
A Proofs

We first state the monotonicity of conjunction, which will be useful later.
Theorem 6. In both fuzzy and probabilistic semantics, it holds that when c is independent of both a
and b, we have P (a) P (b)) P (a ^ c) P (b ^ c).

Proof. In fuzzy semantics, the t-norm is monotonous by definition. Under probabilistic semantics, it
follows as P (a^c) P (b^c) reduces to P (a)P (c) P (b)P (c) because of the independencies.

Theorem 2. Definition 2 holds when the soft-unification function s is ^-transitive.

Proof. Suppose b is the rest of the proof, such that P (⇡) = P (b^(ti ' tj)) and P (⇡0) = P (b^(ti '
tk) ^ (tk ' tj)). By the monotonicity of the conjunction and independence between b and the soft-
unifications, it now follows that P (ti ' tj) � P ((ti ' tk) ^ (tk ' tj))) P (⇡) � P (⇡0). Using
the soft-unification function the first part becomes s(ti, tj) � s(ti, tk) ^ s(tk, tj), which is exactly
the ^-transitivity rule.

Theorem 3. Under the fuzzy semiring, definition 3 cannot hold if s is ^-transitive.

Proof. By the monotonicity of t-norms, s(x, y) > s(x, z) and s(y, z) > s(x, z) implies s(x, y) ^
s(y, z) � s(x, z)^s(x, z). Due to the idempotence of the minimum, this becomes s(x, y)^s(y, z) �
s(x, z). On the other hand, the ^-transitivity of these inequalities implies s(x, y) ^ s(y, z) < s(x, z).
This inequality is strict as s(x, y) = s(y, z) s(x, z) implies either s(x, y) = s(x, z) or s(x, z) =
s(x, z).

Theorem 4. If the soft-unification function s is a ⇥-similarity with probabilistic semantics, we satisfy
all stated properties (from Def. 1-4).

Proof.

• Def. 1 follows from the well-definedness of the ProbLog semantics, by considering ' as a
regular probabilistic fact.

• Def. 2 follows from theorem 2 as s is transitive.

• For Def. 3, we can always create a y between some symbols x and z, by taking the mean in
the embedding space (see theorem 5).

• Def. 4 follows from the symmetry and differentiability of addition and multiplication. Note
that we assume that s is differentiable.

Theorem 5. A soft-unification function s is a ⇥-similarity, iff s(x, y) = e�d(E(x),E(y)), where d is a
distance function on an embedding space and E maps symbols to this space.

Proof. We first prove that given that if s is a ⇥-similarity, it can be written as e�d(x,y). We do this by
showing that d(x, y) = � ln(s(x, y)) is a distance.

1. As s(x, x) = 1, we have that d(x, x) = � ln(s(x, x)) = � ln(1) = 0.

2. The symmetry of d is implied by the symmetry of s:

d(x, y) = � ln(s(x, y)) = � ln(s(y, x)) = d(y, x)

3. The triangle inequality can be proven from the ⇥-transitivity, and the monotonicity of ln:

d(x, z) = � ln(s(x, z)) � ln(s(x, y) · (y, z)) = d(x, y) + d(y, z)

As we do not have distinguishability (there can be a x 6= y such that d(x, y) = 0), the embedding
space is a pseudometric. The other direction can be proven in a similar fashion, by evaluating that
e�d(x,y) satisfies reflexivity, symmetry, and ⇥-transitivity.

13

B Example programs

We implement a variation on the alarm basian network in DeepSoftLog where the earthquake and
landslide symbols are embedded. On the right, we show the translated ProbLog program.

0.2 :: event(⇠earthquake). 0.2 :: event(⇠V1) :� ⇠V1 ' ⇠earthquake.
0.5 :: hears_alarm(mary). 0.5 :: hears_alarm(mary).
alarm :� event(⇠landslide). alarm :� event(⇠landslide).
calls(X) :� alarm, hears_alarm(X). calls(X) :� alarm, hears_alarm(X).

0.5 :: ⇠landslide ' ⇠earthquake.
0.5 :: ⇠earthquake ' ⇠landslide.
⇠landslide ' ⇠landslide.
⇠earthquake ' ⇠earthquake.

Next, we also demonstrate an example with a linear rule.

eq(X, X). eq(V1, V2) :� V1 ' V2.
q :� eq(f(⇠a)), f(⇠b)). q :� eq(f(⇠a)), f(⇠b)).

f(V1) ' f(V1) :� V1 ' V2.
a ' a.
b ' b.
⇠a ' ⇠a.
0.1 :: ⇠a ' ⇠b.
0.1 :: ⇠a ' ⇠f(a).
0.1 :: ⇠a ' ⇠f(b).
⇠b ' ⇠b.
0.1 :: ⇠b ' ⇠f(b).
0.1 :: ⇠b ' ⇠f(a).
⇠f(a) ' ⇠f(a).
0.1 :: ⇠f(a) ' ⇠a.
0.1 :: ⇠f(a) ' ⇠b.
0.1 :: ⇠f(a) ' ⇠f(b).
⇠f(b) ' ⇠f(b).
0.1 :: ⇠f(b) ' ⇠a.
0.1 :: ⇠f(b) ' ⇠b.
0.1 :: ⇠f(b) ' ⇠f(a).

C Semantics

To prove the equivalence of the transformation with soft-unification, we need to prove two separate
facts. First that if two terms soft-unify, they will unify in the transformed program. Second that they
will produce the same soft-unification facts.
Theorem 6. Consider two DeepSoftLog expressions a and b, and the ProbLog expression a⇤ which
is the translation of a. Now a will soft-unify with b if and only if a⇤ unifies with b (using regular
unification). Furthermore, they will result in the same substitution (ignoring the extra introduced
variables), and the same soft-unifications.

Proof. We prove the theorem by structural induction on a.

1. If a is a variable or constant, we have a = a⇤, so it holds trivially.

14

2. If a is an embedded term, we have that a⇤ = ⇠V , where V is a fresh variable. Hence both
a will unify with b iff b is embedded. If b is embedded, both will add the soft-unfication fact
b ' a, as the translated rule will have added this in the body.

3. If a is a functor, we have that a = f(t1, ..., tk) and a⇤ = f(t⇤1, ..., t
⇤
k). If b is not of the form

f(s1, ..., sk), both the soft-unification and unification will fail. In the other case, they will
both give the same result as the unifications between s1 and t1 or t⇤1 give the same result by
structural induction. As rules are linear, variables of the ti and tj do not overlap, meaning
that the substitutions can be combined without conflicts.

4. If a is an atom (i.e. a rule head), we can use an identical proof as for functors.

Suppose t1 and t2 is the corresponding term in the translated program. If t1 is a variable or a
non-embedded term, we have t1 = t2, which means both cases will result in the same substitution
when unified with a third term t3. In the case that t1 is an embedded term, t2 will be of the form ⇠V
where V is a variable. Hence, when t3 is not embedded, the soft-unification with t1 will fail, and the
regular unification with t2 will also fail. When ⇠t3 is embedded, the soft-unification with s2 succeeds
and regular unification also succeeds with the substitution V ! t3. The substitutions returned by
soft-unification are not exactly the same as in regular unification, because of the introduced variables.
However, as these are unique and do not appear in the DeepSoftLog program, they can be safely
ignored.

The above analysis can also be extended to the case of non-linear rules (see the section on lineariza-
tion).

D Experiment details

D.1 MNIST-addition

The code for MNIST-addition is given in listing 2. Hyperparameters are summarized in table 5. Of
note in this example is that we encode as much background knowledge as possible. The green cut
encodes the independency of the sum of lower digits from the higher digits, so we can find the 1-best
proof faster during evaluation (an alternative solution would be to use a geometric mean heuristic [24]).
The embedded functors mod_ten_add and carry could be learned by neural networks. However,
for maximal performance, we hand-coded them. This is possible as we know what the probability
distribution of the modulo addition and carry should be.

Listing 2: Code for the MNIST addition experiments
digit(X) :- member(X, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).

embed_digit(EMB , DIGIT) :- digit(DIGIT), eq(⇠DIGIT , EMB).

eq(X, X).

add(X,Y,Z) :- add_(X, Y, Z, ⇠0).

add_([], [], [], ⇠0).

add_([], [], [1], ⇠1).

add_([HX|TX], [HY|TY], [HZ|TZ], CARRY) :-

embed_digit(⇠mod_ten_add(HX , HY, CARRY), HZ),

!, % green cut for faster evaluation
add_(TX, TY , TZ , ⇠carry(HX , HY, CARRY)).

We ran the experiments on CPU (Intel® Core™ i7-2600 CPU @ 3.40GHz) with 16GB of RAM.

D.2 Countries

Hyperparameters are summarized in table 6. We ran all experiments on a single CPU (Apple M2).

15

optimizer AdamW
learning rate 0.0003
learning rate schedule cosine
training epochs 100
weight decay 0.00001
batch size 4
embedding dimensions 10
embedding initialization one-hot, fixed
neural networks LeNet5
max search depth /

Table 5: Hyperparameters for the MNIST-addition experiments.

optimizer AdamW
learning rate 0.01
learning rate schedule cosine
training epochs 6
weight decay 0
batch size 4
embedding dimensions 100
embedding initialization uniform over hypersphere
neural networks /
max search depth 2 (S1, S2) or 3 (S3)
max branching factor 4

Table 6: Hyperparameters for the countries experiments.

D.3 Differentiable Turing Machine

Hyperparameters are summarized in table 3. We ran all experiments on a single CPU (Apple M2).

optimizer AdamW
learning rate embeddings 0.1
learning rate perception 0.0001
learning rate schedule cosine
training epochs 25
weight decay 0.00001
batch size 8
embedding dimensions 3
embedding initialization uniform over hypersphere
neural networks LeNet5
max search depth /

Table 7: Hyperparameters for the differentiable finite state machine experiment.

E Embeddings as fuzzy logic

A different perspective on embeddings from what we considered in this paper, is to see them as a
discrete distribution (i.e. the embedding is a probability vector). When we make sure embeddings are
normalized (i.e. positive and sum to one) and take the dot product as a soft-unification function, we
essentially get the probability that two embeddings are equal. By conjoining different soft-unifications,
we have a fuzzy interpretation, as the soft-unifications are assumed to be independent.

As a demonstration, we apply this to the visual sudoku problem [3]. This benchmark requires
classifying if a grid of images constitutes a valid sudoku puzzle. We follow the same protocol as in
[32]. Hyperparameters for the visual sudoku experiment are in table 9. The learning rate, weight
decay, and gradient clipping were chosen by Bayesian optimization on the 11th validation split. We
averaged the results over the other 10 splits. We ran all experiments on CPU (Intel(R) Xeon(R) CPU

16

Visual Sudoku 4⇥ 4 9⇥ 9

CNN 51.5± 3.34 51.2± 2.20
NeuPSL [28] 89.7± 2.20 51.5± 1.37
A-NeSI [32] 89.8± 2.08 62.3± 2.20
DeepSoftLog 94.2 ± 1.84 65.0± 1.94

Table 8: Accuracy on visual sudoku classification. Previous results are adapted from [32].

E3-1225 v3 @ 3.20GHz). The 4⇥ 4 and 9⇥ 9 runs took about 95 and 630 seconds per experiment
respectively.

Table 8 summarizes the results of DeepSoftLog and compares them with current state-of-the-art.
Surprisingly, the crude fuzzy approximation outperforms all existing systems by a considerable
margin.

4⇥ 4 9⇥ 9

optimizer AdamW AdamW
learning rate 0.00162 0.000671
training epochs 100 300
weight decay 0.0000144 0.000116
batch size 1 1
gradient clipping 2.445 2.753
embedding dimensions 10 10

Table 9: Hyperparameters for the visual sudoku experiments.

17

	Introduction
	Background
	Logic programming
	Probabilistic and Fuzzy Logic
	Soft Unification

	Soft-unification properties
	Neural Theorem Prover
	ProbLog

	DeepSoftLog
	Experiments
	Countries
	MNIST-addition
	Differentiable Automata

	Related Work
	Limitations
	Conclusion
	Proofs
	Example programs
	Semantics
	Experiment details
	MNIST-addition
	Countries
	Differentiable Turing Machine

	Embeddings as fuzzy logic

