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Abstract

In this work we revisit the most fundamental building block in deep learning, the
multi-layer perceptron (MLP), and study the limits of its performance on vision
tasks. Empirical insights into MLPs are important for multiple reasons. (1) Given
the recent narrative "less inductive bias is better", popularized due to transformers
eclipsing convolutional models, it is natural to explore the limits of this hypoth-
esis. To that end, MLPs offer an ideal test bed, as they lack any vision-specific
inductive bias. (2) MLPs have almost exclusively been the main protagonist in the
deep learning theory literature due to their mathematical simplicity, serving as a
proxy to explain empirical phenomena observed for more complex architectures.
Surprisingly, experimental datapoints for MLPs are very difficult to find in the liter-
ature, especially when coupled with large pre-training protocols. This discrepancy
between practice and theory is worrying: Do MLPs reflect the empirical advances
exhibited by practical models? Or do theorists need to rethink the role of MLPs as a
proxy? We provide insights into both these aspects. We show that the performance
of MLPs drastically improves with scale (95% on CIFAR10, 82% on CIFAR100,
58% on ImageNet ReaL), highlighting that lack of inductive bias can indeed be
compensated. We observe that MLPs mimic the behaviour of their modern counter-
parts faithfully, with some components in the learning setting however exhibiting
stronger or unexpected behaviours. Due to their inherent computational efficiency,
large pre-training experiments become more accessible for academic researchers.
All of our experiments were run on a single GPU.

Figure 1: Test error on CIFAR100 as a function of PFLOPS.
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Figure 2: Different architectures process images differently. Convolutions directly operate on the
image, ViTs and MLP-Mixers work with patches while the MLP takes the flattened image as input.

1 Introduction
Deep learning has undergone tremendous empirical progress in the last decades. The dominant
approaches in practice these days rely on very large, pre-trained models which are then fine-tuned to
the specific task at hand. For natural language processing, these models usually are some variant of
the Transformer architecture (Vaswani et al., 2017), while in computer vision, both convolutional and
transformer-based models are very popular (He et al., 2015; Tan and Le, 2020; Dosovitskiy et al.,
2021). The theoretical understanding of these advances on the other hand remains very poor and
the gap between the world of theory and practice is growing at an alarming rate. One aspect of this
gap is the family of models investigated; due to their mathematical simplicity, theoretical works
largely focus on simple multi-layer perceptrons (MLPs). Consisting of a series of unstructured matrix
multiplications, interleaved with element-wise non-linearities, the MLP serves as an ideal test bed to
analyze empirical phenomena exhibited by more complicated models employed in practice. Due to
their inferior performance, MLPs are rarely used and very little is known regarding their behaviour
in more modern settings. For instance, to the best of our knowledge, there is not a single published
result showcasing an MLP trained on ImageNet1k, the de-facto standard benchmark in vision, let
alone any pre-training/transfer learning studies. This lack of empirical data is concerning as theory
aims to understand the characteristics of modern architectures through the lens of MLPs, yet only
little assessments are made regarding how well such a proxy works. This raises the question,

Do MLPs reflect the empirical advances exhibited by practical models? (1)

Investigating MLPs is not only interesting for theory but also for practice. With the Vision Transformer
(ViT) outperforming its convolutional competitors in very large-scale settings, the role of inductive
bias has recently been brought into question. Since a ViT is equipped with significantly less inductive
bias for vision compared to convolutional models (e.g. it lacks translation-equivariance) a novel
narrative has recently emerged:

At large scales of compute, having less inductive bias is beneficial for performance. (2)

More evidence for this hypothesis has been collected in the form of the MLP-Mixer (Tolstikhin
et al., 2021), an architecture with arguably even less inductive bias, solely relying on multi-layer
perceptrons as patch processors and mixers. The MLP architecture is the ideal candidate to test
the limits of such a hypothesis, as it exhibits the least inductive bias for vision due to its invariance
to permutations of pixels. Unfortunately, the scale where Transformers and MLP-Mixers start to
outperform convolutional models is out of reach for most researchers, requiring billions of annotated
images and thousands of TPUs. We thus expect similar required scales for MLPs and hence instead
investigate the following, weaker hypothesis:

Lack of inductive bias can be compensated by scaling compute. (3)

i.e. we aim to measure to what degree a lack of inductive bias hinders performance even if a model is
subjected to a large parameter count and trained on datasets with many examples (albeit smaller than
what is employed in Dosovitskiy et al. (2021)).

In this work, we provide answers to question 1 and provide further evidence for hypothesis 2 and 3 by
investigating how far we can push the empirical performance of models solely built from composing
several MLP blocks. We give largely positive answers to question 1, observing that MLPs behave
very similarly to their modern counterparts when subjected to scale, i.e. their performance increases
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Figure 3: A simplified depiction of the differences between an MLP-Mixer and an MLP.

predictably as a power law in parameter count and sample size, akin to Hestness et al. (2017, 2019);
Kaplan et al. (2020); Zhai et al. (2022) (see e.g. Fig. 1). In contrast to previous work, however, we
find that compute-optimal MLPs allocate their budget more strongly into sample size, highlighting
again their small inductive bias. While regularization in the form of data augmentation is also helpful
for CNNs, its role is significantly amplified for MLPs even at large sample sizes, leading to fatal
degradation if turned off. We further investigate how the implicit bias of SGD affects performance,
and we make a very counter-intuitive discovery: contrary to CNNs, larger batch sizes generalize
significantly better for MLPs. This result questions the validity of the proxy role that the MLP plays
in theoretical works investigating the implicit bias of SGD. While, as expected, the scale employed in
this work does not suffice for hypothesis 2, we provide strong evidence for 3, which we view as an
important first step. We observe that scale indeed suffices to overcome the bad inductive bias present
in MLPs, leading to surprisingly strong downstream performance, e.g. ≈ 95% on CIFAR10, ≈ 82%
on CIFAR100 and ≈ 58% on ImageNet ReaL. In summary, we make the following contributions:

• We fill the gap between theory and practice, providing the first results for MLPs trained in
modern settings.

• We show that MLPs mostly behave comparably to their modern counterparts, making them
a good proxy for theory. We observe however that the roles of regularization and implicit
bias of SGD significantly differ and theory hence needs to adapt.

• We provide further evidence that inductive bias is not crucial at large scales, showing
that even "bad" architectures like MLPs can achieve strong downstream performance. We
however identify a shift in compute-optimality, showing that optimal MLPs invest their
compute significantly more into dataset size compared to model size.

2 Background
Theoretical Works. The MLP has served as the main object of study for theoretical works in
deep learning across different domains. The cornerstone results for areas such as convergence of
SGD-trained neural networks (Mei et al., 2018; Du et al., 2019; Zou et al., 2020; Li and Yuan, 2017;
Saxe et al., 2014), most generalization bounds (Arora et al., 2019b; Mei and Montanari, 2021; Jacot
et al., 2018; Allen-Zhu et al., 2019a), the benefits of overparametrization (Neyshabur et al., 2019;
Allen-Zhu et al., 2019b; Arora et al., 2018), the implicit bias of SGD towards favourable solutions
(Soudry et al., 2018; Neyshabur et al., 2014; Chizat and Bach, 2020), signal propagation properties
(Poole et al., 2016; Schoenholz et al., 2017) and scaling laws (Bahri et al., 2021; Maloney et al.,
2022) are all largely obtained for MLPs. To quote the very influential Principles of Deep Learning
Theory book (Roberts et al., 2022):

"MLPs are the simplest of these neural network architectures that hinge on this stacking idea, and
thus provide a minimal model for an effective theory of deep learning."

There are also several theoretical works studying more modern setups such as convolutional or
transformer-based networks including Arora et al. (2019a); Gunasekar et al. (2018); Brutzkus and
Globerson (2017); Hron et al. (2020) to name but a few, but the main theoretical focus to the best of
our knowledge still remains on the MLP architecture. We thus believe it is important to explore the
limits of such a theoretical proxy in realistic settings.
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MLPs. The multi-layer perceptron has its origins in Rosenblatt (1958), serving as an extension to
the classic Perceptron with its hidden layers however fixed to random initialization. Ivakhnenko et al.
(1965) devised the first method to update the hidden layers through self-organization. Amari (1967)
then introduced the idea to train the parameters with stochastic gradient descent. Mathematically, an
MLP of depth L ∈ N can be described very efficiently; given an input x ∈ Rd, it applies a series of
linear transformations, interleaved with an element-wise non-linearity σ : R −→ R:

z(l) = W (l)x(l−1) −−→ x(l) = σ
(
z(l)

)
where we define x(0) := x and W (l) ∈ Rdl×dl−1 for l = 1, . . . , L are the learnable weight matrices.
For the sake of readability, we omit the biases. This mathematical simplicity makes the MLP a very
attractive model to study theoretically (albeit still very far from trivial) and indeed many works frame
their results around this general model class. When used for vision, the input tensor x ∈ Rh×w×3 is
flattened into a vector vec(x) ∈ R3hw. Notice how such an architecture completely lacks locality
and weight sharing, every unit simply processes the entire image at once. More worryingly, the
vectorization vec could be applied in any way, i.e. any permutation of x looks identical to an MLP.

We want to highlight that MLPs of course are not completely free of inductive bias, in the sense that
they encourage learning a hierarchical feature structure. On the other hand, there is no vision-specific
inductive bias present in MLPs, which is the main setting we investigate here. We refer to Battaglia
et al. (2018) for a more in-depth treatment of inductive bias.

Convolutions. The MLP is a very general model and has no structure built into it to make it more
suitable for vision tasks. A convolution on the other hand was designed specifically for vision with
desirable characteristics incorporated into the model. A convolution can be viewed as a special case
of an MLP, where the weight matrix W is very structured by being sparse and having shared entries,
leading to spatially localized learning. This can be most easily illustrated in the case of convolving a
2× 3× 1 image x with a 2× 2 filter f as the following matrix multiplication:

f ∗ x = Wf vec(x) =

(
f1 f2 0 f3 f4 0
0 f1 f2 0 f3 f4

)
vec(x)

Here vec denotes the standard, row-wise vectorization-scheme to flatten the image. Instead of
operating with a dense matrix as the MLP, the convolution uses a structured matrix Wf tailored to
the task of vision, leading to a better inductive bias. Moreover, a convolution exhibits translation-
equivariance, i.e. shifts of images are processed equivalently to the original. Crucially, in contrast to
the MLP, a convolution severely suffers if a permutation is applied to the image.

Vision Transformer. Inspired by successes in NLP, the Transformer architecture has been adapted
to vision (Dosovitskiy et al., 2021). An image x ∈ Rh×w×3 is broken up into patches (also called
tokens) and linearly embedded (see Fig. 2), augmented with a positional embedding, marking its
spatial location in the image. The obtained embeddings are processed by self-attention layers where
patches interact, and MLP layers, which are shared among patches and transform them individually.
While the inductive bias of a ViT is certainly weaker compared to a CNN (it lacks translation-
equivariance), the patching and parameter sharing still make the architecture suitable for vision.

MLP-Mixer. Similar to the ViT, the MLP-Mixer also works with a patchified image (Tolstikhin
et al., 2021). Unlike the ViT, token-mixing is not implemented using self-attention but rather another
MLP block is used to exchange information between patches. We want to clearly highlight the
difference between an MLP-Mixer and an MLP: An MLP-Mixer operates on patches, where in each
block it applies a shared MLP to each patch for processing, and another MLP for mixing the patches
along the channels. We visualize the differences in Fig. 3 for clarity. We again want to stress that
breaking the image into patches and sharing parameters among them significantly enhances the
amount of inductive bias, compared to a standard MLP.

Patchifiying. As highlighted above, ViTs and Mixers largely obtain their inductive biases through
breaking the images into patches. This choice seems to be beneficial even for architectures that
already possess a strong inductive bias, such as the ConvMixer (Trockman and Kolter, 2022), where
convolutions are performed on individual patches. The very recent Metaformer (Yu et al., 2022)
further shows that even a simple spatial pooling instead of attention can lead to strong performance if
the image is patchified. While the success of this mechanism certainly warrants further investigation,
in this work we decided to deliberately focus on MLPs as they specifically lack this type of bias.
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CIFAR10 CIFAR100 TINYIMAGENET IMAGENET

S-MLP (@100 E) 54.2 28.8 8.5 9.2

S-MLP + DA (@ 1000 E) 68.9 43.3 25.2 24.3

S-MLP + DA (@ 5000 E) 72.3 44.5 27.3 26.8

B-MLP (@ 100 E) 58.1 30.5 8.9 8.7

B-MLP + DA (@1000 E) 70.1 48.3 27.2 28.7

B-MLP + DA (@5000 E) 75.4 50.4 31.2 31.7

RESNET182 + DA 93.2 75.6 68.9 69.7

Table 1: Test accuracies (in %) without any pre-training. The S-MLP has depth 6 and width 1024
while the B-MLP has depth 6, width 1024 and an expansion factor of 4.

3 Architecture

We study different variants of the MLP architecture, starting from the standard vanilla setup and then
adding more components such as residual connections and bottleneck layers.

Standard MLP. As a first starting point, we investigate simple MLPs with ReLU activations and
isotropic design, i.e. except for the first, every layer has the same width m ∈ N. In order to avoid
training instabilities we further enhance the standard MLP with layer normalizations (Ba et al., 2016)
placed after the activations. We thus compose several blocks of the form

Block(z) = σ (W LN(z))

with W ∈ Rm×m. To embed the image x ∈ Rd×d×3 we use a linear layer emb(x) = W emb vec(x)

with W emb ∈ Rm×3d2

. Such an embedding layer is crucial since for high resolution images, 3d2
can be quite large and thus m needs to be chosen smaller. We empirically find that such a network
design is the minimal choice in order to guarantee successful training across all scales of parameter
count and sample size. We will use the short cut S-MLP to denote such an architecture.

Inverted Bottleneck MLP. Inspired by Lin et al. (2015); Tolstikhin et al. (2021) we add a bottleneck
structure to an MLP block as well as skip connections as follows:

Block(z) = z +W cσ (W e LN (z))

where W e ∈ Rkm×m expands the dimension to km for k ∈ N and W (c) ∈ Rm×km collapses it
back to width m. For most experiments we set k = 4. While the additions of skip connections and
bottleneck layers to the architecture arguably add some amount of inductive bias, we believe that
in comparison to modern architectures such enhancements remain negligible. We will denote this
variant by B-MLP.

4 Experiments
Setup In this work, we solely focus on vision tasks as inductive bias is more readily understood in
this setting. Moreover, most theoretical works focus on image classification tasks, making it thus a
natural test bed to assess the performance of MLPs. We study the popular tasks CIFAR10, CIFAR100
(Krizhevsky, 2009), STL10 (Coates et al., 2011), TinyImageNet (Le and Yang, 2015), ImageNet1k
for evaluation, as well as ImageNet21k (Deng et al., 2009) for pre-training. To limit the size of the
embedding layer and the computational needs, we downscale images to resolution 64× 64× 3 (if
needed) as done in Chrabaszcz et al. (2017). We center and normalize all the images and use random
flips and crops as well as MixUp (Zhang et al., 2018) as data augmentations.

2In contrast to the MLPs, the ResNet18 was trained at the original image resolutions.
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CIFAR10 CIFAR100 STL10 TINY-IN IN REAL

B-6/Wi-1024 69.9±0.1 43.0±0.4 51.5±0.1 47.1±0.1 15.2±0.2 20.3±0.2

B-6/Wi-1024 + DA 91.5±0.02 76.4±0.2 85.0±0.2 62.7±0.1 38.7±0.1 47.0±0.15

B-12/Wi-1024 + DA 94.2±0.05 80.0±0.05 89.9±0.1 69.9±0.4 43.3±0.06 48.6±0.2

B-12/Wi-1024 + DA + TTA 95.5±0.05 82.6±0.2 92.2±0.05 73.1±0.5 51.5±0.1 57.9±0.1

Table 2: Fine-tuning Top-1 accuracies (in %) when pretrained on ImageNet21k. Accuracies are
averaged over 3 runs. For readability, we abbreviate ImageNet as IN.

4.1 Training from Scratch
We start the empirical exploration of MLPs by training them from scratch (i.e. without any extra data)
on popular vision benchmarks. All models were trained with the LION optimizer (Chen et al., 2023)
with a learning rate η = 5e-5. In order to combat overfitting we use strong label smoothing α = 0.3.
We display the resulting test accuracies in Table 1. We observe that both the standard architecture
and the bottleneck without any data augmentation suffer from overfitting, leading to suboptimal
performance. When turning it on, data augmentation as a regularizer however really unfolds its full
power, significantly pushing the performance by roughly 20% across all tasks. As observed in Lin
et al. (2015), the inverted bottleneck architecture leads to an improvement in performance across
all datasets. Learning on the other hand significantly slows down with strong augmentations such
as MixUp, enabling training for up to 5000 epochs without suffering from overfitting. However,
compared to simple modern baselines such as a ResNet18 (He et al., 2015), a large discrepancy in
performance remains, highlighting the importance of inductive bias in the small sample regime. We
remark that ViTs and MLP-Mixers as well exhibit more learning difficulties if the dataset size is small
(Dosovitskiy et al., 2021; Tolstikhin et al., 2021). We provide more ablation studies in Appendix A.2.

4.2 Transfer Learning
In this section, we aim to analyze how transferable features learnt by MLPs are across different
vision tasks. Transferability is one of the hallmark characteristics of modern deep learning, enabling
practitioners to fine-tune large models on their specific dataset, leading to superior performance.
We are, to the best of our knowledge, the first to measure transferability of MLPs, which is crucial
to assess in order to build a theoretical understanding of the process. In this section, we focus on
the inverted bottleneck MLP as it generalizes better and is easier to optimize. We provide the dual
results for the standard MLP in Appendix B.1. We restrict to k = 4 for the expansion factor and
denote by B-L/Wi-m a network with L blocks and width m. For pre-training we use ImageNet21k,
the largest publicly available image dataset with annotated classes. After preprocessing the dataset
following Ridnik et al. (2021), it consists of roughly 12 million images and 11 thousand classes. We
then pre-train the MLP with the cross-entropy loss for 800 epochs, employing label smoothing and
the LION optimizer. To guarantee fast data loading we rely on the FFCV framework (Leclerc et al.,
2023) for all experiments.

In order to measure transferability of the learnt features we fine-tune the network on the new task.
We also study training a linear layer on top of the embeddings but defer those results to Appendix
A.3. We again explore the effects of data augmentation during the pre-training stage. For fine-tuning
we use SGD with momentum with a learning rate of ηhead = 0.01 for the head and ηbody = 0.001
for the encoder for 50 epochs. We upscale CIFAR images to resolution 64× 64× 3 at fine-tuning
time to guarantee compatibility. We display the fine-tuning results in Table 2. For visualizations of
the learnt features, we refer the interested reader to Appendix C. We again observe that using data
augmentation during the pre-training phase is essential to successful training, boosting performance
up to 30% in case of CIFAR100. Surprisingly, the learnt features are highly transferable, improving
the performances reported previously in Table 1 dramatically. While of course pre-trained on a large
quantity of data, we nevertheless want to highlight that such an MLP becomes competitive with
a ResNet18 trained from scratch for all the datasets, except for ImageNet1k where performance
falls surprisingly short. We hypothesize that MLPs struggle with the more fine-grained distinctions
between classes, in combination with the reduced resolution of the images.
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Figure 4: Linear downstream error on CIFAR100
(in %) when pretrained for varying batch-sizes on
ImageNet21k, on a log-log scale.

Model #parameters

B-6/Wi-256 9M

B-12/Wi-256 12M

B-6/Wi-512 24M

B-12/Wi-512 37M

B-6/Wi-1024 74M

B-12/Wi-1024 124M

Table 3: The different models and
the respective parameter counts in
millions.

Test-Time Augmentations. For ImageNet1k we further notice that objects tend to not be centered,
in contrast to datasets like CIFAR10. We suspect that this might lead to the comparatively weaker
performance. To test this, we leverage test-time augmentations (TTA). As introduced by Krizhevsky
et al. (2012), for each test image, we produce a fixed number of 100 random crops and use the
averaged logits for prediction. We observe significant improvements across all datasets, especially for
ImageNet we obtain an increase of roughly 8%. This indeed indicates that MLPs struggle to localize
the object of interest, especially for the more complicated ImageNet1k task. Using a large number of
crops alleviates this problem to some degree. This also explains why the gains on tasks like CIFAR10
are smaller as the objects there usually are perfectly centered.

ReaL accuary. As observed in (Beyer et al., 2020), the ImageNet labels do not capture that a single
image might contain multiple objects of distinct classes. ImageNet accuracy can thus be misleading
in the sense that model classes such as convolutional networks might have implicitly adapted to the
particular labeling strategy due to the repeated benchmarking on the same validation set. MLPs most
likely lack such an implicit adaptation as this work is to our knowledge the first to evaluate them
on ImageNet1k. To address this, Beyer et al. (2020) introduced a novel set of validation labels that
better capture the multi-label nature, where a prediction is deemed correct if it matches one of the
categories present in the image. We observe further very significant improvements of ≈ 7% when
employing ImageNet ReaL.

Overall, these results underline that a bad inductive bias as exhibited by an MLP can indeed be
overcome if subjected to enough scale. For theory, the results are double-edged; while MLPs prove to
be a good proxy to understand transfer learning, data augmentation proves to be a crucial component.
Also test-time augmentations significantly boost performance. Both these components on the other
hand remain rather understudied in theoretical works.

Large batch-sizes. We further make the counter-intuitive observation that training with larger batch
sizes significantly boosts performance both up- and downstream. In Fig. 4 we plot pre-training batch
size against resulting linear downstream accuracy on CIFAR100 for different number of pre-training
epochs. We observe that across all training times, using a larger batch size leads to significantly better
performance. Moreover, we want to highlight that such a plot is even favoring small batch-sizes
since those models perform more gradient updates for a fixed number of epochs. This effect is in
stark contrast to convolutional architectures where entire lines of works have focused on preserving
the performance of the small batch-size regime for larger ones (Goyal et al., 2017; You et al., 2017;
Hoffer et al., 2017; Keskar et al., 2017). Training with large batch-sizes without degradation is of
high interest as it can lead to potentially more efficient training pipelines since computation can
be sharded among more devices. This observation about optimal batch-sizes is in-line with similar
recent conclusions in Transformers (Kaplan et al., 2020; Touvron et al., 2023).

Role of augmentations. Data augmentation is very pronounced for MLPs, providing indirect
inductive bias to the model. Remarkably, a model pre-trained on 12 million examples without data
augmentation shows inferior performance on CIFAR10 compared to a network trained from scratch
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with augmentations turned on. This emphasizes that augmentations go beyond merely leading to a
bigger dataset but provide the model with useful invariances. We investigate the learnt weights in
Appendix C, showing very evidently, that more localized features are learnt if data augmentation
is employed. The power of augmentations has already been demonstrated through the advent of
self-supervised learning (Grill et al., 2020; Caron et al., 2021; Chen et al., 2020). Even when training
on purely random labels, it still provides powerful learning signals (Anagnostidis et al., 2023).

4.3 Scaling Laws
One of the key mysteries in deep learning is that networks tend to improve in terms of generalization
when compute, in the form of parameter count and dataset size, is scaled up. Recently it has
been observed in several works that the benefits of scale are highly predictable, i.e. generalization
performance exhibits a power-law structure when plotted against compute measured in FLOPS
(Rosenfeld et al., 2020; Hestness et al., 2017, 2019; Kaplan et al., 2020; Zhai et al., 2022). The
functional form has recently been further refined (Caballero et al., 2023). The predictable nature of
test performance has even been leveraged to estimate the optimal model before training (Hoffmann
et al., 2022; OpenAI, 2023). In order to understand this important characteristic of deep learning
theoretically, it is important to analyze whether MLPs exhibit similar properties.

Figure 5: Test error (in %) on CIFAR10 (left) and ImageNet1k (right) when linearly transferred as a
function of PFLOPS, measured according to Eq.(4), on a log-log scale.

Compute. Following OpenAI (2018) we define the computational cost C incurred from training a
model f on N examples for T epochs as

C = FLOP(f)× 3×N × T, (4)

where FLOP(f) denotes the number of FLOPs needed to complete the forward pass of f for a single
example. We note that the number of parameters P present in f enters this equation implicitly in
the form of FLOP(f) ∝ P . Observe that a given level of compute can be achieved in different
ways, i.e. using more parameters P , training on more examples N , or training for a longer time
T . When allocating a given level of compute optimally, it is observed that for convolutional and
transformer-based architectures, the test error E(C) as a function of compute behaves as a power-law

E(C) = a(b+ C)−α + E∞, (5)

where a, b, E∞ ∈ R+ and α > 0 is the scaling coefficient determining the rate of decay. E∞ denotes
the irreducible error, i.e. even if infinite compute were employed, the performance remains imperfect.
The test error can be measured upstream (i.e. on the pre-training task) or downstream when fine-tuning
on a different task. We investigate various pre-training schemes with different number of examples,
parameter counts and training times. We subsample ImageNet21k proportionally across classes and
pre-train variously sized inverted bottleneck MLPs. We summarize the configurations in Table 3.
We then measure test error on the downstream task of CIFAR100 in Fig. 1 as well as CIFAR10 and
ImageNet1k in Fig. 5 by linearly transferring the learnt features (without test-time augmentations).
The plotting style is inspired by Zhai et al. (2022). Each point in the curve is the downstream
performance of an MLP, where the color of the point indicates the model type (blue denotes smaller
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Figure 6: Power law in linear evaluation error on CIFAR100 (in %) when either bottlenecked by the
number of parameters (left) or the number of examples (right), on a log-log scale. The dotted line
visualizes the fitted functional form.

and red larger models) and the size of the point indicates the number of pre-training examples. Points
connected by a line indicates longer training times where T ∈ {50, 100, 200, 400, 800} is measured
in epochs. In all experiments, we employ data augmentation for pre-training. We observe that
the compute-optimal performance of MLPs strongly exhibits characteristics of a power-law with
coefficients α ∈ {0.12, 0.25, 0.35}. This is very encouraging for future theoretical work, showing
that MLPs indeed mirror the scaling behaviour of modern models. We provide the dual results for
the standard MLPs in Appendix B.2, noting that they exhibit essentially the same scaling behaviour,
albeit with a slightly weaker slope and intercept.

We further study how performance E evolves when compute is either bottlenecked by the number
of parameters P or the dataset size N . We visualize the resulting scaling laws in Fig. 6. We find a
very steep decay rate in terms of parameters P where roughly αP ≈ 1, whereas for dataset size N
we identify a significantly slower rate of αN ≈ 0.35. This shows that the performance of MLPs is
significantly more limited by the dataset size, which is in-line with the fact that MLPs exhibit a bad
inductive bias. We investigate the role of dataset size and parameters more in the next paragraph.

Parameters or examples. Given a fixed level of compute C, what is the optimal way to allocate it
to parameter count P and number of examples N? To be more comparable to previous work, we
assume a fixed training time T = 50. To answer this question, we follow the approach outlined in
Hoffmann et al. (2022) and plot the optimal compute models identified in Fig. 1 both against model
size P and number of examples N and visualize the results in Fig. 7. We empirically observe that
the optimal parameter count P ∗(C) and dataset size N∗(C) as a function of compute C exhibit
power-law behaviour of the approximate form

P ∗(C) ∝ C0.35 N∗(C) ∝ C0.65

While for transformers, the number of examples (or tokens) N and parameters P are scaled equally
(Hoffmann et al., 2022) (i.e. αP ≈ αN ≈ 0.5), in contrast we observe that the optimal strategy for
MLPs invests significantly more compute into dataset size N . This is further evidence for the weaker
inductive bias present in MLPs, which needs more examples in order to be compensated for.

4.4 Computational Feasibility

We believe that a further exciting feature of our study is its computational feasibility, while at the
same time preserving the main characteristics of large-scale pre-training. All of our experiments were
conducted on a single NVIDIA RTX A5000 GPU with 24GB of memory. In conjunction with the
strongly optimized FFCV dataloading framework (Leclerc et al., 2023) and the inherent efficiency
of MLPs, we are able to perform very rapid training. For instance we complete a single epoch on
ImageNet21k with the B-12/Wi-1024 architecture, equipped with 124 million parameters, in only
roughly 450 seconds, while the smaller variant B-6/Wi-1024 at a parameter count of 74 million
requires roughly 250 seconds on the specified hardware. Low memory requirements allow us to
train with a batch-size of 16384 without having to shard computation among multiple GPUs. We
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Figure 7: Optimal model size (left) and number of examples (right) for a given level of compute for
linear evaluation on CIFAR100, on a log-log scale.

compare the computational efficiency of MLPs with contemporary networks of similar size such as
ResNet-152, ViT-B/4 and ViT-B/8 in Appendix A.5.

5 Related Works

There are some prior works that investigate MLPs on vision tasks. Lin et al. (2015) study the
performance of MLPs on small scale datasets such as CIFAR10. They observe similar improvements
when using inverted bottleneck layers but do not study larger-scale setups, transfer-learning nor do
they discuss the implications for theoretical works. The bottleneck structure used in this work has also
been investigated theoretically (Parhi and Nowak, 2021; Shenouda et al., 2023; Parkinson et al., 2023),
further highlighting that such an architecture exhibits desirable properties. Urban et al. (2017) study to
what degree convolutions are necessary for good performance and conclude that even with distillation
techniques it remains very difficult to train performant MLPs on CIFAR10. Other approaches have
focused on sparsifying fully-connected layers through evolutionary training (Mocanu et al., 2018;
Fernando et al., 2016), aiming to learn a good inductive bias from scratch. Similarly, Neyshabur
(2020) study how the inductive bias of MLPs can be improved by systematically sparsifying them
with a LASSO-type algorithm, making them more convolution-like. d'Ascoli et al. (2019) on the
other hand first train a convolutional network for a certain duration and then subsequently continue
training the network as an MLP (by using the correspondence between CNNs and MLPs highlighted
in Sec. 2). They show that good performance can be reached if the network was trained long enough
as a CNN. In contrast to these works, our goal is not to enhance the inherent inductive bias of MLPs
but study whether it can be overcome with enough scale.

The advent of the MLP-Mixer (Tolstikhin et al., 2021) has led to a series of follow-up work, similarly
using MLPs as a patch processor and token mixer (Touvron et al., 2021; Chen et al., 2022; Lian
et al., 2022; Guo et al., 2021; Liu et al., 2021). Again, we remark that these architectures all possess
significantly more inductive bias.

Finally, we would like to remark that MLPs are successfully used in other areas such as novel view
synthesis (e.g. NeRF (Mildenhall et al., 2021)).

6 Discussion
In this work, we have explored the limits of the multi-layer perceptron as an architecture for vision
tasks. Our study reveals that (1) lack of inductive bias can be compensated by scale and (2) MLPs
constitute a (largely) accurate proxy for modern architectures, further cementing their role as the
main theoretical object of study. The role of data augmentation and the implicit bias of SGD however
strongly differ for MLPs in the setting considered in this work and theoretical works should take this
into account. Large-scale pre-training of MLPs proves to be very efficient, enabling researchers with
less access to computational resources to study this very exciting line of work. While lack of inductive
bias does not prevent MLPs from reaching impressive performance, it leads to an interesting shift in
compute-optimality towards more training examples. Subjecting MLPs to even larger amounts of
compute similar to Zhai et al. (2022), especially in the form of more training examples, remains as
very interesting future work.
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Appendix

A Experimental Details

A.1 Resources

For all experiments we rely on NVIDIA RTX A5000 GPU with 24GB of memory. Every experiment
can be performed on a single GPU. We leverage the FFCV dataloader framework since the transfer
time of the data to the GPU becomes the bottleneck in terms of training time in case of MLPs. All of
our experiments were performed in PyTorch (Paszke et al., 2019).

A.2 Additional Ablations

Ablations. We provide some more ablations in Fig. 8. More specifically, for a (approximate) fixed
budget of compute, we investigate different architecture and optimization choices, when pretraining
on ImageNet1k and performing linear probing on CIFAR100.

Input image Flatten MLP

B{X}_{ACT} :=

Logits 
projection

ACT ACT ACT...

X linear layers

B{X}x{Y}_{ACT} ACT ...:= ...

X linear layers

Y blocks

:=

ACT

ACT ......

X linear layers

Y blocks

ACTNORM

NO_AUG: No Augmentation NO_MIXUP: No mixup NO_CLIP: No clip gradients 
NO_WD: No weight decay, DROPOUT: Use dropout, AdamW: Replce Lion with AdamW

Architecture

Optimization
B{X}x{Y}_IB_{NORM}_{ACT}

(IB: Inverted Bottleneck)

Figure 8: Ablations on different architectures and optimizations choices when training on ImageNet.
Numbers indicate linear probing Top-1 accuracies on CIFAR100.

Normalization. We investigate the importance of the normalization method (LayerNorm vs Batch-
Norm) in more detail in Table 4. We pre-train two B-MLPs on ImageNet21k with layer normalization
and batch normalization and compare the fine-tuning performance on various tasks. We find that the
techniques perform similarly, which layer normalisation having a slight edge.

CIFAR-10 CIFAR-100 TINYIMAGENET IMAGENET

LAYERNORM 90.0 74.6 59.6 36.2

BATCHNORM 89.4 73.8 57.7 35.9

Table 4: Pretraining a B-6/Wi-1024 B-MLP with BatchNorm and LayerNorm on ImageNet21k and
subsequently fine-tuning.

Label smoothing. We further ablate the influence of label smoothing on the downstream perfor-
mance. We pre-train B-MLPs with varying amounts of label smoothing (α ∈ {0.0, 0.1, 0.3}) and
evaluate the resulting down-stream fine-tuning performance. We report the results in Table 5. While
label smoothing does provide some boost in performance, the gains are very modest. Label smoothing
is thus helpful but not essential for training MLPs.
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CIFAR10 CIFAR100 TINYIMAGENET IMAGENET

α = 0.3 90.0 74.6 59.6 36.2

α = 0.1 89.5 73.7 58.2 36.0

α = 0.0 89.2 72.2 57.1 35.7

Table 5: Pretraining a B-6/Wi-1024 B-MLP with different amounts of label smoothing on Ima-
geNet21k and subsequently fine-tuning.

Architecture. We make the following observations/recommendations to boost the model’s per-
formance, in line with results reported in the literature (Liu et al., 2022); (1) replacing ReLUs
and GELUs boosts results significantly, (2) adding skip connections every two layers helps with
optimization, especially for deeper networks. (3) Using an inverted bottleneck increases performance
even more. (4) Using a normalization layer in the PRE-LN configuration helps with optimization and
(4) layer normalization leads to significantly better results compared to batch normalization, while
also being more stable during training.

Optimization. As discussed in the main text, augmentations are crucial, and disabling them can
have a detrimental effect. We also found that clipping gradients, using weight decay and dropout
have a small positive effect on downstream performance. Finally, replacing LION (Chen et al., 2023)
with Adam(W), leads to a decrease in performance.

A.3 Linear Probing

We showcase the transferability of our MLPs by training a linear classifier on top of the frozen
features. For training the linear layer, we use the LION optimizer with a learning rate of η = 0.00001
for 50 epochs. We display the results in Table 6. We observe very strong down-stream performance

CIFAR10 CIFAR100 STL10 TINYIMAGENET IMAGENET

B-6/Wi-1024 65.1 41.3 53.4 45.6 13.0

B-6/Wi-1024 + DA 87.8 73.2 85.2 61.3 39.2

B-12/Wi-1024 + DA 90.6 74.5 88.3 68.5 40.7

Table 6: Linear probing Top-1 accuracies when pretraining on ImageNet21k.

even in this more limited setting, highlighting how transferable the features learnt by MLPs are.

A.4 Scaling Laws

Implementation Details. For the scaling law plots, we trained all the models with a batch-size
16384 and the LION optimizer with a learning rate η = 0.00001 and weight decay of strength 0.001.
We further use label smoothing of strength 0.3. We again use augmentations in the form of random
flips and crops as well as MixUp with strength 0.8. We rely on the curvefit function from the SciPy
library (Virtanen et al., 2020) to fit powerlaws of the form E(C) = a(b+ C)−α + E∞.

A.5 Computational Efficiency

We highlight the fact that although MLPs require a lot of training data, inference is extremely efficient
from a computational perspective. To illustrate this, we embark on the following comparison; we
study inference on 64 × 64 resolution images in an MLP vs other popular vision architectures of
similar size and complexity in Table 7. More specifically, we compare against a ResNet-152, where
we replace the stride in the first convolutional layer and remove the first max-pooling operation to
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compensate for the smaller image size. We also compare against a base ViT and Mixer model, where
we extract patches from 4× 4 regions in the original image.

As it quickly becomes eminent, MLPs require significantly less FLOPs to make predictions on
individual images, in essence utilizing their parameters a lot more methodically. As a result, latency
and throughput are significantly better compared to other candidate architectures. We measure
throughput using the optimal batch size on an NVIDIA RTX A5000. We highlight, that our MLPs, in
contrast to the other architectures are memory bound, meaning that their throughput is determined by
the prefetching bandwidth of our GPU. Hardware advancement and specialized architectures could
significantly mitigate this effect. Neglecting memory transfer time by propagating the same input
through our network gives a further 6-fold increase in the potential throughput.

PARAMETERS
LATENCY
(MSEC)

THROUGHPUT
(IMAGES/SEC) FLOPS PER FORWARD PASS

B-12/Wi-768 66.89 M 21.2 16063 66.8 M

ResNet-152 60.19 M 423 506 13.07 G

ViT-B/4 86.06 M 424 222 23.08 G

Mixer-B/4 63.82 M 400 319 19.36 G

Table 7: Various measures assessing the computational efficiency of different architectures.

B Results for Standard MLPs

B.1 Transfer Learning

For completeness we also analyze the transfer performance of standard MLPs when pre-trained on
ImageNet21k. We compare a S-MLP of depth 6 and width 2048 against a B-MLP of depth 6 and
width 1024, ensuring that both models roughly have a parameter count of around ≈ 70 million. We
display the results in Table 8. We observe that even the features of a standard MLP (i.e. without
residual connections and bottleneck structure) transfer very well on different downstream task. Tthe
inverted-bottleneck MLP however still remains superior.

CIFAR10 CIFAR100 TINYIMAGENET IMAGENET

S-MLP 87.1 68.3 52.1 30.2

B-MLP 90.0 74.6 59.6 36.2

Table 8: Comparing a S-MLP of width 2048 and depth 6 pre-trained on ImageNet21k, with a B-6/Wi-
1024 B-MLP (both models around 70M params) in terms of fine-tuning performance

B.2 Scaling Laws

We also evaluate the scaling law of standard MLPs by training variously sized models on different
subsets of ImageNet21k and subsequently linearly probing the features on CIFAR100. The setting is
identical to the one described in 4.3. We observe that also standard MLPs exhibit power-law behaviour.
The slope (0.22 vs 0.25) and the intercept (0.18 vs 0.16) are however worse when compared against
the inverted-bottleneck MLP.

C Weight visualizations

We visualize the first layer weights W (1) ∈ R3wh×m by reshaping them back to Rw×h×3×m. We
then produce a Rw×h×m representation by taking the maximal value along the channel dimension.
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Figure 9: Test error of standard MLPs on CIFAR100 when linearly transferred as a function of
PFLOPS, measured according to Eq.(4), on a log-log scale.

Figure 10: Visualization of the first layer weights for different pre-training dataset sizes.

We display such visualizations of the first 5 × 5 = 25 "filters" for different pre-training sizes,
also including the weights at random initialization in Fig. 10. All models were trained with data
augmentation. We observe that filters increasingly develop structure as we increase the dataset size
and become more and more localized. We further compare against models that were pre-trained on
the full ImageNet21k, with and without data augmentation in Fig. 11. We observe that even though
we provide the model with an abundance of samples, the weights still remain largely structure-less
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Figure 11: Visualization of the first layer weights for models trained with and without data augmenta-
tion.

and have not developped any locality properties. On the other hand, using data augmentation leads to
more adapted filters.

D Inverted Bottleneck MLP Code

We provide PyTorch-style pseudo-code for the inverted bottleneck MLP to highlight its simplicity.

1 from torch import nn
2

3 class Block(nn.Module):
4 def __init__(self , dim , expansion_factor =4, dropout =0.):
5 super().__init__ ()
6 self.fn = nn.Sequential(
7 nn.Linear(dim , int(expansion_factor * dim)),
8 nn.GELU(),
9 nn.Dropout(dropout),

10 nn.Linear(int(expansion_factor * dim), dim),
11 nn.Dropout(dropout)
12 )
13 self.ln = nn.LayerNorm(dim)
14

15 def forward(self , x):
16 return x + self.fn(self.ln(x))
17

18

19 def MLP(image_size , channels , dim , depth , num_classes ,
expansion_factor =4, dropout =0.):

20 return nn.Sequential(
21 nn.Flatten(start_dim=1, end_dim =-1),
22 nn.Linear(image_size * image_size * channels , dim),
23 *[Block(dim , expansion_factor , dropout) for _ in range(depth)

],
24 nn.Linear(dim , num_classes)
25 )
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