
Appendix

Without loss of generality, we assume that the loss function is symmetric in M , namely,

f(M ;M∗) = f(MT ;M∗), ∀M ∈ Rn×n.

Otherwise, we can replace the loss function by f̄(M ;M∗) := [f(M ;M∗) + f(MT ;M∗)]/2 and
this will not change the values of the objective function in problem (1) in the feasible set.

Denote the objective function of problem (12) as 1
ph(U) + g(U), where

h(U) := f [(UUT )Ω;M
∗
Ω], g(U) :=

∑
i∈[n]

r(∥eTi U∥F ).

For every ∆ ∈ Rn×r, the gradient and the Hessian matrix of h(U) satisfy

⟨∇h(U),∆⟩ = 2
〈
∇f [(UUT )Ω;M

∗
Ω],

(
U∆T

)
Ω

〉
,[

∇2h(U)
]
(∆,∆) = 2

〈
∇f [(UUT )Ω;M

∗
Ω],

(
∆∆T

)
Ω

〉
+
[
∇2f [(UUT )Ω;M

∗
Ω]
] [(

∆UT + U∆T
)
Ω
,
(
∆UT + U∆T

)
Ω

]
.

Since we can exchange the convolution and the derivatives, the gradient and the Hessian matrix of
g(U) satisfy

⟨∇g(U),∆⟩ = 4λ

∫ 1

−1

∑
i∈[n]

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]3 eTi U∆T ei
∥eTi U∥F

(1− |y|) dy,

[
∇2g(U)

]
(∆,∆)

=4λ

∫ 1

−1

∑
i∈[n]

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]3 ∥eTi U∥F ∥eTi ∆∥F − eTi U∆T ei
∥eTi U∥3F

(1− |y|) dy

+ 12λ

∫ 1

−1

∑
i∈[n]

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]2 (eTi U∆T ei
∥eTi U∥F

)2

(1− |y|) dy.

For all ϵ > 0, we say that a point U ∈ Rn×r is an ϵ-approximate first-order critical point of problem
(12) if ∥∥∥∥1p∇h(U) +∇g(U)

∥∥∥∥
F

≤ ϵ.

A Proof of Theorem 3

We first bound the norm of an approximate first-order critical point.
Lemma 1. Suppose that U is an ϵ-approximate first-order critical point of problem (12) for a
sufficiently small ϵ > 0 and

δ < 1, max
i∈[n]

∥eTi U∥F ≥ 11α.

Then, it holds that

∥(UUT )Ω∥F ≤ 1 + δ

1− δ
∥(M∗)Ω∥F .

Proof. Assume that U is an ϵ-approximate first-order critical point such that

∥(UUT )Ω∥F >
1 + δ

1− δ
∥(M∗)Ω∥F .(14)

Using the approximate first-order stationarity, we have

ϵ∥U∥F ≥
〈[

1

p
∇h(U) +∇r(U)

]
, U

〉
=

〈
1

p
∇h(U), U

〉
+ ⟨∇g(U), U⟩ .
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For the first term, we can calculate that〈
1

p
∇h(U), U

〉
=

2

p

〈
∇f [(UUT )Ω],

(
UUT

)
Ω

〉
=
2

p

∫ 1

0

[
∇2f [(M∗)Ω + t(UUT −M∗)Ω; (M

∗)Ω]
]
[(UUT )Ω, (UUT −M∗)Ω] dt

≥2(1− δ)

p

∥∥(UUT )Ω
∥∥2
F
− 2(1 + δ)

p
∥(UUT )Ω∥F ∥(M∗)Ω∥F ≥ 0,

where the first inequality is from the (δ,Ω)-RIP2r,2r condition and Lemma 11 of [4], and the last
inequality is from the assumption (14). Define the set

I := {i ∈ [n] | ∥eTi U∥F ≥ 11α}.
Then, for the second term, we have

⟨∇g(U), U⟩ = 4λ

∫ 1

−1

∑
i∈[n]

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]3 eTi UUT ei
∥eTi U∥F

(1− |y|) dy

= 4λ

∫ 1

−1

∑
i∈[n]

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]3
∥eTi U∥F (1− |y|) dy

≥ 4λ

∫ 1

−1

∑
i∈[n]

[(
∥eTi U∥F − 11α

)
+
+ 8α

]3
∥eTi U∥F (1− |y|) dy

≥ 4λ

∫ 1

−1

∑
i∈I

(
∥eTi U∥F − 3α

)3 ∥eTi U∥F (1− |y|) dy

= 4λ
∑
i∈I

(
∥eTi U∥F − 3α

)3 ∥eTi U∥F .

Combining the last two inequalities, we obtain

ϵ∥U∥F ≥ 4λ
∑
i∈I

(
∥eTi U∥F − 3α

)3 ∥eTi U∥F .

Define
i∗ := argmax

i∈[n]

∥eTi U∥.

Then, we obtain

ϵ
√
n∥eTi∗U∥F ≥ ϵ∥U∥F ≥ 4λ

∑
i∈I

(
∥eTi U∥F − 3α

)3 ∥eTi U∥F ≥ 4λ
(
∥eTi∗U∥F − 3α

)3 ∥eTi∗U∥F ,

which further leads to (
∥eTi∗U∥F − 3α

)3 ≤ ϵ
√
n

4λ
.

By choosing ϵ to be sufficiently small, the above inequality implies that

∥eTi∗U∥F < 11α.

This is a contradiction to the condition in the lemma.

Next, we provide a generalization to Lemma 9 of [17].
Lemma 2. Suppose that U is an ϵ-approximate first-order critical point of problem (12) for a
sufficiently small ϵ > 0 and

α2 = Θ

(
µrσ∗

1

n

)
, λ = Θ

[
(1− δ)(

√
µ+

√
nδ)n

√
µr

]
, np ≥ Θ(µr log n) , δ < 1.

Then, there exists a constant c > 0 such that it holds with probability at least 1− 1/poly(n) that

max
i∈[n]

∥eTi U∥2F = O

(
µrσ∗

1

n

)
.
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Proof. Let
i∗ := argmax

i∈[n]

∥eTi U∥.

We only need to consider the case when ∥eTi∗U∥F ≥ 11α. Since U is an ϵ-approximate first-order
critical point, it holds that

ϵ∥eTi∗U∥F ≥
〈
eTi∗

[
1

p
∇h(U) +∇g(U)

]
, eTi∗U

〉
.(15)

Using Taylor’s expansion, it holds that〈
eTi∗ · 1

p
∇h(U), eTi∗U

〉
=
2

p

∫ 1

0

[
∇2f [(M∗)Ω + t(UUT −M∗)Ω; (M

∗)Ω]
]
[(UUT ei∗e

T
i∗)Ω, (UUT −M∗)Ω] dt.

By the (δ,Ω)-RIP2r,2r condition and Lemma 11 of [4], one can write〈
eTi∗ · 1

p
∇h(U), eTi∗U

〉
(16)

≥2

p

〈
(UUT ei∗e

T
i∗)Ω, (UUT −M∗)Ω

〉
− 2δ

p
∥(UUT ei∗e

T
i∗)Ω∥F

(
∥(UUT )Ω∥F + ∥(M∗)Ω∥F

)
=
2

p

〈
eTi∗(UUT )Ω, e

T
i∗(UUT −M∗)Ω

〉
− 2δ

p
∥eTi∗(UUT )Ω∥F

(
∥(UUT )Ω∥F + ∥(M∗)Ω∥F

)
≥− 2

p
∥eTi∗(UUT )Ω∥F ∥eTi∗(M∗)Ω∥F − 2δ

p
∥eTi∗(UUT )Ω∥F

(
∥(UUT )Ω∥F + ∥(M∗)Ω∥F

)
.

By Lemmas 35 and 39 of [17] and Lemma 1, it holds with probability at least 1− 1/poly(n) that

1
√
p
∥eTi∗(M∗)Ω∥F ≤

√
1 + ν∥eTi∗M∗∥F ≤

√
(1 + ν)µr

n
σ∗
1 ,

1
√
p
∥eTi∗(UUT )Ω∥F ≤ O(

√
n)∥UUT ∥∞,

1
√
p

(
∥(UUT )Ω∥F + ∥(M∗)Ω∥F

)
≤ 2

(1− δ)
√
p
∥(M∗)Ω∥F ≤

2
√
(1 + ν)rσ∗

1

1− δ
,

where the constant ν > 0 can be made sufficiently small by choosing a large constant in the condition
np ≥ Θ(µr log n). Substituting into the inequality (16), it follows that〈

eTi∗ · 1
p
∇h(U), eTi∗U

〉
≥−O(

√
µrσ∗

1)∥UUT ∥∞ −O[
√
nrσ∗

1δ/(1− δ)] · ∥UUT ∥∞

=−O[(
√
µ+

√
nδ)

√
rσ∗

1/(1− δ)] · ∥eTi∗U∥2F ,

where the last equality is from ∥UUT ∥∞ = ∥eTi∗U∥2F . Additionally, since ∥eTi∗U∥F ≥ 9α, we have〈
eTi∗∇h(U), eTi∗U

〉
=4λ

∫ 1

−1

〈
eTi∗ ·

∑
i∈[n]

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]3 eie
T
i U

∥eTi U∥F
, eTi∗U

〉
(1− |y|) dy

=4λ

∫ 1

−1

(
∥eTi∗U∥F + αy − 2α

)3 ∥eTi∗U∥F (1− |y|) dy

≥4λ
(
∥eTi∗U∥F − 3α

)3 ∥eTi∗U∥F ≥ 4λ ·
(

8

11

)3

∥eTi∗U∥4F > λ∥eTi∗U∥4F .

Substituting the last two bounds into inequality (15), we know that

ϵ∥eTi∗U∥F ≥ λ∥eTi∗U∥4F −O[(
√
µ+

√
nδ)

√
rσ∗

1/(1− δ)] · ∥eTi∗U∥2F
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holds with high probability. We can rewrite the above bound as

λ∥eTi∗U∥3F ≤ ϵ+
c(
√
µ+

√
nδ)

√
rσ∗

1

1− δ
· ∥eTi∗U∥F ,

where c > 0 is a constant. If we choose ϵ sufficiently small such that

ϵ2/3 ≤
c(
√
µ+

√
nδ)

√
rσ∗

1

λ1/3(1− δ)
,

the inequality leads to

∥eTi∗U∥2F ≤
c(
√
µ+

√
nδ)

√
rσ∗

1

λ(1− δ)
.

By our choice of λ, we conclude that

∥eTi∗U∥2F ≤ O

(
µrσ∗

1

n

)
.

This concludes our proof.

Now, we consider the second-order necessary optimality condition for an approximate first-order
critical point U . The next lemma bounds the curvature along the direction ∆.
Lemma 3. For all U ∈ Rn×r, we define the direction ∆ := U − U∗R, where U∗ ∈ Rn×r satisfies
U∗(U∗)T = M∗ and

R ∈ argmin
S∈Rr×r,SST=Ir

∥U − U∗S∥F .

Then, it holds that[
∇2h(U)

]
(∆,∆) ≤ 4⟨∇h(U),∆⟩ − [3− (5 + 3t)δ] · ∥(M −M∗)Ω∥2F

+ [1 + (1 + 3t−1)δ] · ∥(∆∆T )Ω∥2F ,

where the constant t =
√
2.

Proof. Define M := UUT . By Taylor’s expansion, we have[
∇2h(U)

]
(∆,∆)

=2
〈
∇f(MΩ),

(
∆∆T

)
Ω

〉
+
[
∇2f(MΩ;M

∗
Ω)

] [
(∆UT + U∆T )Ω, (∆UT + U∆T )Ω

]
=4⟨∇h(U),∆⟩ − 4 ⟨∇f(MΩ), (M −M∗)Ω⟩ − 2

〈
∇f(MΩ),

(
∆∆T

)
Ω

〉
+
[
∇2f(MΩ;M

∗
Ω)

] [
(∆UT + U∆T )Ω, (∆UT + U∆T )Ω

]
=4⟨∇h(U),∆⟩ − 4

∫ 1

0

[
∇2f(MΩ + t(M −M∗)Ω;M

∗
Ω)

]
[(M −M∗)Ω, (M −M∗)Ω] dt

− 2

∫ 1

0

[
∇2f(MΩ + t(M −M∗)Ω;M

∗
Ω)

] [
(M −M∗)Ω, (∆∆T )Ω

]
dt

+
[
∇2f(MΩ;M

∗
Ω)

] [
(∆UT + U∆T )Ω, (∆UT + U∆T )Ω

]
.

Using the (δ,Ω)-RIP2r,2r condition, it follows that

[
∇2h(U)

]
(∆,∆) ≤4⟨∇h(U),∆⟩ − 4(1− δ)∥(M −M∗)Ω∥2F − 2

〈
(M −M∗)Ω, (∆∆T )Ω

〉(17)

+ 4δ∥(M −M∗)Ω∥F ∥(∆∆T )Ω∥F + (1 + δ)∥(∆UT + U∆T )Ω∥2F
=4⟨∇h(U),∆⟩ − (3− 5δ)∥(M −M∗)Ω∥2F + (1 + δ)∥(∆∆T )Ω∥2F
+ 4δ∥(M −M∗)Ω∥F ∥(∆∆T )Ω∥F + 2δ

〈
(M −M∗)Ω, (∆∆T )Ω

〉
≤4⟨∇h(U),∆⟩ − (3− 5δ)∥(M −M∗)Ω∥2F + (1 + δ)∥(∆∆T )Ω∥2F
+ 6δ∥(M −M∗)Ω∥F ∥(∆∆T )Ω∥F ,
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where we have used the relation ∆UT + U∆T = M −M∗ +∆∆T . Using Hölder’s inequality, we
have

2∥(M −M∗)Ω∥F ∥(∆∆T )Ω∥F ≤ t∥(M −M∗)Ω∥2F + t−1∥(∆∆T )Ω∥2F .
Substituting the above inequality into (17), we obtain[

∇2h(U)
]
(∆,∆) ≤ 4⟨∇h(U),∆⟩ − [3− (5 + 3t)δ] · ∥(M −M∗)Ω∥2F

+ [1 + (1 + 3t−1)δ] · ∥(∆∆T )Ω∥2F .

This is the desired result.

The following lemma is a generalization of Lemma 10 in [17].

Lemma 4. Suppose that U is an ϵ-approximate first-order critical point of problem (12) for a
sufficiently small ϵ and

α2 = Θ

(
µrσ∗

1

n

)
, λ = Θ

[
(
√
µ+

√
nδ)n

√
µr

]
, np ≥ Cµ2r3(κ∗)2 log n, δ <

1

16
,

where C > 0 is a sufficiently large constant. Then, it holds with probability at least 1− 1/poly(n)
that

1

p

[
−[3− (5 + 3t)δ] · ∥(M −M∗)Ω∥2F + [1 + (1 + 3t−1)δ] · ∥(∆∆T )Ω∥2F

]
≤ −0.03σ∗

r∥∆∥2F ,

where the constant t =
√
2 and ∆ ∈ Rn×r is defined in Lemma 3.

Proof. By Lemma 2, we can bound the norm of each row of U by

max
i

∥eTi U∥2F = O

(
µrσ∗

1

n

)
with probability at least 1− 1/poly(n). Then, we split the proof into two different cases.

Case I. We first consider the case when ∥∆∥2F ≤ σ∗
r/4. We can calculate that

1

p

[
−[3− (5 + 3t)δ] · ∥(M −M∗)Ω∥2F + [1 + (1 + 3t−1)δ] · ∥(∆∆T )Ω∥2F

]
(18)

=− 4[3− (5 + 3t)δ]

p

[〈
(U∗∆T )Ω, (∆∆T )Ω

〉
+ ∥(U∗∆T )Ω∥2F

]
+ [1 + (1 + 3t−1)δ − 3 + (5 + 3t)δ]∥(∆∆T )Ω∥2F

≤− 9

p

[〈
(U∗∆T )Ω, (∆∆T )Ω

〉
+ ∥(U∗∆T )Ω∥2F

]
≤− 9

p
· ∥(U∗∆T )Ω∥F

[
∥(U∗∆T )Ω∥F − ∥(∆∆T )Ω∥F

]
,

where the first inequality is from the condition that δ < 1/16 and t =
√
2. Using a similar analysis as

Lemma 10 of [17] and the condition δ < 1/16, it holds with probability at least 1− 1/poly(n) that

1

p
∥(U∗∆T )Ω∥2F ≥ (1− ν)σ∗

r∥∆∥2F ,
1

p
∥(∆∆T )Ω∥2F ≤ σ∗

r

2
∥∆∥2F ,

where constant ν > 0 can be made sufficiently small by choosing a large enough C. Substituting the
above bounds into inequality (18), it holds with the same probability that

1

p

[
−[3− (5 + 3t)δ] · ∥(M −M∗)Ω∥2F + [1 + (1 + 3t−1)δ] · ∥(∆∆T )Ω∥2F

]
≤− 9

√
1− ν

(√
1− ν − 1/

√
2
)
σ∗
r∥∆∥2F < −0.03σ∗

r∥∆∥2F ,

where the last inequality is by choosing a sufficiently small ν.
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Case II. Now, we consider the case when ∥∆∥2F ≥ σ∗
r/4. By a similar analysis as Lemma 10 of

[17], it holds with probability at least 1− 1/poly(n) that

1

p
∥(∆∆T )Ω∥2F ≤ ∥∆∆T ∥2F + νσ∗

r∥∆∥2F ,

1

p
∥(M −M∗)Ω∥2F ≥ (1− ν)∥M −M∗∥2F − νσ∗

r∥∆∥2F ,

where constant ν > 0 can be made sufficiently small by choosing a large enough C. Therefore, the
condition δ < 1/16 implies that with the same probability, we have

1

p

[
−[3− (5 + 3t)δ] · ∥(M −M∗)Ω∥2F + [1 + (1 + 3t−1)δ] · ∥(∆∆T )Ω∥2F

]
≤[1 + (1 + 3t−1)δ] ·

(
∥∆∆T ∥2F + νσ∗

r∥∆∥2F
)

− [3− (5 + 3t)δ] ·
[
(1− ν)∥M −M∗∥2F − νσ∗

r∥∆∥2F
]

≤
[
2 + 2(1 + 3t−1)δ − (1− ν)[3− (5 + 3t)δ]

]
· ∥M −M∗∥2F

+ [1 + (1 + 3t−1)δ − 3 + (5 + 3t)δ] · νσ∗
r∥∆∥2F

≤
[
−1 + (7 + 3t+ 6t−1)δ +O(ν)

]
· 2(

√
2− 1)σ∗

r∥∆∥2F
=2(

√
2− 1)

[
−1 + (7 + 6

√
2)δ +O(ν)

]
· σ∗

r∥∆∥2F < −0.03σ∗
r∥∆∥2F ,

where the second inequality is from ∥∆∆T ∥2F ≤ 2∥M −M∗∥2F , the second last inequality is from
2(
√
2− 1)∥∆∥2F ≤ 2∥M −M∗∥2F and the last inequality is by choosing a sufficiently small ν.

Combining the two cases completes the proof.

By the same proof as that of Lemma 11 of [17], we can bound the curvature of the regularizer.

Lemma 5. Suppose that U is an ϵ-approximate first-order critical point of problem (12) for a
sufficiently small ϵ and

α2 = Θ

(
µrσ∗

1

n

)
, λ ≥ 0,

Then, it holds with probability at least 1− 1/poly(n) that[
∇2g(U)

]
(∆,∆)− 4⟨∇g(U),∆⟩ ≤ 0,

where ∆ ∈ Rn×r is defined in Lemma 3.

Proof. For each i ∈ [n], since the regularizer is non-zero only if ∥eTi U∥ ≥ 9α, we only need to
consider the index set

I := {i ∈ [n] | ∥eTi U∥F ≥ 9α}.

We can calculate that[
∇2g(U)

]
(∆,∆)− 4⟨∇g(U),∆⟩

=4λ

∫ 1

−1

∑
i∈I

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]3 ∥eTi U∥F ∥eTi ∆∥F − eTi U∆T ei
∥eTi U∥3F

(1− |y|) dy

+ 12λ

∫ 1

−1

∑
i∈I

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]2 (eTi U∆T ei
∥eTi U∥F

)2

(1− |y|) dy

− 16λ

∫ 1

−1

∑
i∈I

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]3 eTi U∆T ei
∥eTi U∥F

(1− |y|) dy

=I1 + I2,
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where we define

I1 :=4λ

∫ 1

−1

∑
i∈I

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]3
·
(
∥eTi U∥F ∥eTi ∆∥F − eTi U∆T ei

∥eTi U∥3F
− 0.4 · e

T
i U∆T ei
∥eTi U∥F

)
(1− |y|) dy

I2 :=12λ

∫ 1

−1

∑
i∈I

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]2
·
(
eTi U∆T ei
∥eTi U∥F

− 1.2 · e
T
i U∆T ei
∥eTi U∥F

)2

(1− |y|) dy.

It is proved in Lemma 11 of [17] that

∥eTi U∥F ∥eTi ∆∥F − eTi U∆T ei
∥eTi U∥3F

− 0.4 · e
T
i U∆T ei
∥eTi U∥F

< 0,

which implies that
I1 < 0.

Similarly, since we assume ∥eTi U∥F ≥ 9α, the second case of Lemma 11 of [17] implies that

eTi U∆T ei
∥eTi U∥F

− 1.2 · e
T
i U∆T ei
∥eTi U∥F

≤ 0,

which leads to
I2 ≤ 0.

Hence, we get I1 + I2 ≤ 0 and[
∇2g(U)

]
(∆,∆)− 4⟨∇g(U),∆⟩ ≤ 0,

which is the desired result.

The next lemma establishes the bound on the curvature along ∆ for an ϵ-approximate first-order
critical point.
Lemma 6. Suppose that U is an ϵ-approximate first-order critical point of problem (12) for a
sufficiently small ϵ and

α2 = Θ

(
µrσ∗

1

n

)
, λ = Θ

[
(
√
µ+

√
nδ)n

√
µr

]
, np ≥ Cµ2r3(κ∗)2 log n, δ <

1

16
,

Then, it holds with probability at least 1− 1/poly(n) that[
1

p
∇2h(U) +∇2g(U)

]
(∆,∆) ≤ −0.03σ∗

r∥∆∥2F + 4ϵ∥∆∥F ,

where ∆ ∈ Rn×r is defined in Lemma 3.

Proof. With probability at least 1− 1/poly(n), we have[
1

p
∇2h(U) +∇2g(U)

]
(∆,∆)

≤4

〈
1

p
∇h(U) +∇g(U),∆

〉
+

[
∇2r(U)

]
(∆,∆)− 4⟨∇g(U),∆⟩

+
1

p

[
−[3− (5 + 3t)δ] · ∥(M −M∗)Ω∥2F + [1 + (1 + 3t−1)δ] · ∥(∆∆T )Ω∥2F

]
≤ϵ∥∆∥F − 0.03σ∗

r∥∆∥2F ,

where the first inequality is by Lemma 3 and the second inequality is by Lemmas 4 and 5. This
finishes the proof of the lemma.
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Using Lemmas 1-6, we are ready to prove the main theorem.

Proof of Theorem 3. Define ∆ ∈ Rn×r in the same way as in Lemma 3. Suppose that U is an
ϵ-approximate first-order critical point of problem (12) for a sufficiently small ϵ and

dist(U,U∗) = ∥∆∥F ≥ 100ϵ

σ∗
r

.

Then, Lemma 6 implies that[
1

p
∇2h(U) +∇2g(U)

]
(∆,∆) ≤ ϵ∥∆∥F − 0.03σ∗

r∥∆∥2F ≤ −200ϵ2

σ∗
r

holds with probability at least 1− 1/poly(n). Hence, with the same probability, the MSoG problem
(12) satisfies the (θ, β, γ)-strict saddle property with

θ = 100ϵ/σ∗
r , β = ϵ, γ = 200ϵ2/σ∗

r .

This completes the proof.

B Proof of Theorem 4

We split the proof into two parts. We first prove that the (1/2,Ω)-RIP2r,2r condition holds for all
non-empty Ω and then prove the existence of spurious second-order critical points.

Proof of the Ω-RIP condition. Since the loss function f3/2 is a quadratic function, it holds that

[∇2f3/2(MΩ;M
∗
Ω)](K,K) =

3

2
∥KΩ∥2F +KΩ : H : KΩ, ∀K,M ∈ Rn×n.

For the notational simplicity, we define
K̃ := KΩ.

By the definition of tensor H, we can calculate that

KΩ : H : KΩ =
∑
i∈[r]

[
− 1

2

(
K̃2

2i−1,2i−1 + K̃2
2i,2i

)
+ K̃2i−1,2i−1K̃2i,2i

− 1

4

(
K̃2

2i−1,2i + K̃2
2i,2i−1 − 2K̃2i−1,2iK̃2i,2i−1

) ]
=− 1

2

∑
i∈[r]

(
K̃2i−1,2i−1 − K̃2i,2i

)2

− 1

4

∑
i∈[r]

(
K̃2i−1,2i − K̃2i,2i−1

)2

.

It is straightforward to see that

KΩ : H : KΩ ≤ 0.(19)

For all real numbers a, b, we have the inequality (a− b)2 ≤ 2(a2 + b2). This inequality leads to

KΩ : H : KΩ ≥ −
∑
i∈[r]

(
K̃2

2i−1,2i−1 + K̃2
2i,2i

)
− 1

2

∑
i∈[r]

(
K̃2

2i−1,2i + K̃2
2i,2i−1

)
≥ −∥K̃∥2F = −∥KΩ∥2F ,

where the last equality is from the definition of K̃. Combining with inequality (19), it follows that

−∥KΩ∥2F ≤ KΩ : H : KΩ ≤ 0.

Hence, we have

1

2
∥KΩ∥2F ≤ [∇2f3/2(MΩ;M

∗
Ω)](K,K) ≤ 3

2
∥KΩ∥2F , ∀K,M ∈ Rn×n,

which further implies the (1/2,Ω)-RIP2r,2r condition of f3/2.
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Existence of spurious second-order critical points. Now, we prove the existence of a spurious
second-order critical point by explicit construction. For all i, j ∈ [n], we define

ωi,j :=

{
1, if (i, j) ∈ Ω

0, otherwise.

Note that we can choose α to be large enough so that

α ≥ 2max
i∈[n]

∥eTi U∗∥F = 2.

Otherwise, the ground truth U∗ is not a global minimum of problem (12) since the regularizer
has a non-zero gradient at U∗. This is consistent with our choice of α in Theorem 3, because the
incoherence of M∗ is µ =

√
n/r and α2 is on the order of Θ(1). We consider two different cases.

Case I. We first consider the case when

p
r(r+1)

2 ≤
√
5− 1

2
.(20)

In this case, we show that the loss function f3/2 has multiple global minima with probability at least
(3−

√
5)/2. By the condition (20), we can estimate the probability

P (ω2i,2j = 1, ∀i, j ∈ [r]) = p
r(r+1)

2 ≤
√
5− 1

2
.(21)

This is because ω2i,2j = ω2j,2i for all i, j ∈ [r] and thus, there are r(r + 1)/2 independent Bernoulli
random variables with parameter p. Suppose that the event in (21) does not happen (this event has
probability (3−

√
5)/2) and ω2i,2j = 0 for some i, j ∈ [r]. Then, we consider the matrix

M̃∗ := M∗ + ϵ · e2ieT2j + ϵ · e2jeT2i,

where ϵ > 0 is sufficiently small. We can verify that M̃∗ is a PSD matrix and

M̃∗
Ω = M∗

Ω, which further leads to f3/2(M̃
∗
Ω;M

∗
Ω) = 0.

This implies that when the event in (21) does not happen, there exists a global minimum of f3/2
that is different from M∗. Therefore, function h(U) also has a global minimum Ũ∗ such that
Ũ∗(Ũ∗)T = M̃∗ ̸= M∗. Note that we can choose ϵ to be small enough such that

α ≥ max
i∈[n]

∥eTi Ũ∗∥F .

Then, we know that the regularizer r(U) is zero at Ũ∗ and Ũ∗ is a spurious second-order critical
point of problem (12).

Case II. Now, we consider the case when (20) does not hold, namely,

p
r(r+1)

2 ≥
√
5− 1

2
.

In this case, a similar calculation to (20) leads to

P (ω2i,2i = ω2i−1,j = 1, ∀i, j ∈ [r]) ≥ pr(r+1) ≥ 3−
√
5

2
.(22)

We focus on the case when the event in (22) holds. Define

U0 :=
1√
2
[e2 e4 · · · e2r] .

It is straightforward that

U0U
T
0 =

1

2

∑
i∈[r]

e2ie
T
2i ̸= M∗.
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We prove that U0 is a second-order critical point of problem (12). By the construction of U0, we have

∥eTi U0∥F ≤ 1√
2
≤ α, ∀i ∈ [n].

Hence, the regularizer r(U) does not contribute to the local landscape of problem (12) around point
U0 and we only need to prove that U0 is a second-order critical point of h(U).

For the first-order optimality condition, we can calculate that

∇f3/2
[(
U0U

T
0

)
Ω
;M∗

Ω

]
=

∑
i∈[r]

(
−ω2i−1,2i−1 +

ω2i,2i

4

)
e2i−1e

T
2i−1(23)

+
∑
i∈[r]

1

2
(ω2i,2i − ω2i−1,2i−1) e2ie

T
2i.

Therefore, the i-th column of the gradient of h(U) at U0 is

[∇h(U0)]i = 2∇f3/2
[(
U0U

T
0

)
Ω
;M∗

Ω

]
(U0)i =

∑
i∈[r]

(ω2i,2i − ω2i−1,2i−1)ω2i,2i · e2i.

If ω2i−1,2i−1 is 0 for some i ∈ [r], a similar construction as Case I shows that function f3/2 has
multiple global minima. Thus, we only need to consider the case when ω2i−1,2i−1 = 1 for all i ∈ [r]
and under this condition, it holds that

[∇h(U0)]i =
∑
i∈[r]

(ω2i,2i − 1)ω2i,2i · e2i = 0,

where the last equality is from the property ω2i,2i ∈ {0, 1}. This verifies the first-order optimality
condition of U0.

Next, we check the second-order necessary optimality condition for U0. For all direction K ∈ Rn×r,
the curvature of h(U) at U0 along K is[

∇2h(U0)
]
(K,K) = 2

〈
∇f3/2[(U0U

T
0 )Ω;M

∗
Ω],

(
KKT

)
Ω

〉
+
[
∇2f3/2[(U0U

T
0 )Ω;M

∗
Ω]
] [(

KUT
0 + U0K

T
)
Ω
,
(
KUT

0 + U0K
T
)
Ω

]
= 2

〈
∇f3/2[(U0U

T
0 )Ω;M

∗
Ω],

(
KKT

)
Ω

〉
+
(
KUT

0 + U0K
T
)
Ω
:

(
3

2
· I +H

)
:
(
KUT

0 + U0K
T
)
Ω
.

By the event in (22), equation (23) and the condition ω2i−1,2i−1 = 1 for all i ∈ [r], we have

2
〈
∇f3/2[(U0U

T
0 )Ω;M

∗
Ω],

(
KKT

)
Ω

〉
(24)

=

〈 ∑
i∈[r]

(
−2ω2i−1,2i−1 +

ω2i,2i

2

)
e2i−1e

T
2i−1

+
∑
i∈[r]

(ω2i,2i − ω2i−1,2i−1) e2ie
T
2i,

(
KKT

)
Ω

〉

=
∑
i∈[r]

(
−2ω2i−1,2i−1 +

ω2i,2i

2

)
ω2i−1,2i−1∥K2i−1∥2F

+
∑
i∈[r]

(ω2i,2i − ω2i−1,2i−1)ω2i,2i∥K2i∥2F

=
(
−2 +

ω2i,2i

2

) ∑
i∈[r]

∥K2i−1,:∥2F ,
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where Ki,: is the i-th row of K for all i ∈ [n]. By the definition of U0, we can calculate that

U0K
T =

1√
2

[
0 KT

:,1 0 KT
:,2 · · · KT

:,r 0 · · ·
]
, KUT

0 =
1√
2



0
K:,1

0
K:,2

...
K:,r

0
...


.

Therefore, it holds that(
KUT

0 + U0K
T
)
Ω
:
3

2
· I :

(
KUT

0 + U0K
T
)
Ω
=

3

2

∥∥(KUT
0 + U0K

T
)
Ω

∥∥2
F

(25)

≥3
∑
i∈[r]

ω2i,2iK
2
2i,i +

3

2

∑
i∈[r]

∑
j∈[r]

ω2i−1,jK
2
2i−1,j

and (
KUT

0 + U0K
T
)
Ω
: H :

(
KUT

0 + U0K
T
)
Ω
= −

∑
i∈[r]

ω2i,2iK
2
2i,i.(26)

Combining the relations in (24)-(26), it follows that[
∇2h(U0)

]
(K,K) ≥

(
−2 +

ω2i,2i

2

) ∑
i∈[r]

∥K2i−1,:∥2F +
3

2

∑
i∈[r]

∑
j∈[r]

ω2i−1,jK
2
2i−1,j

+ 2
∑
i∈[r]

ω2i,2iK
2
2i,i

=
∑
i∈[r]

∑
j∈[r]

(
−2 +

ω2i,2i

2
+

3ω2i−1,j

2

)
K2

2i−1,j + 2
∑
i∈[r]

ω2i,2iK
2
2i,i.

Now, when the event in (22) happens, we have

ω2i,2i = ω2i−1,j = 1, ∀i, j ∈ [r].

Therefore, we have[
∇2h(U0)

]
(K,K) ≥ 2

∑
i∈[r]

ω2i,2iK
2
2i,i ≥ 0, ∀K ∈ Rn×r,

which is the second-order necessary optimality condition for h(U). In summary, the point U0 is a
spurious second-order critical point of problem (12) with probability at least (3−

√
5)/2.

C Numerical Results on Power State Estimation Problem

In this section, we demonstrate the Ω-RIP condition on the power state estimation problem and
illustrate the success rate of the randomly initialized gradient descent method. Given the number of
buses N , the power network G = (V, E) is randomly generated by the Erdös-Rényi random graph
model with parameter p ∈ (0, 1]. The voltage at node k is given by vk = xk + iyk, where xk and
yk are independent standard normal random variables and y1 = 0. For each line (k, ℓ) ∈ E , the
admittance of the line Ykℓ is Pkℓ + iQkℓ, where Pkℓ and Qkℓ are uniformly randomly chosen from
[0, 0.1] and [0.9, 1.0], respectively. We first empirically verify that the Ω-RIP2,2 condition holds for
this example. We randomly generate 10, 000 rank-2 directions K ∈ R2N×2N and check the curvature
of the Hessian matrix of the loss function along direction K. We denote the maximal and the minimal
curvature as C and c, respectively. Then, the RIP constant can be estimated to be

δ ≈ C − c

C + c
.
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Table 1: Comparison of the estimated Ω-RIP2,2 constant with different number of buses N and
parameters p.

N 25 50 100

p = 0.1 0.81 0.61 0.43
p = 0.25 0.75 0.56 0.41
p = 0.5 0.72 0.77 0.39
p = 1.0 0.69 0.53 0.39

Table 2: Comparison of the success rate of randomly initialized gradient descent method with different
number of buses N and parameters p.

N 25 50 100

p = 0.1 0.0 0.0 0.5
p = 0.25 0.1 0.5 0.8
p = 0.5 0.7 0.7 0.9
p = 1.0 0.8 1.0 1.0

For the number of buses N = 25, 50, 100 and the parameter p = 0.1, 0.25, 0.5, 1.0, we independently
generate 100 examples and estimate the RIP constant for each example. The maximum of the
estimated RIP constant is summarized in Table 1. We can see that the Ω-RIP2,2 condition holds for
all cases and with high probability, the constant is smaller for larger N or larger p. Therefore, we
expect that the RIP constant becomes smaller than 1/16 for larger-scale problems and our theory
applies.

Next, we apply the gradient descent algorithm with random initialization to solve the power state
estimation problem. The initialization point w0 obeys the standard normal distribution and the step
size is 0.001. We say that the algorithm successfully finds the global solution z if the test error
∥wwT − zzT ∥F is smaller than 10−3 within 10, 000 iterations. We consider the same choices of
the number of buses N = 25, 50, 100 and the parameter p = 0.1, 0.25, 0.5, 1.0. For each case, we
generate 10 independent experiments and count the success rate over all experiments. We summarize
the success rates in Table 2. We can see that the success rate grows with parameter p and estimated
RIP constant δ.

D Relation with the Asymmetric Case

In existing literature, there exist two different formulations of the matrix completion problem: the
positive semi-definite (PSD) case and the asymmetric case. In this work, we focus on the PSD
case, which is formulated as problem (8) for matrix completion and problem (11) for MSoG. In
the asymmetric case, the ground truth matrix M∗ ∈ Rm×n is still assumed to be rank-r but is not
required to be symmetric and PSD. Using the Burer-Monteiro factorization approach, the asymmetric
MSoG problem can be formulated as

min
U∈Rm×r,V ∈Rn×r

1

p
f [(UV T )Ω;M

∗
Ω] + ϕ∥UTU − V TV ∥2F + g1(U) + g2(V ),

where we define

g1(U) :=
∑
i∈[m]

λ1

∫ 1

−1

[(
∥eTi U∥F + α1y − 10α1

)
+
+ 9α1

]4
(1− |y|) dy,

g2(V ) :=
∑
i∈[n]

λ2

∫ 1

−1

[(
∥eTi V ∥F + α2y − 10α2

)
+
+ 9α2

]4
(1− |y|) dy,

and α1, α2, λ1, λ2, ϕ > 0 are constants.

Although the PSD case is a special case of the asymmetric case, we note that there are many real-
world applications of the MSoG problem that possess a PSD ground truth matrix. For example, the
power state estimation problem can be formulated as a PSD MSoG problem. Therefore, a large
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number of works on the matrix completion problem also focused on the PSD case; see, for example,
[18, 17]. Moreover, the results of the PSD case can be directly extended to the asymmetric case. To
be more concrete, suppose that the ground truth matrix can be decomposed into M∗ = U∗(V ∗)T ,
where matrices U∗ ∈ Rm×r and V ∗ ∈ Rn×r. We define the matrices

W ∗ :=

[
U∗

V ∗

]
∈ R(m+n)×r, W :=

[
U
V

]
∈ R(m+n)×r.

Since

WWT =

[
UUT UV T

V UT V V T

]
,

∥UTU − V TV ∥2F = tr(UUT · UUT ) + tr(V V T · V V T )− 2tr[UV T · (UV T )T ],

the objective function of the asymmetric MSoG problem can be written as a function of W and W ∗.
More importantly, the loss function term f [(UV T )Ω;M

∗
Ω] can be written as a function of WWT and

W ∗(W ∗)T , which are both rank-r PSD matrices. Therefore, the asymmetric MSoG problem can be
formulated as a PSD MSoG problem with variable W and ground truth matrix W ∗(W ∗)T . Then, by
a similar analysis as Appendix B of [38] and Appendix B of [17], the theoretical results in Theorem
3 can be directly extended to the asymmetric case with the same bound on δ and p up to a constant.
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