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Abstract

A fundamental challenge in neuro-symbolic AI is to devise primitives that fuse the
logical and neural concepts. The Neural Theorem Prover has proposed the notion
of soft-unification to turn the symbolic comparison between terms (i.e. unification)
into a comparison in embedding space. It has been shown that soft-unification
is a powerful mechanism that can be used to learn logic rules in an end-to-end
differentiable manner. We study soft-unification from a conceptual point and outline
several desirable properties of this operation. These include non-redundancy in the
proof, well-defined proof scores, and non-sparse gradients. Unfortunately, these
properties are not satisfied by previous systems such as the Neural Theorem Prover.
Therefore, we introduce a more principled framework called DeepSoftLog based
on probabilistic rather than fuzzy semantics. Our experiments demonstrate that
DeepSoftLog can outperform the state-of-the-art on neuro-symbolic benchmarks,
highlighting the benefits of these properties.

1 Introduction

Deep learning has become the most prominent paradigm in machine learning but still suffers from
limitations such as poor interpretability, reasoning skills, and difficulties in incorporating knowledge.
Neuro-symbolic AI (NeSy) is an emerging field that seeks to address these limitations by combining
the strengths of neural networks and symbolic systems [14, 16].

A key design question in NeSy is the used representation [14, 16]. Neural networks operate on
tensors while symbolic reasoning operates on symbolic structures. Previous systems have broadly
used two ways to deal with this dilemma. The first is keeping the neural and symbolic representations
completely separate (e.g. DeepProbLog [22]). The second is relaxing the symbolic part, making
it continuous by mapping the symbols onto vector spaces (e.g. Logic Tensor Networks [4]). This
allows – in principle – for a tighter integration, where both representations are retained and fused.

The Neural Theorem Prover (NTP) [29] is an early system that pioneered such an integra-
tion, by linking the logical and neural representations with a mechanism called soft-unification.
For instance, in regular logic, matching grandpa(jef, john) with grandfather(jef, john) or
event(earthquake) and event(landslide) fails. However, by mapping grandfather and
grandpa, resp. earthquake and landslide to vectors, they can be compared in an embedding
space. The NTP is an end-to-end differentiable prover that learns these embeddings from data.

Inspired by the success of the NTP, we analyze its key concept – soft-unification – from a theoretical
perspective. We identify several natural and desirable properties of soft-unification, which are not
always satisfied by previous works. This motivates us to propose an alternative more principled
definition of soft-unification based on distances. Next, we introduce DeepSoftLog, which makes a
principled integration of embeddings in probabilistic logic programming [10].

As an example, consider the DeepSoftLog program in listing 1. By associating the constants
with learnable embeddings (denoted with the ∼ prefix), we turn a regular finite state machine
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implementation into a differentiable model. So if the program would be trained on e.g. the (01)∗

language, it could learn to set ∼prev_state1 = ∼state2 and ∼prev_state2 = ∼state1.

In summary, this paper makes three contributions: (1) a theory for using learnable embeddings in
logic through soft-unification, (2) DeepSoftLog, a neuro-symbolic system that includes embeddings
inside an end-to-end probabilistic logic prover, and (3) a demonstration of the practical advantages of
DeepSoftLog over state-of-the-art NeSy systems on several benchmarks.

accepts(X) :- run(∼start_state , X).
run(∼end_state , []). % base case + 2 state transitions
run(∼state1 , [∼symbol1|T]) :- run(∼prev_state1 , T).
run(∼state2 , [∼symbol2|T]) :- run(∼prev_state2 , T).
query(accepts ([∼0, ∼1])).

Listing 1: Example of a differentiable finite state machine implementation in DeepSoftLog.

2 Background

2.1 Logic programming

We summarise the basic logic programming concepts. An in-depth discussion can be found in [13].

Syntax A term t is either a constant c, a variable X, or a structured term f(t1, ..., tk), where f is a
functor and ti are terms. Atoms are expressions of the form q(t1, ..., tk), where q is a predicate of
arity k and ti are terms. A rule is an expression h :− b1, ..., bk where h is an atom and bi are atoms
or negated atoms. The meaning of such a rule is that h holds whenever all the bi’s hold. The atom h
is the head of the rule, while the conjunction of bi’s is the body. Facts are rules with an empty body.

A logic program is a set of rules. An expression is ground if it does not contain variables. To ground
an expression e we can apply a substitution θ = {V1 → t1, ..., Vk → tk}, creating an instantiated
expression eθ where every occurrence of the variable Vi is replaced with ti. An important operation
is unification. Two expressions t1 and t2 unify when there exists a substitution θ such that t1θ = t2θ.
For example, f(g(a), X) and f(g(Y), Z) have a unifier {X → Z, Y → a}.

Semantics The set of all possible ground terms in a program is called the Herbrand universe U . A
possible world (or Herbrand interpretation) is a subset of the possible ground atoms. A ground atom
a is true in a possible world w when a ∈ w. A possible world w is a model for a program T , written
w |= T , when every grounding of every rule in the program is true in the possible world.

Inference Proving relies on the repeated application of rules to a goal, using SLD resolution. Given
a rule h :− b1, . . . bn and a goal g1, . . . gm, such that h and g1 unify with substitution θ, SLD
resolution derives the new goal (b1, . . . bn, g2, . . . gm)θ. A proof is a sequence of resolution steps
that results in an empty goal.

2.2 Probabilistic and Fuzzy Logic

ProbLog [10] extends logic programming with probabilistic facts p :: f, where a ground fact f is
annotated with a probability p. As an example, consider the well-known alarm Bayesian network:

0.1 :: event(landslide). 0.2 :: event(earthquake).
0.5 :: hears_alarm(mary). 0.4 :: hears_alarm(john).
alarm :− event(landslide). alarm :− event(earthquake).
calls(X) :− alarm, hears_alarm(X).

Semantics Each ground probabilistic fact represents an independent Boolean random variable. Hence,
the probability of a possible world w is a product over the choice of probabilistic facts in w. The
probability (or success score) of an atom a in a program T is the sum over all the models of T where
a is true.

P (w) =
∏
f∈w

pf
∏
f /∈w

(1− pf ) P (a) =
∑

w:a∈w∧w|=T

P (w)
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In the example, a choice of probabilistic facts F = {event(landslide), hears_alarm(mary)},
has the corresponding model w = F ∪{alarm, calls(mary)} with probability P (w) = 0.1×0.5×
(1− 0.2)× (1− 0.4) = 0.024.

Inference There are multiple ways to perform inference in ProbLog [12]. We rely on a proving
approach [24]. Computing the success score P (q) of a query q consists of the following steps.
(1) Generate the set of all proofs B(q) using SLD resolution. (2) Disjoin the proofs into a formula∨

π∈B(q) π. (3) Transform this formula using knowledge compilation [7], to ensure it can be evaluated
correctly and efficiently. (4) Convert the compiled formula into an arithmetic circuit by replacing the
OR and AND operations with SUM and PRODUCT operators from a semiring [20].

OR

AND AND

AND

OR

AND AND

OR

Figure 1: The circuits used during inference of calls(mary) in the alarm example. (left) AND/OR
formula represented as a tree. (middle) Compiled formula. (right) Arithmetic circuit.

We demonstrate our inference approach on the query calls(mary). The proofs:
event(earthquake) ∧ hears_alarm(mary) and event(landslide) ∧ hears_alarm(mary) re-
sult in the formula on the left of figure 1 when disjoined. When working with probabilities, we
cannot simply evaluate this formula. Indeed, the proofs are not independent as they both contain
hears_alarm(mary), so P (A ∨ B) ̸= P (A) + P (B). Hence, we transform the formula into a
circuit using knowledge compilation [7] (middle of figure 1). The resulting circuit supports many
types of inference, by evaluating with the appropriate semiring [19]. For probabilistic inference, we
can simply use the standard + and × operators, as shown on the right of figure 1.

Neural Theorem Prover We can also sketch the Neural Theorem Prover (NTP) [29] in this framework.
The NTP is based on the Datalog subset of Prolog. So it does not include structured terms (e.g.
lists) or negation. At the same time, rather than using the probabilistic semiring, the NTP uses the
fuzzy semiring. Essentially, this means the fuzzy max and min operations are used instead of the
probabilistic + and ×. This is also known as the Gödel t-norm or minimum t-norm. In contrast with
probabilistic inference, disjunction in the fuzzy semiring is idempotent. This implies we can skip the
expensive knowledge compilation step and evaluate the formula directly during proving [19].

Approximation As probabilistic inference is #P-hard, it is possible to approximate inference by only
using the k-best proofs. The best proofs are those with the highest score. During proving, these
can be found with A∗ search on the proof tree [24]. For instance, the 1-best proof for the example
is event(earthquake) ∧ hears_alarm(mary), with a score of 0.08. Note that for the NTP, the
1-best proof captures the full success score due to the max aggregation of proofs. The NTP and
Greedy NTP [26] introduced additional approximation methods to prune proofs during proving, such
as imposing a maximum depth and maximum branching factor.

2.3 Soft Unification

While in standard logic programming two constants landslide and earthquake do not unify
(i.e. do not match), soft-unification returns a score based on how similar the symbols are in
embedding space. We use the ≃ predicate to denote that two symbols are soft-unified (e.g.
earthquake ≃ landslide). The score of a soft-unification is determined by a soft-unification
function s : S × S → [0, 1], so P (t1 ≃ t2) = s(t1, t2).

Algorithm 1 states the simplified soft-unification algorithm for atoms and terms without functors. The
algorithm returns the set of variable substitutions, that make two atoms equal while disregarding the
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equality of the symbols. For example, the two atoms p(a, b, X, Y) and p(c, d, Z, d) do not unify, but
soft-unify with the substitution {X → Z, Y → d}. In practice, the algorithm usually also extracts
the conjunction of the used soft-unifications (in this example (a ≃ c) ∧ (b ≃ d)). During inference,
these can be conjoined with the proof just like probabilistic facts.

Algorithm 1 Soft-unification

function SOFTUNIFY(t1, t2)
if t1 is a variable then return {t1 → t2}
else if t2 is a variable then return {t2 → t1}
else if t1 and t2 are constants then return ∅
else if t1 and t2 are atoms of the same arity k then

return
⋃

i∈{1..k} SOFTUNIFY(argument i of t1, argument i of t2)
else return Failure
end if

end function

To illustrate soft-unification during proving, suppose that s(landslide, earthquake) = 0.5.
We can now delete the fact event(landslide) from our example program and still derive the
same probability for the query calls(mary). The first proof for event(landslide) (namely
event(earthquake) ∧ hears_alarm(mary)) is unaffected by the deletion of event(landslide).
But in the second proof, we need to derive event(landslide) by applying event(earthquake),
resulting in the proof event(earthquake)∧ (landslide ≃ earthquake)∧hears_alarm(mary).

3 Soft-unification properties

In principle, any function s can be used for soft-unification. However, we introduce some properties
that make the soft-unification semantically meaningful and efficiently trainable.

Definition 1. The success score P (q) is well-defined iff for every soft-unification function s, query q,
and pair of logically equivalent programs T1 and T2 (i.e. ∀a : T1 |= a ⇔ T2 |= a), the success score
P (q) is the same for T1 and T2.

Definition 2. The soft-unification function s is non-redundant, when given a proof π, every other
entailed proof of the form π′ = (π\{ti ≃ tj}) ∪ {ti ≃ tk, tk ≃ tj} has at most the same score:
P (π′) ≤ P (π).

We motivate definition 2 by returning to our running example. Recall that we made a proof
where event(landslide) was obtained using the soft-unification: (landslide ≃ earthquake).
Suppose now that the program contains some extra rules: alarm :− warning(landslide) and
warning(avalanche) :− event(avalanche). These rules could be interjected in the proof so
that we use: (landslide ≃ avalanche) ∧ (avalanche ≃ earthquake). Definition 2 says that
introducing these intermediary soft-unifications in the proof should not increase the proof score.

Definition 3. The soft-unification function s is connected, when for every x and z where x ̸= z, it is
possible to have a y that is inbetween x and z (i.e. s(x, y) > s(x, z) and s(y, z) > s(x, z)).

Definition 3 is a statement on the expressivity of soft-unification. For example, it should be possible
to model that white and grey are similar (e.g. s(white, grey) = 0.5), and grey and black are similar
(e.g. s(grey, black) = 0.5), but that white and black are dissimilar (e.g. s(white, black) = 0.25).

Definition 4. We call the proof score P (q) effectively optimizable when the soft-unification s is
differentiable, and it is possible to have a gradient with respect to every proof π in B(q).

This last definition essentially asks that the soft-unification function should be trainable using gradient
descent. It is important that every proof receives gradients, as updating a single proof at a time leads
to local minima due to a lack of exploration [9, 24]. In short, if a wrong proof starts of with a higher
score due to an unfortunate initialization, it should not get pushed up greedily disregarding the other
proofs. Otherwise, the correct proof might never be discovered during training. Note that k-best
approximate inference does not evaluate all possible proofs and hence cannot satisfy definition 4.
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Properties Def. 1 Def. 2 Def. 3 Def. 4

Bousi∼Prolog [17] Yes Depends (∗) Depends (∗) No
WHIRL [6] No No Yes No
NTP [29] No No Yes No
LRNN [31] No No Yes Yes
DeepSoftLog (Ours) Yes Yes Yes Yes

Table 1: Comparison of the soft-unification properties of different (neuro-)symbolic systems.
(∗): Depends on the choice of transitivity and t-norm.

3.1 Neural Theorem Prover

The current (neuro)-symbolic systems unfortunately do not always respect the abovementioned
properties. We focus mostly on the Neural Theorem Prover, though table 1 gives an overview of
several related (neuro-)symbolic systems, which we later discuss in the related work. We start by
introducing some necessary concepts, before giving the proof that the NTP is not always well-defined.

An atom or term is linear when no variable occurs multiple times. A rule is linear when its head
is linear. A soft-unification function s is ∧-transitive when s(x, z) ≥ s(x, y) ∧ s(y, z), and a ∧-
similarity when it is reflexive, symmetric, and ∧-transitive. The specific meaning of the conjunction
operation ∧ depends on the semantics. So ∧-transitivity should be interpreted as min-transitivity for
the NTP and ×-transitivity for ProbLog. Omitted proofs can be found in appendix A.
Theorem 1. The Neural Theorem Prover is not well defined on programs with linear rules.
Proof. We give a proof by example. Consider the following two programs:
eq(X, X) :− p(X). p(a). p(b). p(c). and eq(a, a). eq(b, b). eq(c, c). p(a). p(b). p(c).
These programs are logically equivalent but can have a different proof score for the query q = eq(a, b).
In T1, we obtain P (q) = s(a, b) in the straightforward manner. But in the second proof, we obtain
P (q) = max(s(a, b),min(s(a, c), s(b, c))), because we can also unify with eq(c, c). So with the
right choice of s, the proof score P (q) is higher in T2 than in T1.

This proof works in general for programs that contain linear rules. It might be tempting to suggest
a fix by making s ∧-transitive, but this does not resolve the problem when negation is considered.
Transitivity is still desirable for another reason however, as it relates to definition 2.
Theorem 2. Definition 2 holds when the soft-unification function s is ∧-transitive.

We note that the NTP implements the soft-unification function s using radial basis functions [5]
(specifically the laplacian kernel e−∥x−y∥2), which are not min-transitive. The situation in the NTP
is further complicated as the choice of semantics links definition 2 and 3.
Theorem 3. Under the fuzzy semiring, definition 3 cannot hold if s is ∧-transitive.

In other words, by choosing the minimum t-norm, definitions 2 and 3 are mutually exclusive. A
further disadvantage is that the minimum t-norm also does not satisfy definition 4. By using the
minimum to conjoin facts, the success score of a proof is essentially determined by the weakest
soft-unification. This is a significant drawback as it heavily reduces training efficiency and leads to
local minima [9].

3.2 ProbLog

Motivated by the previous discussion, we will rely on probabilistic instead of fuzzy semantics. This
allows us to satisfy all the stated properties.
Theorem 4. If the soft-unification function s is a ×-similarity with probabilistic semantics, we can
satisfy all stated properties (from Def. 1, Def. 2, Def. 3 and Def. 4).
Theorem 5. A soft-unification function s is a ×-similarity, iff s(x, y) = e−d(E(x),E(y)), where d is a
distance function on an embedding space and E maps symbols to this space.

The last theorem shows that the soft-unification corresponds to a distance on a embedding space
under the modest assumptions of reflexivity, symmetry, and transitivity. This brings us to the final
question of what concrete embedding space to choose. We do this based on two considerations.
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This first is the gradient norm of the soft-unification. It is undesirable to have large regions of
near-zero gradients for many successive soft-unification steps (also known as the vanishing gradient
problem). Due to the exponential function, this can only be achieved by taking a bounded domain.
We implement this by choosing a hypersphere as the embedding space, i.e. the set of normalized
vectors {x ∈ Rn : ∥x∥2 = 1}.

A natural distance to use on hyperspheres is the angle. A drawback of using the angle is that two
symbols on the opposites of the hypersphere are maximally dissimilar. This is undesirable as we
cannot have many symbols that are all dissimilar to each other. To solve this we use s(x, y) =
exp(−λ arccos|E(x) · E(y)|) as the soft-unification. The λ is a scaling factor, which can be set based
on the desired minimal soft-unification score. The absolute value assures that maximum dissimilarity
is achieved at 90 degrees instead of 180. So as random high-dimensional vectors are almost surely
orthogonal, soft-unification scores at initialization will be zero in expectation.

4 DeepSoftLog

The previous section discussed the combination of soft-unification with probabilistic semantics. We
will now formally implement it as an extension of ProbLog, called DeepSoftLog.

Syntax DeepSoftLog is a superset of the probabilistic logic programming language ProbLog. This
means that every valid ProbLog program is also a valid DeepSoftLog program. Syntactically,
DeepSoftLog only adds a single syntactic element: embedded terms.

Definition 5. An embedded term is a term ∼t, where ∼/1 is the embedding functor and t is a term.

The embedding functor turns a term t into an embedded term ∼t. As the embedding functor is
unary, we do not write brackets. The embedding functor is idempotent, and applying it inside an
embedded term has no effect. For example, ∼∼f(∼X) is equivalent to ∼f(X). Embedded terms can
be composed like any other term, e.g. f(∼a, g(X, ∼h(b))). The embeddings are computed using
a dictionary D which stores a vector D(c) ∈ Rn for all constants c and a neural network Rk×n → Rn

for every functor f of arity k. The embedding of a ground term E : U → Rn is recursively defined as
E(c) = D(c) for a constant c and E(f(t1, ...tk)) = D(f)(E(t1), ...E(tk)) for a structured term.

We note that we deviate from the NTP in several important regards concerning what we embed. (1)
The embedding of terms is optional. This means the programmer is free to choose, where it makes
sense to rely on embeddings, and what to keep symbolic. This can help keep inference tractable,
as letting everything soft-unify leads to huge branching factors. (2) DeepSoftLog does not embed
predicate symbols. However, this is not an actual restriction, and the NTP behavior can easily be
simulated. For example, a(x). b(y). in NTP notation turns into r(∼a, ∼x). r(∼b, ∼y). in
DeepSoftLog notation. (3) DeepSoftLog can embed structured terms. Embedded functors map
embeddings to new embeddings and are a natural place to use neural networks.

Definition 6. A DeepSoftLog program T is a tuple (s, TF , TR). The soft-unification function
s : U × U → [0, 1] maps two embedded ground terms to the probability that they unify. TF is a set
of ground probabilistic facts and TR a set of linear rules. The atoms in TF and TR can contain
embedded terms.

Semantics We base the semantics of DeepSoftLog on ProbLog, by creating a source-to-source
translation. The basic idea is to eliminate the embedded terms by simulating the soft-unification with
a predicate ≃. More concretely, all embedded terms in the head of a rule are replaced by a new unique
variable. Next, ≃ atoms are added at the start of the body to provide the soft-unification probabilities.
An example of this transformation, p(∼x) :− q(∼y). becomes p(∼V1) :− ∼V1 ≃ ∼x, q(∼y).
After applying this transformation to all rules in TR and TF , we obtain a regular ProbLog program.
The soft-unification function itself can also be encoded in ProbLog by adding facts for all pairs of
ground terms: p :: ∼t1 ≃ ∼t2, where p = s(t1, t2). We provide some examples of this transforma-
tion on full programs in appendix B. We note that the resulting ProbLog program can be infinite,
by grounding out the soft-unification predicate ≃ on an infinite set of ground terms. However, the
ProbLog semantics are still well-defined on infinite programs, due to the use of Sato’s distribution
semantics [30].
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We note that this program transformation is only for semantics, and we still apply the soft-unification
algorithm during inference. In appendix C, we prove that the soft-unification algorithm is equivalent
to regular unification on the transformed program.

Non-linear rules The semantics of DeepSoftLog only allow for linear rules, but non-linear rules can
be supported as syntactic sugar. Similar to Bousi∼Prolog [18], we linearize rules as follows. The
variable X that occurs multiple times in the head is replaced by unique variables, and ≃ predicates are
added to the body to perform the soft-unification. For example, the linearization of p(X, X) :− q(X).
is p(V1, V2) :− V1 ≃ V2, q(V1). This construction does entail some extra grounding work on ≃.
We need to state the c ≃ c fact for every constant c, to make sure p(X, X) in this example can
still succeed with non-embedded constants. Similarly, we need rules f(V1, ...Vk) ≃ f(W1, ...Wk) :−
V1 ≃ W1, ...Vk ≃ Wk for every functor f of arity k.

Inference We use proof-based inference, as described in section 2.2. Exact inference can be-
come intractable for large experiments, so we support approximate inference techniques (k-best,
maximum search depth, and maximum branching factor), similar to the Greedy NTP [26]. An
important constraint we apply is that the soft-unification predicate ≃ needs to be ground upon
evaluation, i.e. input mode (++,++) in Prolog. Otherwise, the number of possible unifica-
tions explodes. For example in a ≃ f(X), X can unify with an infinite number of ground facts:
a ≃ f(a), a ≃ f(f(a)), a ≃ f(f(f(a))), ...

During training, we can use the gradient semiring of algebraic ProbLog to make the success score
end-to-end differentiable [19]. We train using the AdamW optimizer [21] with cross-entropy loss.

Structure learning As in the NTP, we can add templates to the program to do rule learning via param-
eter learning. For example, r(∼t1, X, Y) :− r(∼t1, X, Z), r(∼t1, Z, Y). is a transitive template that
could be used for the facts r(∼siblings, alice, bob).r(∼siblings, bob, charlie). by learning
that ∼siblings = ∼t1. These templates can also parameterize the rule symbol t1, similar to the
conditional theorem prover [27]: r(∼T, X, Y) :− r(∼f1(T), X, Z), r(∼f2(T), Z, Y).

5 Experiments

We present three sets of experiments. First, we compare DeepSoftLog to the NTP on structure
learning tasks, which requires learning rules from data. We show that DeepSoftLog significantly
improves the performance over the NTP, and perform ablations to show that the properties introduced
in section 3 are instrumental to this. The second experiment requires learning the perception, while
the background knowledge is given. The last experiment is the most challenging setting, as both
perception and rules need to be learned jointly. For all experiments, we report the mean and standard
deviation over 10 seeds. All code is available on https://github.com/jjcmoon/DeepSoftLog.

5.1 Countries

Countries is a knowledge graph with the locatedIn and neighborOf relations between the
countries and continents on Earth. There are three tasks of increasing difficulty (S1, S2 and
S3). For example in S2, we need to derive locatedIn(france, europe) using facts such as
locatedIn(belgium, europe) and neighborOf(france, belgium). For the full experimental
setup, we refer to previous work [26, 29]. To keep the comparison fair, we use the same rule tem-
plates, embedding dimensions, and training objective as the NTP. The hyperparameters can be found
in appendix D.2. Table 2 reports the results and compares them with other state-of-the-art NeSy
systems that support structure learning.

In figure 2, we perform ablation on the properties of DeepSoftLog, discussed in section 3. As
expected, DeepSoftLog no longer properly converges when switching from probabilistic semantics
to fuzzy semantics (violating property 4). Switching the soft-unification function s to a Gaussian
kernel (violating property 2) also delays convergence. There is no ablation for property 3 as there is
no straightforward way to violate it in DeepSoftLog.

5.2 MNIST-addition

MNIST-addition is a popular neuro-symbolic benchmark where, given two numbers as lists of MNIST
images, the task is to predict the sum (e.g. + = 135). An attractive feature of this task is
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Countries S1 S2 S3

NTP [29] 90.93± 15.4 87.40± 11.7 56.68± 17.6
GNTP [26] 99.98± 0.05 90.82± 0.88 87.70± 4.79
DeepSoftLog (Ours) 100.0 ± 0.00 97.67 ± 0.98 97.90 ± 1.00

NeuralLP [34] 100.0 ± 0.0 75.1± 0.3 92.2± 0.2
CTP [27] 100.0 ± 0.00 91.81± 1.07 94.78± 0.0
MINERVA [8] 100.0 ± 0.00 92.36± 2.41 95.10± 1.2

Table 2: AUC-PR on Countries link prediction [29]. Results are adapted from [27]. The three
methods on top use templates, while the bottom ones do not.

Ablations VP AUC-PR

None 97.67 ± 0.98
Gödel t-norm 2, 4 23.73± 4.08
Gaussian kernel 2 28.33± 3.64

0 200 400 600 800 1000 1200 1400
Iterations

0.00
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0.50
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ss
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Gaussian kernel

Figure 2: (Left): Ablations of DeepSoftLog on countries S2, with the corresponding properties that
are violated. VP stands for violated properties. (Right): Loss curve during training of the ablations.
The shaded area represents the min/max over 10 seeds, while the line is the mean.

that it allows to increase the reasoning difficulty, by increasing the number of digits. We use the same
experimental setup and neural network as previous works, to which we refer for more details [22].

Existing NeSy solutions to the MNIST-addition problem typically represent all the possible sums
explicitly, which means inference becomes exponential in the number of digits. DeepSoftLog allows
an alternative encoding of the problem which scales linearly, by using the embeddings to represent
discrete probability distributions over the digits. In each iteration, the probability distribution of
the carry and the digit classifier are used to calculate the probability distribution of the sum and the
next carry. This factorization of the problem is similar to the one used in A-NeSI [32], although
we do not approximate and use exact inference. The program and hyperparameters are included in
appendix D.1. Results are summarized in table 3.

Digits per number 1 2 4 15 100

LTN [4] 80.5± 23.3 77.5± 35.6 timeout
NeuPSL [28] 97.3± 0.3 93.9± 0.4 timeout
DeepProbLog [23] 97.2± 0.5 95.2± 1.7 timeout
NeurASP [35] 97.3± 0.3 93.9± 0.7 timeout
DeepStochLog [33] 97.9± 0.1 96.4± 0.1 92.7± 0.6 timeout
Embed2Sym [2] 97.6± 0.3 93.8± 1.4 91.7± 0.6 60.5± 20.4 timeout
A-NeSI [32] 97.7± 0.2 96.0± 0.4 92.6± 0.8 75.9± 2.2 overflow
DeepSoftLog (Ours) 98.4 ± 0.1 96.6 ± 0.3 93.5 ± 0.6 77.1 ± 1.6 25.6 ± 3.4

Reference 98.17 96.37 92.87 75.78 15.43

Table 3: Test accuracy of the sums on the MNIST addition problem. Results are adapted from [32].
Reference equals 0.99072d where d is the number of digits per number. This is a lower bound on the
performance that can be achieved when single-digit supervision is available..

The performance of DeepSoftLog is in line with previous exact systems like DeepStochLog, and we
note that the improvement over other exact systems such as DeepProbLog and NeurASP is likely
due to their suboptimal hyperparameters. More importantly, DeepSoftLog outperforms the more
specialized systems Embed2Sym and A-NeSI, while also scaling further.
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Language (01)∗ 0∗10∗ (0 | 10∗10∗)∗

RNN 77.63± 15.05 61.59± 10.09 50.14± 1.36
DeepSoftLog 83.93 ± 25.87 87.01 ± 7.18 56.12 ± 15.98

Table 4: Results for the differentiable automata experiments. We evaluate with the AUC-PR and
report the average and standard deviation over 10 seeds.

5.3 Differentiable Automata

We can implement a differentiable finite state machine in DeepSoftLog by taking a regular finite state
machine in Prolog and making the states and symbols embedded (see listing 1). The resulting model
can be trained end-to-end, jointly learning interpretable rules and a perception network.

As an example, consider the regular language (01)∗ represented by MNIST images. We learn from
positive examples (e.g. or ) and negative examples (e.g. or ). We train
on sequences of lengths up to 4 and test the generalization by evaluating on sequences of length 8
with images not seen during training. Hyperparameters are in appendix D.3.

We pre-train the perception network with 20 images, for which the ground truth image labels are
given for each digit. This small amount of concept supervision prevents reasoning shortcuts [25]
and eases the optimization problem. As a baseline we use an RNN, which has the same perception
network and receives the same pretraining.

Results are summarized in table 4. We repeat the experiment for different regular languages. Not
only does DeepSoftLog achieve a higher AUC, but it is also highly interpretable as we can inspect
the learned state transitions.

6 Related Work

There are several neuro-symbolic systems built on the principle of neural reparametrizations in
a symbolic framework. DeepStochLog [33], NeurASP [35], and DeepProbLog [23] are neural
extensions of stochastic grammars, answer set programming, and probabilistic logic programming
respectively. Lifted Relational Neural Networks [31] and Logic Tensor Networks [4] are based on
Datalog with fuzzy semantics (which cannot deal with structured terms) and use the logic program
to construct the neural network. These systems make different trade-offs between expressivity and
scalability, with fuzzy systems typically being more scalable and probabilistic systems being more
expressive.

DeepSoftLog explores an alternative possibility, by neurally reparameterizing the matching mecha-
nism between symbolic symbols instead of the symbols themselves. DeepSoftLog is most closely
related to DeepProbLogA∗ [24], as they both rely on probabilistic possible worlds semantics and
backward proving. Hence, it is in principle possible to convert between the two.

The Neural Theorem Prover (NTP) [29] pioneered the association of learnable embeddings with
symbols in a logic prover. However, the fuzzy semantics of the NTP leads to gradient sparsity
and local minima, as discussed in section 3.1. Furthermore, the NTP lacks several key features of
DeepSoftLog like neural functors, recursive rules, and negation. The Greedy Neural Theorem Prover
[26] improved the scalability of the NTP. The Conditional Theorem Prover [27] extended the NTP to
support rule learning without templates.

The soft matching of symbols in logic is already well-studied in the fuzzy logic programming
community [15]. A notable example is Bousi∼Prolog [17, 18], which just like the NTP uses soft-
unification and fuzzy semantics. These systems still differ considerably from DeepSoftLog as they
are not differentiable, and typically rely on the user to manually specify the soft-unification function.
WHIRL [6] proposed to add embeddings in DataLog for more flexible data querying. Their soft-join
operation can also be seen as an early form of soft-unification, albeit not a learnable one.

Many approaches towards embedding symbols have been investigated for knowledge graphs. Recently,
some of these have also been combined with symbolic methods [11, 36]. Generally, these methods are
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less expressive than DeepSoftLog but far more scalable. MINERVA [8] uses reinforcement learning
to predict links by walking over a knowledge graph conditional on a query.

7 Limitations

DeepSoftLog inherits the advantages of probabilistic logic programming, but also the disadvantages.
Probabilistic inference is #P-hard, so exact inference is often not tractable and we need to rely on
approximate inference techniques (e.g. [1, 24]). Crucially, some approximate inference methods like
k-best reintroduce the local minima problem from the NTP. So in future work, we want to consider
approximate methods that incorporate a form of exploration, such as sampling methods. What still
could be investigated in further work is the use of embeddings to scale up inference in NeSy as in
section 5.2.

8 Conclusion

We analyzed how a more principled integration of embeddings in logic can be achieved for neuro-
symbolic learning, by discussing the properties of learnable soft-unification. We discussed how
previous systems do not always satisfy these, and how this can lead to optimization problems.
We applied our analysis to create a framework on top of probabilistic logic programming with
embeddings, called DeepSoftLog. DeepSoftLog demonstrated that two common methods to neurally
extend logic, that of neural facts (as done by DeepProbLog) or neural unification (as done by the
NTP) are essentially interchangeable. Lastly, we showed that DeepSoftLog can outperform existing
neuro-symbolic methods on both accuracy and scalability.
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A Proofs

We first state the monotonicity of conjunction, which will be useful later.
Theorem 6. In both fuzzy and probabilistic semantics, it holds that when c is independent of both a
and b, we have P (a) ≤ P (b) ⇒ P (a ∧ c) ≤ P (b ∧ c).

Proof. In fuzzy semantics, the t-norm is monotonous by definition. Under probabilistic semantics, it
follows as P (a∧c) ≤ P (b∧c) reduces to P (a)P (c) ≤ P (b)P (c) because of the independencies.

Theorem 2. Definition 2 holds when the soft-unification function s is ∧-transitive.

Proof. Suppose b is the rest of the proof, such that P (π) = P (b∧(ti ≃ tj)) and P (π′) = P (b∧(ti ≃
tk) ∧ (tk ≃ tj)). By the monotonicity of the conjunction and independence between b and the soft-
unifications, it now follows that P (ti ≃ tj) ≥ P ((ti ≃ tk) ∧ (tk ≃ tj)) ⇒ P (π) ≥ P (π′). Using
the soft-unification function the first part becomes s(ti, tj) ≥ s(ti, tk) ∧ s(tk, tj), which is exactly
the ∧-transitivity rule.

Theorem 3. Under the fuzzy semiring, definition 3 cannot hold if s is ∧-transitive.

Proof. By the monotonicity of t-norms, s(x, y) > s(x, z) and s(y, z) > s(x, z) implies s(x, y) ∧
s(y, z) ≥ s(x, z)∧s(x, z). Due to the idempotence of the minimum, this becomes s(x, y)∧s(y, z) ≥
s(x, z). On the other hand, the ∧-transitivity of these inequalities implies s(x, y) ∧ s(y, z) < s(x, z).
This inequality is strict as s(x, y) = s(y, z) ≤ s(x, z) implies either s(x, y) = s(x, z) or s(x, z) =
s(x, z).

Theorem 4. If the soft-unification function s is a ×-similarity with probabilistic semantics, we satisfy
all stated properties (from Def. 1-4).

Proof.

• Def. 1 follows from the well-definedness of the ProbLog semantics, by considering ≃ as a
regular probabilistic fact.

• Def. 2 follows from theorem 2 as s is transitive.

• For Def. 3, we can always create a y between some symbols x and z, by taking the mean in
the embedding space (see theorem 5).

• Def. 4 follows from the symmetry and differentiability of addition and multiplication. Note
that we assume that s is differentiable.

Theorem 5. A soft-unification function s is a ×-similarity, iff s(x, y) = e−d(E(x),E(y)), where d is a
distance function on an embedding space and E maps symbols to this space.

Proof. We first prove that given that if s is a ×-similarity, it can be written as e−d(x,y). We do this by
showing that d(x, y) = − ln(s(x, y)) is a distance.

1. As s(x, x) = 1, we have that d(x, x) = − ln(s(x, x)) = − ln(1) = 0.

2. The symmetry of d is implied by the symmetry of s:

d(x, y) = − ln(s(x, y)) = − ln(s(y, x)) = d(y, x)

3. The triangle inequality can be proven from the ×-transitivity, and the monotonicity of ln:

d(x, z) = − ln(s(x, z)) ≤ − ln(s(x, y) · (y, z)) = d(x, y) + d(y, z)

As we do not have distinguishability (there can be a x ̸= y such that d(x, y) = 0), the embedding
space is a pseudometric. The other direction can be proven in a similar fashion, by evaluating that
e−d(x,y) satisfies reflexivity, symmetry, and ×-transitivity.

13



B Example programs

We implement a variation on the alarm basian network in DeepSoftLog where the earthquake and
landslide symbols are embedded. On the right, we show the translated ProbLog program.

0.2 :: event(∼earthquake). 0.2 :: event(∼V1) :− ∼V1 ≃ ∼earthquake.
0.5 :: hears_alarm(mary). 0.5 :: hears_alarm(mary).
alarm :− event(∼landslide). alarm :− event(∼landslide).
calls(X) :− alarm, hears_alarm(X). calls(X) :− alarm, hears_alarm(X).

0.5 :: ∼landslide ≃ ∼earthquake.
0.5 :: ∼earthquake ≃ ∼landslide.
∼landslide ≃ ∼landslide.
∼earthquake ≃ ∼earthquake.

Next, we also demonstrate an example with a linear rule.

eq(X, X). eq(V1, V2) :− V1 ≃ V2.

q :− eq(f(∼a)), f(∼b)). q :− eq(f(∼a)), f(∼b)).
f(V1) ≃ f(V1) :− V1 ≃ V2.

a ≃ a.

b ≃ b.

∼a ≃ ∼a.
0.1 :: ∼a ≃ ∼b.
0.1 :: ∼a ≃ ∼f(a).
0.1 :: ∼a ≃ ∼f(b).
∼b ≃ ∼b.
0.1 :: ∼b ≃ ∼f(b).
0.1 :: ∼b ≃ ∼f(a).
∼f(a) ≃ ∼f(a).
0.1 :: ∼f(a) ≃ ∼a.
0.1 :: ∼f(a) ≃ ∼b.
0.1 :: ∼f(a) ≃ ∼f(b).
∼f(b) ≃ ∼f(b).
0.1 :: ∼f(b) ≃ ∼a.
0.1 :: ∼f(b) ≃ ∼b.
0.1 :: ∼f(b) ≃ ∼f(a).

C Semantics

To prove the equivalence of the transformation with soft-unification, we need to prove two separate
facts. First that if two terms soft-unify, they will unify in the transformed program. Second that they
will produce the same soft-unification facts.

Theorem 6. Consider two DeepSoftLog expressions a and b, and the ProbLog expression a∗ which
is the translation of a. Now a will soft-unify with b if and only if a∗ unifies with b (using regular
unification). Furthermore, they will result in the same substitution (ignoring the extra introduced
variables), and the same soft-unifications.

Proof. We prove the theorem by structural induction on a.

1. If a is a variable or constant, we have a = a∗, so it holds trivially.
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2. If a is an embedded term, we have that a∗ = ∼V , where V is a fresh variable. Hence both
a will unify with b iff b is embedded. If b is embedded, both will add the soft-unfication fact
b ≃ a, as the translated rule will have added this in the body.

3. If a is a functor, we have that a = f(t1, ..., tk) and a∗ = f(t∗1, ..., t
∗
k). If b is not of the form

f(s1, ..., sk), both the soft-unification and unification will fail. In the other case, they will
both give the same result as the unifications between s1 and t1 or t∗1 give the same result by
structural induction. As rules are linear, variables of the ti and tj do not overlap, meaning
that the substitutions can be combined without conflicts.

4. If a is an atom (i.e. a rule head), we can use an identical proof as for functors.

Suppose t1 and t2 is the corresponding term in the translated program. If t1 is a variable or a
non-embedded term, we have t1 = t2, which means both cases will result in the same substitution
when unified with a third term t3. In the case that t1 is an embedded term, t2 will be of the form ∼V
where V is a variable. Hence, when t3 is not embedded, the soft-unification with t1 will fail, and the
regular unification with t2 will also fail. When ∼t3 is embedded, the soft-unification with s2 succeeds
and regular unification also succeeds with the substitution V → t3. The substitutions returned by
soft-unification are not exactly the same as in regular unification, because of the introduced variables.
However, as these are unique and do not appear in the DeepSoftLog program, they can be safely
ignored.

The above analysis can also be extended to the case of non-linear rules (see the section on lineariza-
tion).

D Experiment details

D.1 MNIST-addition

The code for MNIST-addition is given in listing 2. Hyperparameters are summarized in table 5. Of
note in this example is that we encode as much background knowledge as possible. The green cut
encodes the independency of the sum of lower digits from the higher digits, so we can find the 1-best
proof faster during evaluation (an alternative solution would be to use a geometric mean heuristic [24]).
The embedded functors mod_ten_add and carry could be learned by neural networks. However,
for maximal performance, we hand-coded them. This is possible as we know what the probability
distribution of the modulo addition and carry should be.

Listing 2: Code for the MNIST addition experiments

digit(X) :- member(X, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).
embed_digit(EMB , DIGIT) :- digit(DIGIT), eq(∼DIGIT , EMB).
eq(X, X).

add(X,Y,Z) :- add_(X, Y, Z, ∼0).

add_([], [], [], ∼0).
add_([], [], [1], ∼1).
add_([HX|TX], [HY|TY], [HZ|TZ], CARRY) :-

embed_digit(∼mod_ten_add(HX , HY, CARRY), HZ),
!, % green cut for faster evaluation
add_(TX, TY , TZ , ∼carry(HX , HY, CARRY )).

We ran the experiments on CPU (Intel® Core™ i7-2600 CPU @ 3.40GHz) with 16GB of RAM.

D.2 Countries

Hyperparameters are summarized in table 6. We ran all experiments on a single CPU (Apple M2).
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optimizer AdamW
learning rate 0.0003
learning rate schedule cosine
training epochs 100
weight decay 0.00001
batch size 4
embedding dimensions 10
embedding initialization one-hot, fixed
neural networks LeNet5
max search depth /

Table 5: Hyperparameters for the MNIST-addition experiments.

optimizer AdamW
learning rate 0.01
learning rate schedule cosine
training epochs 6
weight decay 0
batch size 4
embedding dimensions 100
embedding initialization uniform over hypersphere
neural networks /
max search depth 2 (S1, S2) or 3 (S3)
max branching factor 4

Table 6: Hyperparameters for the countries experiments.

D.3 Differentiable Turing Machine

Hyperparameters are summarized in table 3. We ran all experiments on a single CPU (Apple M2).

optimizer AdamW
learning rate embeddings 0.1
learning rate perception 0.0001
learning rate schedule cosine
training epochs 25
weight decay 0.00001
batch size 8
embedding dimensions 3
embedding initialization uniform over hypersphere
neural networks LeNet5
max search depth /

Table 7: Hyperparameters for the differentiable finite state machine experiment.

E Embeddings as fuzzy logic

A different perspective on embeddings from what we considered in this paper, is to see them as a
discrete distribution (i.e. the embedding is a probability vector). When we make sure embeddings are
normalized (i.e. positive and sum to one) and take the dot product as a soft-unification function, we
essentially get the probability that two embeddings are equal. By conjoining different soft-unifications,
we have a fuzzy interpretation, as the soft-unifications are assumed to be independent.

As a demonstration, we apply this to the visual sudoku problem [3]. This benchmark requires
classifying if a grid of images constitutes a valid sudoku puzzle. We follow the same protocol as in
[32]. Hyperparameters for the visual sudoku experiment are in table 9. The learning rate, weight
decay, and gradient clipping were chosen by Bayesian optimization on the 11th validation split. We
averaged the results over the other 10 splits. We ran all experiments on CPU (Intel(R) Xeon(R) CPU
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Visual Sudoku 4× 4 9× 9

CNN 51.5± 3.34 51.2± 2.20
NeuPSL [28] 89.7± 2.20 51.5± 1.37
A-NeSI [32] 89.8± 2.08 62.3± 2.20
DeepSoftLog 94.2 ± 1.84 65.0± 1.94

Table 8: Accuracy on visual sudoku classification. Previous results are adapted from [32].

E3-1225 v3 @ 3.20GHz). The 4× 4 and 9× 9 runs took about 95 and 630 seconds per experiment
respectively.

Table 8 summarizes the results of DeepSoftLog and compares them with current state-of-the-art.
Surprisingly, the crude fuzzy approximation outperforms all existing systems by a considerable
margin.

4× 4 9× 9

optimizer AdamW AdamW
learning rate 0.00162 0.000671
training epochs 100 300
weight decay 0.0000144 0.000116
batch size 1 1
gradient clipping 2.445 2.753
embedding dimensions 10 10

Table 9: Hyperparameters for the visual sudoku experiments.
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