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Abstract

Pretraining CNN models (i.e., UNet) through self-supervision has become a power-
ful approach to facilitate medical image segmentation under low annotation regimes.
Recent contrastive learning methods encourage similar global representations when
the same image undergoes different transformations, or enforce invariance across
different image/patch features that are intrinsically correlated. However, CNN-
extracted global and local features are limited in capturing long-range spatial
dependencies that are essential in biological anatomy. To this end, we present
a keypoint-augmented fusion layer that extracts representations preserving both
short- and long-range self-attention. In particular, we augment the CNN feature
map at multiple scales by incorporating an additional input that learns long-range
spatial self-attention among localized keypoint features. Further, we introduce both
global and local self-supervised pretraining for the framework. At the global scale,
we obtain global representations from both the bottleneck of the UNet, and by
aggregating multiscale keypoint features. These global features are subsequently
regularized through image-level contrastive objectives. At the local scale, we define
a distance-based criterion to first establish correspondences among keypoints and
encourage similarity between their features. Through extensive experiments on
both MRI and CT segmentation tasks, we demonstrate the architectural advantages
of our proposed method in comparison to both CNN and Transformer-based UNets,
when all architectures are trained with randomly initialized weights. With our pro-
posed pretraining strategy, our method further outperforms existing SSL methods
by producing more robust self-attention and achieving state-of-the-art segmentation
results. The code is available at https://github.com/zshyang/kaf.git.

1 Introduction

Large-scale and diverse source of training data has significantly empowered the generalization ability
of supervised segmentation models [52, 77, 34]. However, in biomedical image analysis, manual
delineation of images/volumes requires extensive domain knowledge and can be extremely time-
consuming and error-prone. Recently, self-supervised learning (SSL) [9, 25, 18, 45, 7, 72, 51] has
emerged in medical vision to pretrain a segmentation backbone (e.g. UNet) leveraging large scale
unlabelled data, to serve as a better initialization before finetuning the model with limited annotation.
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As one of the most successful learning paradigms in SSL, contrastive learning pulls closer the
representations of positive pairs (i.e. the same image under different augmentations), while pushing
apart the negative pairs (i.e. different images) [9, 28, 10, 25, 46, 11, 12]. However, in medical images,
strong anatomical similarities often exist across different images, resulting in an increased number
of false negative samples which is detrimental to the representation learning process. Therefore,
heuristics about relationship across different images are utilized to constitute positive pairs, such
as encouraging the global representations of 2D slices at similar volumetric positions [7, 72] to
be close. To further benefit pixel-level tasks such as segmentation, local representation learning
methods [7, 51] learn distinctive local representations by attracting patch features at the same position
from two augmented views [7], or across registered intra-subject volumes [51]. Nevertheless, the
potential dependencies among patch features that are spatially distant are not properly taken into
account. Such region-awareness can be enhanced by attracting spatial features points with the same
semantics [35, 27, 38, 75, 1]. However, their training requires segmentation ground truth, which
limits their applicability in medical vision when adequate annotation is unavailable.

In this paper, we incorporate the long-range spatial dependencies into the UNet backbone with a
plug-and-play keypoint-augmented fusion layer (KAF layer), accompanied by keypoint-enhanced
global and local objectives for pretraining the network with self-supervision. To do so, we first
identify a set of sparse keypoint locations from the input image. On the output feature map of each
UNet encoder block, the keypoint features are sampled from the convolutional feature map, and the
attention among them are modeled through a Vision Transformer. The output is then scattered back
to the feature grid, and gets fused to the original CNN feature, to explicitly provide clues on the
spatial long-range dependencies. Further, we propose the global and local self-supervised learning
objectives to pretrain the keypoint-augmented fusion layer -enhanced network. The global contrastive
loss is applied on both the UNet bottleneck feature, as well as keypoint-augmented global feature
obtained by aggregating the multiscale keypoint features. To further benefit pixel-level down-stream
tasks, we identify the correspondence among keypoints across different image slices and maximize
their feature similarities with a local self-supervised objective.

Our contributions are threefold. (1) We develop a plug-and-play keypoint-augmented fusion layer
that augments the convolutional feature map with long-range dependencies among keypoint features.
When trained with only limited annotation, our proposed KAF layer achieves noticeably better results
than the CNN-only and/or Transformer-based backbone. (2) We further propose the keypoint-aware
global and local self-supervised learning objectives to pretrain our model before finetuning it with
annotations. (3) We conduct extensive experiments on three MRI and CT datasets, and achieve
state-of-the-art few-shot segmentation results, verifying both architecture advantage of the proposed
layer and our pretraining strategies.

2 Related Work

Biomedical Image Segmentation is the process of dividing images into various segments or regions
and isolating certain structures of interest in modalities such as magnetic resonance imaging (MRI) and
computed tomography (CT) [50, 37]. UNet [52] is the pioneering method for addressing biomedical
image segmentation tasks using deep learning. Subsequent research aims to enhance or apply the
UNet model in various ways, such as extending to 3D volumes [44, 64], auto-configuration [29],
altering skip connections [77, 66], and replacing and/or combining the convolutional backbone
layers with Transformers [23, 5, 22, 30]. However, a common limitation shared by all end-to-end
methods lies in the requirement of large-scale and high-quality biomedical annotations which are
both time-consuming and requires expert knowledge [52]. This limitation underscores the need for
novel methods that can learn effectively with fewer or without annotations.

Self-Supervised Learning (SSL) learns meaningful representations from unlabeled datasets with
self-supervised objectives, and the pretrained network constitutes a better initialization than random
initialization when it is finetuned on downstream tasks with limited label supervision, e.g., classifica-
tion or segmentation. Existing SSL algorithms either define pretext tasks with heuristics, or employ
self-supervised objectives to learn invariance and/or equivariance of image features. Early pre-text
tasks based pretraining designs objective that does not require additional labels, such as rotation
prediction [18], context restoration [48], reconstruction [32], among others [24, 42, 15]. Recently,
contrastive learning has become a prevailing paradigm in SSL and has shown great success in both
natural image [6, 59, 78, 63, 76] and medical vision [7, 72, 51, 58, 71, 70, 56, 49, 8, 62, 16, 47, 73, 68].
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It enforces similar representations between positive pairs and distinct representations between neg-
ative pairs. Typically, similarity is determined in an unsupervised way, i.e., the same image under
different transformations are recognized as positive pairs, whose global representations should remain
invariant, and features from different images are pulled apart. In medical images, heuristics about
relationships among different images are also utilized to define positives, e.g., 2D slices at similar
volumetric positions [7, 72], or local patches at the same location from intra-subject volumes [51].

Long-Range Dependency generally cannot be well captured in CNN due to its locality nature, thus
neglecting the potential relationship across spatially distant local regions that possess high semantic
consistency. To tackle the limitation, existing works focus on either (1) architectural design that
injects long-range attention, or (2) SSL objectives that explicitly enforce regional similarity. For
the first line of research, a series of non-local networks have been proposed. For instance, Vision
Transformer (ViT) [14] enables self-attention on uniformly sampled image patches and has been
incorporated into CNN backbones for segmentation tasks [22, 5, 36, 26]; [54, 43, 20, 65] adopt
graph networks to model dependencies among context, keypoints or boundaries. The other line of
research captures regional correlation with customized contrastive formulation objective, typically in
a label-supervised manner [35, 27, 75, 1, 38], where local features within the same semantic label
form the positive pairs. In our setting, we eliminate the need of segmentation labels via establishing
correspondence among detected keypoints and apply local self-supervision on the keypoint features.

Keypoint Descriptors have been successfully exploited in various domains to improve the perfor-
mance on tasks such as pose estimation [19, 4], image generation [57] and object detection [79, 17].
Specifically, in biomedical imaging, keypoint descriptors have found applications in a variety of areas,
including anatomy object classification [31], medical image retrieval [74], segmentation tasks [69, 61],
motion estimation of organs [53], and medical image registrations [21, 3]. They aim to incorporate
sparse and localized key points into the training process, in order to attend the network to the most
important features within the image. This is typically done via first localizing a sparse set of keypoint
locations in the image, where keypoint features are obtained and their interactions are modeled.
Finally, the feature is aggregated and used for downstream task prediction. In this work, we propose
to inject learnable keypoint descriptors into the UNet building block so that the network is able to
model complex long-range attention without a significant increase in computational cost.

3 Methodology

Fig. 1 illustrates an overview of the proposed method. Built upon a segmentation backbone (i.e.,
UNet), we attach our proposed keypoint-augmented fusion layer (Sec. 3.1) after each convolutional
block, to inject long-range self-attention into the original convolutional feature map. Further, we
propose both global and local self-supervision (Sec. 3.2) to pretrain the network before finetuning
with limited annotation.

3.1 Keypoint-Augmented Fusion (KAF) Layer

The proposed KAF layer is diagrammed in the red dashed box in Fig. 1. Given an input image
X ∈ RW×H×C , we start with detecting keypoints K ∈ RN×2 using a keypoint detector Dk :
RW×H×C → RN×2. In particular, we employ the Scale-Invariant Feature Transform (SIFT) [41].
We note that alternative keypoint detection methods can also be applied, and we have included the
ablation in the appendix. At l-th layer of the 2D UNet, we acquire N CNN features F l

k ∈ RN×Cl

from the dense convolutional feature map F l ∈ RW l×Hl×Cl

, based on the keypoint coordinates
Kl. Note that at each scale, Kl is acquired by re-scaling K with the resolution ratio between the
input image and the feature map. Then, we map the keypoint features to the embedding space
with dimension E ∈ R with a projector ϕ : RN×Cl → RN×E . We use a single-layer MLP
in our implementation as the projector. The embedded features are then fed into a Transformer
T : RN×E → RN×E to learn the self-attention among keypoints. and we define the transformed
feature as U l ∈ RN×E (which is further used as the keypoint feature at layer l for calculating the
SSL losses). Additionally, to properly propagate the keypoint features learned at the current scale l to
l+1 within the convolutional UNet, U l is scattered back into the feature grid indexed by the rescaled
keypoint position Kl. The output is sparse feature map F l

s which retains information exclusively at
the keypoint positions, and the rest of the feature map are assigned with zeros.
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Figure 1: Top: The overview of the proposed SSL framework that incorporates both local and global
self-supervision with the keypoint guidance. The UNet decoder is omitted for better readability.
Bottom: The proposed Keypoint-Augmented Fusion Layer (KAF layer), which learns long-range
spatial dependencies among localized keypoint features. We insert the KAF layer after each encoder
block of the UNet backbone to augment the original convolutional features.

We further attach a two-layer CNN Dl to diffuse the sparse keypoint feature map into a dense image
feature. Lastly, we concatenate the diffused keypoint feature map with the input feature map F l,
constituting the final output of the proposed layer, represented as F l

o = Concat(F l,Dl(F l
s)).

3.2 Keypoint-Augmented Self-Supervised Learning

Furthermore, we design the global and local self-supervised learning algorithms to enhance the
keypoint-augmented feature learning, thus the learned feature representations can be well generalized
to different downstream tasks through finetuning.

Global SSL Loss. In order to apply a global contrastive loss (e.g., [9, 72]) that learns image wise
feature similarity, we first aggregate multiscale keypoint features and extract a keypoint-enhanced
global representation for each input image. Specifically, keypoint features from four encoder blocks
are first concatenated as Concat(U1, U2, U3, U4), which is then fed into a Multilayer Perceptron
(MLP) to get a global feature gi, where i is the index of the input image from the dataset. In our
training, we adopt the global contrastive loss from PCL [72] on the keypoint-enhanced global feature,
which assumes 2D slices within a certain positional distance (within the 3D volume) threshold to be
anatomically similar and constitute similar pairs. Formally, the global self-supervised learning loss
function can be formulated as:

Li
global = − 1

|Ω+
i |

∑
j∈Ω+

i

log
e

sim(gi,gj)

τ∑2N
k=1 1i ̸=k · e

sim(gi,gk)

τ

, (1)

where sim(·, ·) is the cosine similarity between two vectors in the embedding space, τ indicates the
temperature term. Ω+ is the set of positive images to the input xi.

We additionally keep the global contrastive loss applied on the features from the last layer of the UNet
encoder, as commonly done in existing SSL literature [72, 7, 9]. To do so, a global pooling layer
transforms the feature F last from RW last×Hlast×Clast

to R1×Clast

. Afterward, an MLP projector is
applied to obtain the global embedding for contrastive objectives, denoted as ci. Similar to Eq. 1, the
loss can be formulated by substituting gi with ci and gj with cj in Eq. 1. As we adopt PCL loss [72]
to the global CNN feature, we denote this loss as Li

PCL in the following context.

Local SSL Loss. While [72] only considers image-wise similarity based on the slice positions,
we claim that pixel-wise similarity across slices should also be exploited to supervise the keypoint
feature learning, enhancing fine-grained and localized control of the learned representation. We
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leverage the intrinsic structural correlation in 3D medical imaging, where nearby slices display strong
local similarities. For instance, in cardiac imaging, anatomical structures such as blood vessels and
ventricles span across multiple 2D slices within the 3D volume. Therefore, keypoints within a certain
spatial distance from adjacent slices are likely to be semantically correlated and form positive pairs.

In order to locate the correspondence for each keypoint, we define two major criteria based on
heuristics: (1) the spatial distance in the 2D plane between two correspondences should be within a
threshold; (2) the distance between their SIFT features should be similar. Correspondingly, we first
sample two positive slices along with their keypoints (Xi,Ki) and (Xj ,Kj), where the positional
distance between Xi and Xj fall within the positive threshold defined in [72]. For each keypoint
a ∈ Xi, we aim to find its correspondence from Xj . We do so by first filtering out a set of keypoints
whose Manhattan distances with a is less than a predefined threshold. Then, we find the keypoint
b as the correspondence of a based on the closest L2 distance of the SIFT features. Once matched,
(a, b) is added into the groundtruth match set M ⊂ A×B. However, if no points in slice Xj meet
the criteria, the candidate point a is treated as a negative sample and added to the unmatched set
I ⊆ A. Similarly, for slice Xj , the candidate point without match is added to the unmatched set
J ⊆ B. M, I,J are then used as the groundtruth for the keypoint feature matching detailed below.

We repurpose SuperGlue [54] as the backbone method to learn the correspondence between keypoint
features on slice Xi and keypoints on slice Xj , supervised by the correspondence extracted above.
We first compute the feature associated with keypoints Ui = Concat(U1

i , U
2
i , U

3
i , U

4
i ), and Uj =

Concat(U1
j , U

2
j , U

3
j , U

4
j ), along with their groundtruth matches M and unmatched sets I and J .

Then, SuperGlue takes Ui, Uj , Ki, and Kj as inputs and computes an output P̄ ∈ R(Ni+1)×(Nj+1)

through self- and cross- graph message passing. Here, P̄a,b represents the probability that keypoint
a ∈ Ki matches with b ∈ Kj . Given M, I, and J , we minimize the negative log-likelihood of the
assignment P̄ , formulated as follows:

Li
local = −

∑
(a,b)∈M

log P̄ a, b−
∑
a∈I

log P̄a,Ni+1 −
∑
b∈J

log P̄Nj+1,b. (2)

By establishing such localized correlation among keypoint features, we assume the network is able to
better recognize local correspondence even when the input image undergoes various transformations.
Such localized correlation ensures that the network can maintain a consistent understanding of the
relationships between keypoint features, regardless of changes in the image appearance or orientation.
Our assumption is empirically verified from the computed equivariant self-attention map shown in
Fig. 3.

Total SSL Loss. With the proposed keypoint-augmented fusion layer integrated into existing CNN
backbone, the model can be pretrained with the above global and local losses, optionally with existing
global contrastive loss (in our case, PCL [72]). The final objective is:

Ltotal = w1 · LPCL + w2 · Lglobal + w3 · Llocal, (3)

where the coefficients w1, w2, and w3 are employed to balance the contributions of each term. In our
experiments, we use a grid search method to optimize these coefficients.

4 Experiments

Datasets. We conduct experiments on two publicly accessible cardiac MRI datasets for the task of
segmentation under limited annotation. For fair benchmarking, we follow the same preprocessing
steps as [72]. For each cross-validation fold, N images are held-out for validation, and varying M
images from the remaining images are used for the few-shot training. We additionally include results
on a non-cardiac CT dataset Synapse1 in the appendix to illustrate the generalization of our method.

CHD (Congenital Heart Disease) [67] is a CT dataset consisting of 68 3D cardiac images, covering
patent ages ranging from 1 month to 21 year. It includes 14 types of congenital heart disease and the
segmentation labels consists of seven distinct substructures: left ventricle (LV), right ventricle (RV),
left atrium (LA), right atrium (RA), myocardium (Myo), aorta (Ao), and pulmonary artery (PA). For
each cross-validation fold, N=18 images are used for validation, and M images are selected from the
remaining 50 images for few-shot training.

1https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
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Table 1: Benchmark results on CHD and ACDC datasets under both random initialized weights, and
pretrained weights from SSL. M is the number of patients used in supervised training. We perform
5-fold cross-validation and the mean (standard deviation) dice scores are reported.

CHD (68 patients in total)
Init. Method M=2 M=6 M=10 M=15 M=20 M=30 M=51

Random

UNet [52] 0.184(.06) 0.508(.06) 0.584(.05) 0.627(.05) 0.658(.04) 0.693(.04) 0.754(.02)
Swin-Unet [5] 0.291(.07) 0.543(.07) 0.624(.04) 0.675(.05) 0.717(.04) 0.732(.05) 0.784(.03)
SwinUNETR [58] 0.345(.07) 0.565(.06) 0.638(.05) 0.682(.06) 0.711(.05) 0.725(.06) 0.785(.03)
Ours 0.344(.05) 0.576(.07) 0.646(.03) 0.686(.03) 0.706(.03) 0.728(.04) 0.778(.03)

SSL
pretrain

Rotation [18] 0.171(.06) 0.488(.07) 0.575(.04) 0.625(.04) 0.651(.04) 0.691(.04) 0.749(.03)
PIRL [45] 0.196(.07) 0.504(.08) 0.617(.05) 0.658(.03) 0.674(.04) 0.714(.04) 0.761(.03)
SimCLR [9] 0.192(.06) 0.515(.06) 0.599(.06) 0.631(.05) 0.666(.05) 0.699(.05) 0.756(.03)
GLCL-global [7] 0.255(.10) 0.564(.04) 0.646(.03) 0.669(.04) 0.697(.04) 0.725(.04) 0.766(.03)
GLCL-full [7] 0.286(.06) 0.555(.07) 0.614(.06) 0.666(.04) 0.694(.04) 0.733(.04) 0.772(.03)
CAiD [56] 0.265(.08) 0.581(.06) 0.647(.04) 0.684(.04) 0.700(.04) 0.737(.04) 0.771(.02)
PCL [72] 0.356(.08) 0.600(.06) 0.661(.05) 0.686(.05) 0.716(.04) 0.735(.05) 0.774(.03)
Ours 0.392(.06) 0.636(.06) 0.693(.03) 0.712(.03) 0.728(.04) 0.754(.04) 0.788(.03)

ACDC (100 patients in total)
Init. Method M=2 M=6 M=10 M=15 M=20 M=30 M=80

Random

UNet [52] 0.588(.07) 0.782(.03) 0.840(.03) 0.876(.01) 0.894(.01) 0.909(.01) 0.928(.00)
Swin-Unet [5] 0.181(.07) 0.483(.09) 0.610(.05) 0.700(.04) 0.735(.02) 0.772(.01) 0.870(.01)
SwinUNETR [58] 0.567(.04) 0.740(.07) 0.799(.05) 0.850(.02) 0.881(.01) 0.904(.01) 0.922(.00)
Ours 0.655(.05) 0.827(.05) 0.871(.02) 0.897(.01) 0.901(.01) 0.915(.00) 0.927(.00)

SSL
pretrain

Rotation [18] 0.572(.08) 0.809(.03) 0.868(.02) 0.886(.01) 0.898(.01) 0.910(.01) 0.925(.00)
PIRL [45] 0.492(.03) 0.823(.04) 0.865(.01) 0.880(.02) 0.896(.02) 0.912(.01) 0.927(.00)
SimCLR [9] 0.352(.06) 0.725(.08) 0.824(.04) 0.869(.02) 0.894(.01) 0.913(.01) 0.927(.00)
GLCL-global [7] 0.636(.05) 0.803(.04) 0.872(.01) 0.891(.01) 0.902(.01) 0.913(.01) 0.927(.01)
GLCL-full [7] 0.642(.06) 0.802(.03) 0.877(.01) 0.891(.01) 0.904(.02) 0.912(.00) 0.927(.00)
CAiD [56] 0.483(.11) 0.822(.02) 0.879(.02) 0.896(.01) 0.905(.00) 0.914(.00) 0.926(.00)
PCL [72] 0.671(.06) 0.850(.01) 0.885(.01) 0.904(.01) 0.909(.01) 0.919(.00) 0.929(.00)
Ours 0.741(.03) 0.873(.01) 0.895(.01) 0.908(.01) 0.915(.00) 0.921(.00) 0.930(.00)

ACDC (Automatic Cardiac Diagnosis Challenge) [2] is a MRI dataset consists of cardiac images
from 100 patients under several different pathologies. Manual expert segmentation of the RV, LV
cavities, and Myo are conducted for the volumes from end-diastolic and end-systolic phase. For
each cross-validation fold, N = 20 images are used as the validation set, and M images from the
remaining 80 images are used for supervised finetuning.

Baselines and Evaluation Settings. We evaluate segmentation performance trained with limited
annotation under both (1) random initialized network backbones (UNet v.s. Ours) to verify the
architectural advantages of the proposed keypoint-augmented fusion layer. (2) pretrained weights
from our self-supervision compared with various self-supervised pretraining methods including
pre-text tasks [18, 45] and contrastive learning [9, 7]. We quantify the segmentation performance via
the Dice coefficient with five-fold cross validataion following the set up in [72]. Additionally, we
conducted ablation studies to isolate each component in the pipeline to assess individual effects.

Implementation Details. For network configuration, we build our framework on 2D UNet, and set
the starting number of channels of the network as 32 for CHD, and 48 for ACDC. Five convolutional
blocks are included in the encoder and four blocks are used within the decoder. Each block contains
two convolution layers, followed by batch normalization, and ReLU activation. Each encoder block
downsample the feature map by a factor of 2, while simultaneously doubling the number of channels.
In between the first four encoder blocks, we further append the proposed keypoint-augmented fusion
layer , and concatenate the output to the original convolutional feature map (Fig. 1). Each Transformer
inside KAF layer consists of six self-attention layers, and the comparison among different number of
self-attention layers are presented in ablation study below. For pretraining, we assign loss weights
w1, w2, w3 to 1.0, 1.0, and 0.01, respectively. We employ the SGD optimizer with a learning rate of
0.002 and batch sizes of 32 for CHD and ACDC. A cosine learning rate scheduler is utilized, with
the minimum learning rate set to 0. We pretrain the model for 50 epochs. For finetuning, we use
the standard cross-entropy loss with the Adam [33] optimizer, with learning rates of to 5× 10−5 for
CHD, 5× 10−4 for ACDC. The batch size is set to 10, and we finetune on CHD for 100 epochs and
on ACDC for 200 epochs. Additional implementation details are provided in the appendix.
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Figure 2: Few-shot segmentation results. Colomn (a)-(c) show a comparison among the UNet
backbone, SwinUNETR [58], and our proposed backbone trained on limited dataset with random
weight initialization. Our architecture allows for reduced false positive and improved segmentation
accuracy. Column (c)-(e) compares our pretraining strategy with the existing state-of-the-art SSL
methods [7] and [72]. When finetuned with small number of labeled dataset, our method presents
higher coherence with the reference image (column (f)). The number beneath each prediction
represents the dice value for the displayed slice. For better readability, we scale the value by 100.

Segementation Results without Pretraining. To verify the benefits of the proposed layer, we start
with analyzing the performance gain without any pretraining, to isolate and evaluate the impact solely
attributed to the architectural change on top of the UNet backbone. Specifically, we train the randomly
initialized UNet and our backbone with varying limited number of training data, and the results
are shown in Table 1 under Init.Random. Compared with the UNet backbone with an identical
number of convolutional blocks and network configurations, introducing KAF layer consistently and
significantly improves the segmentation results on both datasets across various training sample sizes.
The empirical findings strongly support our assumption that incorporating long-range dependencies
into the segmentation backbone is crucial and helps better modeling and utilizing regional image
information when only limited annotations are available. Notably, our network demonstrates superior
performance over the UNet baselines when the training size is extremely small. For instance, when the
sample size is reduced to two (M = 2) on the CHD dataset, the inclusion of KAF layer leads to 87%
performance gain in dice score over UNet. We also include Transformer-based UNets [5, 58], which
also consider long-range spatial dependencies. Our observation is consistent with the conclusion
in [5], where Transformers may be more severely affected by the initialization and require large M in
order to perform well, while method obtain much better results when only limited data is available.

Fig. 2 Random Initialization shows a visual comparison of the segmentation between UNet
and Ours. While both methods suffer from sub-optimal generalization ability on the input image
from the unseen validation set, our method largely reduces false positive prediction and presents
higher similarity with the reference image on the right. Such improvement can be attributed to the
utilization of keypoints, which enhances the feature learning process by directing attention to a more
constrained set of regions rather than the entire image space. we deduce that this focused awareness
contributes to better localization of important features thus leading to better semantic segmentation.

Segmentation Results with Pretraining and Finetuning. To further enhance the segmentation
performance and promote better generalization of our model, we pretrain the network with the
proposed SS objectives and leverage the pretrained weights as the initialization for fine-tuning on
the same amount of labeled dataset. Quantitative results are shown in Table 1 under the tab SSL
pretrain initialization, where benchmarking is conducted across existing state-of-the-art SSL
pretraining methods. Notably, our pretraining technique yields significant improvements in few-shot
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Table 2: Ablation study of our framework over (1) architecture design: the number of self-attention
layers within the transformer (#T), scales to insert KAF layer (l1, · · · , l4); and (2) pretraining hyper-
parameters (w1, w2, w3). Five-fold cross-validation results on both datasets are reported.

Init. Exp Architecture design Pretraining Dice

#T l1 l2 l3 l4 w1 w2 w3 CHD (M=15) ACDC (M=6)

Random

A 9 0 0 0 0 - - - 0.627(.05) 0.782(.03)
B 9 1 1 1 0 - - - 0.658(.04) 0.806(.04)
C 9 1 1 0 1 - - - 0.677(.04) 0.817(.04)
D 9 1 0 1 1 - - - 0.667(.04) 0.814(.04)
E 9 0 1 1 1 - - - 0.666(.04) 0.811(.04)
F 9 1 1 1 1 - - - 0.686(.03) 0.827(.05)
G 6 1 1 1 1 - - - 0.690(.03) 0.824(.03)
H 3 1 1 1 1 - - - 0.677(.03) 0.814(.03)

SSL pretrain

I 9 1 1 1 1 1 0 0 0.699(.04) 0.867(.02)
J 9 1 1 1 1 0 1 0 0.701(.03) 0.865(.02)
K 9 1 1 1 1 1 1 0 0.711(.03) 0.865(.01)
L 9 1 1 1 1 1 1 0.01 0.712(.03) 0.873(.01)

segmentation tasks compared to the random initialization. Moreover, in comparison to alternative
pretraining strategies that do not incorporate long-range dependencies, our method consistently
achieves state-of-the-art dice scores across different numbers of training subjects for both datasets,
demonstrating the benefits of the proposed keypoint-augmented SSL objectives. In Fig. 2 SSL
initialization, we present visual comparisons between our method and the best-performing SSL
methods GLCL [7] and PCL [72]. Visually, we observe that GLCL tends to produce false positives or
incorrectly labels the anatomy, as evidenced by the CHD result. Conversely, PCL tends to generate
false negatives, as observed in the ACDC example. In contrast, our proposed method achieves the
highest level of similarity with the reference image, accurately capturing the desired anatomical
structures. These visual comparisons further reinforce the effectiveness and superior performance of
our approach in comparison to existing SSL methods.

Ablation Study. As our proposed framework consists of both architectural change on the UNet
building blocks and pretraining strategy, we conduct ablation analysis over different architectural
configurations and pretraining objectives, with results presented in Table 2. Additional ablations on
keypoint detection method and threshold for identifying correspondence are provided in the appendix.

Architecture (Exp A-H). We start with architectural analysis by training different randomly initialized
backbone networks under different configurations over the number of self-attention (#T) within the
KAF layer , and the injection of KAF layer at different encoder scales l1, · · · , l4.

Exp A represents a UNet backbone without the use of KAF layer . With the same #T, Exp F inserts
four KAF layer after each of the encoder layer. A significant performance gain was obtained on
CHD by 0.06, and on ACDC by 0.04. To analyze layerwise effects, we remove one KAF layer each
time from Exp B-E, and observe a degradation in performance, indicating the importance of utilizing
a multiscale setting. We observe that the last layer plays the most crucial role in achieving superior
segmentation results. In addition, we investigate the effect of the number of self-attention within the
Transformer used in our architecture in Exp F-H. We observe that the performance reaches a plateau
with #T = 9, and when it reduces to 3, the performance further degrades. Nevertheless, Exp H still
overperforms Exp A, indicating the benefits of introducing long-range self-attention.

Pretraining Strategy (Exp I-L). On the architectures of Exp F, we further add the proposed pretrain-
ing strategies, and isolate the different loss weights during the training. w1, w2 indicate the global
PCL loss applied on the convolutional feature and keypoint features respectively, w3 indicates the
local loss weight (See Eq. 3). Compared with single global loss on either the global CNN feature
(Exp I) or the keypoint feature (Exp J), a combination of the two terms (Exp K) shows improved
results on CHD. The best performance is achieved with a combination of both global and local loss
(Exp L). Additional weight tuning details are provided in appendix.

Qualitative Analysis of the Learned Self-Attention. In Fig. 3, we qualitatively compare the learned
self-similarity from our pretraining, with the established PCL [72] (global), and GLCL [7] (global
and local) pretraining. Given an input image x, we perform two random transformations T1 and T2

to obtain a simulated positive pairs in contrastive set up. A query point is randomly sampled from
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Figure 3: Learned multiscale self-similarity between the query point feature (star) and all other
feature points within the same feature map from the UNet encoder. The comparison between (a) and
(b), (d) and (e) indicates that our method maintains better invariance of the local feature self-similarity
under different transformations. Additionally, the coherence between (b) and (c), (e) and (f) verify
that our method learns better equivariance. Details are elaborated in Sec. 4.

the x and gets transformed to T1(x) and T2(x) respectively (stars in Fig. 3). The image is fed into
the pretrained network, and the feature map from the i-th layer is obtained. The self-similairty S is
computed as the dot product between the query point feature and other feature points within the same
map. Fig. 3 visualizes the self-attention from the third and fourth layer of the pretrained UNet (l3, l4).

We observe two major differences between our method and PCL and GLCL: (1) our keypoint-
augmented fusion layer helps the network to concentrate its attention on more constrained sub-regions.
For example, both PCL and GLCL tend to learn high response values between the query point and
background regions (e.g., Fig. 3 (b), (e)), whereas our method exhibits a more refined attention
mechanism, directing the focus of the query point towards anatomically relevant regions, which helps
the model to capture and leverage important features within the desired regions, leading to improved
segmentation performance. (2) our proposed self-supervision helps maintain better local equivariance
of the self-attention, i.e., with the same query point location, its interaction with other points remains
identical no matter how the image is transformed. This is verified by a comparison between Fig. 3 (a)
v.s. (b), and (d) v.s. (e), where our method achieves the best consistency of the local similarity when
features are extracted from the image with different transforms.

Additionally, we calculate the self-attention based on the input image x and transform the resulting
similarity map using T2. The transformed similarity map is expected to exhibit a high level of
coherence with the similarity map obtained from the transformed input. Compared with PCL and
GLCL, our method demonstrates stronger consistency between (b) and (c), as well as (e) and (f),
which validates the advantage of introducing the keypoint-augmented self-supervised learning.

5 Discussion

In this work, we present a keypoint-augmented fusion layer to incorporate long-range dependencies
into the UNet-based segmentation framework, accompanied by global & local SSL objectives for
pretraining. Open questions exist and will be included in future work. Currently, our backbone is
built upon 2D UNet following [72, 7], while 3D UNet naturally serves as a better baseline in many
biomedical segmentation tasks [51]. Although our method is generic and can be scaled up to 3D
data, it may require different architectural configurations to accommodate the increasing number of
keypoints within the 3D volume. Besides, our assumption for identifying correspondence may fail in
3D volume with the sparse acquisition, when the neighboring slices no longer maintain semantically
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similar structures. Therefore, more robust and complicated criteria for obtaining the correspondence
is required.
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A Additional Experiments

More comparison with Transformers As we pointed out in the main text, Transformer-based
architecture may be extremely sensitive to weight initialization, and may benefit from effective
pretraining. Therefore, we further pretrain the SwinUNETR with two SSL strategies: PCL [72]
and the self-supervised loss proposed in [22] (in Tabel 3). Both of these pretraining methods led to
observable improvements over random initialization, while our proposed method still achieved the
best performance.

Table 3: Comparison with Transformer-based methods on CHD and ACDC datasets under both
random initialized weights, and pretrained weights from SSL. M is the number of patients used
in supervised training. We perform 5-fold cross-validation and the mean (standard deviation) dice
scores are reported.

CHD (68 patients in total)
Init. Method M=2 M=6 M=10 M=15 M=20 M=30 M=51

Random SwinUNETR-3d [58] 0.040(.01) 0.189(.03) 0.332(.08) 0.420(.06) 0.472(.05) 0.504(.05) 0.577(.06)
Ours 0.344(.05) 0.576(.07) 0.646(.03) 0.686(.03) 0.706(.03) 0.728(.04) 0.778(.03)

SSL
PCL (Swin-Unet) [5] 0.321(.05) 0.556(.06) 0.658(.03) 0.692(.04) 0.722(.04) 0.747(.04) 0.783(.03)
PCL (SwinUNETR) [58] 0.343(.06) 0.576(.07) 0.644(.05) 0.692(.06) 0.714(.05) 0.730(.05) 0.786(.03)
Ours 0.392(.06) 0.636(.06) 0.693(.03) 0.712(.03) 0.728(.04) 0.754(.04) 0.788(.03)

ACDC (100 patients in total)
Init. Method M=2 M=6 M=10 M=15 M=20 M=30 M=80

Random SwinUNETR-3d [58] 0.391(.07) 0.466(.05) 0.545(.05) 0.603(.03) 0.629(.03) 0.679(.02) 0.735(.01)
Ours 0.655(.05) 0.827(.05) 0.871(.02) 0.897(.01) 0.901(.01) 0.915(.00) 0.927(.00)

SSL
PCL (Swin-Unet) [5] 0.292(.09) 0.577(.07) 0.702(.04) 0.742(.03) 0.798(.02) 0.825(.02) 0.878(.01)
PCL (SwinUNETR) [58] 0.547(.05) 0.759(.05) 0.808(.05) 0.850(.03) 0.882(.01) 0.904(.01) 0.923(.00)
Ours 0.741(.03) 0.873(.01) 0.895(.01) 0.908(.01) 0.915(.00) 0.921(.00) 0.930(.00)

Ablation on keypoint detection method While we use SIFT as keypoint detector, it can be replaced
with other learning based SoTA methods as well. We used a pretrained keypoint detection model
Superpoint [13] as an alternative to SIFT. Segmentation results on CHD and ACDC dataset are
reported below comparing two methods, and the results indicate that our method is not sensitive to
different keypoint detection algorithms. Overall, Superpoint leads to slightly lower results, and we
speculate this was due to the pretraining was done on natural images (COCO dataset).

Table 4: Segmentation results (dice scores) with different keypoint detection methods (M=2).

Init. Keypoint detector CHD ACDC

Random Init. SuperPoint [13] 0.643(.04) 0.810(.02)
SIFT 0.686(.03) 0.827(.05)

SSL Pretrain SuperPoint [13] 0.703(.03) 0.865(.02)
SIFT 0.712(.03) 0.873(.01)

Sensitivity of the keypoint correspondence To verify how sensitive the method is to the number of
matching keypoints, we perform an ablation on different threshold values, to pretrain our model on
the CHD dataset , and finetune it on M=15 labeled data. Global losses ( w1 = w2 = 0) are turned off
to isolate the effects of the threshold for the local SSL loss. The dice scores are reported in Table 5,
indicating that our model is not sensitive to the threshold setting and remains robust across different
values. We also visualize the correspondence and the number of matching keypoints under different
threshold values in Fig 4.
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Table 5: Dice scores under different keypoint correspondence threshold values. Overall, we observe
that the results are not sensitive to specific threshold values.

Threshold Dice

5 0.689 (0.043)
10 0.690 (0.031)
15 0.684 (0.035)
20 0.689 (0.036)
25 0.684 (0.032)
30 0.685 (0.033)
35 0.690 (0.037)
40 0.687 (0.037)

Figure 4: Sensitivity analysis of the Manhattan distance, illustrating the correspondence found under
the specified Manhattan distance threshold.

Additional dataset We include experiments on a non-cardiac multi-organ CT segmentation dataset
to evaluate the generalization of our method. Results are reported below. With 2 training subjects, we
tested the performance of the model under both random and SSL pretrained initialization. In both
scenarios, our method outperformed the existing works.

Table 6: Segmentation results on Synapse dataset, where finetuning is done on M=2 subjects out of a
total of 18 subjects.

Init. Method Dice (M=2)

Random

Unet [52] 0.253(.06)
Swin-Unet [5] 0.198(.04)
SwinUNETR [58] 0.279(.06)
Ours 0.289(.06)

SSL

PCL [72] 0.306(.05)
Swin-Unet (with [72]) 0.210(.07)
SwinUNETR (with [72]) 0.304(.06)
Ours 0.322(.06)
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Ablation on UNet Channels (Double Channels). In our implementation, we augment the convolu-
tional UNet features by concatenating them with features learned from KAF. Introducing KAF layers
leads to an increase in the total number of parameters of the final KAF-enhanced UNet. Specifically,
the number of channels for the second, third, and fourth blocks in the KAF-enhanced UNet become
twice as large as the original UNet. For a more fair comparison, we construct a non-KAF UNet
(‘UNet(c2)’ in Tab. 7) with the same amount of parameters in convolutional layers as our model
by duplicating the features of the first, second, third, and fourth blocks from the UNet baseline
(‘UNet(c1)’ in Tab. 7) and concatenated each with itself. The segmentation results are presented
in Table 7. UNet(c1) indicates the UNet backbone, and UNet(c2) denotes the larger UNet whose
convolutional parameters matched our model. They indicate that widening the network’s architec-
ture by increasing the input channel size can improve its performance. However, the performance
enhancement is even more substantial with our modified layer. This suggests that incorporating
features beyond simple convolution into the network architecture can further enhance the network’s
performance.

Table 7: Performance comparison among standard UNet (UNet(c1)), a larger UNet with duplicated
input channels (UNet(c2)), and UNet augmented with features derived from KAF (Ours). The results
indicate that using a larger UNet slightly improves the segmentation performance. Our proposed
KAF-enhanced UNet further boosts the performance significantly compared with UNet(c2).

Sample M dataset Method mean/std #params

15 CHD UNet(c1) 0.627(.05) 7.8 M
15 CHD UNet(c2) 0.646(.04) 27.9 M
15 CHD Ours 0.712(.03) 71.7 M
6 ACDC UNet(c1) 0.782(.03) 17.5 M
6 ACDC UNet(c2) 0.796(.03) 62.8 M
6 ACDC Ours 0.873(.01) 106.8 M

Ablation on Correspondence Weights. To further investigate the contribution of the correspondence
loss to the performance of the pretraining weights, we conducted a study on the various combinations
of weights w1, w2, and w3, as defined in eq. 3, and results are reported in Table 8.

First, we study the effect of varying w3 by setting both w1 and w2 to 1. We experimented with values
of 0.1, 0.01, and 0.001 for w3. Among these, 0.01 yielded the best performance. In a subsequent
series of experiments, we set w1 to 0, intending to exclusively investigate the impact of the local
correspondence loss on the global KAF self-supervised learning (SSL) loss. When only w2 is set
to 1, the model achieves an dice of 0.701. Upon varying w3 while keeping w2 fixed at 1, in most
instances, incorporating Llocal yields performance better than with Lglobal only. This implies that
our local KAF correspondence SSL loss indeed offers a superior local minimum for downstream
tasks. When the weights are set to 1, 1, and 0, our model’s performance, at 0.689, still surpasses that
of a model trained from scratch (0.686). This suggests that using only Llocal could assist in finding a
more optimal starting point for fine-tuning. However, when compared to having only local losses,
global pretraining losses contribute more to enhancing performance.

Table 8: Additional assessment of weight of Llocal in pretraining to supplement Tab. 2 in the main
text. The results are all from pretraining on CHD and finetuning at M = 15.

w1 w2 w3 Dice

1 1 0.1 0.702(.04)
1 1 0.01 0.712(.03)
1 1 0.001 0.708(.04)

0 1 0.08 0.705(.03)
0 1 0.04 0.705(.03)
0 1 0.02 0.707(.03)
0 1 0.01 0.700(.03)
0 1 0.005 0.700(.03)
0 1 0.001 0.705(.03)

0 0 1 0.689(.04)
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KAF Layer in FCN. To validate the general usefulness of the KAF layer, we injected KAF layer
into a different segmentation backbone Fully Convolutional Network (FCN) [40] and compare the
results between the original FCN versus the KAF-enhanced FCN. Note that in the original FCN
implementation, VGG [55] was used as the encoder to gather multi-resolution features from different
layers. However, given the small training size of our dataset and the relatively high complexity of
VGG, we substitute the VGG encoder with a shallower CNN. Specifically, we replaced each block
in VGG with two convolution layers, aiming to create a more efficient model that better suits our
dataset and task.

The results of our experiment are reported in Table 9. We conduct trials with different training sample
sizes. The results verify that appending KAF layers to FCN boosts performance across all sample
sizes, with an average improvement exceeding 1%. Interestingly, we observed that FCN outperforms
UNet in tasks involving training from scratch. However, when we incorporated the KAF layer into
FCN, it did not surpass the performance of our layer applied to UNet. This could potentially be
attributed to our approach in this experiment; we did not undertake hyperparameter optimization but
instead directly added the layer we used in our main text to FCN. Therefore, compared to UNet, the
performance improvement is relatively smaller.

Table 9: Segmentation results on CHD dataset from a random initialized FCN backbone. The
column ‘With KAF’ indicates whether the proposed KAF layer is inserted to the backbone. The
results demonstrate that the integration of the KAF layer tends to improve the mean values across
different sample sizes, indicating an enhanced performance of the FCN when augmented with the
KAF layer.

Sample M With KAF Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean/Std

2 - 0.2259 0.2133 0.3297 0.311 0.3516 0.286(.056)
✓ 0.2517 0.2133 0.3392 0.3034 0.3794 0.297(.059)

6 - 0.4441 0.5462 0.5427 0.5918 0.4854 0.522(.052)
✓ 0.4495 0.5603 0.5652 0.6286 0.5535 0.551(.058)

10 - 0.4866 0.5584 0.6393 0.6613 0.6094 0.591(.063)
✓ 0.5632 0.6209 0.6381 0.6718 0.6383 0.626(.036)

15 - 0.5938 0.6356 0.6702 0.6926 0.6499 0.648(.033)
✓ 0.6157 0.6163 0.7117 0.6936 0.6537 0.658(.039)

20 - 0.6318 0.6422 0.7102 0.7383 0.6356 0.672(.044)
✓ 0.6382 0.6541 0.7112 0.7309 0.6806 0.683(.034)

30 - 0.6339 0.6558 0.7498 0.7701 0.6685 0.696(.054)
✓ 0.6841 0.6671 0.7507 0.7708 0.6973 0.714(.040)

51 - 0.7125 0.7287 0.7693 0.7755 0.7559 0.748(.024)
✓ 0.7087 0.7324 0.7711 0.7813 0.7661 0.752(.027)

Computation Analysis. As transformers [60] also incorporate long-range dependencies by learning
self-attention among uniformly distributed patches within the image, we compare the computational
differences of a SwinTransformer [39] and our model. Fig. 5 displays a comparison of GFLOPs and
GPU memory usage between our method and the SwinTransformer, given two specific variations:
the edge length of the input image and the number of self-attentions within each transformer.

In the left-side plot, the GFLOPs of our method vary by a constant value (around 130 GFLOPs)
as the depth of the attention map escalates. Conversely, this metric grows exponentially in the
SwinTransformer. The disparity arises because our method keeps the number of keypoints constant,
meaning that even as the edge length of the input image enlarges, the computation surge in the
attention map remains consistent. In contrast, transformer-based methods like the SwinTransformer
require a quadratic increase in computation to generate the attention map.

Our method demonstrates a slower growth rate in memory usage, particularly as the number of self-
attentions increases. In the SwinTransformer, the size of the attention map correlates quadratically
with the edge length of the image. However, our approach maintains a fixed number of input keypoints,
which stabilizes the attention map as a constant factor in memory usage.
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Figure 5: Comparison of GFLOPs and GPU memory usage between our method and the SwinTrans-
former [39]. The x-axis indicates the size of the image. We test models with different numbers of
self-attention blocks (20 or 100) within the transformer, represented by different colors. The results
illustrate that the GFLOPs of our method vary minimally with increasing attention map depth, and
the memory usage of our method increases at a slower rate with a growing number of self-attentions.
This highlights the efficiency of our method, especially with larger input image edge lengths and
more complex attention maps. We also denote the actual input size of CHD dataset (512 × 512)
and ACDC dataset (352 × 352), where our model is more computationally efficient than using a
transformer in both the GFLOPs and memory consumption.

Comprehensive 5-Fold Results. Our detailed examination of the five folds in the CHD and ACDC
datasets is exhibited in Table 10. We adhere strictly to the divisions as described in the Positional
Coding Learning (PCL) study [72], ensuring consistency and reliable comparison of results.

Table 10: The complete five-fold Dice results for CHD and ACDC.

Dataset Sample M Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean/Std

CHD 2 0.3085 0.3292 0.4649 0.4405 0.4178 0.392(.062)
6 0.5370 0.6527 0.6707 0.7076 0.6119 0.636(.058)
10 0.6382 0.6797 0.7252 0.7326 0.6900 0.693(.034)
15 0.6668 0.6892 0.7519 0.7458 0.6844 0.712(.035)
20 0.6738 0.7204 0.7629 0.7766 0.7051 0.728(.038)
30 0.7291 0.7324 0.8001 0.8014 0.7093 0.754(.039)
51 0.7385 0.7594 0.8148 0.8234 0.8048 0.788(.033)

ACDC 2 0.7975 0.7027 0.7510 0.7097 0.7458 0.741(.034)
6 0.8827 0.8941 0.8620 0.8596 0.8682 0.873(.013)
10 0.9101 0.9086 0.8919 0.8709 0.8914 0.895(.014)
15 0.9175 0.9076 0.9140 0.8932 0.9091 0.908(.008)
20 0.9173 0.9152 0.9168 0.9101 0.9143 0.915(.003)
30 0.9224 0.9232 0.9252 0.9162 0.9187 0.921(.003)
80 0.9313 0.9285 0.9336 0.9255 0.9328 0.930(.003)

Significance Tests We include a statistical test and report p-values between results of our method
versus each of the other methods in Table 11 (each scalar indicates the p-value between our final
method against others). We use the average dice score per slice to estimate the p-values. All values
indicate that there is a significant difference between our method and the existing methods.

Table 11: Significance tests.

CHD (M=15) ACDC (M=6)

Unet w/ random init. [52] < 0.001 « 0.001
Ours w/ random init. « 0.001 « 0.001
GLCL-full pretrain [7] « 0.001 « 0.001
PCL pretrain [72] « 0.001 « 0.001
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B Additional Implementation Details

Benchmark Results To acquire the benchmark results, we use the paper provided results whenever
possible. In Table 1, results of UNet [52], Rotation [18], PIRL [45], SimCLR [9], GLCL-global [7],
PCL [72] are obtained from [72], and we reproduce the remaining results including Swin-Unet [5],
SwinUNETR [58], GLCL-local [7], CAiD [56] by training the model provided in their official reposi-
tories.

Keypoint Preprocessing Details. We compute the keypoint positions on the original image using
SIFT. To obtain the keypoint positions on augmented images, we propose three potential solutions:
(1) Extract the translation matrix from the augmented image and apply this translation to the keypoint
positions. (2) Recompute SIFT on the augmented image to determine the new keypoint positions. (3)
Consider each keypoint position as a label, and augment these labels alongside the original image.

The first solution involves retrieving the translation matrix from the augmentation package, which
is not easily accessible in popular data augmentation packages currently available. Moreover, this
approach requires careful handling of the cropping of the translated keypoints. The second solution
poses the challenge of translating the correspondence from the original image pair to the augmented
image pair. The third solution, on the other hand, retains the index of the keypoints, thus preserving
the correspondence from the original to the augmented image. Consequently, we choose the third
solution as our preferred approach.

To elaborate further, we initially assign a unique index to each detected keypoint. Subsequently,
this index is attributed to the image space, resulting in a 2D matrix. In our implementation, the
background is designated as 0, while the keypoint index starts from 1. This matrix is then transformed
concurrently with the original image, resulting in a translated keypoint index matrix. We further
process the keypoints under the following two circumstances: (1) If a keypoint is present in the
original image gets cropped out, we simply disregard that keypoint. (2) The keypoints might project
onto one or multiple nearby positions. In this scenario, we compute the mean of all these positions,
and this average becomes the new keypoint position in the augmented image.

C Additional Results

Keypoints Detection Results. In Fig. 6 and 7, we present the input images and detected keypoints
using the Scale-Invariant Feature Transform (SIFT) [41]. The results suggest that the majority of the
detected keypoints are located in the foreground rather than the background. This helps the KAF layer
to concentrate more on the regions that are crucial for segmentation tasks. Furthermore, we display
the transformed keypoint positions after performing data augmentation on the input image in the third
column. As described in the preprocessing details in Sec. B, during the augmentation, we transform
the keypoint positions from the original image to the augmented one with the transformation matrix.

Keypoint Correspondence on Images. In columns (b) and (d) of Fig. 6 and Fig. 7, we provide a
visual representation of the detected image correspondence. The results indicate that our heuristic
distance metrics effectively identify correspondences between neighboring slices in biomedical
images. During data augmentation, rather than recomputing the correspondences between the
augmented slices, we translate the found correspondences from the original slices to the augmented
ones, similar as the keypoint processing above.

Additional Self-attention Map. In Fig. 8, we provide a visualization of the self-similarity maps from
two neighboring slices derived from various layers of our UNet. Similar to Fig. 3 in the main text, the
similarity map of our method demonstrates better resilience to augmentations and maintains localized
consistency among keypoints, compared to other pretrained models such as PCL and GLCL [7].

Additional Segmentation Results. To supplement Sec. 4, we present additional segmentation results
comparing our method with other baselines in Fig. 9. Models trained and/or finetuned with different
numbers of subjects from both ACDC and CHD datasets are present.
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Figure 6: Visualizatin of the detected keypoints and their correspondence on images sampled from
CHD dataset. The green dots represent the keypoints detected by SIFT. In column (a), we illustrate
two adjacent slices. In column (b), we showcase the correspondence between these two slices,
applying the heuristic described in section 3.2 from the main text. For the actual training, we apply
data augmentation into the input image, and examples are shown in (c) with the augmented keypoints.
We also display the transferred correspondence in column (d). Please zoom in to view the details.
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Figure 7: Visualization of slices, keypoints, and correspondences on the ACDC dataset.
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Figure 8: Learned self-similarity from two adjacent slices. Each map indicates the feature similarity
between the query point feature (star) and other points within the image. We display similarity
at two different scales within the UNet encoder. The comparison between (a) and (b), (c) and (d)
indicates that ours is more resilient in maintaining the self-similarity of the features under various
transformations.
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Figure 9: Additional segmentation results to supplement Fig. 2 in the main text.
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