srikant. Understanding the loss surface of neural
networks for binary classification. In International Conference on Machine Learning, pages 2835–2843.
PMLR, 2018.

[22] Chang Liu, Chenfei Lou, Runzhong Wang, Alan Yuhan Xi, Li Shen, and Junchi Yan. Deep neural network
fusion via graph matching with applications to model ensemble and federated learning. In ICML, pages
13857–13869, 2022. URL https://proceedings.mlr.press/v162/liu22k.html.

[23] Ekdeep Singh Lubana, Eric J Bigelow, Robert P. Dick, David Krueger, and Hidenori Tanaka. Mechanistic
mode connectivity, 2023. URL https://openreview.net/forum?id=NZZoABNZECq.

[24] Vaishnavh Nagarajan and J Zico Kolter. Uniform convergence may be unable to explain generalization in
deep learning. Advances in Neural Information Processing Systems, 32, 2019.

[25] Quynh Nguyen. On connected sublevel sets in deep learning. In International conference on machine
learning, pages 4790–4799. PMLR, 2019.

[26] Quynh Nguyen, Mahesh Chandra Mukkamala, and Matthias Hein. On the loss landscape of a class of deep
neural networks with no bad local valleys. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=HJgXsjA5tQ.

[27] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by error
propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[28] Thiago Serra, Xin Yu, Abhinav Kumar, and Srikumar Ramalingam. Scaling up exact neural network
compression by reLU stability. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?
id=tqQ-8MuSqm.

[29] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1409.1556.

[30] Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. Advances in Neural Information
Processing Systems, 33:22045–22055, 2020.

[31] Norman Tatro, Pin-Yu Chen, Payel Das, Igor Melnyk, Prasanna Sattigeri, and Rongjie Lai. Optimizing
mode connectivity via neuron alignment. Advances in Neural Information Processing Systems, 33:15300–
15311, 2020.

[32] Luca Venturi, Afonso S. Bandeira, and Joan Bruna. Spurious valleys in one-hidden-layer neural network
optimization landscapes. J. Mach. Learn. Res., 20:133:1–133:34, 2019. URL http://jmlr.org/
papers/v20/18-674.html.

[33] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Federated
learning with matched averaging. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=BkluqlSFDS.

[34] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Neural graph matching network: Learning lawler’s
quadratic assignment problem with extension to hypergraph and multiple-graph matching. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2022.

[35] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S
Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model soups: aver-
aging weights of multiple fine-tuned models improves accuracy without increasing inference time. In
International Conference on Machine Learning, pages 23965–23998. PMLR, 2022.

11

https://proceedings.mlr.press/v44/li15convergent.html
https://proceedings.mlr.press/v44/li15convergent.html
https://proceedings.mlr.press/v162/liu22k.html
https://openreview.net/forum?id=NZZoABNZECq
https://openreview.net/forum?id=HJgXsjA5tQ
https://openreview.net/forum?id=tqQ-8MuSqm
https://openreview.net/forum?id=tqQ-8MuSqm
http://arxiv.org/abs/1409.1556
http://jmlr.org/papers/v20/18-674.html
http://jmlr.org/papers/v20/18-674.html
https://openreview.net/forum?id=BkluqlSFDS

[36] Zhiwei Xu, Yutong Wang, Spencer Frei, Gal Vardi, and Wei Hu. Benign overfitting and grokking in relu
networks for xor cluster data. arXiv preprint arXiv:2310.02541, 2023.

[37] Tianshu Yu, Junchi Yan, Yilin Wang, Wei Liu, and baoxin Li. Generalizing graph matching beyond
quadratic assignment model. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/
51d92be1c60d1db1d2e5e7a07da55b26-Paper.pdf.

[38] David Yunis, Kumar Kshitij Patel, Pedro Henrique Pamplona Savarese, Gal Vardi, Jonathan Frankle,
Matthew Walter, Karen Livescu, and Michael Maire. On convexity and linear mode connectivity in neural
networks. In OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop), 2022. URL
https://openreview.net/forum?id=TZQ3PKL3fPr.

[39] Zhenyu Zhu, Fanghui Liu, Grigorios Chrysos, Francesco Locatello, and Volkan Cevher. Benign overfitting
in deep neural networks under lazy training. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages 43105–43128.
PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/zhu23h.html.

12

https://proceedings.neurips.cc/paper_files/paper/2018/file/51d92be1c60d1db1d2e5e7a07da55b26-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/51d92be1c60d1db1d2e5e7a07da55b26-Paper.pdf
https://openreview.net/forum?id=TZQ3PKL3fPr
https://proceedings.mlr.press/v202/zhu23h.html

A Proofs of Theorems and Derivations

A.1 Proof of Lemma 1

In this section, we prove Lemma 1 in the main paper. This lemma indicates that we can directly imply
Linear Mode Connectivity (LMC, see Definition 1) from Layerwise Linear Feature Connectivity
(LLFC, see Definition 2) applied to last layer.
Definition 1 (Linear Mode Connectivity). Given a test dataset D and two modes θA and θB such
that ErrD (θA) ≈ ErrD (θB), we say θA and θB are linearly connected if they satisfy

ErrD (αθA + (1− α)θB) ≈ ErrD (θA) , ∀α ∈ [0, 1].

Definition 2 (Layerwise Linear Feature Connectivity). Given dataset D and two modes θA, θB

of an L-layer neural network f , the modes θA and θB are said to be layerwise linearly feature
connected if they satisfy

∀ℓ ∈ [L],∀α ∈ [0, 1],∃c > 0, s.t. cf (ℓ) (αθA + (1− α)θB) = αf (ℓ) (θA) + (1− α) f (ℓ) (θB) .

Lemma 1. Suppose two modes θA, θB satisfy LLFC on a dataset D and

max {ErrD (θA) ,ErrD (θB)} ≤ ϵ,

then we have

∀α ∈ [0, 1],ErrD (αθA + (1− α)θB) ≤ 2ϵ.

Proof. Note that the classification depends on the relative order of the entries in the output of the
final layer. As a consequence, for each data point in the dataset D, the linear interpolation of the
outputs of the models makes the correct classification if both models make the correct classification.
Therefore, only if one of the model makes the incorrect classification, the linear interpolation of the
outputs of the models would possibly make the incorrect classification, i.e,

ErrD (αf(θA) + (1− α) f(θB)) ≤ ErrD (θA) + ErrD (θB) .

Since θA and θB satisfy LLFC, then at last layer we have

f (αθA + (1− α)θB) = αf (θA) + (1− α) f (θB) ,

then have

ErrD (αθA + (1− α)θB) ≤ ErrD (θA) + ErrD (θB) .

According to the condition that

max {ErrD (θA) ,ErrD (θB)} ≤ ϵ,

which indicates

ErrD (αθA + (1− α)θB) ≤ 2ϵ,

and this finishes the proof.

A.2 Proof of Theorem 1

In this section, we prove Theorem 1 in the main paper. Theorem 1 indicates that we can derive LLFC
from two simple conditions: weak additivity for ReLU activations (Definition 3) and commutativity
(Definition 4). Note that though we consider a multi-layer perceptron (MLP) for convenience, our
proof and results can be easily adopted to any feed-forward structure, e.g., a convolutional neural
network (CNN).
Definition 3 (Weak Additivity for ReLU Activations). Given a dataset D, two modes θA and θB

are said to satisfy weak additivity for ReLU activations if

∀ℓ ∈ [L], σ
(
H̃

(ℓ)

A + H̃
(ℓ)

B

)
= σ

(
H̃

(ℓ)

A

)
+ σ

(
H̃

(ℓ)

B

)
.

13

Definition 4 (Commutativity). Given a dataset D, two modes θA and θB are said to satisfy
commutativity if

∀ℓ ∈ [L], W
(ℓ)
A H

(ℓ−1)
A +W

(ℓ)
B H

(ℓ−1)
B = W

(ℓ)
A H

(ℓ−1)
B +W

(ℓ)
B H

(ℓ−1)
A .

Theorem 1. Given a dataset D, if two modes θA and θB satisfy weak additivity for ReLU activations
(Definition 3) and commutativity (Definition 4), then

∀α ∈ [0, 1],∀ℓ ∈ [L], f (ℓ) (αθA + (1− α)θB) = αf (ℓ) (θA) + (1− α) f (ℓ) (θB) .

Proof. Before delving into the proof, let us denote the forward propagation in each layer ℓ by

g̃(ℓ)
(
θ;H(ℓ−1)

)
= W (ℓ)H(ℓ−1) + b(ℓ)1⊤

dℓ

g(ℓ)
(
θ;H(ℓ−1)

)
= σ

(
g̃(ℓ)

(
θ;H(ℓ−1)

))
= H(ℓ)

Given θA and θB that satisfy the commutativity property, then ∀ℓ ∈ [L] and ∀α ∈ [0, 1], we have

W
(ℓ)
A H

(ℓ−1)
A +W

(ℓ)
B H

(ℓ−1)
B =W

(ℓ)
A H

(ℓ−1)
B +W

(ℓ)
B H

(ℓ−1)
A

g̃(ℓ)
(
θA;H

(ℓ−1)
A

)
+ g̃(ℓ)

(
θB ;H

(ℓ−1)
B

)
=g̃(ℓ)

(
θA;H

(ℓ−1)
B

)
+ g̃(ℓ)

(
θB ;H

(ℓ−1)
A

)
α (1− α)

(
g̃(ℓ)

(
θA;H

(ℓ−1)
A

)
+ g̃(ℓ)

(
θB ;H

(ℓ−1)
B

))
=α (1− α)

(
g̃(ℓ)

(
θA;H

(ℓ−1)
B

)
+ g̃(ℓ)

(
θB ;H

(ℓ−1)
A

))
αg̃(ℓ)

(
θA;H

(ℓ−1)
A

)
+ (1− α)g̃(ℓ)

(
θB ;H

(ℓ−1)
B

)
=α2g̃(ℓ)

(
θA;H

(ℓ−1)
A

)
+ (1− α)2g̃(ℓ)

(
θB ;H

(ℓ−1)
B

)
+ α (1− α)

(
g̃(ℓ)

(
θA;H

(ℓ−1)
B

)
+ g̃(ℓ)

(
θB ;H

(ℓ−1)
A

))
Additionally, we can easily verify that

g̃(ℓ)
(
αθA + (1− α)θB ;H

(ℓ)
)
= αg̃(ℓ)

(
θA;H

(ℓ)
)
+ (1− α) g̃(ℓ)

(
θB ;H

(ℓ)
)

g̃(ℓ)
(
θ;αH

(ℓ)
A + (1− α)H

(ℓ)
B

)
= αg̃(ℓ)

(
θ;H

(ℓ)
A

)
+ (1− α) g̃(ℓ)

(
θ;H

(ℓ)
B

)
Subsequently,

αg̃(ℓ)
(
θA;H

(ℓ−1)
A

)
+ (1− α) g̃(ℓ)

(
θB ;H

(ℓ−1)
B

)
=αg̃(ℓ)

(
αθA + (1− α)θB ;H

(ℓ−1)
A

)
+ (1− α) g̃(ℓ)

(
αθA + (1− α)θB ;H

(ℓ−1)
B

)
=g̃(ℓ)

(
αθA + (1− α)θB ;αH

(ℓ−1)
A + (1− α)H

(ℓ−1)
B

)
.

Given the weak additivity for ReLU activation is satisfied for θA and θB , then we have

σ
(
αg̃(ℓ)

(
θA;H

(ℓ−1)
A

)
+ (1− α) g̃(ℓ)

(
θB ;H

(ℓ−1)
B

))
= σ

(
g̃(ℓ)

(
αθA + (1− α)θB ;αH

(ℓ−1)
A + (1− α)H

(ℓ−1)
B

))
αg(ℓ)

(
θA;H

(ℓ−1)
A

)
+ (1− α) g(ℓ)

(
θB ;H

(ℓ−1)
B

)
= g(ℓ)

(
αθA + (1− α)θB ;αH

(ℓ−1)
A + (1− α)H

(ℓ−1)
B

)
To conclude, ∀ℓ ∈ [L] and ∀α ∈ [0, 1], we have

αH
(ℓ)
A + (1− α)H

(ℓ)
B = g(ℓ)

(
αθA + (1− α)θB ;αH

(ℓ−1)
A + (1− α)H

(ℓ−1)
B

)
(10)

For the right hand side of Equation (10), recursively, we can have

g(ℓ)
(
αθA + (1− α)θB ;αH

(ℓ−1)
A + (1− α)H

(ℓ−1)
B

)
=g(ℓ)

(
αθA + (1− α)θB ; g

(ℓ−1)
(
αθA + (1− α)θB ;αH

(ℓ−2)
A + (1− α)H

(ℓ−2)
B

))
=
(
g(ℓ) ◦ g(ℓ−1)

)(
αθA + (1− α)θB ;αH

(ℓ−2)
A + (1− α)H

(ℓ−2)
B

)
= · · ·

=
(
g(ℓ) ◦ g(ℓ−1) · · · ◦ g(1)

)
(αθA + (1− α)θB ;X)

=f (ℓ) (αθA + (1− α)θB ;X) ,

14

where X denotes the input data matrix.

Recall we denote H(ℓ) = f (ℓ) (θ;X) which indicates

αf (ℓ) (θA;X) + (1− α) f (ℓ) (θB ;X) = f (ℓ) (αθA + (1− α)θB ;X) ,

and this finishes the proof.

A.3 Derivation of Quadratic Assignment Problem

In this section, we aim to show that minimizing
∑L

ℓ=1

∥∥∥(W (ℓ)
A − P (ℓ)W

(ℓ)
B P (ℓ−1)⊤

)(
H

(ℓ−1)
A − P (ℓ−1)H

(ℓ−1)
B

)∥∥∥2
F

includes solving Quadratic Assignment Problems (QAPs), known to be NP-hard.

argmin
π={P (ℓ)}

L∑
ℓ=1

∥∥∥(W (ℓ)
A − P (ℓ)W

(ℓ)
B P (ℓ−1)⊤

)(
H

(ℓ−1)
A − P (ℓ−1)H

(ℓ−1)
B

)∥∥∥2
F

⇐⇒ argmin
π={P (ℓ)}

L∑
ℓ=1

∥∥∥W (ℓ)
A H

(ℓ−1)
A − P (ℓ)W

(ℓ)
B P (ℓ−1)⊤H

(ℓ−1)
A −W

(ℓ)
A P (ℓ−1)H

(ℓ−1)
B + P (ℓ)W

(ℓ)
B H

(ℓ−1)
B

∥∥∥2
F

⇐⇒ argmin
π={P (ℓ)}

L∑
ℓ=1

(∥∥∥W (ℓ)
A H

(ℓ−1)
A −W

(ℓ)
A P (ℓ−1)H

(ℓ−1)
B

∥∥∥2
F
+

∥∥∥P (ℓ)W
(ℓ)
B P (ℓ−1)⊤H

(ℓ−1)
A − P (ℓ)W

(ℓ)
B H

(ℓ−1)
B

∥∥∥2
F

+
〈
W

(ℓ)
A H

(ℓ−1)
A −W

(ℓ)
A P (ℓ−1)H

(ℓ−1)
B ,P (ℓ)W

(ℓ)
B P (ℓ−1)⊤H

(ℓ−1)
A − P (ℓ)W

(ℓ)
B H

(ℓ−1)
B

〉
F

)
.

Consider its first term, i.e.,

argmin
π={P (ℓ)}

L∑
ℓ=1

∥∥∥W (ℓ)
A H

(ℓ−1)
A −W

(ℓ)
A P (ℓ−1)H

(ℓ−1)
B

∥∥∥2
F

⇐⇒ argmin
π={P (ℓ)}

L∑
ℓ=1

tr

((
H

(ℓ−1)
A

⊤
W

(ℓ)
A

⊤
−H

(ℓ−1)
B

⊤
P (ℓ−1)⊤W

(ℓ)
A

⊤
)(

W
(ℓ)
A H

(ℓ−1)
A −W

(ℓ)
A P (ℓ−1)H

(ℓ−1)
B

))

⇐⇒ argmin
π={P (ℓ)}

L∑
ℓ=1

tr

(
H

(ℓ−1)
A

⊤
W

(ℓ)
A

⊤
W

(ℓ)
A H

(ℓ−1)
A −H

(ℓ−1)
B

⊤
P (ℓ−1)⊤W

(ℓ)
A

⊤
W

(ℓ)
A H

(ℓ−1)
A

− H
(ℓ−1)
A

⊤
W

(ℓ)
A

⊤
W

(ℓ)
A P (ℓ−1)H

(ℓ−1)
B +H

(ℓ−1)
B

⊤
P (ℓ−1)⊤W

(ℓ)
A

⊤
W

(ℓ)
A P (ℓ−1)H

(ℓ−1)
B

)
⇐⇒ argmin

π={P (ℓ)}

L∑
ℓ=1

tr

(
−2H

(ℓ−1)
B

⊤
P (ℓ−1)⊤W

(ℓ)
A

⊤
W

(ℓ)
A H

(ℓ−1)
A +H

(ℓ−1)
B

⊤
P (ℓ−1)⊤W

(ℓ)
A

⊤
W

(ℓ)
A P (ℓ−1)H

(ℓ−1)
B

)

⇐⇒ argmin
π={P (ℓ)}

L∑
ℓ=1

tr

(
−2P (ℓ−1)⊤W

(ℓ)
A

⊤
W

(ℓ)
A H

(ℓ−1)
A H

(ℓ−1)
B

⊤
+ P (ℓ−1)⊤W

(ℓ)
A

⊤
W

(ℓ)
A P (ℓ−1)H

(ℓ−1)
B H

(ℓ−1)
B

⊤
)

⇐⇒ argmin
π={P (ℓ)}

L∑
ℓ=1

(
tr

(
P (ℓ−1)⊤W

(ℓ)
A

⊤
W

(ℓ)
A P (ℓ−1)H

(ℓ−1)
B H

(ℓ−1)
B

⊤
)
− 2 tr

(
P (ℓ−1)⊤W

(ℓ)
A

⊤
W

(ℓ)
A H

(ℓ−1)
A H

(ℓ−1)
B

⊤
))

,

where tr
(
P (ℓ−1)⊤W

(ℓ)
A

⊤
W

(ℓ)
A P (ℓ−1)H

(ℓ−1)
B H

(ℓ−1)
B

⊤
)
−2tr

(
P (ℓ−1)⊤W

(ℓ)
A

⊤
W

(ℓ)
A H

(ℓ−1)
A H

(ℓ−1)
B

⊤
)

is in the form of Koopmans-Beckmann’s QAP [14] for each P (ℓ−1) and known as NP-hard. Thus,

solving argmin
π={P (ℓ)}

∑L
ℓ=1

∥∥∥W (ℓ)
A H

(ℓ−1)
A −W

(ℓ)
A P (ℓ−1)H

(ℓ−1)
B

∥∥∥2
F

is to solve L− 1 QAPs in parallel.

15

Similarly, consider the second term, i.e,

argmin
π={P (ℓ)}

L∑
ℓ=1

∥∥∥P (ℓ)W
(ℓ)
B P (ℓ−1)⊤H

(ℓ−1)
A − P (ℓ)W

(ℓ)
B H

(ℓ−1)
B

∥∥∥2
F

⇐⇒ argmin
π={P (ℓ)}

L∑
ℓ=1

∥∥∥W (ℓ)
B P (ℓ−1)⊤H

(ℓ−1)
A −W

(ℓ)
B H

(ℓ−1)
B

∥∥∥2
F

⇐⇒ argmin
π={P (ℓ)}

L∑
ℓ=1

tr

((
H

(ℓ−1)
A

⊤
P (ℓ−1)W

(ℓ)
B

⊤
−H

(ℓ−1)
B

⊤
W

(ℓ)
B

⊤
)(

W
(ℓ)
B P (ℓ−1)⊤H

(ℓ−1)
A −W

(ℓ)
B H

(ℓ−1)
B

))

⇐⇒ argmin
π={P (ℓ)}

L∑
ℓ=1

tr

(
H

(ℓ−1)
A

⊤
P (ℓ−1)W

(ℓ)
B

⊤
W

(ℓ)
B P (ℓ−1)⊤H

(ℓ−1)
A −H

(ℓ−1)
A

⊤
P (ℓ−1)W

(ℓ)
B

⊤
W

(ℓ)
B H

(ℓ−1)
B

− H
(ℓ−1)
B

⊤
W

(ℓ)
B

⊤
W

(ℓ)
B P (ℓ−1)⊤H

(ℓ−1)
A +H

(ℓ−1)
B

⊤
W

(ℓ)
B

⊤
W

(ℓ)
B H

(ℓ−1)
B

)
⇐⇒ argmin

π={P (ℓ)}

L∑
ℓ=1

tr

(
H

(ℓ−1)
A

⊤
P (ℓ−1)W

(ℓ)
B

⊤
W

(ℓ)
B P (ℓ−1)⊤H

(ℓ−1)
A − 2H

(ℓ−1)
A

⊤
P (ℓ−1)W

(ℓ)
B

⊤
W

(ℓ)
B H

(ℓ−1)
B

)

⇐⇒ argmin
π={P (ℓ)}

L∑
ℓ=1

tr

(
P (ℓ−1)W

(ℓ)
B

⊤
W

(ℓ)
B P (ℓ−1)⊤H

(ℓ−1)
A H

(ℓ−1)
A

⊤
− 2P (ℓ−1)W

(ℓ)
B

⊤
W

(ℓ)
B H

(ℓ−1)
B H

(ℓ−1)
A

⊤
)

⇐⇒ argmin
π={P (ℓ)}

L∑
ℓ=1

(
tr

(
P (ℓ−1)W

(ℓ)
B

⊤
W

(ℓ)
B P (ℓ−1)⊤H

(ℓ−1)
A H

(ℓ−1)
A

⊤
)
− 2 tr

(
P (ℓ−1)W

(ℓ)
B

⊤
W

(ℓ)
B H

(ℓ−1)
B H

(ℓ−1)
A

⊤
))

,

which also gives rise to Koopmans-Beckmann’s QAPs.

For the last term, i.e,

argmin
π={P (ℓ)}

L∑
ℓ=1

〈
W

(ℓ)
A H

(ℓ−1)
A −W

(ℓ)
A P (ℓ−1)H

(ℓ−1)
B ,P (ℓ)W

(ℓ)
B P (ℓ−1)⊤H

(ℓ−1)
A − P (ℓ)W

(ℓ)
B H

(ℓ−1)
B

〉
F

⇐⇒ argmin
π={P (ℓ)}

L∑
ℓ=1

〈(
W

(ℓ)
A H

(ℓ−1)
A −W

(ℓ)
A P (ℓ−1)H

(ℓ−1)
B

)(
W

(ℓ)
B P (ℓ−1)⊤H

(ℓ−1)
A −W

(ℓ)
B H

(ℓ−1)
B

)⊤
,P (ℓ)

〉
F

,

which entails solving bi-level matching problems.

Therefore, the objective can be rewritten as the summation of QAPs and bi-level matching problems
and cannot be further simplified, which is NP-hard.

B More Experimental Details and Results

B.1 Detailed Experimental Settings

In this section, we introduce the detailed experimental setup. Before delving into details, recall that
unless otherwise specified, in this paper we consider models trained on a training set, and then all the
investigations are evaluated on a test set.

B.1.1 Spawning Method

Multi-Layer Perceptrons on the MNIST Dataset. In accordance with the settings outlined by
Ainsworth et al. [1], we train multi-layer perceptron networks with three hidden layers, each consisting
of 512 units, on the MNIST dataset. We adopt the ReLU activation between layers. Optimization is
done with the Adam algorithm and a learning rate of 1.2× 10−4. The batch size is set to 60 and the
total number of training epochs is 30. To find the modes that satisfy LMC, we start spawning from a
common initialization θ(0).

16

VGG-16 and ResNet-20 on the CIFAR-10 Dataset. In accordance with the settings outlined by
Frankle et al. [9], we train the VGG-16 architecture [29] and the ResNet-20 architecture [12] on
the CIFAR-10 dataset. Data augmentation techniques include random horizontal flips and random
32× 32 pixel crops. Optimization is done using SGD with momentum (momentum set to 0.9). A
weight decay of 1× 10−4 is applied. The learning rate is initialized at 0.1 and is dropped by 10 times
at 80 and 120 epochs. The total number of epochs is 160. To find the modes that satisfy LMC, we
start spawning after training 5 epochs for both VGG-16 and ResNet-20.

ResNet-50 on the Tiny-ImageNet Dataset. In accordance with the settings outlined by Frankle
et al. [9], we train the ResNet-50 architecture [12] on the Tiny-ImageNet dataset. Data augmentation
techniques include random horizontal flips and random 32× 32 pixel crops. Optimization is done
using SGD with momentum (momentum set to 0.9). A weight decay of 1 × 10−4 is applied. The
learning rate is set to 0.4 and warmed up for 5 epochs and then is dropped by 10 times at 30, 60 and
80 epochs. The total number of epochs is 90. To find the modes that satisfy LMC, we start spawning
after training 14 epochs.

B.1.2 Permutation Method

For the permutation method, we follow the experimental settings of Ainsworth et al. [1] strictly,
which are described below.

Multi-Layer Perceptrons on MNIST and CIFAR-10. Similar to the spawning method, we use
multi-layer perceptron (MLP) networks with three hidden layers, each consisting of 512 units. For
MNIST, optimization is performed using Adam with a learning rate of 1 × 10−3. For CIFAR-10,
optimization is performed using SGD with a learning rate of 0.1. Both activation matching and
weight matching are used to identify modes that satisfy LMC.

ResNet-20 on CIFAR-10. To achieve LMC, we modify the ResNet-20 architecture by incorporating
LayerNorms in place of BatchNorms. Furthermore, we increase the width of ResNet-20 by a factor
of 32. Data augmentation techniques include random horizontal flips, random 32× 32 pixel crops,
random resizes of the image between 0.8× and 1.2×, and random rotations between ±30◦. The
optimization process involves using SGD with momentum (set to 0.9). A weight decay regularization
term of 5× 10−4 is applied. A single cosine decay schedule with a linear warm-up is applied, where
the learning rate is initialized to 1× 10−6 and gradually increased to 0.1 over the course of an epoch,
and then a single cosine decay schedule is applied for the remaining training. Only weight matching
is used to identify modes that satisfy LMC.

Unlike the spawning method, VGG models are not used in the permutation method due to their
inability to achieve LMC. Additionally, Ainsworth et al. [1] open-sourced their source code and pre-
trained checkpoints. Therefore, we directly use the pre-trained checkpoints provided by Ainsworth
et al. [1].

B.2 Verification of LLFC Co-Occuring with LMC

In this section, we provide extensive experimental results to verify that LLFC consistently co-occurs
with LMC, and conduct a new experiment to demonstrate that the constant c is close to 1 in most cases.
Both the spawning method and the permutation method are utilized to obtain linearly connected
modes θA and θB . As shown in Figures 8 to 13 and 15, we include experimental results for MLP
on the MNIST dataset (spawning method, activation matching, and weight matching), MLP on the
CIFAR-10 dataset (both activation matching and weight matching), VGG-16 on the CIFAR-10 dataset
(spawning method), ResNet-20 on the CIFAR-10 dataset (spawning method and weight matching)
and ResNet-50 on the Tiny-ImageNet dataset (spawning method). In particular, in Figure 14, we
include experimental results of Straight-Trough Estimator (STE) [1]. STE method tries to learn a
permutation with STE that could minimize the loss barrier between one mode and the other permuted
mode.

To verify the LLFC property on each data point xi in the test set D, we measure cosineα(xi) =
cos[f (ℓ)(αθA + (1 − α)θB ;xi), αf

(ℓ)(θA;xi) + (1 − α)f (ℓ)(θB ;xi)]. We compare this to the
baseline cosine similarity cosineA,B(xi) = cos[f (ℓ)(θA;xi), f

(ℓ)(θB ;xi)]. In Figures 8 to 15, we

17

MLP on MNIST

FC1 FC2 FC3 FC4

1 − cosine0.25 1 − cosine0.50 1 − cosine0.751 − cosine𝐴,𝐵

cosine𝛼 = cos⟨𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙(𝜃𝐵)⟩
cosine𝐴.𝐵 = cos 𝑓𝑙 𝜃𝐴 , 𝑓𝑙 𝜃𝐵

coef𝛼 = 𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙 𝜃𝐵 /||𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙 𝜃𝐵 ||2

FC1 FC2 FC3 FC4

coef0.50 coef0.75coef0.25

Figure 8: Comparison between ED[1− cosineα(xi)] and ED[1− cosineA,B(xi)] and demonstration
of ED[1− coefα(xi)]. The spawning method is used to obtain two linearly connected modes θA and
θB . Results are presented for different layers of MLP on MNIST dataset, with α ∈ {0.25, 0.5, 0.75}.
Standard deviations across the dataset are reported by error bars.

1 − cosine0.25 1 − cosine0.50 1 − cosine0.751 − cosine𝐴,𝐵

cosine𝛼 = cos⟨𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙(𝜃𝐵)⟩
cosine𝐴.𝐵 = cos 𝑓𝑙 𝜃𝐴 , 𝑓𝑙 𝜃𝐵

coef𝛼 = 𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙 𝜃𝐵 /||𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙 𝜃𝐵 ||2

coef0.50 coef0.75coef0.25

VGG16 on CIFAR10

Conv 1-1 Conv 1-2 Conv 2-1 Conv 2-2 Conv 3-1 Conv 3-2 Conv 3-3 Conv 4-1

FC 1 FC 2 FC 3Conv 4-2 Conv 4-3 Conv 5-1 Conv 5-2 Conv 5-3

Conv 1-1 Conv 1-2 Conv 2-1 Conv 2-2 Conv 3-1 Conv 3-2 Conv 3-3 Conv 4-1

FC 1 FC 2 FC 3Conv 4-2 Conv 4-3 Conv 5-1 Conv 5-2 Conv 5-3

Figure 9: Comparison between ED[1− cosineα(xi)] and ED[1− cosineA,B(xi)] and demonstration
of ED[1 − coefα(xi)]. The spawning method is used to obtain two linearly connected modes
θA and θB . Results are presented for different layers of VGG-16 on the CIFAR-10 dataset, with
α ∈ {0.25, 0.5, 0.75}. Standard deviations across the dataset are reported by error bars.

conclude that the values of ED[1−cosineα(xi)] are close to 0 compared with ED[1−cosineA,B(xi)],
and thus verify our claim.

To show that the constant c is close to 1 in most cases, for each data point xi in the test set
D, we measure coefα(xi) = ∥f (ℓ)(αθA + (1 − α)θB ;xi)∥cosineα(xi)/∥αf (ℓ)(θA;xi) + (1 −
α)f (ℓ)(θB ;xi)]∥, where ∥f (ℓ)(αθA+(1−α)θB ;xi)∥cosineα(xi) denotes the length of f (ℓ)(αθA+
(1− α)θB ;xi) projected on αf (ℓ)(θA;xi) + (1− α)f (ℓ)(θB ;xi)]. In Figures 8 to 15, we conclude
that the values of ED[coefα(xi)] are close to 1 in most cases, and thus verify our claim.

18

1 − cosine0.25 1 − cosine0.50 1 − cosine0.751 − cosine𝐴,𝐵

cosine𝛼 = cos⟨𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙(𝜃𝐵)⟩
cosine𝐴.𝐵 = cos 𝑓𝑙 𝜃𝐴 , 𝑓𝑙 𝜃𝐵

coef𝛼 = 𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙 𝜃𝐵 /||𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙 𝜃𝐵 ||2

coef0.50 coef0.75coef0.25

ResNet20 on CIFAR10

Block 2-3 Block 3-1 Block 3-2 Block 3-3 FCBlock 1-1 Block 1-2 Block 1-3 Block 2-1 Block 2-2

Block 2-3 Block 3-1 Block 3-2 Block 3-3 FCBlock 1-1 Block 1-2 Block 1-3 Block 2-1 Block 2-2

Figure 10: Comparison between ED[1−cosineα(xi)] and ED[1−cosineA,B(xi)] and demonstration
of ED[1 − coefα(xi)]. The spawning method is used to obtain two linearly connected modes θA

and θB . Results are presented for different layers of ResNet-20 on the CIFAR-10 dataset, with
α ∈ {0.25, 0.5, 0.75}. Standard deviations across the dataset are reported by error bars.

1 − cosine0.25 1 − cosine0.50 1 − cosine0.751 − cosine𝐴,𝐵

cosine𝛼 = cos⟨𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙(𝜃𝐵)⟩
cosine𝐴.𝐵 = cos 𝑓𝑙 𝜃𝐴 , 𝑓𝑙 𝜃𝐵

coef𝛼 = 𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙 𝜃𝐵 /||𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙 𝜃𝐵 ||2

coef0.50 coef0.75coef0.25

Block 1-1 Block 1-2 Block 1-3 Block 2-1 Block 2-2 Block 2-3 Block 2-4 Block 3-1

Block 4-1 Block 4-2 Block 4-3

𝐸
𝐷
[1

−
co
si
n
e
𝒙
𝑖
]

Block 3-2 Block 3-3 Block 3-4 Block 3-5 Block 3-6

𝐸
𝐷
[1

−
co
si
n
e
𝒙
𝑖
]

Block 1-1 Block 1-2 Block 1-3 Block 2-1 Block 2-2 Block 2-3 Block 2-4 Block 3-1

Block 4-1 Block 4-2 Block 4-3

𝐸
𝐷
[c
o
ef

𝒙
𝑖
]

Block 3-2 Block 3-3 Block 3-4 Block 3-5 Block 3-6

𝐸
𝐷
[c
o
ef

𝒙
𝑖
]

ResNet50 on Tiny-ImageNet

Figure 11: Comparison between ED[1−cosineα(xi)] and ED[1−cosineA,B(xi)] and demonstration
of ED[1 − coefα(xi)]. The spawning method is used to obtain two linearly connected modes θA

and θB . Results are presented for different layers of ResNet-50 on the Tiny-ImageNet dataset, with
α ∈ {0.25, 0.5, 0.75}. Standard deviations across the dataset are reported by error bars.

B.3 Verification of Commutativity

In this section, we provide more experimental results on various datasets and model architectures to
verify the commutativity property for modes that satisfy LLFC. As shown in Figures 16 to 18, we
include more experiments results for VGG-16 on the CIFAR-10 dataset (spawning method), MLP
on the MNIST dataset (activation matching) and MLP on the CIFAR-10 dataset (both activation
matching and weight matching).

19

cosine𝛼 = cos⟨𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙(𝜃𝐵)⟩
cosine𝐴.𝐵 = cos 𝑓𝑙 𝜃𝐴 , 𝑓𝑙 𝜃𝐵

coef𝛼 = 𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙 𝜃𝐵 /||𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙 𝜃𝐵 ||2

FC1 FC2 FC3 FC4

coef0.50 coef0.75coef0.25

MLP on MNIST (Activation Matching)

FC1 FC2 FC3 FC4

1 − cosine0.25 1 − cosine0.50 1 − cosine0.751 − cosine𝐴,𝐵

MLP on MNIST (Weight Matching)

FC1 FC2 FC3 FC4

FC1 FC2 FC3 FC4

Figure 12: Comparison between ED[1−cosineα(xi)] and ED[1−cosineA,B(xi)] and demonstration
of ED[1 − coefα(xi)]. The activation matching and the weight matching are used to obtain two
linearly connected modes θA and θB . Results are presented for different layers of MLP on the
MNIST dataset, with α ∈ {0.25, 0.5, 0.75}. Standard deviations across the dataset are reported by
error bars.

MLP on CIFAR10 (Activation Matching)

FC1 FC2 FC3 FC4

1 − cosine0.25 1 − cosine0.50 1 − cosine0.751 − cosine𝐴,𝐵

FC1 FC2 FC3 FC4

coef0.50 coef0.75coef0.25

MLP on CIFAR10 (Weight Matching)

FC1 FC2 FC3 FC4

FC1 FC2 FC3 FC4

cosine𝛼 = cos⟨𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙(𝜃𝐵)⟩
cosine𝐴.𝐵 = cos 𝑓𝑙 𝜃𝐴 , 𝑓𝑙 𝜃𝐵

coef𝛼 = 𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙 𝜃𝐵 /||𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙 𝜃𝐵 ||2

Figure 13: Comparison between ED[1−cosineα(xi)] and ED[1−cosineA,B(xi)] and demonstration
of ED[1 − coefα(xi)]. The activation matching and the weight matching are used to obtain two
linearly connected modes θA and θB . Results are presented for different layers of MLP on the
CIFAR-10 dataset, with α ∈ {0.25, 0.5, 0.75}. Standard deviations across the dataset are reported by
error bars.

To verify the commutativity generally holds for modes that satisfy LLFC, for test set D, we compute
Distcom = dist

(
vec(W (ℓ)

A H
(ℓ−1)
A +W

(ℓ)
B H

(ℓ−1)
B), vec(W (ℓ)

A H
(ℓ−1)
B +W

(ℓ)
B H

(ℓ−1)
A)

)
8. Fur-

thermore, we compare Distcom with DistW = dist
(

vec(W (ℓ)
A), vec(W (ℓ)

B)
)

and DistH =

dist
(

vec(H(ℓ−1)
A), vec(H(ℓ−1)

B)
)

, respectively. In Figures 16 to 18, Distcom is negligible com-
pared with DistW and DistH , confirming the commutativity condition.

Furthermore, we add baselines of models that are not linearly connected to further validate the
commutativity condition. In Figure 19, we include experimental results for ResNet-20 on CIFAR-10
dataset (both spawning and weight matching method). Specifically, we measure Distcom,LMC of two
linearly connected modes and Distcom,not LMC of two independently trained modes. In Figure 19,
the values of Distcom,LMC are negligible compared with Distcom,not LMC , which confirms the
commutativity condition.

8We also conduct experiments on CNNs. For a Conv layer, the forward propagation will be denoted as WH
similar to a linear layer.

20

MLP on MNIST (STE)

𝐸
𝐷
[1

−
co
si
n
e
𝒙
𝑖
]

FC1 FC2 FC3 FC4

1 − cosine0.25 1 − cosine0.50 1 − cosine0.751 − cosine𝐴,𝐵
𝐸
𝐷
[c
o
ef

𝒙
𝑖
]

FC1 FC2 FC3 FC4

coef0.50 coef0.75coef0.25

MLP on CIFAR10 (STE)

𝐸
𝐷
[1

−
co
si
n
e
𝒙
𝑖
]

FC1 FC2 FC3 FC4

𝐸
𝐷
[c
o
ef

𝒙
𝑖
]

FC1 FC2 FC3 FC4

cosine𝛼 = cos⟨𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙(𝜃𝐵)⟩
cosine𝐴.𝐵 = cos 𝑓𝑙 𝜃𝐴 , 𝑓𝑙 𝜃𝐵

coef𝛼 = 𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙 𝜃𝐵 /||𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙 𝜃𝐵 ||2

Figure 14: Comparison between ED[1−cosineα(xi)] and ED[1−cosineA,B(xi)] and demonstration
of ED[1 − coefα(xi)]. The Straight-Through Estimator (STE) [1] are used to obtain two linearly
connected modes θA and θB . Results are presented for different layers of MLP on both MNIST and
CIFAR-10 dataset, with α ∈ {0.25, 0.5, 0.75}. Standard deviations across the dataset are reported by
error bars.

1 − cosine0.25 1 − cosine0.50 1 − cosine0.751 − cosine𝐴,𝐵

cosine𝛼 = cos⟨𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙(𝜃𝐵)⟩
cosine𝐴.𝐵 = cos 𝑓𝑙 𝜃𝐴 , 𝑓𝑙 𝜃𝐵

coef𝛼 = 𝑓𝑙 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵 , 𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙 𝜃𝐵 /||𝛼𝑓𝑙 𝜃𝐴 + 1 − 𝛼 𝑓𝑙 𝜃𝐵 ||2

coef0.50 coef0.75coef0.25

Block 2-3 Block 3-1 Block 3-2 Block 3-3 FCBlock 1-1 Block 1-2 Block 1-3 Block 2-1 Block 2-2

Block 2-3 Block 3-1 Block 3-2 Block 3-3 FCBlock 1-1 Block 1-2 Block 1-3 Block 2-1 Block 2-2

ResNet20 (32 x) on CIFAR10 (Weight Matching)

Figure 15: Comparison between ED[1−cosineα(xi)] and ED[1−cosineA,B(xi)] and demonstration
of ED[1− coefα(xi)]. The weight matching is used to obtain two linearly connected modes θA and
θB . Results are presented for different layers of ResNet-20 (32x) on the CIFAR-10 dataset, with
α ∈ {0.25, 0.5, 0.75}. Standard deviations across the dataset are reported by error bars.

Conv 1-2

D
is

ta
n

ce

Conv 4-1 Conv 4-2

D
is

ta
n

ce

D
is

ta
n

ce

Conv 2-2

D
is

ta
n

ce

Conv 3-1

D
is

ta
n

ce

Conv 2-1

D
is

ta
n

ce

D
is

ta
n

ce

Conv 5-2

D
is

ta
n

ce

Conv 5-3

D
is

ta
n

ce

Conv 5-1Conv 4-3

D
is

ta
n

ce

Conv 3-2 Conv 3-3

D
is

ta
n

ce

D
is

ta
n

ce

VGG16 on CIFAR10

Dist𝑐𝑜𝑚 =
|| 𝑊1

𝑙𝐻1
𝑙−1 +𝑊2

𝑙𝐻2
𝑙−1 − (𝑊1

𝑙𝐻2
𝑙−1 +𝑊2

𝑙𝐻1
𝑙−1)||2

||𝑊1
𝑙𝐻1

𝑙−1 +𝑊2
𝑙𝐻2

𝑙−1|| ||𝑊1
𝑙𝐻2

𝑙−1 +𝑊2
𝑙𝐻1

𝑙−1||
Dist𝑊 =

||𝑊1
𝑙 −𝑊2

𝑙||2

||𝑊1
𝑙|| ||𝑊2

𝑙||
Dist𝐻 =

||𝐻1
𝑙−1 −𝐻2

𝑙−1||2

||𝐻1
𝑙−1|| ||𝐻2

𝑙−1||

Dist𝑐𝑜𝑚 Dist𝑊 Dist𝐻

Figure 16: Comparison of Distcom, DistW , and DistH . The spawning method is used to obtain two
modes that satisfy LLFC, θA and θB . The results are presented for different layers of VGG-16 on
the CIFAR-10 dataset.

21

Dist𝑐𝑜𝑚 Dist𝑊 Dist𝐻

D
is

ta
n

ce

D
is

ta
n

ce

D
is

ta
n

ce

FC 2 FC 3 FC 4

Dist𝑐𝑜𝑚 =
|| 𝑊1

𝑙𝐻1
𝑙−1 +𝑊2

𝑙𝐻2
𝑙−1 − (𝑊1

𝑙𝐻2
𝑙−1 +𝑊2

𝑙𝐻1
𝑙−1)||2

||𝑊1
𝑙𝐻1

𝑙−1 +𝑊2
𝑙𝐻2

𝑙−1|| ||𝑊1
𝑙𝐻2

𝑙−1 +𝑊2
𝑙𝐻1

𝑙−1||
Dist𝑊 =

||𝑊1
𝑙 −𝑊2

𝑙||2

||𝑊1
𝑙|| ||𝑊2

𝑙||
Dist𝐻 =

||𝐻1
𝑙−1 −𝐻2

𝑙−1||2

||𝐻1
𝑙−1|| ||𝐻2

𝑙−1||

MLP on MNIST (Activation Matching)

Figure 17: Comparison of Distcom, DistW , and DistH . The activation matching is used to obtain two
modes that satisfy LLFC, θA and θB . The results are presented for different layers of MLP on the
MNIST dataset.

Dist𝑐𝑜𝑚 =
|| 𝑊1

𝑙𝐻1
𝑙−1 +𝑊2

𝑙𝐻2
𝑙−1 − (𝑊1

𝑙𝐻2
𝑙−1 +𝑊2

𝑙𝐻1
𝑙−1)||2

||𝑊1
𝑙𝐻1

𝑙−1 +𝑊2
𝑙𝐻2

𝑙−1|| ||𝑊1
𝑙𝐻2

𝑙−1 +𝑊2
𝑙𝐻1

𝑙−1||
Dist𝑊 =

||𝑊1
𝑙 −𝑊2

𝑙||2

||𝑊1
𝑙|| ||𝑊2

𝑙||
Dist𝐻 =

||𝐻1
𝑙−1 −𝐻2

𝑙−1||2

||𝐻1
𝑙−1|| ||𝐻2

𝑙−1||

Dist𝑐𝑜𝑚 Dist𝑊 Dist𝐻

FC 2 FC 3 FC 4

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

MLP on CIFAR10 (Activation Matching)

FC 2 FC 3 FC 4

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

MLP on CIFAR10 (Weight Matching)

Figure 18: Comparison of Distcom, DistW , and DistH . Both the activation matching and weight
matching are used to obtain two modes that satisfy LLFC, θA and θB . The results are presented for
different layers of MLP on the CIFAR10 dataset.

Verification of Commutativity
Version 2

FCBlock 2-3 Block 3-1 Block 3-2 Block 3-3 FC Block 2-3 Block 3-1 Block 3-2 Block 3-3

ResNet20 on CIFAR10 (Spawning) ResNet20 (32 x) on CIFAR10 (Weight Matching)

Dist𝑐𝑜𝑚 =
|| 𝑊1

𝑙𝐻1
𝑙−1 + 𝑊2

𝑙𝐻2
𝑙−1 − (𝑊1

𝑙𝐻2
𝑙−1 + 𝑊2

𝑙𝐻1
𝑙−1)||2

||𝑊1
𝑙𝐻1

𝑙−1 + 𝑊2
𝑙𝐻2

𝑙−1|| ||𝑊1
𝑙𝐻2

𝑙−1 + 𝑊2
𝑙𝐻1

𝑙−1||
Dist𝑊 =

||𝑊1
𝑙 − 𝑊2

𝑙||2

||𝑊1
𝑙|| ||𝑊2

𝑙||
Dist𝐻 =

||𝐻1
𝑙−1 − 𝐻2

𝑙−1||2

||𝐻1
𝑙−1|| ||𝐻2

𝑙−1||

Dist𝑐𝑜𝑚, 𝐿𝑀𝐶 Dist𝑐𝑜𝑚, 𝑛𝑜𝑡 𝐿𝑀𝐶

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

D
is

ta
n
ce

Figure 19: Comparison between Distcom,LMC and Distcom,not LMC . Both the spawning and permu-
tation methods are used to obtain two linearly connected modes.

Layer ℓ FC 1 FC 2 FC 3

ErrD(B>ℓ◦A≤ℓ) 2.69 2.11 1.92

Table 1: Error rates (%) of stitched MLP on the MNIST test set. The model stitching is employed in
different layers. The spawning method is used to obtain two neural networks that satisfy LLFC, i.e.,
A and B. Error rates (%) of A and B are 1.9 and 1.77, respectively.

Notably, the experiments are not conducted on the first Conv/Linear layer of the model because the
commutativity condition is naturally satisfied for the first layer where H

(0)
A = H

(0)
B = X where X

is the input data matrix.

B.4 Experiments on Model Stitching

Model stitching [19, 3] is commonly employed to analyze neural networks’ internal representations.
Let A and B represent neural networks with identical architectures. Given a loss function L, model
stitching involves finding a stitching layer s (e.g., a linear 1 × 1 convolutional layer) such that the
minimization of L(B>ℓ ◦ s ◦A≤ℓ) is achieved. Here, B>ℓ denotes the mapping from the activations
of the ℓ-th layer of network B to the final output, A≤ℓ denotes the mapping from the input to the
activations of the ℓ-th layer of network A, and ◦ represents function composition.

In this section, we explore a stronger form of model stitching. Specifically, given two neural networks
A and B that satisfy LLFC, we evaluate the arruacy of B>ℓ ◦A≤ℓ over the test set D without finding
a stitching layer, i.e., ErrD(B>ℓ◦A≤ℓ). As shown in Tables 1 to 3, we include experimental results for
MLP on the MNIST dataset, VGG-16 on CIFAR-10 the dataset and ResNet-20 on the CIFAR-10
dataset. Only the spawning method is utilized to find modes that satisfy LLFC. The results depicted

22

Layer ℓ Conv 1-1 Conv 1-2 Conv 2-1 Conv 2-2 Conv 3-1

ErrD(B>ℓ◦A≤ℓ) 7.2 8.43 8.39 9.91 11.84

Layer ℓ Conv 3-2 Conv 3-3 Conv 4-1 Conv 4-2 Conv 4-3

ErrD(B>ℓ◦A≤ℓ) 9.55 8.22 7.61 6.99 7.05

Layer ℓ Conv 5-1 Conv 5-2 Conv 5-3 FC 1 FC 2

ErrD(B>ℓ◦A≤ℓ) 6.91 6.88 6.88 7.07 6.92

Table 2: Error rates (%) of stitched VGG-16 on the CIFAR-10 test set. The model stitching is
employed in different layers. The spawning method is used to obtain two neural networks that satisfy
LLFC, i.e., A and B. Error rates (%) of A and B are 6.87 and 7.1, respectively.

Layer ℓ Block 1-1 Block 1-2 Block 1-3 Block 2-1 Block 2-2 Block 2-3 Block 3-1 Block 3-2 Block 3-3

ErrD(B>ℓ◦A≤ℓ) 10.88 10.57 13.35 10.64 10.74 10.55 12.27 11.8 8.99

Table 3: Error rates (%) of stitched ResNet-20 on the CIFAR-10 test set. The model stitching is
employed in different layers. The spawning method is used to obtain two neural networks that satisfy
LLFC, i.e., A and B. Error rates (%) of A and B are 8.69 and 8.58, respectively.

S
in

g
u
la

r
v
al

u
es

Index of 𝑠 Index of 𝑠 Index of 𝑠

S
in

g
u
la

r
v
al

u
es

S
in

g
u

la
r

v
al

u
es

Block 3-1 Conv 1

S
in

g
u
la

r
v
al

u
es

Index of 𝑠 Index of 𝑠 Index of 𝑠

S
in

g
u
la

r
v
al

u
es

S
in

g
u
la

r
v
al

u
es

S
in

g
u
la

r
v
al

u
es

Index of 𝑠 Index of 𝑠 Index of 𝑠

S
in

g
u
la

r
v
al

u
es

S
in

g
u
la

r
v
al

u
es

FC 1 FC 2 FC 3

MLP on CIFAR10

ResNet20 (32 x) on CIFAR10

Block 3-3 Conv 2Block 3-1 Conv 2 Block 3-2 Conv 1 Block 3-2 Conv 2 Block 3-3 Conv 1

Figure 20: Singular values of weight matrix W (ℓ) of ℓ-th layer of θ in a descending order. Here, θ
can be used to achieve LMC with weight matching.The results are presented for different layers of
various model architectures and datasets.

in Tables 1 to 3 demonstrate that the error rates of the stitched model on the test set closely resemble
the error rates of the original models A and B, regardless of the dataset or model architecture. This
observation suggests that models that satisfy LLFC encode similar information, which can be decoded
across different models. Subsequently, the experiments of model stitching provides new insights
towards the commutativity property, i.e, ∀ℓ ∈ [L],W

(ℓ)
B H

(ℓ−1)
A ≈ W

(ℓ)
B H

(ℓ−1)
B .

B.5 Discussion on Git Re-basin [1]

In this section, we investigate the ability of permutation methods to achieve LMC. While we have
interpreted the activation matching and weight matching methods proposed by Ainsworth et al. [1]
as guaranteeing the commutativity property, we have yet to address why permutation methods can
ensure the satisfaction of this property. Thus, in order to delve into the capability of permutation
methods, we must address the question of why these methods are capable of ensuring the satisfaction
of the commutativity property.

Low-rank model weights and activations contribute to ensure the commutativity property. We now
consider a stronger form of the commutativity property, where given two modes θA and θB and a

23

S
in

g
u
la

r
v
al

u
es

Index of 𝑠 Index of 𝑠 Index of 𝑠

S
in

g
u
la

r
v
al

u
es

S
in

g
u
la

r
v
al

u
es

FC 1 FC 2 FC 3

MLP on CIFAR10

Figure 21: Singular values of post-activations H(ℓ) of ℓ-th layer of θ over the whole test set D in
a descending order. Here, θ can be used to achieve LMC with activation matching.The results are
presented for different layers of MLP on the CIFAR-10 dataset.

𝛽 denotes the smallest principal angle between spaces spanned by top 5% column vector of 𝑈

ResNet20 (32 x) on CIFAR10

srank(𝑾𝑻
(ℓ)
) srank(𝑾𝟏

(ℓ)
)

Block 3-1 Conv1 Block 3-3 Conv2Block 3-1 Conv2 Block 3-2 Conv1 Block 3-2 Conv2 Block 3-3 Conv1

Figure 22: Comparion between the stable rank srank(W
(ℓ)
T) and srank(W

(ℓ)
1). Here, W (ℓ)

T denotes
the weight matrix of the ℓ-th layer of the model θT in the terminal phase of training. Similarly, W (ℓ)

1
denotes the weight matrix of the ℓ-th layer of the model θ1 in the early stage of training (1 epoch
indeed). Also, the stable rank can be calculated as srank(W) =

∥W ∥2
F

∥W ∥2
2

. The results are presented
for different layers of ResNet-20 (32x) on the CIFAR-10 dataset.

dataset D, we have:

∀ℓ ∈ [L],W
(ℓ)
A H

(ℓ−1)
A = W

(ℓ)
A H

(ℓ−1)
B ∧W

(ℓ)
B H

(ℓ−1)
B = W

(ℓ)
B H

(ℓ−1)
A .

Thus, to satisfy the commutativity property for a given layer ℓ, we can employ the permutation
method to find a permutation matrix P (ℓ−1) such that:

W
(ℓ)
A

(
H

(ℓ−1)
A − P (ℓ−1)H

(ℓ−1)
B

)
= 0 ∧ P (ℓ)W

(ℓ)
B

(
H

(ℓ−1)
B − P (ℓ−1)⊤H

(ℓ−1)
A

)
= 0.

In a homogeneous linear system WX = 0, a low-rank matrix W allows for a larger solution space
for X . Therefore, if the ranks of W (ℓ)

A and W
(ℓ)
B are low, it becomes easier to find a permutation

matrix P (ℓ−1) that satisfies the commutativity property. Similarly, if we consider another form of
commutativity property:

∀ℓ ∈ [L],W
(ℓ)
A H

(ℓ−1)
A = W

(ℓ)
B H

(ℓ−1)
A ∧W

(ℓ)
B H

(ℓ−1)
B = W

(ℓ)
A H

(ℓ−1)
B .

Then, to ensure the commutativity property, we need to find P (ℓ−1) and P (ℓ) such that(
W

(ℓ)
A − P (ℓ)W

(ℓ)
B P (ℓ−1)⊤

)
H

(ℓ−1)
A = 0 ∧

(
P (ℓ)W

(ℓ)
B P (ℓ−1)⊤ −W

(ℓ)
A

)
P (ℓ−1)H

(ℓ−1)
B = 0.

Then, if the ranks of H(ℓ−1)
A and H

(ℓ−1)
B are low, it is easier to find the permutation matrices to satisfy

the condition. In real scenarios, both model weights (see Figure 20) and activations (see Figure 21)
are approximately low-rank, which helps the permutation methods satisfy the commutativity property.

Additionally, Ainsworth et al. [1] mentioned two instances where permutation methods can fail:
models with insufficient width and models in the early stages of training. In both cases, the model
weights often fail to satisfy the low-rank model weight condition. In the first scenario, when the
model lacks sufficient width, meaning that the dimension of the weight matrix approaches the rank of
the weight matrix, the low-rank condition may not be met. For example, compared the singular values
of ResNet-20 (32x) (see Figure 20) with singular values of ResNet-20 (1x) (see ??), it is evident that
in the wider architecture, the proportion of salient singular values is smaller. In the second scenario,
during the initial stages of training, the weight matrices resemble random matrices and may not

24

exhibit low-rank characteristics. For example, as shown in Figure 22, the stable ranks of weight
matrices of the model after convergence are significantly smaller than those of the model in the early
stage of training. Consequently, permutation methods may struggle to find suitable permutations that
fulfill the commutativity property, resulting in the inability to obtain modes that satisfy LMC.

25

	Introduction
	Related Work
	Background and Preliminaries
	Layerwise Linear Feature Connectivity (LLFC)
	Why Does LLFC Emerge?
	Underlying Factors of LLFC
	Justification of the Permutation Methods

	Conclusion and Discussion
	Proofs of Theorems and Derivations
	Proof of lem:suppl-LLFC-implies-LMC
	Proof of thm:suppl-LLFC-by-weak-and-comm
	Derivation of Quadratic Assignment Problem

	More Experimental Details and Results
	Detailed Experimental Settings
	Spawning Method
	Permutation Method

	Verification of LLFC Co-Occuring with LMC
	Verification of Commutativity
	Experiments on Model Stitching
	Discussion on Git Re-basin ainsworth2023git

