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Abstract

We explore the methodology and theory of reward-directed generation via condi-
tional diffusion models. Directed generation aims to generate samples with desired
properties as measured by a reward function, which has broad applications in
generative AI, reinforcement learning, and computational biology. We consider the
common learning scenario where the dataset consists of majorly unlabeled data
and a small set of data with noisy reward labels. Our approach leverages a learned
reward function on the smaller data set as a pseudolabeler to label the unlabelled
data. After pseudo-labelling, a conditional diffusion model (CDM) is trained on the
data and samples are generated by setting a target value a as the condition in CDM.
From a theoretical standpoint, we show that this directed generator can effectively
learn and sample from the reward-conditioned data distribution: 1. our model
is capable of recovering the data’s latent subspace representation. 2. the model
generates samples moving closer to the user-specified target. The improvement in
rewards of samples is influenced by a interplay between the strength of the reward
signal, the distribution shift, and the cost of off-support extrapolation. We provide
empirical results to validate our theory and highlight the relationship between
the strength of extrapolation and the quality of generated samples. Our code is
available at https://github.com/Kaffaljidhmah2/RCGDM.

1 Introduction

Controlling the behavior of generative models towards desired properties is a major problem for
deploying deep learning models for real-world usage. As large and powerful pre-trained generative
models achieve steady improvements over the years, one increasingly important question is how to
adopt generative models to fit the needs of a specific domain and to ensure the generation results
satisfying certain constraints (e.g., safety, fairness, physical constraints) without sabotaging the power
of the original pre-trained model [35, 27, 54, 41].

In this paper, we focus on directing the generation of diffusion models [19, 43], a family of score-
matching generative models that have demonstrated the state-of-the-art performances in various
domains, such as image generation [39, 38, 4] and audio generation, with fascinating potentials
in broader domains, including text modeling [3, 27], reinforcement learning [21, 1, 36, 28] and
protein structure modeling [26]. Diffusion models are trained to predict a clean version of the noised
input, and generate data by sequentially removing noises and trying to find a cleaner version of
the input. The denoising network (a.k.a. score network) s(x, t) approximates the score function
∇ log pt(x) [45, 46], and controls the behavior of diffusion models. People can incorporate any
control information y as an additional input to s(x, y, t) during the training and inference [38, 54].
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Here we abstract various control goals as a scalar reward y, measuring how well the generated instance
satisfies our desired properties. In this way, the directed generation problem becomes finding plausible
instances with higher rewards and can be tackled via reward-conditioned diffusion models. The
subtlety of this problem lies in that the two goals potentially conflict with each other: diffusion models
are learned to generate instances similar to the training distribution, while maximizing the rewards of
the generation drives the model to deviate from the training distribution. In other words, the model
needs to “interpolate" and “extrapolate" at the same time. A higher value of y provides a stronger
signal that guides the diffusion model towards higher rewards, while the increasing distribution shift
may hurt the generated samples’ quality. In the sequel, we provide theoretical guarantees for the
reward-conditioned diffusion models, aiming to answer the following question:

How to provably estimate the reward-conditioned distribution via diffusion? How to balance the
reward signal and distribution-shift effect, and ensure reward improvement in generated samples?

Our Approach. To answer both questions, we consider a semi-supervised learning setting, where we
are given a small dataset Dlabel with annotated rewards and a massive unlabeled dataset Dunlabel. We
estimate the reward function using Dlabel and then use the estimator for pseudo-labeling on Dunlabel.
Then we train a reward-conditioned diffusion model using the pseudo-labeled data. Our approach is
illustrated in Figure 1. In real-world applications, there are other ways to incorporate the knowledge
from the massive dataset Dunlabel, e.g., finetuning from a pre-trained model [35, 54]. We focus on
the pseudo-labeling approach, as it provides a cleaner formulation and exposes the error dependency
on data size and distribution shift. The intuition behind and the message are applicable to other
semi-supervised approaches; see experiments in Section 5.2.

From a theoretical standpoint, we consider data point x having a latent linear representation. Specifi-
cally, we assume x = Az for some matrix A with orthonormal columns and z being a latent variable.
The latent variable often has a smaller dimension, reflecting the fact that practical data sets often
exhibit intrinsic low-dimensional structures [13, 48, 37]. The representation matrix A should be
learned to promote sample efficiency and generation quality [8]. Our theoretical analysis reveals an
intricate interplay between reward guidance, distribution shift, and implicit representation learning;
see Figure 2 for illustration.

Contributions. Our results are summarized as follows.

(1) We show that the reward-conditioned diffusion model implicitly learns the latent subspace
representation of x. Consequently, the model provably generates high-fidelity data that stay close to
the subspace (Theorem 4.5).
(2) Given a target reward value, we analyze the statistical error of reward-directed generation, mea-
sured by the difference between the target value and the average reward of the generated population.
In the case of a linear reward model, we show that this error includes the suboptimality gap of linear
off-policy bandits with full knowledge of the subspace feature, if taking the target to be the maximum
possible. In addition, the other two components of this error correspond to the distribution shift in
score matching and the cost of off-support extrapolation (Theorem 4.6).
(3) We further extend our theory to nonparametric reward and distribution configurations where
reward prediction and score matching are approximated by general function class, which covers the
wildly adopted ReLU Neural Networks in real-world implementation (Section 4.3 and Appendix F).
(4) We provide numerical experiments under both synthesized setting and more realistic settings
such as text-to-image generation (stable diffusion) and reinforcement learning (decision-diffuser) to
support our theory (Section 5 and Appendix I).
To our best knowledge, our results present the first statistical theory for conditioned diffusion models
and provably reward improvement guarantees for reward-directed generation.

2 Related Work

Guided Diffusions. For image generations, guiding the backward diffusion process towards higher
log probabilities predicted by a classifier (which can be viewed as the reward signal) leads to improved
sample quality, where the classifier can either be separated trained, i.e., classifier-guided [11] or
implicitly specified by the conditioned diffusion models, i.e., classifier-free [18]. Classifier-free
guidance has become a standard technique in the state-of-the-art text-to-image diffusion models
[39, 38, 4]. Other types of guidance are also explored [33, 14]. Similar ideas have been explored in
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High-reward Generated Samples

Step 1: Reward Learning Step 2: Pseudo Labeling Step 3: Conditional Diffusion Model Training Step 4: Guided Generation

Figure 1: Overview of reward-directed generation via conditional diffusion model. We estimate
the reward function from the labeled dataset. Then we compute the estimated reward for each
instance of the unlabeled dataset. Finally, we train a reward-conditioned diffusion model using
the pseudo-labeled data. Using the reward-conditioned diffusion model, we are able to generate
high-reward samples.

Subspace

(a) Distribution Shift in Generated Samples (b) Distribution Shift in Reward (c) Score Network

reward

Figure 2: Illustrations of distribution shifts in samples, reward, and encoder-decoder score
network. When performing reward-directed conditional diffusion, (a) the distribution of the generated
data shifts, but still stays close to the feasible data support; (b) the distribution of rewards for the
next generation shifts and the mean reward improves. (c) (Adapted from [8]) the score network for
reward-directed conditioned diffusion adopts an Encoder-Decoder structure.

sequence modelling problems. In offline reinforcement learning, Decision Diffuser [1] is a diffusion
model trained on offline trajectories and can be conditioned to generate new trajectories with high
returns, satisfying certain safety constraints, or composing skills. For discrete generations, Diffusion
LM [27] manages to train diffusion models on discrete text space with an additional embedding layer
and a rounding step. The authors further show that gradients of any classifier can be incorporated to
control and guide the text generation.
Theory of Diffusion Models A line of work studies diffusion models from a sampling perspective.
When assuming access to a score function that can accurately approximate the ground truth score
function in L∞ or L2 norm, [9, 25] provide polynomial convergence guarantees of score-based
diffusion models. “Convergence of denoising diffusion models under the manifold hypothesis” by
Valentin De Bortoli further studies diffusion models under the manifold hypothesis. Recently, [8] and
[34] provide an end-to-end analysis of diffusion models. In particular, they develop score estimation
and distribution estimation guarantees using the estimated score function. These results largely
motivate our theory, whereas, we are the first to consider conditional score matching and statistical
analysis of conditional diffusion models.
Connection to Offline Bandit/RL Our off-policy regret analysis of generated samples is related to
offline bandit/RL theory [30, 29, 6, 12, 22, 32, 5]. In particular, our theory extensively deals with
distribution shift in the offline data set by class restricted divergence measures, which are commonly
adopted in offline RL. Moreover, our regret bound of generated samples consists of an error term
that coincides with off-policy linear bandits. However, our analysis goes far beyond the scope of
bandit/RL.

3 Reward-Directed Generation via Conditional Diffusion Models

In this section, we develop a conditioned diffusion model-based method to generate high-fidelity
samples with desired properties. In real-world applications such as image/text generation and protein
design, one often has access to abundant unlabeled data, but relatively limited number of labeled data.
This motivates us to consider a semi-supervised learning setting.
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Notation:Pxy denotes ground truth joint distribution of x and its label y, Px is the marginal of x.
Any piece of data in Dlabel follows Pxy and any data in Dunlabel follows Px. P is used to denote
a distribution and p denotes its corresponding density. P (x | y = a) and P (x, y = a) are the
conditionals of Pxy Similarly, we also use notation Pxŷ , P (x | ŷ = a) for the joint and conditional of
(x, ŷ), where ŷ is predicted by the learnt reward model. Also, denote a generated distribution using
diffusion by P̂ (density p̂) followed by the same argument in parentheses as the true distribution it
approximates, e.g. P̂ (x | y = a) is generated as an approximation of P (x | y = a).

3.1 Problem Setup

Suppose we are given an unlabeled data set Dunlabel = {xj}n1
j=1 and a labeled data set Dlabel =

{(xi, yi)}n2
i=1, where it is often the case that n1 ≫ n2. Assume without loss of generality that Dlabel

and Dunlabel are independent. In both datasets, suppose x is sampled from an unknown population
distribution Px. In our subsequent analysis, we focus on the case where Px is supported on a latent
subspace, meaning that the raw data x admits a low-dimensional representation (see Assumption 4.1).
We model y as a noisy measurement of a reward function determined by x, given by

y = f∗(x) + ϵ for ϵ ∼ N(0, σ2) with 1 > σ > 0.

A user can specify a target reward value, i.e., y = a. Then the objective of directed generation
is to sample from the conditional distribution P (x|y = a). Given f∗, Px or the low-dimensional
support of Px are unknown, we need to learn these unknowns explicitly and implicitly through
reward-conditioned diffusion.

3.2 Meta Algorithm

Algorithm 1 Reward-Conditioned Generation via Diffusion Model (RCGDM)

1: Input: Datasets Dunlabel, Dlabel, target reward value a, early-stopping time t0, noise level ν.
(Note: in the following psuedo-code, ϕt(x) is the Gaussian density and η is the step size of
discrete backward SDE, see §3.3 for elaborations on conditional diffusion)

2: Reward Learning: Estimate the reward function by

f̂ ∈ argmin
f∈F

∑
(xi,yi)∈Dlabel

ℓ(f(xi), yi), (3.1)

where ℓ is a loss and F is a function class.
3: Pseudo labeling: Use the learned function f̂ to evaluate unlabeled data Dunlabel and augment it

with pseudo labeles: D̃ = {(xj , ŷj) = f̂(xj) + ξj}n1
j=1 for ξj

i.i.d.∼ N(0, ν2).
4: Conditional score matching: Minimize over s ∈ S (S constructed as 3.8) on data set D̃ via

ŝ ∈ argmin
s∈S

∫ T

t0

Ê(x,ŷ)∈D̃Ex′∼N(α(t)x,h(t)ID)

[
∥∇x′ log ϕt(x

′|x)− s(x′, ŷ, t)∥22
]
dt. (3.2)

5: Conditioned generation: Use the estimated score ŝ(·, a, ·) to sample from the backward SDE:

dX̃t,⇐
t =

[
1

2
X̃y,⇐
kη + ŝ(X̃y,⇐

kη , a, T − kη)

]
dt+ dW t for t ∈ [kη, (k + 1)η], k ∈ ⌊T

η
⌋.
(3.3)

6: Return: Generated population P̂ (·|ŷ = a), learned subspace representation V contained in ŝ.

In order to generate novel samples with both high fidelity and high rewards, we propose Reward-
Conditioned Generation via Diffusion Models (RCGDM); see Algorithm 1 for details. By using
the labeled data Dlabel, we approximately estimate the reward function f∗ by regression, then we
obtain an estimated reward function f̂ . We then use f̂ to augment the unlabeled data Dunlabel with
“pseudo labeling" and additive noise, i.e., D̃ = {(xj , ŷj = f̂(xj) + ξj)}n1

j=1 with ξj ∼ N(0, ν2) of a
small variance ν2. Here, we added noise ξj merely for technical reasons in the proof. We denote the
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joint distribution of (x, ŷ) as Pxŷ . Next, we train a conditional diffusion model using the augmented
dataset D̃. If we specify a target value of the reward, for example letting y = a, we can generate
conditioned samples from the distribution P̂ (x|ŷ = a) by backward diffusion.

Alternative approaches. In Line 4, Algorithm 1 trains the conditional diffusion model via conditional
score matching. This approach is suitable when we have access to the unlabeled dataset and need
to train a brand-new diffusion model from scratch. Empirically, in order to realize conditional
generation, we can utilize a pre-trained diffusion model and incorporate with reward signals to be
conditioned on. Existing methods falling in to this category include classifier-based guidance [11],
fine-tuning [54], and self-distillation [47]. For theoretical cleanness, we focus on analysing Algorithm
1 as it shares the same core essence with other alternative methods, which is approximating of the
conditional score ∇ log pt(xt|y).

3.3 Training of Conditional Diffusion Model

In this section, we provide details about the training and sampling of conditioned diffusion in
Algorithm 1 (Line 4: conditional score matching and Line 5: conditional generation). In Algorithm 1,
conditional diffusion model is learned with D̃ = {(xj , ŷj = f̂(xj) + ξj)}n1

j=1, where (x, ŷ) ∼ Pxŷ.
For simplicity, till the end of this section we use y instead of ŷ to denote the condition variable. The
diffusion model is to approximate the conditional probability P (x | ŷ).
Conditional Score Matching. The working flow of conditional diffusion models is nearly identical
to that of unconditioned diffusion models reviewed in Appendix A. A major difference is we learn
a conditional score ∇ log pt(x|y) instead of the unconditional one. Here pt denotes the marginal
density function at time t of the following forward O-U process,

dXy
t = −1

2
g(t)Xy

t dt+
√
g(t)dWt with Xy

0 ∼ P0(x|y) and t ∈ (0, T ], (3.4)

where similarly T is a terminal time, (Wt)t≥0 is a Wiener process, and the initial distribution P0(x|y)
is induced by the (x, ŷ)-pair distribution Pxŷ. Note here the noise is only added on x but not on y.
Throughout the paper, we consider g(t) = 1 for simplicity. We denote by Pt(xt|y) the distribution of
Xy
t and let pt(xt|y) be its density and Pt(xt, y) be the corresponding joint, shorthanded as Pt. A key

step is to estimate the unknown ∇ log pt(xt|y) through denoising score matching [46]. A conceptual
way is to minimize the following quadratic loss with S, a concept class.

argmin
s∈S

∫ T

0

E(xt,y)∼Pt

[
∥∇ log pt(xt|y)− s(xt, y, t)∥22

]
dt, (3.5)

Unfortunately, the loss in (3.5) is intractable since ∇ log pt(xt|y) is unknown. Inspired by Hyvärinen
and Dayan [20] and Vincent [52], we choose a new objective (3.2) and show their equivalence in the
following Proposition. The proof is provided in Appendix C.1.
Proposition 3.1 (Score Matching Objective for Implementation). For any t > 0 and score
estimator s, there exists a constant Ct independent of s such that

E(xt,y)∼Pt

[
∥∇ log pt(xt|y)− s(xt, y, t)∥22

]
= E(x,y)∼Pxŷ

Ex′∼N(α(t)x,h(t)ID)

[
∥∇x′ log ϕt(x

′|x)− s(x′, y, t)∥22
]
+ Ct, (3.6)

where ∇x′ log ϕt(x
′|x) = −x′−α(t)x

h(t) , where ϕt(x′|x) is the density of N(α(t)x, h(t)ID) with
α(t) = exp(−t/2) and h(t) = 1− exp(−t).

Equation (3.6) allows an efficient implementation, since Pxŷ can be approximated by the empirical
data distribution in D̃ and x′ is easy to sample. Integrating (3.6) over time t leads to a practical
conditional score matching object

argmin
s∈S

∫ T

t0

Ê(x,y)∼Pxŷ
Ex′∼N(α(t)x,h(t)ID)

[
∥∇x′ log ϕt(x

′|x)− s(x′, y, t)∥22
]
dt, (3.7)

where t0 > 0 is an early-stopping time to stabilize the training [44, 50] and Ê denotes the empirical
distribution.

5



Constructing a function class S adaptive to data structure is beneficial for learning the conditional
score. In the same spirit of [8], we propose the score network architecture (see Figure 2(c) for an
illustration):

S =

{
sV,ψ(x, y, t) =

1

h(t)
(V · ψ(V ⊤x, y, t)− x) : V ∈ RD×d, ψ ∈ Ψ : Rd+1 × [t0, T ] → Rd

}
, (3.8)

with V being any D× d matirx with orthonormal columns and Φ a customizable function class. This
design has a linear encoder-decoder structure, catering for the latent subspace structure in data. Also
− 1
h(t)x is includes as a shortcut connection.

Conditioned Generation. Sampling from the model is realized by running a discretized backward
process with step size η > 0 described as follows:

dX̃t,⇐
t =

[
1

2
X̃y,⇐
kη + ŝ(X̃y,⇐

kη , y, T − kη)

]
dt+ dW t for t ∈ [kη, (k + 1)η]. (3.3 revisited)

initialized with X̃t,⇐
t ∼ N(0, ID) and W t is a reversed Wiener process. Note that in (3.3), the

unknown conditional score ∇pt(x|y) is substituted by ŝ(x, y, t).

4 Main Theory

In this section, we analyze the conditional generation process specified by Algorithm 1. We will
focus on the scenario where samples x admit a low-dimensional subspace representation, stated as
the following assumption.
Assumption 4.1 . Data sampling distribution Px is supported on a low-dimensional linear subspace,
i.e., x = Az for an unknown A ∈ RD×d with orthonormal columns and z ∈ Rd is a latent variable.

Note that our setup covers the full-dimensional setting as a special case when d = D. Yet the case
of d < D is much more interesting, as practical datasets are rich in intrinsic geometric structures
[13, 37, 48]. Furthermore, the representation matrix A may encode critical constraints on the
generated data. For example, in protein design, the generated samples need to be similar to natural
proteins and abide rules of biology, otherwise they easily fail to stay stable, leading to substantial
reward decay. In those applications, off-support data may be risky and suffer from a large degradation
of rewards, which we model using a function h as follows.
Assumption 4.2 . The ground truth reward f∗(x) = g∗(x∥)− h∗(x⊥), where g∗(x∥) = (θ∗)⊤x∥
where θ∗ = Aβ∗ for some β∗ ∈ Rd and ∥θ∗∥2 = ∥β∗∥2 = 1 and h∗(x⊥) is non-decreasing in terms
of ∥x⊥∥2 with h∗(0) = 0.

Assumption 4.2 adopts a simple linear reward model for ease of presentation. In this case, we estimate
θ∗ by ridge regression, and (3.1) in Algorithm 1 becomes θ̂ = argminθ

∑n2

i=1(θ
⊤xi − yi)

2 + λ∥θ∥22
for a positive coefficient λ. Later in Section 3.3 and Appendix F, we extend our results beyond linear
models to deep ReLU networks.

4.1 Conditional DM Learns Subspace Representation

Recall that Algorithm 1 has two outputs: generated population P̂ (·|ŷ = a) and learned representation
matrix V . Use notation P̂a := P̂ (·|ŷ = a) (generated distribution) and Pa := P (·|ŷ = a) (target
distribution) for better clarity in result presentation. To assess the quality of subspace learning, we
utilize two metrics defined as

∠(V,A) = ∥V V ⊤ −AA⊤∥2F and Ex∼P̂a
[∥x⊥∥2]. (4.1)

∠(V,A) is defined for matrices V,A, where A is the matrix encoding the ground truth subspace.
Clearly, ∠(V,A) measures the difference in the column span of V and A, which is also known as
the subspace angle. Ex∼P̂a

[∥x⊥∥] is defined as the expected l2 distance between x and the true
subspace. Theorem 4.5 provides guarantees on this two metrics under following assumptions, proof
and Interpretation of Theorem 4.5 are deferred to Appendix D.2.

To ease the presentation, we consider a Gaussian design on x, i.e. the latent z is Gaussian as stated in
Assumption 4.4. Since our guarantee on ∠(V,A) holds under milder assumption than Gaussian, we
also list the Assumption 4.3.
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Assumption 4.3 . The latent variable z follows distribution Pz with density pz , such that there exists
constants B,C1, C2 verifying pz(z) ≤ (2π)−(d+1)/2C1 exp

(
−C2∥z∥22/2

)
whenever ∥z∥2 > B.

And ground truth score is realizable: ∇ log pt(x | ŷ) ∈ S.
Assumption 4.4 . Further assume z ∼ N(0,Σ) with its covariance matrix Σ satisfying λminId ⪯
Σ ⪯ λmaxId for 0 < λmin ≤ λmax ≤ 1.
Theorem 4.5 (Subspace Fidelity of Generated Data). Under Assumption 4.1, if Assumption 4.3
holds with c0Id ⪯ Ez∼Pz

[
zz⊤

]
, then with high probability on data,

∠(V,A) = Õ

 1

c0

√
N (S, 1/n1)D

n1

 (4.2)

with N (S, 1/n1) being the log covering number of function class S as in (3.8). When Assumption

4.4 holds, N (S, 1/n1) = O((d2 + Dd) log(Ddn1)) and thus ∠(V,A) = Õ( 1
λmin

√
(Dd2+D2d)

n1
).

Further under Assumption 4.2, it holds that

Ex∼P̂a
[∥x⊥∥2] = O

(√
t0D +

√
∠(V,A) ·

√
a2

∥β∗∥Σ
+ d

)
, (4.3)

where β∗ is groundtruth parameter of linear model.

4.2 Provable Reward Improvement via Conditional Generation

Let y∗ be a target reward value and P be a generated distribution. Define the suboptimality of P as

SubOpt(P ; y∗) = y∗ − Ex∼P [f∗(x)],

which measures the gap between the expected reward of x ∼ P and the target value y∗. In the
language of bandit learning, this gap can also be viewed as a form of off-policy regret. Given a
target value y∗ = a, we want to derive guarantees for SubOpt(P̂a; y∗ = a), recall P̂a := P̂ (·|ŷ = a)

denotes the generated distribution. In Theorem 4.6, we show SubOpt(P̂a; y∗ = a) comprises of three
components: off-policy bandit regret which comes from the estimation error of f̂ , on-support and
off-support errors coming from approximating conditional distributions with diffusion.
Theorem 4.6 (Off-policy Regret of Generated Samples). Suppose Assumption 4.1, 4.2 and 4.4
hold. We choose λ = 1, t0 =

(
(Dd2 +D2d)/n1

)1/6
and ν = 1/

√
D. With high probability,

running Algorithm 1 with a target reward value a gives rise to

SubOpt(P̂a; y∗ = a)

≤
√
Tr(Σ̂−1λ ΣPa) · O

(√
d log n2
n2

)
︸ ︷︷ ︸

E1:off-policy bandit regret

+
∣∣∣EPa [g

∗(x∥)]− EP̂a
[g∗(x∥)]

∣∣∣︸ ︷︷ ︸
E2:on-support diffusion error

+ EP̂a
[h∗(x⊥)]︸ ︷︷ ︸

E3:off-support diffusion error

,

(4.4)

where Σ̂λ := 1
n2

(X⊤X + λI) where X is the stack matrix of Dlabel and ΣPa
= EPa

[xx⊤].

Implications and Discussions: (1) Equation (4.4) decomposes the suboptimality gap into two
separate parts of error: error from reward learning (E1) and error coming from diffusion (E2 and E3).

(2) It is also worth mentioning that E2 and E3 depend on t0 and that by taking t0 =(
(Dd2 +D2d)/n1

)1/6
one gets a good trade-off and small E2 + E3.

(3) E1 suggests diffusion model is essentially doing representation learning, reducing D to smaller
latent dimension d. It can be seen from Tr(Σ̂−1λ Σpq ) ≤ O

(
a2

∥β∗∥Σ + d
)

when n2 = Ω( 1
λmin

).

(3) If we ignore the diffusion errors when n1 is large enough, the suboptimatliy gap resembles the
suboptimatliy of off-policy bandit learning in feature subspace [22, Section 3.2], [32, 5]. It shows
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the major source of error occurs when moving towards the target distributions and the error behaves
similar to bandit.

(4) On-support diffusion error entangles with distribution shift in complicated ways. We show

E2 =
(
DistroShift(a) ·

(
d2D +D2d

)1/6
n1
−1/6 · a

)
,

where DistroShift(a) quantifies the distribution shift depending on different reward values. In
the special case of the latent covariance matrix Σ is known, we can quantify the distribution shift as
DistroShift(a) = O(a ∨ d). We observe an interesting phase shift. When a < d, the training data
have a sufficient coverage with respect to the generated distribution P̂a. Therefore, the on-support
diffusion error has a lenient linear dependence on a. However, when a > d, the data coverage is very
poor and E2 becomes quadratic in a, which quickly amplifies.

(5) When generated samples deviate away from the latent space, the reward may substantially degrade
as determined by the nature of h.

To the authors’ best knowledge, this is a first theoretical attempt to understand reward improvement
of conditional diffusion. These results imply a potential connection between diffusion theory and
off-policy bandit learning, which is interesting for more future research. See proofs in Appendix D.3.

4.3 Extension to Nonparametric Function Class

Our theoretical analysis, in its full generality, extends to using general nonparametric function
approximation for both the reward and score functions. To keep our paper succinct, we refer
to Appendix F and Theorem F.4 for details of our nonparametric theory for reward-conditioned
generation. Informally, the regret of generated samples is bounded by

SubOpt(P̂a; y∗ = a) = Õ
(
DistroShift(a) ·

(
n
− α

2α+d

2 + n
− 2

3(d+6)

1

))
+ EP̂a

[h∗(x⊥)]

with high probability. Additionally, the nonparamtric generators is able to estimate the representation

matrix A up to an error of ∠(V,A) = Õ(n
− 2

d+6

1 ). Here the score is assumed to be Lipschitz
continuous and α is the smoothness parameter of the reward function, and DistroShift(a) is a
class-restricted distribution shift measure. Our results on nonparametric function approximation
covers the use of deep ReLU networks as special cases.

5 Numerical Experiments

5.1 Simulation

We first perform the numerical simulation of Algorithm 1 following the setup in Assumption 4.1,
4.2 and 4.4. We choose d = 16, D = 64, g⋆(x) := 5∥x∥22, and generate β⋆ by uniformly sampling
from the unit sphere. The latent variable z is generated from N(0, Id), which is then used to construct
x = Az with some randomly generated orthonormal matrix A. We use the 1-dimensional version of
the UNet [40] to approximate the score function. More details are deferred to Appendix I.

Figure 3 shows the average reward of the generated samples under different target reward values. We
also plot the distribution shift and off-support deviation in terms of the 2-norm distance from the
support. For small target reward values, the generation average reward almost scales linearly with the
target value, which is consistent with the theory as the distribution shift remains small for these target
values. The generation reward begins to decrease as we further increase the target reward value, and
the reason is two fold. Firstly, the off-support deviation of the generated samples becomes large in
this case, which prevents the generation reward from further going up. Secondly, the distribution shift
increases rapidly as we further increase the target value, making the theoretical guarantee no longer
valid. In Figure 4, we show the distribution of the rewards in the generated samples. As we increase
the target reward values, the generation rewards become less concentrated and are shifted to the left
of the target value, which is also due to the distribution shift and off-support deviation.
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Figure 3: Quality of generated samples as target reward value increases. Left: Average reward of
the generation; Middle: Distribution shift; Right: Off-support deviation. The errorbar is computed by
2 times the standard deviation over 5 runs.

Figure 4: Shifting reward distribution of the generated population.

5.2 Directed Text-to-Image Generation

Next, we empirically verify our theory through directed text-to-image generation. Instead of training
a diffusion model from scratch, we use Stable Diffusion v1.5 [39], pre-trained on LAION dataset [42].
Stable Diffusion operates on the latent space of its Variational Auto-Encoder and can incorporate
text conditions. We show that by training a reward model we can further guide the Stable Diffusion
model to generate images of desired properties.

Ground-truth Reward Model. We start from an ImageNet [10] pre-trained ResNet-18 [17] model
and replace the final prediction layer with a randomly initialized linear layer of scalar outputs. Then
we use this model as the ground-truth reward model. To investigate the meaning of this randomly-
generated reward model, we generate random samples and manually inspect the images with high
rewards and low rewards. The ground-truth reward model seems to favor colorful and vivid natural
scenes against monochrome and dull images; see Appendix I for sample images.

Labelled Dataset. We use the ground-truth reward model to compute a scalar output for each
instance in the CIFAR-10 [24] training dataset and perturb the output by adding a Gaussian noise
from N (0, 0.01). We use the images and the corresponding outputs as the training dataset.

Reward-network Training. To avoid adding additional input to the diffusion model and tuning
the new parameters, we introduce a new network µθ and approximate pt(y|xt) by N(µθ(xt), σ

2).
For simplicity, we set σ2 as a tunable hyperparameter. We share network parameters for different
noise levels t, so our µθ has no additional input of t. We train µθ by minimizing the expected KL
divergence between pt(y|xt) and N(µθ(xt), σ

2):

EtExt

[
KL(pt(y|xt) | N(µθ(xt), σ2))

]
= EtE(xt,y)∼pt

∥y − µθ(xt)∥22
2σ2

+Constant.

Equivalently, we train the reward model µθ to predict the noisy reward y from the noisy inputs xt.
Also, notice that the minimizers of the objective do not depend on the choice of σ2.

Reward-network-based Directed Diffusion. To perform reward-directed conditional diffusion,
observe that ∇x log pt(x|y) = ∇x log pt(x) +∇x log pt(y|x), and pt(y|x) ∝ exp

(
− ∥y−µθ(x)∥22

2σ2

)
.

Therefore,

∇x log pt(y|x) = −1/σ2 · ∇x

[1
2
∥y − µθ(x)∥22

]
.

In our implementation, we compute the gradient by back-propagation through µθ and incorporate this
gradient guidance into each denoising step of the DDIM sampler [43] following [11] (equation (14)).
We see that 1/σ2 corresponds to the weights of the gradient with respect to unconditioned score. In
the sequel, we refer to 1/σ2 as the “guidance level”, and y as the “target value”.
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Quantitative Results. We vary 1/σ2 in {25, 50, 100, 200, 400} and y in {1, 2, 4, 8, 16}. For each
combination, we generate 100 images with the text prompt “A nice photo” and calculate the mean
and the standard variation of the predicted rewards and the ground-truth rewards. The results are
plotted in Figure 5. From the plot, we see similar effects of increasing the target value y at different
guidance levels 1/σ2. A larger target value puts more weight on the guidance signals ∇xµθ(x), which
successfully drives the generated images towards higher predicted rewards, but suffers more from the
distribution-shift effects between the training distribution and the reward-conditioned distribution,
which renders larger gaps between the predicted rewards and the ground-truth rewards. To optimally
choose a target value, we must trade off between the two counteractive effects.

25 50 100 200 400
Guidance Level

0

2

4

6

8

Re
wa

rd

ground truth
prediction
baseline

target=1
target=2
target=4
target=8
target=16

target=1
target=2
target=4
target=8
target=16

Figure 5: The predicted rewards and the ground-truth rewards of the generated images. At each
guidance level, increasing the target y successfully directs the generation towards higher predicted
rewards, but also increases the error induced by the distribution shift. The reported baseline is the
expected ground-truth reward for undirected generations.

Qualitative Results. To qualitatively test the effects of the reward conditioning, we generate a set
of images with increasing target values y under different text prompts and investigate the visual
properties of the produced images. We isolate the effect of reward conditioning by fixing all the
randomness during the generation processes, so the generated images have similar semantic layouts.
After hyper-parameter tuning, we find that setting 1/σ2 = 100 and y ∈ {2, 4, 6, 8, 10} achieves good
results across different text prompts and random seeds. We pick out typical examples and summarized
the results in Figure 6, which demonstrates that as we increase the target value, the generated images
become more colorful at the expense of degradations of the image qualities.

Figure 6: The effects of the reward-directed diffusion. Increasing the target value directs the
images to be more colorful and vivid at the cost of degradation of the image qualities. Leftmost:
without reward conditioning. Second-to-Last: target value y = 2, 4, 6, 8, 10. The guidance level 1/σ2

is fixed to 100. The text prompts are "A cat with a glass of water.", "An astronaut on the horseback".

6 Conclusion

In the paper, we study the problem of generating high-reward and high-quality samples using
reward-directed conditional diffusion models, focusing on the semi-supervised setting where massive
unlabeled data and limited labeled data are given. We provide theoretical results for subspace recovery
and reward improvement, demonstrating the trade-off between the strength of the reward target and
the distribution shift. Numerical results support our theory well.

10



Acknowledgments and Disclosure of Funding

Mengdi Wang acknowledges the support by NSF grants CPS-2312093, DMS-1953686, IIS-2107304,
CMMI1653435, ONR grant 1006977 and C3.AI.

References
[1] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit

Agrawal. Is conditional generative modeling all you need for decision making? In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=sP1fo2K9DFG.

[2] Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

[3] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg.
Structured denoising diffusion models in discrete state-spaces. Advances in Neural Information
Processing Systems, 34:17981–17993, 2021.

[4] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Karsten Kreis, Miika
Aittala, Timo Aila, Samuli Laine, Bryan Catanzaro, et al. ediffi: Text-to-image diffusion models
with an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324, 2022.

[5] David Brandfonbrener, William Whitney, Rajesh Ranganath, and Joan Bruna. Offline contextual
bandits with overparameterized models. In International Conference on Machine Learning,
pages 1049–1058. PMLR, 2021.

[6] Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement
learning. In International Conference on Machine Learning, pages 1042–1051. PMLR, 2019.

[7] Minshuo Chen, Yu Bai, Jason D Lee, Tuo Zhao, Huan Wang, Caiming Xiong, and Richard
Socher. Towards understanding hierarchical learning: Benefits of neural representations. Ad-
vances in Neural Information Processing Systems, 33:22134–22145, 2020.

[8] Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estima-
tion and distribution recovery of diffusion models on low-dimensional data. arXiv preprint
arXiv:2302.07194, 2023.

[9] Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as
easy as learning the score: theory for diffusion models with minimal data assumptions. arXiv
preprint arXiv:2209.11215, 2022.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[11] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in Neural Information Processing Systems, 34:8780–8794, 2021.

[12] Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis of deep
q-learning. In Learning for Dynamics and Control, pages 486–489. PMLR, 2020.

[13] Sixue Gong, Vishnu Naresh Boddeti, and Anil K Jain. On the intrinsic dimensionality of image
representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3987–3996, 2019.

[14] Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models
as plug-and-play priors. arXiv preprint arXiv:2206.09012, 2022.
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A Preliminaries

A.1 Diffusion Models

We first provide a brief review of diffusion models and its training/sampling procedure. We consider
diffusion in continuous time [23, 46], where diffusion is described as forward and backward SDEs.

Forward SDE and Score Matching. In the forward process, noise is added to original data
progressively as an Ornstein-Ulhenbeck process for instance:

dXt = −1

2
g(t)Xtdt+

√
g(t)dWt for g(t) > 0, (A.1)

where initial X0 ∼ Pdata and (Wt)t≥0 is a standard Wiener process, and g(t) is a nondecreasing
weighting function. In practice, the forward process (A.1) terminates at a sufficiently large T > 0
such that the corrupted XT is close to the standard Gaussian N(0, ID). To enable data generation in
future, the score ∇ log pt(·) at t is the key to learn, here pt denotes the marginal density of Xt. We
often use an estimated score function ŝ(·, t) trained by minimizing a score matching loss.

Backward SDE for Generation. Diffusion models generate samples through a backward SDE (A.2)
reversing the time in (A.1) [2, 16], i.e.,

dX←t =

[
1

2
g(T − t)X←t + g(T − t)∇ log pT−t(X

←
t )

]
dt+

√
g(T − t)dW t, (A.2)

where W t is a reversed Wiener process. In practice, the backward process is initialized with N(0, ID)
and the unknown conditional score ∇ log pt(·) is replaced by an estimated counterpart ŝ(·, t).

B Limitations

We do not see outstanding limitations in our analysis. The linear subspace assumption initiates
the study of conditional diffusion models on low-dimensional data. We expect to stimulate more
sophisticated analyses under general assumptions such as manifold data.

C Omitted Proof in Section 3

C.1 Proof of Proposition 3.1

Proof. For any t ≥ 0, it hold that ∇xt
log pt(xt | y) = ∇xt

log pt(xt, y) since the gradient is taken
w.r.t. xt only. Then plugging in this equation and expanding the norm square on the LHS gives

E(xt,y)∼Pt

[
∥∇xt

log pt(xt, y)− s(xt, y, t)∥22
]
= E(xt,y)∼Pt

[
∥s(xt, y, t)∥22

− 2⟨∇xt
log pt(xt, y), s(xt, y, t)⟩

]
+ C.
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Then it suffices to prove

E(xt,y)∼Pt
[⟨∇xt

log pt(xt, y), s(xt, y, t)⟩] = E(x,y)∼Pxŷ
Ex′∼N(α(t)x,h(t)I) [⟨∇x′ϕt(x

′ | x), s(x′, y, t)⟩]
Using integration by parts to rewrite the inner product we have

E(xt,y)∼Pt
[⟨∇xt

log pt(xt, y), s(xt, y, t)⟩] =
∫
pt(xt, y)⟨∇xt

log pt(xt, y), s(xt, y, t)⟩dxtdy

=

∫
⟨∇xtpt(xt, y), s(xt, y, t)⟩dxtdy

= −
∫
pt(xt, y) div(s(xt, y, t))dxtdy,

where denote by ϕt(x′|x) the density of N(α(t)x, h(t)ID) with α(t) = exp(−t/2) and h(t) =
1− exp(−t), then

−
∫
pt(xt, y) div(s(xt, y, t))dxtdy = −E(x,y)∼Pxŷ

∫
ϕt(x

′ | x) div(s(x′, y, t))dx′

= E(x,y)∼Pxŷ

∫
⟨∇x′ϕt(x

′ | x), s(x′, y, t)⟩dx′

= E(x,y)∼Pxŷ
Ex′∼N(α(t)x,h(t)I) [⟨∇x′ϕt(x

′ | x), s(x′, y, t)⟩] .

D Omitted Proofs in Section 4

Additional Notations: We follow the notations in the main paper along with some additional ones.
Use PLDt (z) to denote the low-dimensional distribution on z corrupted by diffusion noise. Formally,
pLDt (z) =

∫
ϕt(z

′|z)pz(z)dz with ϕt(·|z) being the density of N(α(t)z, h(t)Id). PLDt0 (z | f̂(Az) =
a) the corresponding conditional distribution on f̂(Az) = a at t0, with shorthand as PLDt0 (a). Also
give Pz(z | f̂(Az) = a) a shorthand as PLD(a). In our theorems, O hides constant factors and
higher order terms in n−11 and n−12 and , Õ further hides logarithmic terms and can also hide factors
in d.

D.1 Parametric Conditional Score Matching Error

Theorems presented in Section 4 are established upon the conditional score estimation error, which
has been studied in [8] for general distributions, but in Lemma D.1 we provide a new one specific
to our setting where the true score is linear in input (xt, ŷ) due to the Gaussian design. Despite
the linearity of score in Gaussian case, we emphasize matching score in (3.2) is not simply linear
regression as S consists of an encoder-decoder structure for estimating matrix A to reduce dimension
(see §H for S construction and more proof details).

In the following lemma, we first present a general result for the case where the true score is within
S, which is constructed as a parametric function class. Then the score matching error is bounded in
terms of N (S, 1/n1), the log covering number of S, recall n1 is the size of Dunlabel. Instantiating
this general result, we derive score matching error for Gaussian case by upper bounding N (S, 1/n1)
in this special case.
Lemma D.1. Under Assumption 4.1, if ∇ log pt(x | y) ∈ S, where

S =

{
sV,ψ(x, y, t) =

1

h(t)
(V · ψ(V ⊤x, y, t)− x) : V ∈ RD×d, ψ ∈ Ψ : Rd+1 × [t0, T ] → Rd

}
,

((3.8) revisited)

with Ψ parametric. Then for δ ≥ 0, with probability 1−δ, the square score matching error is bounded

by ϵ2diff = O
(

1
t0

√
N (S,1/n1)(d2∨D) log 1

δ

n1

)
, i.e.,

1

T − t0

∫ T

t0

E(xt,y)∼Pt

[
∥∇ log pt(xt|y)− ŝ(xt, y, t)∥22

]
dt ≤ ϵ2diff , (D.1)
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recall Pt comes from Pxŷ by noising x at t in the forward process. Under Assumption 4.4 and given
f̂(x) = θ̂⊤x and ŷ = f̂(x) + ξ, ξ ∼ N(0, ν2), the score function ∇ log pt(x | ŷ) to approximate is
linear in x and ŷ. When approximated by S with Ψ linear, N (S, 1/n1) = O((d2+Dd) log(Ddn1)).

Proof. Proof is in §H.

To provide fidelity and reward guarantees of P̂a: the generated distribution of x given condition
ŷ = a, we will need the following lemma. It provides a subspace recovery guarantee between V (score
matching output) and A(ground truth), as well as a distance measure between distributions Pa and
P̂a, given score matching error ϵdiff .

Note Pa and P̂a are over x, which admits an underlying low-dimensional structure x = Az. Thus we
measure distance between Pa and P̂a by defining

Definition D.2. TV (P̂a) := dTV

(
PLDt0 (z | f̂(Az) = a), (U⊤V ⊤)#P̂a

)
with notations:

• dTV(·, ·) is the TV distance between two distribution.

• f♯P denotes a push-forward measure, i.e., for any measurable Ω, (f♯P )(Ω) = P (f−1(Ω))

• (V ⊤)#P̂a pushes generated P̂a forward to the low dimensional subspace using learned
subspace matrix V . U is an orthonormal matrix of dimension d.

• PLDt0 (z | f̂(Az) = a) is close to (A⊤)#Pa, with t0 taking account for the early stopping in
backward process.

We note that there is a distribution shift between the training and the generated data, which has a
profound impact on the generative performance. We quantify the influence of distribution shift by the
following class restricted divergence measure.

Definition D.3. Distribution shift between two arbitrary distributions P1 and P2 restricted under
function class L is defined as

T (P1, P2;L) = supl∈L Ex∼P1
[l(x)]/Ex∼P2

[l(x)] with arbitrary two distributions P1, P2.

Definition D.3 is well perceived in bandit and RL literature [30, 29, 6, 12].

Lemma D.4. Given the square score matching error (D.1) upper bounded by ϵ2diff , and when Pz
satisfying Assumption 4.3 with c0Id ⪯ Ez∼Pz

[
zz⊤

]
, it guarantees on for x ∼ P̂a and ∠(V,A) :=

∥V V ⊤ −AA⊤∥2F that

(ID − V V ⊤)x ∼ N(0,Λ), Λ ≺ ct0ID, (D.2)

∠(V,A) = Õ
(
t0
c0

· ϵ2diff
)
. (D.3)

In addition,

TV (P̂a) = Õ

√T (P (x, ŷ = a), Pxŷ; S̄)
c0

· ϵdiff

 . (D.4)

with S̄ =
{

1
T−t0

∫ T
t0
Ext|x∥∇ log pt(xt | y)− s(xt, y, t)∥22dt : s ∈ S

}
. TV (P̂a) and T (P (x, ŷ =

a), Pxŷ; S̄) are defined in Definition D.2 and D.3.

Proof. Proof is in §E.2.
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D.2 Proof of Theorem 4.5

Proof. Proof of ∠(V,A). By Lemma 3 of [8], we have

∠(V,A) = O
(
t0
c0

· ϵ2diff
)

when the latent z satisfying Assumption 4.3 and c0Id ⪯ Ez∼Pz

[
zz⊤

]
. Therefore, by (D.1), we have

with high probability that

∠(V,A) = Õ

 1

c0

√
N (S, 1/n1)(D ∨ d2)

n1

 .

When Assumption 4.4 holds, plugging in c0 = λmin and N (S, 1/n1) = O((d2 +Dd) log(Ddn1)),
it gives

∠(V,A) = Õ

 1

λmin

√
(D ∨ d2)d2 + (D ∨ d2)Dd

n1

 ,

where Õ hides logarithmic terms. When D > d2, which is often the case in practical applications,
we have

∠(V,A) = Õ

 1

λmin

√
Dd2 +D2d

n1

 .

Proof of Ex∼P̂a
[∥x⊥∥2]. By the definition of x⊥ that x⊥ = (ID −AA⊤)x,

Ex∼P̂a
[∥x⊥∥2] = Ex∼P̂a

[∥(ID −AA⊤)x∥2] ≤
√
Ex∼P̂a

[∥(ID −AA⊤)x∥22].
Score matching returns V as an approximation of A, then

∥(ID −AA⊤)x∥2 ≤ ∥(ID − V V ⊤)x∥2 + ∥(V V ⊤ −AA⊤)x∥2,
Ex∼P̂a

[∥(ID −AA⊤)x∥22] ≤ 2Ex∼P̂a
[∥(ID − V V ⊤)x∥22] + 2Ex∼P̂a

[∥(V V ⊤ −AA⊤)x∥22],
where by (D.2) in Lemma D.4 we have

(ID − V V ⊤)x ∼ N(0,Λ), Λ ≺ ct0I

for some constant c ≥ 0. Thus

Ex∼P̂a

[
∥(ID − V V ⊤)x∥22

]
= Tr(Λ) ≤ ct0D. (D.5)

On the other hand,

∥(V V ⊤ −AA⊤)x∥22 ≤ ∥V V ⊤ −AA⊤∥2op∥x∥22 ≤ ∥V V ⊤ −AA⊤∥2F ∥x∥22,
where ∥V V ⊤ −AA⊤∥2F has an upper bound as in (D.3) and Ex∼P̂a

[
∥x∥22

]
) is bounded in Lemma

E.3 by
Ex∼P̂a

[
∥x∥22

]
= O

(
ct0D +M(a) · (1 + TV (P̂a)

)
.

with M(a) = O
(

a2

∥β∗∥Σ + d
)

.

Therefore, to combine things together, we have

Ex∼P̂a
[∥x⊥∥2] ≤

√
2Ex∼P̂a

[∥(ID − V V ⊤)x∥22] + 2Ex∼P̂a
[∥(V V ⊤ −AA⊤)x∥22]

≤ c′
√
t0D + 2

√
∠(V,A) ·

√
Ex∼P̂a

[∥x∥22]

= O
(√

t0D +
√
∠(V,A) ·

√
M(a)

)
.

O hides multiplicative constant and
√
∠(V,A)t0D,

√
∠(V,A)M(a)TV (P̂a), which are terms with

higher power of n−11 than the leading term.
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Remark of Theorem 4.5. 1. Guarantee (4.2) applies to general distributions with light tail as
assumed in Assumption 4.3.

2. Guarantee (4.3) guarantees high fidelity of generated data in terms of staying in the subspace when
we have access to a large unlabeled dataset.

3. Guarantee (4.3) shows that Ex∼P̂a
[∥x⊥∥2] scales up when t0 goes up, which aligns with the

dynamic in backward process that samples are concentrating to the learned subspace as t0 goes to 0.
Taking t0 → 0, Ex∼P̂a

[∥x⊥∥] has the decay in O(n
− 1

4
1 ). However, taking t0 → 0 is not ideal for the

sake of high reward of x, we take the best trade-off of t0 later in Theorem 4.6.

D.3 Proof of Theorem 4.6

Proof of Theorem 4.6 and that of some results in "Implications and Discussions" following the
theorem in main paper are provided in this section. This section breaks down into three parts:
Suboptimality Decomposition, Bounding E1 Relating to Offline Bandits, Bounding E2 and the
Distribution Shift in Diffusion.

D.3.1 SubOpt(P̂a; y∗ = a) Decomposition

Proof. Recall notations P̂a := P̂ (·|ŷ = a) (generated distribution) and Pa := P (·|ŷ = a) (target
distribution) and f∗(x) = g∗(x∥)− h∗(x⊥). Ex∼P̂a

[f⋆(x)] can be decomposed into 3 terms:

Ex∼P̂a
[f⋆(x)] ≥Ex∼Pa [f

∗(x)]−
∣∣∣Ex∼P̂a

[f∗(x)]− Ex∼Pa [f
∗(x)]

∣∣∣
≥Ex∼Pa [f̂(x)]− Ex∼Pa

[∣∣∣f̂(x)− f∗(x)
∣∣∣]− ∣∣∣Ex∼P̂a

[f∗(x)]− Ex∼Pa [f
∗(x)]

∣∣∣
≥Ex∼Pa [f̂(x)]− Ex∼Pa

[∣∣∣f̂(x)− g∗(x)
∣∣∣]︸ ︷︷ ︸

E1

−
∣∣∣Ex∼Pa

[g∗(x∥)]− Ex∼P̂a
[g∗(x∥)]

∣∣∣︸ ︷︷ ︸
E2

−Ex∼P̂a
[h∗(x⊥)]︸ ︷︷ ︸
E3

,

where Ex∼Pa [f̂(x)] = Ea∼q[a] and we use x = x∥, f∗(x) = g∗(x) when x ∼ Pa. Therefore

SubOpt(P̂a; y∗ = a) = a− Ex∼P̂a
[f⋆(x)]

≤ Ex∼Pa

[∣∣∣(θ̂ − θ∗)⊤x
∣∣∣]︸ ︷︷ ︸

E1

+
∣∣∣Ex∼Pa

[g∗(x∥)]− Ex∼P̂a
[g∗(x∥)]

∣∣∣︸ ︷︷ ︸
E2

+ Ex∼P̂a
[h∗(x⊥)]︸ ︷︷ ︸
E3

.

E1 comes from regression: prediction/generalization error onto Pa, which is independent from any
error of distribution estimation that occurs in diffusion. E2 and E3 do not measure regression-predicted
f̂ , thus they are independent from the prediction error in f̂ for pseudo-labeling. E2 measures the
disparity between P̂a and Pa on the subspace support and E3 measures the off-subspace component
in generated P̂a.

D.3.2 Bounding E1 Relating to Offline Bandits

For all xi ∈ Dlabel, yi = f∗(xi) + ϵi = g(xi) + ϵi. Thus, trained on Dlabel the prediction model f̂ is
essentially approximating g. By estimating θ∗ with ridge regression on Dlabel, we have f̂(x) = θ̂⊤x
with

θ̂ =
(
X⊤X + λI

)−1
X⊤ (Xθ∗ + η) , (D.6)

where X⊤ = (x1, · · · , xi, · · · , xn2
) and η = (ϵ1, · · · , ϵi, · · · , ϵn2

).
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Lemma D.5. Under Assumption 4.1 and 4.2 and given ϵi ∼ N(0, σ2), define Vλ := X⊤X + λI ,
Σ̂λ := 1

n2
Vλ and ΣPa

:= Ex∼Pa
xx⊤ the covariance matrix (uncentered) of Pa, and take λ = 1, then

with high probability

E1 ≤
√
Tr(Σ̂−1λ ΣPa) ·

O
(√
d log n2

)
√
n2

. (D.7)

Proof. Proof is in §E.3.

Lemma D.6. Under Assumption 4.1, 4.2 and 4.4, when λ = 1, Pa has a shift from the empirical
marginal of x in dataset by

Tr(Σ̂−1λ ΣPa
) ≤ O

(
a2

∥β∗∥Σ
+ d

)
. (D.8)

when n2 = Ω(max{ 1
λmin

, d
∥β∗∥2Σ

}).

Proof. Proof is in §E.4.

D.3.3 Bounding E2 and the Distribution Shift in Diffusion

Lemma D.7. Under Assumption 4.1, 4.2 and 4.4, when t0 =
(
(Dd2 +D2d)/n1

)1/6
E2 = Õ

√T (P (x, ŷ = a), Pxŷ; S̄)
λmin

·
(
Dd2 +D2d

n1

) 1
6

· a

 .

Proof. Proof is in §E.5.

Note that T (P (x, ŷ = a), Pxŷ; S̄) depends on a and measures the distribution shift between the
desired distribution P (x, ŷ = a) and the data distribution Pxŷ. To understand this distribution’s
dependency on a, it what follows we give T (P (x, ŷ = a), Pxŷ; S̄) a shorthand as DistroShift2(a)
and give it an upper bound in one special case of the problem.

Distribution Shift In the special case of covariance Σ of z is known and ∥A − V ∥22 =
O
(
∥AA⊤ − V V ⊤∥2F

)
, we showcase a bound on the distribution shift in E2, as promised in the

discussion following Theorem 4.6. We have

DistroShift2(a) =
EPx,ŷ=a

[ℓ(x, y; ŝ)]

EPxŷ
[ℓ(x, y; ŝ)]

,

where ℓ(x, y; ŝ) = 1
T−t0

∫ T
t0
Ex′|x∥∇x′ log ϕt(x

′|x)− ŝ(x′, y, t)∥22dt. By Proposition 3.1, it suffices
to bound

DistroShift2(a) =
EPx,ŷ=a

[
∫ T
t0
∥∇ log pt(x, y)− ŝ(x, y, t)∥22dt]

EPxŷ
[
∫ T
t0
∥∇ log pt(x, y)− ŝ(x, y, t)∥22dt]

.

We expand the difference ∥∇ log pt(x, y)− ŝ(x, y, t)∥22 by

∥∇ log pt(x, y)− ŝ(x, y, t)∥22 ≤ 2

h2(t)

[
∥(A− V )Bt(A

⊤x+ ν−2yθ)∥22 + ∥V Bt(A− V )⊤x∥22
]

≤ 2

h2(t)

[
∥A− V ∥22∥Bt(A⊤x+ ν−2yθ)∥22 + ∥A− V ∥22∥x∥22

]
≤ 2

h2(t)
∥A− V ∥22(3∥x∥22 + y2),

where we recall Bt is defined in (H.2) and in the last inequality, we use (a+ b)2 ≤ 2a2 + 2b2. In the
case of covariance matrix Σ is known, i.e., Bt is known, we also consider matrix V directly matches
A without rotation. Then by [8, Lemma 3 and 17], we have ∥A− V ∥22 = O

(
∥AA⊤ − V V ⊤∥2F

)
=

20



O
(
t0/c0EPxŷ

[ℓ(x, y; ŝ)]
)
. To this end, we only need to find EPx|ŷ=a

[∥x∥22]. Since we consider
on-support x, which can be represented as x = Az, we have ∥x∥2 = ∥z∥2. Thus, we only need to
find the conditional distribution of z|ŷ = a. Fortunately, we know (z, ŷ) is jointly Gaussian, with
mean 0 and covariance [

Σ Σβ̂

β̂⊤Σ β̂⊤Σβ̂ + ν2

]
.

Consequently, the conditional distribution of z|ŷ = a is still Gaussian, with mean Σβ̂a/(β̂⊤Σβ̂+ν2)
and covariance Σ− Σβ̂β̂⊤Σ/(β̂⊤Σβ̂ + ν2). Hence, we have

EPz|ŷ=a
[∥z∥22] =

1

(β̂⊤Σβ̂ + ν2)2

(
(a2 − β̂⊤Σβ̂ − ν2)β̂⊤Σ2β̂

)
+Tr(Σ) = O

(
a2 ∨ d

)
.

We integrate over t for the numerator in DistroShift(a) to obtain EPx|ŷ=a
[
∫ T
t0
∥∇ log pt(x, y)−

ŝ(x, y, t)∥22dt = O
(
(a2 ∨ d) 1

c0
EPxŷ

[ℓ(x, y; ŝ)]
)

. Note the cancellation between the numerator and
denominator, we conclude

DistroShift(a) = O
(

1

c0
(a ∨

√
d)

)
.

As d is a natural upper bound of
√
d and viewing c0 as a constant, we have DistroShift(a) =

O (a ∨ d) as desired.

E Supporting lemmas and proofs

E.1 Supporting lemmas

Lemma E.1. The estimated subspace V satisfies

∥V U −A∥F = O
(
d

3
2

√
∠(V,A)

)
(E.1)

for some orthogonal matrix U ∈ Rd×d.

Proof. Proof is in §E.6.

Lemma E.2. Suppose P1 and P2 are two distributions over Rd and m is a function defined on Rd,
then |Ex∼P1

[m(z)]− Ez∼P2
[m(z)]|can be bounded in terms of dTV(P1, P2), specifically when P1

and P2 are Gaussians and m(z) = ∥z∥22:
Ex∼P1

[∥z∥22] = O
(
Ez∼P2

[∥z∥22](1 + dTV(P1, P2))
)
. (E.2)

When P1 and P2 are Gaussians and m(z) = ∥z∥2:

|Ez∼P1
[∥z∥2]− Ez∼P2

[∥z∥2]| = O
((√

Ez∼P1
[∥z∥22] +

√
Ez∼P2

[∥z∥22]
)
· dTV(P1, P2)

)
.

(E.3)

Proof. Proof is in §E.7.

Lemma E.3. We compute Ez∼PLD(a)[∥z∥22],Ez∼PLD
t0

(a)[∥z∥22],Ex∼P̂a
[∥x∥22],Ez∼(U⊤V ⊤)#P̂a

[∥z∥22]
in this Lemma.

Ez∼PLD(a)[∥z∥22] =
β̂⊤Σ2β̂(

∥β̂∥2Σ + ν2
)2 a2 + trace(Σ− Σβ̂

(
β̂⊤Σβ̂ + ν2

)−1
β̂⊤Σ). (E.4)

Let M(a) := Ez∼PLD(a)[∥z∥22], which has an upper bound M(a) = O
(

a2

∥β∗∥Σ + d
)

.

Ez∼PLD
t0

(a)[∥z∥22] ≤M(a) + t0d. (E.5)

Ex∼P̂a

[
∥x∥22

]
≤ O

(
ct0D +M(a) · (1 + TV (P̂a)

)
. (E.6)

Proof. Proof is in §E.8.
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E.2 Proof of Lemma D.4

Proof. The first two assertions (D.2) and (D.3) are consequences of [8, Theorem 3, item 1 and 3]. To
show (D.4), we first have the conditional score matching error under distribution shift being

T (P (x, ŷ = a), Pxŷ; S̄) · ϵ2diff ,
where T (P (x, ŷ = a), Pxŷ; S̄) accounts for the distribution shift as in the parametric case
(Lemma D.7). Then we apply [8, Theorem 3, item 2] to conclude

TV (P̂a) = Õ

√T (P (x, ŷ = a), Pxŷ; S̄)
c0

· ϵdiff

 .

The proof is complete.

E.3 Proof of Lemma D.5

Proof. Given

E1 = EP̂a

∣∣∣x⊤(θ∗ − θ̂)
∣∣∣ ≤ EP̂a

∥x∥V −1
λ

· ∥θ∗ − θ̂∥Vλ
,

then things to prove are

EP̂a
∥x∥V −1

λ
=
√
trace(V −1λ ΣP̂a

); (E.7)

∥θ∗ − θ̂∥Vλ
≤ O

(√
d log n2

)
, (E.8)

where the second inequality is to be proven with high probability w.r.t the randomness in Dlabel. For

(E.7), EP̂a
∥x∥V −1

λ
≤
√
EP̂a

x⊤V −1λ x =
√
EP̂a

trace(V −1λ xx⊤) =
√
trace(V −1λ EP̂a

xx⊤).

For (E.8), what’s new to prove compared to a classic bandit derivation is its d dependency instead of
D, due to the linear subspace structure in x. From the closed form solution of θ̂, we have

θ̂ − θ∗ = V −1λ X⊤η − λV −1λ θ∗. (E.9)
Therefore,

∥θ∗ − θ̂∥Vλ
≤ ∥X⊤η∥V −1

λ
+ λ∥θ∗∥V −1

λ
, (E.10)

where λ∥θ∗∥V −1
λ

≤
√
λ∥θ∗∥2 ≤

√
λ and

∥X⊤η∥2
V −1
λ

= η⊤X
(
X⊤X + λID

)−1
X⊤η

= η⊤XX⊤
(
XX⊤ + λIn2

)−1
η.

Let Z⊤ = (z1, · · · , zi, · · · , zn2
) s.t. Azi = xi, then it holds that X = ZA⊤, and XX⊤ =

ZA⊤AZ⊤ = ZZ⊤ , thus

∥X⊤η∥2
V −1
λ

= η⊤XX⊤
(
XX⊤ + λIn2

)−1
η

= η⊤ZZ⊤
(
ZZ⊤ + λIn2

)−1
η

= η⊤Z
(
Z⊤Z + λId

)−1
Z⊤η

= ∥Z⊤η∥(Z⊤Z+λId)
−1 .

With probability 1− δ, ∥zi∥2 ≤ d+
√
d log

(
2n2

δ

)
:= L2,∀i ∈ [n2]. Then Theorem 1 in “Improved

algorithms for linear stochastic bandits” (by Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari)
gives rise to

∥Z⊤η∥(Z⊤Z+λId)
−1 ≤

√
2 log(2/δ) + d log(1 + n2L2/(λd))

with probability 1− δ/2. Combine things together and plugging in λ = 1, L2 = d+
√
d log

(
2n2

δ

)
,

we have with high probability

∥θ∗−θ̂∥Vλ
= O

(√
d log

(
n2
√

log(n2)
))

= O
(√

d log n2 +
1

2
d log(log n2)

)
= O

(√
d log n2

)
.
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E.4 Proof of Lemma D.6

Proof. Recall the definition of Σ̂λ and ΣPa that

Σ̂λ =
1

n2
X⊤X +

λ

n2
ID,

ΣPa
= Ex∼Pa

[
xx⊤

]
,

where X are stack matrix of data supported on A and Pa is also supported on A, A is the subspace
encoded by matrix A. The following lemma shows it is equivalent to measure trace(Σ̂−1λ ΣPa

) on A
subspace.
Lemma E.4. For any P.S.D. matrices Σ1,Σ2 ∈ Rd×d and A ∈ RD×d such that A⊤A = Id, we have

Tr
(
(λID +AΣ1A

⊤)−1AΣ2A
⊤) = Tr

(
(λId +Σ1)

−1
Σ2

)
.

The lemma above allows us to abuse notations Σ̂λ and ΣPa
in the following way while keeping the

same trace(Σ̂−1λ ΣPa
) value:

Σ̂λ =
1

n2
Z⊤Z +

λ

n2
Id,

ΣPa = Ez∼PLD(a)

[
zz⊤

]
,

where Z⊤ = (z1, · · · , zi, · · · , zn2
) s.t. Azi = xi and recall notataion PLD(a) = Pz

(
z | f̂(Az)

)
.

Given z ∼ N(µ,Σ), as a proof artifact, let f̂(x) = θ̂⊤x+ ξ, ξ ∼ N(0, ν2) where we will let ν → 0

in the end, then let β̂ = A⊤θ̂ ∈ Rd, (z, f̂(Az)) has a joint distribution

(z, f̂) ∼ N

([
µ

β̂⊤µ

]
,

[
Σ Σβ̂

β̂⊤Σ β̂⊤Σβ̂ + ν2

])
. (E.11)

Then we have the conditional distribution z | f̂(Az) = a following

Pz

(
z | f̂(Az) = a

)
= N

(
µ+Σβ̂

(
β̂⊤Σβ̂ + ν2

)−1
(a− β̂⊤µ),Γ

)
(E.12)

with Γ := Σ− Σβ̂
(
β̂⊤Σβ̂ + ν2

)−1
β̂⊤Σ.

When µ = 0, we compute trace(Σ̂−1λ ΣPa
) as

trace(Σ̂−1λ ΣPa
) = trace

Σ̂−1λ
Σβ̂β̂⊤Σ(

∥β̂∥2Σ + ν2
)2 a2

+ trace
(
Σ̂−1λ Γ

)

= trace

 β̂⊤ΣΣ̂−1λ Σβ̂(
∥β̂∥2Σ + ν2

)2 a2
+ trace

(
Σ̂−1λ Σ

)
− trace

(
Σ̂−1λ

Σβ̂β̂⊤Σ

∥β̂∥2Σ + ν2

)

= trace

Σ1/2β̂β̂⊤Σ1/2Σ1/2Σ̂−1λ Σ1/2(
∥β̂∥2Σ + ν2

)2 a2


≤ ∥ΣΣ̂−1λ Σ∥op · ∥β̂∥2Σ(

∥β̂∥2Σ + ν2
)2 · a2 + trace

(
Σ

1
2 Σ̂−1λ Σ

1
2

)

By the Lemma 3 in [7], it holds that

∥Σ 1
2 Σ̂−1λ Σ

1
2 − Id∥2 ≤ O

(
1√

λminn2

)
. (E.13)
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Therefore,

trace(Σ̂−1λ ΣPa
) ≤

1 + 1√
λminn2

∥β̂∥2Σ
· a2 +O

(
d

(
1 +

1√
λminn2

))
.

Then, what left is to bound ∥β̂∥Σ = ∥θ̂∥AΣA⊤ ≥ ∥θ∗∥AΣA⊤ −∥θ̂− θ∗∥AΣA⊤ by triangle inequality.
On one hand,

∥θ∗∥AΣA⊤ = ∥β∗∥Σ. (E.14)
On the other hand,

∥θ̂ − θ∗∥AΣA⊤ = O
(
∥θ̂ − θ∗∥Σ̂λ

)
= O

(
∥θ̂ − θ∗∥Vλ√

n2

)

= O

√d log(n2)

n2

 .

with high probability. Thus when n2 = Ω( d
∥β∗∥2Σ

)

∥β̂∥Σ ≥ 1

2
∥β∗∥Σ.

Therefore

trace(Σ̂−1λ ΣPa
) ≤ O

(
1 + 1√

λminn2

∥β∗∥Σ
· a2 + d

(
1 +

1√
λminn2

))
= O

(
a2

∥β∗∥Σ
+ d

)
. (E.15)

when n2 = Ω(max{ 1
λmin

, d
∥β∗∥2Σ

}).

E.5 Proof of lemma D.7

Proof. Recall the definition of g(x) that

g(x) = θ∗⊤AA⊤x,

note that g(x) = θ∗⊤x when x is supported on A. Thus,∣∣∣Ex∼Pa
[g(x)]− Ex∼P̂a

[g(x)]
∣∣∣

=
∣∣∣Ex∼Pa

[θ∗⊤x]− Ex∼P̂a
[θ∗⊤AA⊤x]

∣∣∣
≤
∣∣∣Ex∼Pa

[θ∗⊤x]− Ex∼P̂a
[θ∗⊤V V ⊤x]

∣∣∣+ ∣∣∣Ex∼P̂a
[θ∗⊤V V ⊤x]− Ex∼P̂a

[θ∗⊤AA⊤x]
∣∣∣︸ ︷︷ ︸

e1

,

where

e1 =
∣∣∣Ex∼P̂a

[θ∗⊤
(
V V ⊤ −AA⊤

)
x]
∣∣∣

≤ Ex∼P̂a

[(∥∥(V V ⊤ −AA⊤
)
x
∥∥]

≤ ∥V V ⊤ −AA⊤∥F ·
√
Ex∼P̂a

[
∥x∥22

]
.

Use notation PLD(a) = P (z | f̂(Az) = a), PLDt0 (a) = Pt0(z | f̂(Az) = a)∣∣∣Ex∼Pa
[θ∗⊤x]− Ex∼P̂a

[θ∗⊤V V ⊤x]
∣∣∣

=
∣∣∣Ez∼P (z|f̂(Az)=a)[θ

∗⊤Az]− Ez∼(U⊤V ⊤)#P̂a
[θ∗⊤V Uz]

∣∣∣
≤
∣∣∣Ez∼PLD

t0
(a)[θ

∗⊤Az]− Ez∼(U⊤V ⊤)#P̂a
[θ∗⊤V Uz]

∣∣∣+ ∣∣∣Ez∼PLD
t0

(a)[θ
∗⊤Az]− Ez∼PLD(a)[θ

∗⊤Az]
∣∣∣︸ ︷︷ ︸

e2

,
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here

e2 =
∣∣∣α(t0)Ez∼PLD(a)[θ

∗⊤Az] + h(t0)Eu∼N(0,Id)[θ
∗⊤Au]− Ez∼PLD(a)[θ

∗⊤Az]
∣∣∣

≤ (1− α(t0))
∣∣∣Ez∼PLD(a)[θ

∗⊤Az]
∣∣∣

≤ t0 · Ez∼PLD(a)[∥z∥2].
Then what is left to bound is∣∣∣Ez∼PLD

t0
(a)[θ

∗⊤Az]− Ez∼(U⊤V ⊤)#P̂a
[θ∗⊤V Uz]

∣∣∣
≤
∣∣∣Ez∼PLD

t0
(a)[θ

∗⊤V Uz]− Ez∼(U⊤V ⊤)#P̂a
[θ∗⊤V Uz]

∣∣∣︸ ︷︷ ︸
e3

+
∣∣∣Ez∼PLD

t0
(a)[θ

∗⊤V Uz]− Ez∼PLD
t0

(a)[θ
∗⊤Az]

∣∣∣︸ ︷︷ ︸
e4

.

Then for term e3, by Lemma E.2, we get

e3 ≤
∣∣∣Ez∼PLD

t0
(a)[∥z∥2]− Ez∼(U⊤V ⊤)#P̂a

[∥z∥2]
∣∣∣

= O
(
TV (P̂a) ·

(√
Ez∼PLD

t0
(a)[∥z∥22] +

√
Ex∼P̂a

[∥x∥22]
))

,

where we use Ez∼(U⊤V ⊤)#P̂a
[∥z∥2] ≤ Ex∼P̂a

[∥x∥2]
For e4, we have

e4 =
∣∣∣Ez∼PLD

t0
(a)[θ

∗⊤(V U −A)z]
∣∣∣

= α(t0)
∣∣∣Ez∼P (a)[θ

∗⊤(V U −A)z]
∣∣∣

≤ ∥V U −A∥F · Ez∼PLD(a)[∥z∥2].
Therefore, by combining things together, we have

E2 ≤e1 + e2 + e3 + e4

≤∥V V ⊤ −AA⊤∥F ·
√
Ex∼P̂a

[∥x∥22] + (∥V U −A∥F + t0) ·
√
M(a)

+O
(
TV (P̂a) ·

(√
M(a) + t0d+

√
Ex∼P̂a

[∥x∥22]
))

.

By Lemma D.4 and Lemma E.1, we have

TV (P̂a) = Õ

√T (P (x, ŷ = a), Pxŷ; S̄)
λmin

· ϵdiff

 ,

∥V V ⊤ −AA⊤∥F = Õ
( √

t0√
λmin

· ϵdiff
)
,

∥V U −A∥F = O(d
3
2 ∥V V ⊤ −AA⊤∥F).

And by Lemma E.3

Ex∼P̂a

[
∥x∥22

]
= O

(
ct0D +M(a) · (1 + TV (P̂a)

)
.

Therefore. leading term in E2 is

E2 = O
(
(TV (P̂a) + t0)

√
M(a)

)
.

By plugging in score matching error ϵ2diff = Õ
(

1
t0

√
Dd2+D2d

n1

)
, we have

TV (P̂a) = Õ

√T (P (x, ŷ = a), Pxŷ; S̄)
λmin

·
(
Dd2 +D2d

n1

) 1
4

· 1√
t0

 .
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When t0 =
(
(Dd2 +D2d)/n1

)1/6
, it admits the best trade off in E2 and E2 is bounded by

E2 = Õ

√T (P (x, ŷ = a), Pxŷ; S̄)
λmin

·
(
Dd2 +D2d

n1

) 1
6

· a

 .

E.6 Proof of Lemma E.1

Proof. From Lemma 17 in [8], we have

∥U − V ⊤A∥F = O(∥V V ⊤ −AA⊤∥F ).
Then it suffices to bound ∣∣∥V U −A∥2F − ∥U − V ⊤A∥2F

∣∣ ,
where

∥V U −A∥2F = 2d− trace
(
U⊤V ⊤A+A⊤V U

)
∥U − V ⊤A∥2F = d+ trace

(
A⊤V V ⊤A

)
− trace

(
U⊤V ⊤A+A⊤V U

)
.

Thus∣∣∥V U −A∥2F − ∥U − V ⊤A∥2F
∣∣ = ∣∣d− trace

(
A⊤V V ⊤A

)∣∣ = ∣∣trace (AA⊤(V V ⊤ −AA⊤)
)∣∣ ,

which is because trace
(
A⊤V V ⊤A

)
is calcualted as

trace
(
A⊤V V ⊤A

)
= trace

(
AA⊤V V ⊤

)
= trace

(
AA⊤AA⊤

)
+ trace

(
AA⊤(V V ⊤ −AA⊤)

)
= d+ trace

(
AA⊤(V V ⊤ −AA⊤)

)
.

Then we will bound
∣∣trace (AA⊤(V V ⊤ −AA⊤)

)∣∣ by ∥V V ⊤ −AA⊤∥F ,∣∣trace (AA⊤(V V ⊤ −AA⊤)
)∣∣ ≤ trace

(
AA⊤

)
trace

(∣∣V V ⊤ −AA⊤
∣∣)

≤ d · trace
(∣∣V V ⊤ −AA⊤

∣∣)
≤ d ·

√
2d ∥V V ⊤ −AA⊤∥2F .

Thus, ∥V U −A∥F = O
(
d

3
2

√
∠(V,A)

)
.

E.7 Proof of Lemma E.2

Proof. When P1 and P2 are Gaussian, m(z) = ∥z∥22
|Ez∼P1

[m(z)]− Ez∼P2
[m(z)]|

=

∣∣∣∣∫ m(z) (p1(z)− p2(z)) dz

∣∣∣∣
≤
∣∣∣∣∣
∫
∥z∥2≤R

∥z∥22 (p1(z)− p2(z)) dz

∣∣∣∣∣+
∫
∥z∥2>R

∥z∥22p1(z)dz +
∫
∥z∥2>R

∥z∥22p2(z)dz

≤ R2dTV(P1, P2) +

∫
∥z∥2>R

∥z∥22p1(z)dz +
∫
∥z∥2>R

∥z∥22p2(z)dz.

Since P1 and P2 are Gaussains,
∫
∥z∥2>R ∥z∥22p1(z)dz and

∫
∥z∥2>R ∥z∥22p2(z)dz are bounded by

some constant C1 when R2 ≥ C2 max{Ez∼P1
[∥z∥22],Ez∼P2

[∥z∥22]} as suggested by Lemma 16 in
[8].
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Therefore,

Ez∼P1
[∥z∥22] ≤ Ez∼P2

[∥z∥22] + C2 max{EP1
[∥z∥22],EP2

[∥z∥22]} · dTV(P1, P2) + 2C1

≤ Ez∼P2
[∥z∥22] + C2(Ez∼P1

[∥z∥22] + Ez∼P2
[∥z∥22]) · dTV(P1, P2) + 2C1.

Then
Ez∼P1 [∥z∥22] = O

(
Ez∼P2 [∥z∥22] + Ez∼P2 [∥z∥22] · dTV(P1, P2)

)
since dTV(P1, P2) decays with n1.

Similarly, when m(z) = ∥z∥2
|Ez∼P1

[m(z)]− Ez∼P2
[m(z)]|

=

∣∣∣∣∫ m(z) (p1(z)− p2(z)) dz

∣∣∣∣
≤
∣∣∣∣∣
∫
∥z∥2≤R

∥z∥2 (p1(z)− p2(z)) dz

∣∣∣∣∣+
∫
∥z∥2>R

∥z∥2p1(z)dz +
∫
∥z∥2>R

∥z∥2p2(z)dz

≤ RdTV(P1, P2) +

√∫
∥z∥2>R

∥z∥22p1(z)dz +
√∫
∥z∥2>R

∥z∥22p2(z)dz,

where
∫
∥z∥2>R ∥z∥22p1(z)dz and

∫
∥z∥2>R ∥z∥22p2(z)dz are bounded by some constant C1 when

R2 ≥ C2 max{Ez∼P1
[∥z∥22],Ez∼P2

[∥z∥22]} as suggested by Lemma 16 in [8].

Therefore,

|Ez∼P1
[∥z∥2]− Ez∼P2

[∥z∥2]| ≤
√
C2 max{EP1

[∥z∥22],EP2
[∥z∥22]} · dTV(P1, P2) + 2C1

≤
(√

C2Ez∼P1
[∥z∥22] +

√
C2Ez∼P2

[∥z∥22]
)
· dTV(P1, P2) + 2C1

= O
((√

Ez∼P1
[∥z∥22] +

√
Ez∼P2

[∥z∥22]
)
· dTV(P1, P2)

)
.

E.8 Proof of Lemma E.3

Proof. Recall from (E.12) that

PLD(a) = Pz(z | f̂(Az) = a) = N (µ(a), Γ)

with µ(a) := Σβ̂
(
β̂⊤Σβ̂ + ν2

)−1
a, Γ := Σ− Σβ̂

(
β̂⊤Σβ̂ + ν2

)−1
β̂⊤Σ.

Ez∼PLD(a)

[
∥z∥22

]
= µ(a)⊤µ(a) + trace(Γ)

=
β̂⊤Σ2β̂(

∥β̂∥2Σ + ν2
)2 a2 + trace(Σ− Σβ̂

(
β̂⊤Σβ̂ + ν2

)−1
β̂⊤Σ)

=:M(a).

M(a) = O

 β̂⊤Σ2β̂(
∥β̂∥2Σ

)2 a2 + trace(Σ)


= O

(
a2

∥β̂∥Σ
+ d

)
,
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and by Lemma D.6

∥β̂∥Σ ≤ 1

2
∥β∗∥Σ.

Thus Ez∼PLD(a)

[
∥z∥22

]
=M(a),M(a) = O

(
a2

∥β∗∥Σ + d
)

.

Thus after adding diffusion noise at t0, we have for α(t) = e−t/2 and h(t) = 1− e−t:

Ez∼PLD
t0

(a)

[
∥z∥22

]
= Ez0∼PLD(a)Ez∼N(α(t0)·z0,h(t0)·Id)

[
∥z∥22

]
= Ez0∼PLD(a)

[
α2(t0)∥z0∥22 + d · h(t0)

]
= α2(t0) · Ez0∼PLD(a)

[
∥z0∥22

]
+ d · h(t0)

= e−t0 · Ez0∼PLD(a)

[
∥z0∥22

]
+ (1− e−t0) · d.

Thus Ez∼PLD
t0

(a)

[
∥z∥22

]
≤M(a) + t0d.

By orthogonal decomposition we have

Ex∼P̂a

[
∥x∥22

]
≤ Ex∼P̂a

[
∥(ID − V V ⊤)x∥22

]
+ Ex∼P̂a

[
∥V V ⊤x∥22

]
= Ex∼P̂a

[
∥(ID − V V ⊤)x∥22

]
+ Ex∼P̂a

[
∥U⊤V ⊤x∥22

]
,

where Ex∼P̂a

[
∥(ID − V V ⊤)x∥22

]
is bounded by (D.5) and the distribution of U⊤V ⊤x, which is

(U⊤V ⊤)#P̂a, is close to PLDt0 (a) up to TV (P̂a), which is defined in Definition D.2. Then by
Lemma E.2, we have

Ex∼P̂a

[
∥U⊤V ⊤x∥22

]
= O

(
Ez∼PLD

t0
(a)

[
∥z∥22

]
(1 + TV (P̂a)

)
.

Thus Ex∼P̂a

[
∥x∥22

]
= O

(
ct0D + (M(a) + t0d) · (1 + TV (P̂a)

)
.

E.9 Proof of Lemma E.4

Proof. Firstly, one can verify the following two equations by direct calculation:

(λID +AΣ1A
⊤)−1 =

1

λ

(
ID −A(λId +Σ1)

−1Σ1A
⊤) ,

(λId +Σ1)
−1 =

1

λ

(
Id − (λId +Σ1)

−1Σ1

)
.

Then we have

(λID +AΣ1A
⊤)−1AΣ2A

⊤ =
1

λ

(
ID −A(λId +Σ1)

−1Σ1A
⊤)AΣ2A

⊤

=
1

λ

(
AΣ2A

⊤ −A(λId +Σ1)
−1Σ1Σ2A

⊤) .
Therefore,

Tr
(
(λID +AΣ1A

⊤)−1AΣ2A
⊤) =Tr

(
1

λ

(
AΣ2A

⊤ −A(λId +Σ1)
−1Σ1Σ2A

⊤))
=Tr

(
1

λ

(
Σ2 − (λId +Σ1)

−1Σ1Σ2

))
=Tr

(
1

λ

(
Id − (λId +Σ1)

−1Σ1

)
Σ2

)
=Tr

(
(λId +Σ1)

−1
Σ2

)
,

which has finished the proof.
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F Theory in Nonparametric Setting

Built upon the insights from Section 4, we provide analysis to the nonparametric reward and general
data sampling setting. We generalize Assumption 4.2 to the following.

Assumption F.1 . The ground truth reward f∗ is decomposed as

f∗(x) = g∗(x∥)− h∗(x⊥),

where g∗(x∥) is α-Hölder continuous for α ≥ 1 and h∗(x⊥) is nondecreasing in terms of ∥x⊥∥2
with h∗(0) = 0. Moreover, g∗ has a bounded Hölder norm, i.e., ∥g∗∥Hα ≤ 1.

Hölder continuity is widely studied in nonparametric statistics literature [15, 49]. h∗ here penalizes
off-support extrapolation.

Under Assumption F.1, we use nonparametric regression for estimating f∗. Specifically, we specialize
(3.1) in Algorithm 1 to

f̂θ ∈ argmin
fθ∈F

1

2n

n1∑
i=1

(fθ(xi)− yi)
2,

where F = NN(L,M, J,K, κ) is chosen to be a class of neural networks. Hyperparameters in F
will be chosen properly in Theorem F.4.

Our theory also considers generic sampling distributions on x. Since x lies in a low-dimensional
subspace, this translates to a sampling distribution assumption on latent variable z.

Assumption F.2 . The latent variable z follows distribution Pz with density pz , such that there exists
constants B,C1, C2 verifying pz(z) ≤ (2π)−(d+1)/2C1 exp

(
−C2∥z∥22/2

)
whenever ∥z∥2 > B.

And c0Id ⪯ Ez∼Pz

[
zz⊤

]
.

Assumption F.2 says Pz has a light tail, which is standard in high-dimensional statistics [51, 53].
Assumption F.2 also encodes distributions with a compact support. Furthermore, we assume that
the curated data (x, ŷ) induces Lipschitz conditional scores. Motivated by Chen et al. [8], we
show that the linear subspace structure in x leads to a similar conditional score decomposition
∇ log pt(x|ŷ) = s∥(x, ŷ, t) + s⊥(x, ŷ, t), where s∥ is the on-support score and s⊥ is the orthogonal
score. The decomposition for conditional score is as (H.1), which applies to both parametric and
non-parametric cases. The following assumption is imposed on s∥.

Assumption F.3 . The on-support conditional score function s∥(x, ŷ, t) is Lipschitz with respect to
x, ŷ for any t ∈ (0, T ], i.e., there exists a constant Clip, such that for any x, ŷ and x′, ŷ′, it holds

∥s∥(x, ŷ, t)− s∥(x
′, ŷ′, t)∥2 ≤ Clip∥x− x′∥2 + Clip|ŷ − ŷ′|2.

Lipschitz score is commonly adopted in existing works [9, 25]. Yet Assumption F.3 only requires the
Lipschitz continuity of the on-support score, which matches the weak regularity conditions in Lee
et al. [25], Chen et al. [8]. We then choose the score network architecture similar to that in the linear
reward setting, except we replace m by a nonlinear network. Recall the linear encoder and decoder
estimate the representation matrix A.

We consider feedforward networks with ReLU activation functions as concept classes F and S
for nonparametric regression and conditional score matching. Generalization to different network
architectures poses no real difficulty. Given an input x, neural networks compute

fNN(x) =WLσ(. . . σ(W1x+ b1) . . . ) + bL, (F.1)

where Wi and bi are weight matrices and intercepts, respectively. We then define a class of neural
networks as

NN(L,M, J,K, κ) =
{
f : f in the form of (F.1) with L layers and width bounded by M,

sup
x

∥f(x)∥2 ≤ K,max{∥bi∥∞, ∥Wi∥∞} ≤ κ for i = 1, . . . , L, and
L∑
i=1

(
∥Wi∥0 + ∥bi∥0

)
≤ J

}
.
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For the conditional score network, we will additionally impose some Lipschitz continuity requirement,
i.e., ∥f(x)− f(y)∥2 ≤ clip∥x− y∥2 for some Lipschitz coefficient clip.

Recall the distribution shift defined in Definition D.3 that

T (P1, P2;L) = supl∈L Ex∼P1
[l(x)]/Ex∼P2

[l(x)]

for arbitrary two distributions P1, P2 and function class L. Similar to the parametric case, use notation
P̂a := P̂ (·|ŷ = a) and Pa := P (·|ŷ = a). Then we can bound SubOpt(P̂a; y∗ = a) in Theorem F.4
in terms of non-parametric regression error, score matching error and distribution shifts in both
regression and score matching.

Theorem F.4. Suppose Assumption 4.1, F.1, F.2 and F.3 hold. Let δ(n) = d log logn
logn . Properly chosen

F and S, with high probability, running Algorithm 1 with a target reward value a and stopping at

t0 =

(
n
− 2−2δ(n1)

d+6

1 +Dn
− d+4

d+6

1

) 1
3

gives rise to ∠(V,A) ≤ Õ
(

1
c0

(
n
− 2−2δ(n1)

d+6

1 +Dn
− d+4

d+6

1

))
and

SubOpt(P̂a; y∗ = a)

≤
√
T (P (x|ŷ = a), Px; F̄) · Õ

(
n
−α−δ(n2)

2α+d

2 +D/n2

)
︸ ︷︷ ︸

E1

+

√T (P (x, ŷ = a), Pxŷ; S̄)
c0

· ∥g∗∥∞ +
√
M(a)

 · Õ
((

n
− 2−2δ(n1)

d+6

1 +Dn
− d+4

d+6

1

) 1
3

)
︸ ︷︷ ︸

E2
+ Ex∼P̂a

[h∗(x⊥)]︸ ︷︷ ︸
E3

,

where M(a) := Ez∼P(a)[∥z∥22] and

F̄ := {|f∗(x)− f(x)|2 : f ∈ F}, S̄ =

{
1

T − t0

∫ T

t0

Ext|x∥∇ log pt(xt | y)− s(xt, y, t)∥22dt : s ∈ S
}
,

E3 penalizes the component in P̂a that is off the truth subspace. The function classes F and S are
chosen as F = NN(Lf ,Mf , Jf ,Kf , κf ) with

Lf = O(log n2), Mf = O
(
n
− d

d+2α

2 (log n2)
d/2

)
, Jf = O

(
n
− d

d+2α

2 (log n2)
d/2+1

)
Kf = 1, κf = O

(√
log n2

)
and S = NN(Ls,Ms, Js,Ks, κs) with

Ls = O(log n1 + d), Ms = O
(
dd/2n

− d+2
d+6

1 (log n1)
d/2

)
, Js = O

(
dd/2n

− d+2
d+6

1 (log n1)
d/2+1

)
Ks = O (d log(dn1)) , κs = O

(√
d log(n1d)

)
.

Moreover, S is also Lipschitz with respect to (x, y) and the Lipschitz coefficient is clip =
O (10dClip).

Remark. The proof is provided in Appendix G.2. Here we correct a typo on n
− 1

3(d+5)

1 in main
paper Section 4.3. Quantities T (P (x|ŷ = a), Px; F̄) and T (P (x, ŷ = a), Pxŷ; S̄) depend on a
characterizing the distribution shift. The δ(n) terms account for the unbounded domain of x, which
is negligible when n is large. In the main paper, we omit δ(n) in the regret bound.
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G Omitted Proofs in Section F

G.1 Conditional Score Decomposition and Score Matching Error

Lemma G.1. Under Assumption 4.1, F.2 and F.3, with high probability

1

T − t0

∫ T

t0

∥ŝ(·, t)−∇ log pt(·)∥2L2(Pt)
dt ≤ ϵ2diff (n1)

with ϵ2diff (n1) = Õ
(

1
t0

(
n
− 2−2δ(n1)

d+6

1 +Dn
− d+4

d+6

1

))
for δ(n1) = d log logn1

logn1
.

Proof. [8, Theorem 1] is easily adapted here to prove Lemma G.1 with the input dimension d+ 1
and the Lipschitzness in Assumption F.3. Network size of S is implied by [8, Theorem 1] with

ϵ = n
− 1

d+6

1 accounting for the additional dimension of reward ŷ and then the score matching error
follows.

G.2 Proof of Theorem F.4

Additional Notations: Similar as before, use PLDt (z) to denote the low-dimensional distribution
on z corrupted by diffusion noise. Formally, pLDt (z) =

∫
ϕt(z

′|z)pz(z)dz with ϕt(·|z) being the
density of N(α(t)z, h(t)Id). PLDt0 (z | f̂(Az) = a) the corresponding conditional distribution on
f̂(Az) = a at t0, with shorthand as PLDt0 (a). Also give Pz(z | f̂(Az) = a) a shorthand as PLD(a).

G.2.1 SubOpt(P̂a; y∗ = a) Decomposition

By the same argument as in §D.3.1, we have

SubOpt(P̂a; y∗ = a) ≤ Ex∼Pa

[∣∣∣f∗(x)− f̂(x)
∣∣∣]︸ ︷︷ ︸

E1

+
∣∣∣Ex∼Pa

[g∗(x∥)]− Ex∼P̂a
[g∗(x∥)]

∣∣∣︸ ︷︷ ︸
E2

+ Ex∼P̂a
[h∗(x⊥)]︸ ︷︷ ︸
E3

.

G.2.2 E1: Nonparamtric Regression Induced Error

Nonparametric Regression Error of f̂ Since Pz has a light tail due to Assumption F.2, by union
bound and [8, Lemma 16], we have

P(∃ xi with ∥xi∥2 > R for i = 1, . . . , n2) ≤ n2
C1d2

−d/2+1

C2Γ(d/2 + 1)
Rd−2 exp(−C2R

2/2),

where C1, C2 are constants and Γ(·) is the Gamma function. Choosing R = O(
√
d log d+ log n

δ )
ensures P(∃ xi with ∥xi∥2 > R for i = 1, . . . , n2) < δ. On the event E = {∥xi∥2 ≤ R for all i =
1, . . . , n2}, denoting δ(n2) = d log logn2

logn2
, we have

∥f∗ − f̂∥2L2 = Õ
(
n
− 2(α−δ(n2))

d+2α

2

)
by [31, Theorem 7] with a new covering number of S , when n2 is sufficiently large. The corresponding
network architecture follows from Theorem 2 in “Nonparametric Regression on Low-Dimensional
Manifolds using Deep ReLU Networks : Function Approximation and Statistical Recovery”.

We remark that linear subspace is a special case of low Minkowski dimension. Moreover, δ(n2) is
asymptotically negligible and accounts for the truncation radius R of xi’s (see also [8, Theorem 2 and
3]). The covering number of S is Õ

(
dd/2n−

d
α (log n2)

d/2 +Dd
)

as appear in [8, Proof of Theorem
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2]. Therefore

Ex∼Pa

[∣∣∣f∗(x)− f̂(x)
∣∣∣] ≤√Ex∼Pa

[∣∣∣f∗(x)− f̂(x)
∣∣∣2]

≤
√
T (P (x|ŷ = a), Px; F̄) · ∥f∗ − f̂∥2L2

=
√
T (P (x|ŷ = a), Px; F̄) · Õ

(
n
−α−δ(n2)

2α+d

2 +D/n2

)
.

G.2.3 E2: Diffusion Induced On-support Error

Suppose L2 score matching error is ϵ2diff (n1), i.e.

1

T − t0

∫ T

t0

Ex,f̂∥∇x log pt(x, f̂)− sŵ(x, f̂ , t)∥22dt ≤ ϵ2diff (n1),

We revoke Definition D.2 measuring the distance between P̂a to Pa that

TV (P̂a) := dTV

(
PLDt0 (z | f̂(Az) = a), (U⊤V ⊤)#P̂a

)
.

Lemma D.4 applies to nonparametric setting, so we have

(ID − V V ⊤)x ∼ N(0,Λ), Λ ≺ ct0ID, (G.1)

∠(V,A) = Õ
(
t0
c0

· ϵ2diff (n1)
)
. (G.2)

In addition,

TV (P̂a) = Õ

√T (P (x, ŷ = a), Pxŷ; S̄)
c0

· ϵdiff (n1)

 . (G.3)

E2 will be bounded by

E2 =
∣∣∣Ex∼Pa

[g∗(x)]− Ex∼P̂a
[g∗(x)]

∣∣∣
≤
∣∣∣Ex∼Pa

[g∗(AA⊤x)]− Ex∼P̂a
[g∗(V V ⊤x)]

∣∣∣+ ∣∣∣Ex∼P̂a
[g∗(V V ⊤x)− g∗(AA⊤x)]

∣∣∣ ,
where for

∣∣∣Ex∼P̂a
[g∗(V V ⊤x)− g∗(AA⊤x)]

∣∣∣, we have∣∣∣Ex∼P̂a
[g∗(V V ⊤x)− g∗(AA⊤x)]

∣∣∣ ≤ Ex∼P̂a
[∥V V ⊤x−AA⊤x∥2] ≤ ∥V V ⊤−AA⊤∥F ·Ex∼P̂a

[∥x∥2].
(G.4)

For the other term
∣∣∣Ex∼Pa

[g∗(AA⊤x)]− Ex∼P̂a
[g∗(V V ⊤x)]

∣∣∣, we will bound it with TV (P̂a).∣∣∣Ex∼Pa
[g∗(AA⊤x)]− Ex∼P̂a

[g∗(V V ⊤x)]
∣∣∣

≤
∣∣∣Ez∼Pt0

(a)[g
∗(Az)]− Ez∼(V ⊤)#P̂a

[g∗(V z)]
∣∣∣+ ∣∣∣Ez∼P(a)[g∗(Az)]− Ez∼Pt0

(a)[g
∗(Az)]

∣∣∣
Since any z ∼ Pt0(a) can be represented by α(t0)z+

√
h(t0)u, where z ∼ P(a), u ∼ N(0, Id), then

Ez∼Pt0
(a)[g

∗(Az)]

= Ez∼P(a),u∼N(0,Id)[g
∗(α(t)Az +

√
h(t)Au))]

≤ Ez∼P(a)[g∗(α(t0)Az))] +
√
h(t0)Eu∼N(0,Id)[∥Au∥2]

≤ Ez∼P(a)[g∗(Az))] + (1− α(t0))Ez∼P(a)[∥Az∥2] +
√
h(t0)Eu∼N(0,Id)[∥Au∥2],
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thus ∣∣∣Ez∼P(a)[g∗(Az)]− Ez∼Pt0
(a)[g

∗(Az)]
∣∣∣ ≤ t0 · Ez∼P(a)[∥z∥2] + d,

where we further use 1− α(t0) = 1− e−t0/2 ≤ t0/2, h(t0) ≤ 1.

As for
∣∣∣Ez∼Pt0 (a)

[g∗(Az)]− Ez∼(V ⊤)#P̂a
[g∗(V z)]

∣∣∣, we have∣∣∣Ez∼Pt0
(a)[g

∗(Az)]− Ez∼(U⊤V ⊤)#P̂a
[g∗(V Uz)]

∣∣∣
=
∣∣∣Ez∼Pt0

(a)[g
∗(V Uz)]− Ez∼(U⊤V ⊤)#P̂a

[g∗(V Uz)]
∣∣∣+ ∣∣∣Ez∼Pt0

(a)[g
∗(Az)]− Ez∼Pt0

(a)[g
∗(V Uz)]

∣∣∣ ,
where ∣∣∣Ez∼Pt0 (a)

[g∗(Az)]− Ez∼Pt0 (a)
[g∗(V Uz)]

∣∣∣ ≤ ∥A− V U∥F · Ez∼Pt0 (a)
[∥z∥2],

and ∣∣∣Ez∼Pt0 (a)
[g∗(V Uz)]− Ez∼(U⊤V ⊤)#P̂a

[g∗(V Uz)]
∣∣∣ ≤ TV (P̂a) · ∥g∗∥∞.

Combining things up, we have

E2 ≤∥V V ⊤ −AA⊤∥F · Ex∼P̂a
[∥x∥2] + ∥A− V U∥F · Ez∼Pt0 (a)

[∥z∥2]
+ t0 · Ez∼P(a)[∥z∥2] + d+ TV (P̂a) · ∥g∗∥∞.

Similar to parametric case, Let M(a) := Ez∼P(a)[∥z∥22], then

Ez∼Pt0 (a)
[∥z∥22] ≤M(a) + t0d,

expect for in nonparametric case, we can not compute M(a) out as it is not Gaussian. But still, with
higher-order terms in n−11 hided, we have

E2 = O
(
TV (P̂a) · ∥g∗∥∞ + t0M(a)

)
= Õ

√T (P (x, ŷ = a), Pxŷ; S̄)
c0

· ϵdiff (n1) · ∥g∗∥∞ + t0M(a)

 .

H Parametric Conditional Score Estimation: Proof of Lemma D.1

Proof. We first derive a decomposition of the conditional score function similar to [8]. We have

pt(x, y) =

∫
pt(x, y|z)pz(z)dz

=

∫
pt(x|z)p(y|z)pz(z)dz

= C

∫
exp

(
− 1

2h(t)
∥x− α(t)Az∥22

)
exp

(
− 1

σ2
y

(
θ⊤z − y

)2)
pz(z)dz

(i)
= C exp

(
− 1

2h(t)
∥(ID −AA⊤)x∥22

)
·
∫

exp

(
− 1

2h(t)
∥A⊤x− α(t)z∥22

)
exp

(
− 1

σ2
y

(
θ⊤z − y

)2)
pz(z)dz,

where equality (i) follows from the fact AA⊤x ⊥ (ID −AA⊤)x and C is the normalizing constant
of Gaussian densities. Taking logarithm and then derivative with respect to x on pt(x, y), we obtain

∇x log pt(x, y)

=
α(t)

h(t)

A
∫
z exp

(
− 1

2h(t)∥A⊤x− α(t)z∥22
)
exp

(
− 1
σ2
y

(
θ⊤z − y

)2)
pz(z)dz∫

exp
(
− 1

2h(t)∥A⊤x− α(t)z∥22
)
exp

(
− 1
σ2
y
(θ⊤z − y)

2
)
pz(z)dz

− 1

h(t)
x.
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Note that the first term in the right-hand side above only depends on A⊤x and y. Therefore, we can
compactly write ∇x log pt(x, y) as

∇x log pt(x, y) =
1

h(t)
Au(A⊤x, y, t)− 1

h(t)
x, (H.1)

where mapping u represents

α(t)
∫
z exp

(
− 1

2h(t)∥A⊤x− α(t)z∥22
)
exp

(
− 1
σ2
y

(
θ⊤z − y

)2)
pz(z)dz∫

exp
(
− 1

2h(t)∥A⊤x− α(t)z∥22
)
exp

(
− 1
σ2
y
(θ⊤z − y)

2
)
pz(z)dz

.

We observe that (H.1) motivates our choice of the neural network architecture S in (3.8). In particular,
ψ attempts to estimate u and matrix V attempts to estimate A.

In the Gaussian design case (Assumption 4.4), we instantiate pz(z) to the Gaussian density
(2π|Σ|)−d/2 exp

(
− 1

2z
⊤Σ−1z

)
. Some algebra on the Gaussian integral gives rise to

∇x log pt(x, y) =
α(t)

h(t)
ABtµt(x, y)−

1

h(t)
(ID −AA⊤)x− 1

h(t)
AA⊤x

=
α(t)

h(t)
ABt

(
α(t)A⊤x+

h(t)

ν2
yθ

)
− 1

h(t)
x, (H.2)

where we have denoted

µt(x, y) = α(t)A⊤x+
h(t)

ν2
yθ and Bt =

(
α2(t)Id +

h(t)

ν2
θθ⊤ + h(t)Σ−1

)−1
.

Score Estimation Error Recall that we estimate the conditional score function via minimizing the
denoising score matching loss in Proposition 3.1. To ease the presentation, we denote

ℓ(x, y; s) =
1

T − t0

∫ T

t0

Ex′|x∥∇x′ log ϕt(x
′|x)− s(x′, y, t)∥22dt

as the loss function for a pair of clean data (x, y) and a conditional score function s. Further, we
denote the population loss as

L(s) = Ex,y[ℓ(x, y; s)],

whose empirical counterpart is denoted as L̂(s) = 1
n1

∑n1

i=1 ℓ(xi, yi; s).

To bound the score estimation error, we begin with an oracle inequality. Denote Ltrunc(s) as a
truncated loss function defined as

Ltrunc(s) = E[ℓ(x, y; s)1{∥x∥2 ≤ R, |y| ≤ R}],
where R > 0 is a truncation radius chosen as O(

√
d log d+ logK + log n1

δ ). Here K is a uniform
upper bound of s(x, y, t)1{∥x∥2 ≤ R, |y| ≤ R} for s ∈ S, i.e., sups∈S ∥s(x, y, t)1{∥x∥2 ≤
R, |y| ≤ R}∥2 ≤ K. To this end, we have

L(ŝ) = L(ŝ)− L̂(ŝ) + L̂(ŝ)
= L(ŝ)− L̂(ŝ) + inf

s∈S
L̂(s)

(i)
= L(ŝ)− L̂(ŝ)
≤ L(ŝ)− Ltrunc(ŝ) + Ltrunc(ŝ)− L̂trunc(ŝ)

≤ sup
s

Ltrunc(s)− L̂trunc(s)︸ ︷︷ ︸
(A)

+sup
s

L(s)− Ltrunc(s)︸ ︷︷ ︸
(B)

,

where equality (i) holds since S contains the ground truth score function. We bound term (A) by a
PAC-learning concentration argument. Using the same argument in [8, Theorem 2, term (A)], we
have

sup
s∈S

ℓtrunc(x, y; s) = O
(

1

t0(T − t0)
(K2 +R2)

)
.
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Applying the standard metric entropy and symmetrization technique, we can show

(A) = O

R̂(S) +
(
K2 +R2

t0(T − t0)

)√
log 2

δ

2n1

 ,

where R̂ is the empirical Rademacher complexity of S . Unfamiliar readers can refer to Theorem 3.3
in “Foundations of Machine Learning”, second edition for details. The remaining step is to bound the
Rademacher complexity by Dudley’s entropy integral. Indeed, we have

R̂(S) ≤ inf
ϵ

4ϵ√
n1

+
12

n1

∫ K2√n1

ϵ

√
N (S, ϵ, ∥ · ∥2)dϵ.

We emphasize that the log covering number considers x, y in the truncated region. Taking ϵ = 1
n1

gives rise to

(A) = O

( K2 +R2

t0(T − t0)

)√N (S, 1/n1) log
1
δ

n1

 .

Here K is instance dependent and majorly depends on d. In the Gaussian design case, we can verify

that K is O(
√
d). To this end, we deduce (A) = Õ

(
1
t0

√
d2
N (S,1/n1) log

1
δ

n1

)
. In practice, d is often

much smaller than D (see for example [37], where ImageNet has intrinsic dimension no more than
43 in contrast to image resolution of 224× 224× 3). In this way, we can upper bound d2 by D, yet
d2 is often a tighter upper bound.

For term (B), we invoke the same upper bound in [8, Theorem 2, term (B)] to obtain

(B) = O
(

1

n1t0(T − t0)

)
,

which is negligible compared to (A). Therefore, summing up (A) and (B), we deduce

ϵ2diff = O

 1

t0

√
N (S, 1/n1)(d2 ∨D) log 1

δ

n1

 .

Gaussian Design We only need to find the covering number under the Gaussian design case. Using
(H.2), we can construct a covering from coverings on matrices V and Σ−1. Suppose V1, V2 are
two matrices with ∥V1 − V2∥2 ≤ ηV for some η > 0. Meanwhile, let Σ−11 ,Σ−12 be two covariance
matrices with ∥Σ−11 − Σ−12 ∥2 ≤ ηΣ. Then we bound

sup
∥x∥2≤R,|y|≤R

∥sV1,Σ
−1
1
(s, y, t)− sV2,Σ

−1
2
(x, y, t)∥2

≤ 1

h(t)
sup

∥x∥2≤R,|y|≤R

[∥∥V1ψΣ−1
1
(V ⊤1 x, y, t)− V1ψΣ−1

1
(V ⊤2 x, y, t)

∥∥
2

+
∥∥V1ψΣ−1

1
(V ⊤2 x, y, t)− V1ψΣ−1

2
(V ⊤2 x, y, t)

∥∥
2︸ ︷︷ ︸

(♠)

+
∥∥V1ψΣ−1

2
(V ⊤2 x, y, t)− V2ψΣ−1

2
(V ⊤2 x, y, t)

∥∥
2

]

≤ 1

h(t)

(
2RηV + 2ν−2RηΣ

)
,

where for bounding (♠), we invoke the identity ∥(I +A)−1 − (I +B)−1∥2 ≤ ∥B −A∥2. Further
taking supremum over t ∈ [t0, T ] leads to

sup
∥x∥2≤R,|y|≤R

∥sV1,Σ
−1
1
(s, y, t)− sV2,Σ

−1
2
(x, y, t)∥2 ≤ 1

t0

(
2RηV + 2ν−2RηΣ

)
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for any t ∈ [t0, T ]. Therefore, the inequality above suggests that coverings on V and Σ−1 form a
covering on S. The covering numbers of V and Σ−1 can be directly obtained by a volume ratio
argument; we have

N (V, ηV , ∥ · ∥2) ≤ Dd log

(
1 +

2
√
d

ηV

)
and N (Σ−1, ηΣ, ∥ · ∥2) ≤ d2 log

(
1 +

2
√
d

λminηΣ

)
.

Thus, the log covering number of S is

N (S, η, ∥ · ∥2) = N (V, t0ηV /2R, ∥ · ∥2) +N (Σ−1, t0ν
2ηΣ/2R, ∥ · ∥2)

≤ (Dd+ d2) log

(
1 +

dD

t0λminη

)
,

where we have plugged ν2 = 1/D into the last inequality. Setting η = 1/n1 and substituting into
ϵ2diff yield the desired result.

We remark that the analysis here does not try to optimize the error bounds, but aims to provide a
provable guarantee for conditional score estimation using finite samples. We foresee that sharper
analysis via Bernstein-type concentration may result in a better dependence on n1. Nonetheless, the
optimal dependence should not beat a 1/n1-rate.

I Additional Experimental Results

I.1 Simulation

We generate the latent sample z from standard normal distribution z ∼ N(0, Id) and set x = Az for a
randomly generated orthonormal matrix A ∈ RD×d. The dimensions are set to be d = 16, D = 64.
The reward function is set to be f(x) = (θ⋆)⊤x∥ + 5∥x⊥∥22, where θ⋆ is defined by Aβ⋆. We
generate β⋆ by uniformly sampling from the unit sphere.

When estimating θ̂, we set λ = 1.0. The score matching network is based on the UNet imple-
mentation from https://github.com/lucidrains/denoising-diffusion-pytorch, where
we modified the class embedding so it accepts continuous input. The predictor is trained using 8192
samples and the score function is trained using 65536 samples. When training the score function,
we choose Adam as the optimizer with learning rate 8 × 10−5. We train the score function for 10
epochs, each epoch doing a full iteration over the whole training dataset with batch size 32.

For evaluation, the statistics is computed using 2048 samples generated from the diffusion model.
The curve in the figures is computed by averaging over 5 runs.

I.2 Directed Text-to-Image Generation

Samples of high rewards and low rewards from the ground-truth reward model. In Section 5.2,
the ground-truth reward model is built by replacing the final prediction layer of the ImageNet pre-
trained ResNet-18 model with a randomly initialized linear layer of scalar outputs. To investigate the
meaning of this randomly-generated reward model, we generate images using Stable Diffusion and
filter out images with rewards ≥ 0.4 (positive samples) and rewards ≤ −0.4 (negative samples) and
pick two typical images for each; see Figure 7. We note that in real-world use cases, the ground-truth
rewards are often measured and annotated by human labors according to the demands.

Training Details. In our implementation, as the Stable Diffusion model operates on the latent space
of its VAE, we build a 3-layer ConvNet with residual connections and batch normalizations on top of
the VAE latent space. We train the network using Adam optimizer with learning rate 0.001 for 100
epochs.

I.3 Decision-Diffuser [1]

We replicate the results in Decision Diffuser [1] under (Med-Expert, Hopper) setting. In Decision
Diffuser, the RL trajectory and the final reward are jointly modeled with a conditioned diffusion
model. The policy is given by first performing reward-directed conditional diffusion to sample a
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(a) A positive sample (b) A positive sample (c) A negative sample (d) A negative sample

Figure 7: Random samples with high rewards and low rewards.

trajectory of high reward and then extracting action sequences from the trajectory using a trained
inverse dynamics model. We plot the mean and standard deviation of the total returns (averaged
across 10 independent episodes) v.s. the target rewards in Figure 8. The theoretical maximum of the
reward is 400. Therefore, trajectories with rewards greater than 400 are never seen during training.
We observe that when we increase the target reward beyond 320, the actual total reward decreases.
According to our theory, as we increase the reward guidance signal, the condition effect becomes
stronger but the distribution-shift effect also becomes stronger.
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Figure 8: Total Reward v.s. Target Reward for Decision Diffuser (Med-Expert, Hopper) setting.
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