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Abstract

Compositional generalization, the ability of an agent to generalize to unseen com-
binations of latent factors, is easy for humans but hard for deep neural networks. A
line of research in cognitive science has hypothesized a process, “iterated learning,”
to help explain how human language developed this ability; the theory rests on si-
multaneous pressures towards compressibility (when an ignorant agent learns from
an informed one) and expressivity (when it uses the representation for downstream
tasks). Inspired by this process, we propose to improve the compositional gener-
alization of deep networks by using iterated learning on models with simplicial
embeddings, which can approximately discretize representations. This approach
is further motivated by an analysis of compositionality based on Kolmogorov
complexity. We show that this combination of changes improves compositional
generalization over other approaches, demonstrating these improvements both
on vision tasks with well-understood latent factors and on real molecular graph
prediction tasks where the latent structure is unknown.

1 Introduction

Deep neural networks have shown an amazing ability to generalize to new samples on domains where
they have been extensively trained, approaching or surpassing human performance on tasks including
image classification [62], Go [70], reading comprehension [13], and more. A growing body of
literature, however, demonstrates that some tasks that can be easily solved by a human can be hard for
deep models. One important such problem is compositional generalization ([18], comp-gen for short).
For example, Schott et al. [65] study manually-created vision datasets where the true generating
factors are known, and demonstrate that a wide variety of current representation learning methods
struggle to learn the underlying mechanism. To achieve true “artificially intelligent” methods that can
succeed at a variety of difficult tasks, it seems necessary to demonstrate compositional generalization.
One contribution of this paper is to lay out a framework towards understanding and improving
compositional generalization, and argue that most currently-common training methods fall short.

∗Work done in part during an internship at Mila.
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In wondering how deep networks can learn to compositionally generalize, we might naturally ask:
how did humans achieve such generalization? Or, as a particular case, how did human languages
evolve components (typically, words) that can systematically combine to form new concepts? This
has been a long-standing question in cognitive science and evolutionary linguistics. One promising
hypothesis is known as iterated learning (IL), a procedure simulating cultural language evolution
[41]. Aspects of this proposal are supported by lab experiments [42], a Bayesian model [7], the
behavior of neural networks in a simple emergent communication task [60], and real tasks like
machine translation [50] and visual question answering [76].

To link the study in cognitive science and deep learning, we first analyze the necessary properties
of representations in order to generalize well compositionally. By linking the compositionality and
the Kolmogorov complexity, we find iteratively resetting and relearning the representations can
introduce compressibility pressure to the representations, which is also the key to the success of
iterated learning. To apply iterated learning in a general representation learning problem, we propose
to split the network into a backbone and a task head, and discretize the representation at the end of the
backbone using simplicial embeddings (SEM, [45]). This scheme is more practical than LSTM [34]
encoders previously used for neural iterated learning [60]. We observe in various controlled vision
domains that SEM-IL can enhance compositional generalization by aligning learned representations
to ground-truth generating factors. The proposed method also enhances downstream performance on
molecular graph property prediction tasks, where the generating process is less clear-cut.

2 Compositional Generalization

Generalization is a long-standing topic in machine learning. The traditional notion of (in-distribution)
generalization assumes that training and test samples come from the same distribution, but this is
insufficient for many tasks: we expect a well-trained model to generalize to some novel scenarios
that are unseen during training. One version of this is compositional generalization (comp-gen) [17],
which requires the model to perform well on novel combinations of semantic concepts.

2.1 Data-generating assumption and problem definition

Any type of generalization requires some “shared rules” between training and test distributions. We
hence assume a simple data-generating process that both training and test data samples obey. In
Figure 1, the semantic generating factors, also known as latent variables, are divided into two groups:
the task-relevant factors (or semantic generating factors) G = [G1, ..., Gm], and task-irrelevant (or
noise) factors O. This division depends on our understanding of the task; for example, if we only
want to predict the digit identity of an image in the color-MNIST dataset [3], then m = 1 and G1

represents the digit identity. All the other generating factors such as color, stroke, angle, and possible
noise are merged into O. If we want to predict a function that depends on both identity and color, e.g.
identifying blue even numbers, we could have G = [G1, G2] with G1 the identity and G2 the color.

Each input sample x ∈ X is determined by a deterministic function GenX(G,O). The task label(s)
y ∈ Y only depend on the factors G and possible independent noise ϵ, according to the deterministic
function GenY(G, ϵ). Note (x,O) ⊥⊥ (y, ϵ) | G, and that O, G, and ϵ are independent. The data-
generating distribution P (x, y) is determined by the latent distributions P (G) and P (O), along
with the GenX and GenY. We assume GenX and GenY are fixed across environments (the “rules of
production” are consistent), while P (G) and P (O) might change between training and test.2

For compositional generalization, we wish to model the problem of generalizing to new combinations
of previously seen attributes: understanding “red circle” based on having seen “red square” and “blue
circle.” Thus, we may assume that the supports of P (G) are non-overlapping between train and test.
(If this assumption is not true, it only makes the problem easier.) In summary, our goal is to find
an algorithm A such that, when trained on a dataset Dtrain ∼ Pn

train, A achieves small test risk
RPtest(A(Dtrain)). Here Ptrain and Ptest should satisfy these conditions:

• Ptrain and Ptest have G, O, ϵ jointly independent, and x = GenX(G,O), y = GenY(G, ϵ).
• GenX and GenY are the same deterministic functions for Ptrain and Ptest.
• In challenging cases, we may have supp[Ptrain(G)] ∩ supp[Ptest(G)] = ∅.

2This differs from the classical setting of covariate shift: P (y | x) might change due to the shift in P (G).
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Figure 1: Left: the data-generating assumption and a typical representation learning method (in red).
We use the model (g ◦h)(x) for downstream predictions. Right: the ladder of compositionality stating
the requirements of z using the entropy-related measurements; see Appendix A for more.

2.2 Representationl Learning and Ladder of Compositionality

For compositional generalization, we expect that the model must extract atomic semantic features
from the training data, and systematically re-combine them in a procedure akin to how the data is
generated [41]. We thus consider a typical representation learning framework, which resembles the
inverse of the data generation process (Figure 1(a), bottom). We use a backbone h : X→ Z to convert
the input signal x into a representation z, and a task head g : Z→ Y to solve the given task based on
that representation z. The prediction of the model is ŷ = (g ◦ h)(x).
Intuitively, we would like our learned z to uncover the hidden G, and g(z) to recover GenY(G, ϵ). We
thus analyze how the relationship between z and G influences the model’s generalization capability,
building off principles such as information bottleneck [74]. Inspired by the “ladder of causation” [55],
we propose a “ladder of compositionality” in Figure 1(b), which outlining a series of conditions on z
and G. We hypothesize that comp-gen roughly requires reaching the highest rung of that ladder:
Hypothesis 1. To generalize compositionally, the learned z should capture exactly the information
in G and nothing more (G to z should be a bijection), and moreover it should preserve the “structure”
of G (i.e. the mapping from G to z should be an isomorphism).

More on this hypothesis, the ladder, and relationship to models of disentanglement [32] are discussed
in Appendix A. In short, we find that a model trained using common learning methods relying on
mutual information between input x and supervision y cannot reliably reach the final stage of the
ladder – it is necessary to seek other inductive biases in order to generalize compositionally.

3 Compressibility pressure and Compositional mapping

From the analysis above, we need to find other inductive biases to obtain compositional mappings.
Inspired by how compositionality emerges in human language,3 we speculate that the compressibility
pressure is the key. Note that this pressure does not refer to compressing information from x to z (as in
Stage III does), but whether a mapping can be expressed in a compact way by reusing common rules.
In this section, we will first link compressibility pressure to Kolmogorov complexity by defining
different mappings using group theory. As the Kolmogorov complexity is hard to compute, making
explicit regularization dificult, we propose to implicitly regularize via iterated learning, a procedure
in cognitive science proposed to increase compositionality in human-like language.

3.1 Compositional mappings have lower Kolmogorov complexity

From Occam’s razor, we know efficient and effective mappings are more likely to capture the ground
truth generating mechanism of the data, and hence generalize better. The efficiency is determined by
how compressed the mapping is, which can also be measured by Kolmogorov complexity [47, 71].

3Human languages are examples of compositional mapping [35]: words are composed of combinations of
reusable morphemes, and those words in turn are combined to form complex sentences following specific stable
rules. These properties make our language unique among natural communication systems and enable humans
to convey an open-ended set of messages in a compositional way [42]. Researchers in cognitive science and
evolutionary linguistics have proposed many explanations for the origin of this property; one persuasive method
for simulating it is iterated learning [41].
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To build a link between compositionality and Kolmogorov complexity, we can first describe different
bijections between z and G using group theory, and then use the description length to compare the
complexity of a typical element. Specifically, assuming z ∈ Z,G ∈ G and |Z| = |G|, the space of all
bijections between z and G is an isomorphism of a symmetric group S|G|. If G = [G1, ..., Gm] and
each Gm has v different possible values, |G| = vm. For clarity in the analysis, we assume z also has
the same shape. Then, any bijection between z and G can be represented by an element in Svm .

The space of compositional mapping, which is a subset of all bijections, has more constraints. Recall
how a compositional mapping is generated (see Appendix A.4 for more details): we first select zi for
each Gj in a non-overlapping way. Such a process can be represented by an element in Sm. After
that, we will assign different “words” for each zi, which can be represented by an element in Sv . As
we have m different zi, this procedure will be repeated m times. In summary, any compositional
mapping can be represented by an element in the group Sm

v ⋊ Sv ∈ Svm , where ⋊ is the semidirect
product in group theory. The cardinality of Svm is significantly larger than Sm

v ⋊ Sv, and so a
randomly selected bijection is unlikely to be compositional. Thus
Proposition 1 (Informal). For m, v ≥ 2, among all bijections, any compositional mapping has much
lower Kolmogorov complexity than a typical non-compositional mapping.

We prove this by constructing descriptive protocols for each bijection. As a compositional mapping
has more reused rules, its description length can be smaller (see Appendix B.1 for more details).

3.2 Compressibility pressure is amplified in iterated learning

Now, our target is finding bijections with higher compositionality and lower Kolmogorov complexity,
which are both non-trivial. Because the ground truth G is usually inaccessible and the Kolmogorov
complexity is hard to calculate. Fortunately, researchers find that human language also evolved to
become more compositional without knowing G. Authors of [42] hypothesize that the compressibility
pressure, which exists when an innocent agent (e.g., a child) learns from an informed agent (e.g., an
adult), plays an important role. Such pressure is reinforced and amplified when the human community
repeats this learning fashion for multiple generations.

However, the aforementioned hypothesis assumes that simplicity bias is inborn in the human cognition
system. Will deep neural agents also have similar preferences during training? The answer is yes. By
analyzing an overparameterized model on a simple supervised learning problem, we can strictly prove
that repeatedly introducing new agents to learn from the old agent (then this informed agent becomes
the old agent for the next generation) can exert a non-trivial regularizing effect on the number of
“active bases” of the learned mapping. Restricting the number of active bases encourages the model
to reuse the learned rules. In other words, this regularization effect favors mappings with lower
Kolmogorov complexity, which is exactly what we expect for compositional generalization. Due to
the space limits, we left the formulation and proof of this problem in Appendix B.2.

3.3 Complete the proposed solution

We thus expect that iteratively resetting and relearning can amplify the compressibility pressure, which
helps us to reach the final rung of the ladder from the third. Before that, we need another pressure to
reach third rung (i.e., ensure a bijection between z and G). Expressivity pressure, constraining the
learned mapping to be capable enough to accomplish the downstream tasks, is what we need.

The complete iterated learning hypothesis of Kirby et al. [42] claims that the compositional map-
ping emerges under the interaction between the compressibility pressure (i.e., efficiency) and the
expressivity pressure (i.e., effectiveness). Inspired by this, we propose to train a model in generations
consisting of two phases. At the t-th generation, we first train the backbone h in an imitation phase,
where a student hS

t learns to imitate z sampled from a teacher hT
t . As analyzed above, iteratively

doing so will amplify the compressibility pressure. Then, in the following interaction phase, the
model gt ◦ hS

t follows standard downstream training to predict y. The task head gt is randomly
initialized and fine-tuned together with the backbone in this phase. By accomplishing this phase, the
expressivity pressure is introduced. The fine-tuned backbone hS

t then becomes the teacher hT
t+1 for

the next generation, and we repeat, as illustrated in Figure 2 and Algorithm 1.

Another problem with applying iterated learning to deep neural networks is how to create the discrete
message, i.e., z. Discretization is not necessary: for example, the imitation phase could use L2 loss to
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Figure 2: An illustration of iterated learning and SEM layer design.

match a student’s continuous representations to the teacher’s. We find greatly improved performance
with our discretization scheme, however, due to much-increased compressibility pressure. It is also
possible [60] to use e.g. an LSTM encoder at the end of h(x) to produce discrete z, and an LSTM
decoder at the start of g(z). The interaction phase is then not directly differentiable; though many
estimator options exist [6, 39, 78], training tends to be difficult due to high bias and/or variance.

Instead, we consider a simplicial embedding layer (SEM, [45]), which has proven effective on many
self-supervised learning tasks. As illustrated in Figure 2(c), a dense representation h (the output of
the original backbone) is linearly transformed into m vectors zi ∈ Rv. Then we apply a separate
softmax with temperature τ to each zi, yielding z̄i which are, if the temperature is not too high,
approximately sparse; the z̄i are then concatenated to a long vector z. The overall process is

z̄i = Softmaxτ (zi) =

[
ezij/τ∑V
k=1 e

zik/τ

]
j

∈ Rv z =
[
z̄⊤1 . . . z̄⊤m

]⊤ ∈ Rmv. (1)

By using an encoder with a final SEM layer, we obtain an approximately-sparse z. In the imitation
phase, we generate discrete pseudo-labels by sampling from the categorical distribution defined by
each z̄i, then use cross-entropy loss so that the student is effectively doing multi-label classification
to reconstruct the teacher’s representations. In the imitation phase, the task head g operates directly
on the long vector z. The full model g ◦ h is differentiable, so we can use any standard task loss.
Pseudocode for the proposed method, SEM-IL, is in the appendix (Algorithm 1).

4 Analysis on Controlled Vision Datasets

We will first verify the effectiveness of the proposed SEM-IL method on controlled vision datasets,
where the ground truth G is accessible. Thus, we can directly observe how z gradually becomes more
similar to G, and how the compressibility and expressivity pressures affect the training process. In
this section, we consider a regression task on 3dShapes [9], where recovering and recombining the
generating factors is necessary for systematic generalization. The detailed experimental settings and
results on additional similar datasets, dSprites [52] and MPI3D-real [23], are given in Appendix C.

4.1 The Effectiveness of SEM-IL

Better comp-gen performance We first show the effectiveness of the proposed method using
results on 3dShapes, containing images of objects with various colors, sizes, and orientations against
various backgrounds. Here G numerically encodes floor hue, wall hue, object hue, and object scale
into discrete values, and the goal is to recover a particular linear function of that G. (Results for a
simple nonlinear function were comparable.)

We compare five algorithms:

• Baseline: directly train a ResNet18 [31] on the downstream task.

• SEM-only: insert an SEM layer to the baseline model.

• IL-only: train a baseline model with Algorithm 1, using MSE loss during imitation.

• SEM-IL: train an SEM model with Algorithm 1.

• Given-G: train an SEM model to reproduce the true G (which would not be known in
practice), then fine-tune on the downstream task.
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Figure 3: Left: compositional generalization performance on a regression task. Right: topological
similarity for IL and non-IL methods. Note the values of ρ in the two panels are not comparable, as
the structure of z in the two settings (with or without SEM) is different.

In the first panel of Figure 3, we see that the baseline and SEM-only models perform similarly on
the training set; IL-based methods periodically increase in error at the beginning of each generation,
but are eventually only slightly worse than the baselines on training data. On the test set, however,
evaluating compositional generalization by using values of G which did not appear in training,
SEM-IL brings significant improvement compared with other methods. Using only SEM or only IL
gives no improvement over the baseline, however; it is only their combination which helps, as we
will discuss further shortly. The (unrealistic) oracle method Given-G is unsurprisingly the best, since
having z similar to G is indeed helpful for this task.

How z evolves during learning To see if better generalization ability is indeed achieved by finding
z that resembles the structure of G, we check their topological similarity4

ρ(z,G) ≜ Corr
(
dz(z

(i), z(j)), dG(G
(i),G(j))

)
(2)

where dz and dG are distance metrics, z(i) is the predicted representation of x(i), and G(i) is the
corresponding ground-truth generating factors. This measurement is widely applied to evaluate
the compositionality of the mappings in cognitive science [8] and emergent communication [60].
Following existing works, we use the Hamming distance for G and discretized z in SEM-based
methods, and cosine distance for continuous z in non-SEM methods. We expect h(x) to map x with
similar G to close z, and dissimilar x to distant z, so that ρ(z,G) will be high.

The third panel of Figure 3 shows that the SEM-only model quickly reaches a plateau after 200
epochs and then slowly decreases, while SEM-IL, after briefly stalling at the same point, continues to
increase to a notably higher topological similarity. In the last panel, however, the IL-only method
doesn’t improve ρ over the baseline: it seems both parts are needed.

4.2 Discretized Representation is Beneficial for the Imitation Phase of IL

To explain why SEM and IL cooperate well, we need to look deeper into how the compressibility
pressure influences the learning of representations. This pressure induced by iterated learning, which
helps us to find mappings with lower Kolmogorov complexity, leads to representations that are more
compositional and systematic [42]. However, in prior works, these mappings were only considered in
conjunction with some discretized representation [54, 60]. While IL could be used with continuous
representation during the imitation phase, similar to born-again networks [19], we found that our
algorithm benefits a lot from the discretized representations.

To get a clear picture of why discretized representations are so important, we divide h(x) into m sub-
mappings hi(x), which map x to z̄i ∈ [0, 1]v . We can understand each z̄i as a categorical distribution
over v different possible values. As such, during training, the model learns discrete features of the
dataset and assigns confidence about each feature for every sample. The neural network will tend
to more quickly learn simpler mappings [5, 24], and will assign higher confidence according to the
mapping it has learned. In other words, if a mapping does not align well with G, it is more likely
to give idiosyncratic learned z̄i, and will lead to low confidence for most samples. On the contrary,
z̄i belonging to compositional mappings will be more general, and on average tend towards higher
confidence.

4This measure is also known as the distance correlation [72]; it is a special case of the Hilbert-Schmidt
Independence Critierion (HSIC, [25]) for a particular choice of kernel based on dz and dG [66].
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Figure 4: First panel: correlation between teacher’s confidence and student’s learning speed for each
(x, z̄i); z̄i is the prediction of the l-th attribute in imitation phase. “Consistent” means the student
makes the same prediction as the teacher. Other panels: learning curves of the student’s predictions.

The imitation phase reinforces this bias when the new student learns from the sampled pseudo labels
gi from the teacher’s prediction z̄i. As such, confident predictions, which are more likely to belong
to the compositional mappings, will be learned faster (and harder to forget) by the student. On the
contrary, for less confident features where P (z̄i | x) is flat, gi could change across epochs. This
makes it hard for the student to remember any related (x, gi). For example, a student will be reluctant
to build a stable mapping between “red” and z1 if the teacher communicates (“red square”, g1 = 0),
(“red square”, g1 = 1), (“red square”, g1 = 2) in three consecutive epochs.

Furthermore, using the sampled pseudo-labels can help the student to align the learned (x, gi) better.
Assume during training, the student already remembers some pairs like (“blue circle”, g1 = 0),
(“blue square”, g1 = 0), (“blue star”, g1 = 0), but the teacher is not confident in (“blue apple”, g1),
perhaps because apples are rarely blue. Following the analysis above, as P (z̄1 | blue apple) is flat,
the teacher may generate g1 ̸= 0 a significant portion of the time. However, if the teacher happens
to generate g1 = 0 at some point, the student would learn (“blue apple”, g1 = 0) faster than those
with g1 ̸= 0, because it aligns well with the other information stored in the student network. The
parameter updates caused by the learning of other (“blue [shape]”, g1 = 0) will also promote the
learning of (“blue apple”, g1 = 0), similar to how “noisy” labels are fixed as described by [61].

To support the explanations above, we can first observe the correlation between the teacher’s con-
fidence and the model’s learning speed for (x, gi). Specifically, for each x, the teacher makes
m predictions with the corresponding categorical distribution z̄i, i ∈ [m]. For each (x, z̄i), the
confidence is measured by the negative logarithm of the teacher’s predicted probability, − log[z̄i]ȷ̂
where ȷ̂ ∈ argmaxj [z̄i]j . The learning speed of (x, gi) is measured by the integral of the student’s
prediction with training time t, i.e.,

∑
t=0[ẑi(t)]j , where j is the value provided by the teacher and

ẑi(t) is student’s prediction at time t. As illustrated in the first panel of Figure 4, the (x, gi) with
higher confidence are usually learned faster by the student.

We also provide the learning curves of (x, gi) with high/intermediate/low confidence (each with
10 samples) in the other three panels of the figure. The curves for high-confidence samples all
converge to [ẑi(t)]j = 1 while those for low-confidence predictions could converge to a value
less than 0.3. This means the student might make predictions that are different from the teacher’s
supervision. By highlighting such low-confidence (x, gi) pairs in the scatter plot, we find they are
all low-confidence samples. Another interesting observation from the high-confidence curves is that
some (x, gi) pairs are not remembered by the student in the first generation: they emerge at some
point and gradually dominate as the training goes on. This phenomenon matches our analysis of how
the sampled pseudo-labels help the student align (x, gi) to its knowledge well. To further support this
explanation, Appendix C shows that performance is substantially harmed by taking pseudo-labels
from the argmax, rather than sampling from z̄i.

To recap, this subsection provided an explanation (along with some supporting evidence) for why the
combination of SEM and IL is so important, based on the perspective of sample difficulty, which we
believe to be a significant factor in the success of this algorithm.

5 Application: Molecular Property Prediction

Given the success in controlled vision examples, we now turn to a real problem where the true
generative process is unknown. We focus on predicting the properties of molecular graphs, for several
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reasons. First, molecular graphs and their labels might follow a (chemical) procedure akin to that in
Figure 1: for instance, one Gi might be the existence of a specific functional group, or the number of
specific atoms. Different molecular properties could then be determined by different subsets of Gi,
as we desired in the compositional generalization problem. Furthermore, the generating mechanisms
(GenX and GenY) should be consistent and determined by nature. Second, benchmark datasets in
this community contain various types of tasks (e.g., binary classification, multi-label classification,
and regression) with similar input signals: performing well on different tasks will broaden the scope
of our algorithm. Furthermore, the scaffold split used by most molecular datasets corresponds well to
the compositional generalization setup we consider here. (We also try some more challenging splits,
using structural information.) Last, learning meaningful representations that uncover the generating
mechanisms of molecules is important, of practical significance, and difficult: it can potentially help
predict the properties of unknown compounds, or accelerate the discovery of new compounds with
specific properties, but scaling based on massive datasets as in recent work on vision or language
seems more difficult. We hope our analysis can provide a new perspective on this problem.

5.1 Improvement on the Downstream Performance

Table 1: Downstream performance on different tasks. The numbers of AUROC and average precision
are in percent form. For PCQM, we report the validation performance, as the test set is private and
inaccessible. Means and standard deviations of 5 seeds are given. Valid/test-full means the standard
train/val/test split provided by the dataset. Valid/test-half means we train the model on half of the
training data which is less similar to the validation and test sets. See Appendix D for more.

Model and
Algorithm

molhiv (AUROC ↑) molpcba (Avg.Precision ↑) PCQM (MAE ↓)
Valid-full Test-full Valid-half Test-half Valid-full Test-full Valid-half Test-half Valid

GCN

Baseline 82.41±1.14 76.25±0.38 75.65±0.91 72.31±1.86 21.44±0.25 22.13±0.46 21.13±0.38 20.78±0.62 0.125±0.002
Baseline+ 81.61±0.63 75.58±1.00 73.23±0.75 72.17±1.02 22.31±0.34 22.68±0.30 21.01±0.45 20.60±0.37 0.118±0.004
SEM-only 84.00±1.10 78.40±0.67 74.84±1.57 72.81±2.32 26.39±0.66 25.89±0.71 22.79±0.91 22.09±1.02 0.106±0.002
SEM-IL 84.89±0.68 79.09±0.67 78.48±0.67 74.02±0.78 28.81±0.72 27.15±0.74 22.59±0.84 21.90±0.81 0.102±0.005

GIN

Baseline 81.76±1.04 76.99±1.42 76.95±1.40 71.63±2.21 23.09±0.32 22.64±0.49 20.52±0.39 20.15±0.42 0.109±0.003
Baseline+ 81.55±0.72 77.01±0.94 74.77±1.62 69.75±3.10 23.85±0.29 22.91±0.40 21.71±0.12 20.98±0.27 0.108±0.003
SEM-only 83.05±0.90 78.21±0.78 76.29±2.06 72.70±4.94 26.01±0.52 25.66±0.47 22.26±0.39 21.50±0.48 0.106±0.004
SEM-IL 83.32±1.51 78.61±0.73 78.06±1.24 72.89±0.48 29.30±0.48 28.02±0.61 24.41±0.47 23.89±0.77 0.098±0.005

We conduct experiments on three common molecular graph property datasets: ogbg-molhiv (1
binary classification task), ogbg-molpcba (128 binary classification tasks), and PCQM4Mv2 (1 regres-
sion task); all three come from the Open Graph Benchmark [37]. We choose two types of backbones,
standard GCN [40] and GIN [80]. For the baseline experiments, we use the default hyperparameters
from [37]. As the linear transform added in SEM-based method gives the model more parameters, we
consider “baseline+” to make a fair comparison: this model has an additional embedding layer, but no
softmax operation. Detailed information on these datasets, backbone models, and hyper-parameters
is provided in Appendix D.

From Table 1, we see the SEM-IL method almost always gives the best performance. Unlike in the
controlled vision experiments (Figure 3), however, SEM alone can bring significant improvements in
this setting. We speculate that compressibility pressure might be more significant in the interaction
phase (i.e. standard training) when the generating mechanism is complex. This suggests it may be
possible to develop a more efficient algorithm to better impose compressibility and expressivity
pressures at the same time.

5.2 Probing Learned z by Meaningful Structures

In the controlled vision examples, we know that SEM-IL not only enhances the downstream per-
formance, but also provides z more similar to the ground-truth generating factors, as seen by the
improvement in topological similarity. However, as the generating mechanism is usually inaccessible
in real problems, we indirectly measure the quality of z using graph probing [2]. Specifically, we
first extract some meaningful substructures in a molecule using domain knowledge. For example, we
can conclude whether a benzene ring exists in x by directly observing its 2D structure. With the help
of the RDKit tool [44], we can generate a sequence of labels for each x, which is usually known as
the “fingerprint” of molecules (denoted FP(x) ∈ {0, 1}k, indicating whether each specific structure
exists in x). Then, we add a linear head on top of the fixed z and train it using a generated training
set (x,FP(x)), x ∼ Dtrain, and compare the generalization performance on the generated test set
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(x,FP(x)), x ∼ Dtest. For fair comparison, we set m = 30 and v = 10 to make z and h be the same
width, excluding the influence of the linear head’s capacity.

Table 2: AUROC for graph probing based on different z; random guessing would be ≈ 0.5.
Sat.Ring Aro.Ring Aro.Cycle Aniline Ketone Bicyc. Methoxy ParaHydrox. Pyridine Benzene Avg.

Init. base 0.870 0.958 0.811 0.629 0.595 0.615 0.627 0.706 0.692 0.812 0.732
Init. SEM 0.872 0.958 0.812 0.635 0.597 0.638 0.613 0.692 0.683 0.815 0.731

Train
on

Molhiv

Baseline 0.874 0.948 0.916 0.700 0.717 0.694 0.804 0.740 0.703 0.913 0.801
SEM-only 0.893 0.989 0.938 0.722 0.751 0.779 0.823 0.763 0.763 0.938 0.836
SEM-IL 0.907 0.980 0.967 0.781 0.801 0.794 0.903 0.815 0.869 0.965 0.878

Train
on

Molpcba

Baseline 0.921 0.988 0.968 0.866 0.875 0.835 0.875 0.855 0.856 0.968 0.901
SEM-only 0.942 0.991 0.981 0.888 0.916 0.854 0.921 0.888 0.897 0.980 0.926
SEM-IL 0.940 0.988 0.982 0.910 0.931 0.849 0.912 0.910 0.912 0.981 0.931

Train
on

10% pcba

Baseline 0.923 0.980 0.962 0.863 0.857 0.832 0.870 0.833 0.864 0.962 0.895
SEM-only 0.943 0.993 0.989 0.872 0.906 0.835 0.913 0.876 0.900 0.989 0.922
SEM-IL 0.938 0.994 0.985 0.891 0.918 0.847 0.927 0.874 0.907 0.985 0.927

Train
on

pcba-1task

Baseline 0.892 0.974 0.948 0.723 0.750 0.689 0.845 0.758 0.782 0.947 0.831
SEM-only 0.906 0.989 0.958 0.772 0.809 0.735 0.876 0.770 0.835 0.957 0.861
SEM-IL 0.906 0.988 0.963 0.741 0.851 0.744 0.887 0.765 0.869 0.962 0.867

In the experiments, we use the validation split of molhiv as Dtrain and the test split as Dtest,
each of which contain 4,113 distinct molecules unseen during the training of z. The generalization
performance of ten different substructures is reported in Table 2. The first block (first two rows) of
the table demonstrates the performance of two types of models before training. They behave similarly
across all tasks and give a higher AUROC than a random guess. Then, comparing the three algorithms
in each block, we see SEM-based methods consistently outperform the baseline, which supports our
hypothesis well. SEM-IL outperforms SEM-only on average, but not for every task; this may be
because some structures are more important to the downstream task than others.

Comparing the results across the four blocks, we find that the task in the interaction phase also
influences the quality of z: the z trained by molpcba is much better than those trained by molhiv.
To figure out where this improvement comes from, we first use only 10% of the training samples in
molpcba to make the training sizes similar, then make the supervisory signal more similar by using
only one task from molpcba. As illustrated in the last two blocks in the table, we can conclude that
the complexity of the task in the interaction phase, which introduces the expressivity pressure, plays
a more important role in finding better z.

Based on this observation, we can improve SEM-IL by applying more complex interaction tasks. For
example, existing works on iterated learning use a referential game or a reconstruction task in the
interaction phase, which could introduce stronger expressivity pressure from a different perspective.
Furthermore, [45] demonstrates that SEM works well with most contrastive learning tasks. We hope
the fundamental analysis provided in this paper can shed light on why SEM and IL collaborate so
well and also arouse more efficient and effective algorithms in the future.

6 Related Works

Iterated Learning and its Applications. Iterated learning (IL) is a procedure that simulates cultural
language evolution to explain how the compositionality of human language emerges [41]. In IL, the
knowledge (i.e., the mapping between the input sample and its representation) is transferred between
different generations, during which the compositional mappings gradually emerge and dominate
under the interaction between compressibility and expressivity pressures. Inspired by this principle,
there are some successful applications in symbolic games [60], visual question answering [76],
machine translation [50], multi-label learning [58], reinforcement learning [54], etc.

There are also many algorithms training a neural network for multiple generations, which could
possibly support the principles proposed in iterated learning. For example, [19] proposes to iteratively
distill the downstream logits from the model in the previous generation, and finally bootstrap all
the models to achieve better performance on image classification task; this can be considered as an
IL algorithm merging the imitation and interaction phases together. [82] proposes to re-initialize
the latter layers of a network and re-train the model for multiple generations, which is similar to
an IL algorithm that only re-initializes the task head. [54] extends such a reset-and-relearn training
to reinforcement learning and shows that resetting brings benefits that cannot be achieved by other
regularization methods such as dropout or weight decay. In the era of large language models, self-
refinement in-context learning [51] and self-training-based reinforcement learning [26] can also
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benefit from iteratively learning from the signals generated by agents in the previous generation. We
left the discussion and analysis on these more complex real systems in our future work.

Knowledge Distillation and Discrete Bottleneck. Broadly speaking, the imitation phase in SEM-IL,
which requires the student network to learn from the teacher, can be considered as a knowledge
distillation method [33]. Different from the usual setting, where the student learns from the teacher’s
prediction on a downstream task, we assume a data-generating mechanism and create a simplex space
for the generating factors. By learning from the teacher in this space, we believe the compressibility
pressure is stronger and is more beneficial for the compositional generalization ability.

For the discretization, there are also other possible approaches, e.g., [28] uses an LSTM to create a
discrete message space, and [48] proposes a method using a vector quantized bottleneck [75]. We
choose SEM [45] for its simplicity and universality: it is easy to insert it into a model for different
tasks. Besides, SEM has proved to be effective on self-supervised learning tasks; we extend it to
classification, regression, and multi-label tasks.

Compressibility, learning dynamics, and Kolmogorov complexity Recently, with the success of
large language models, the relationship between compressibility and generalization ability gradually
attracted more attention [12]. Authors of [57] propose that how well a model is compressed corre-
sponds to the integral of the training loss curve when negative logarithmic likelihood loss is used.
Although this claim assumes the model sees each training sample only once, which might not be
consistent with the multiple-epochs training discussed in this paper, the principles behind this claim
and our analysis are quite consistent: the mappings generalize better and are usually learned faster by
the model. Furthermore, authors of [71] link the generalization ability to Kolmogorov complexity.
Our analysis in Appendix B also supports this claim well. Hence we believe the evolution of the
human cognition system can provide valuable insights into deep learning systems.

Graph Representation Learning. Chemistry and molecular modeling are some of the main drivers
of neural graph representation learning since its emergence [21] and graph neural networks, in
particular. The first theoretical and practical advancements [27, 40, 80] in the GNN literature were
mostly motivated by molecular use cases. Furthermore, many standard graph benchmarks [15, 16,
37] include molecular tasks on node, edge, and graph-levels, e.g., graph regression in ZINC and
PCQM4Mv2 or molecular property prediction in ogbg-molhiv and ogbg-molpcba datasets. Graph
Transformers [14, 43, 59] exhibit significant gains over GNNs in molecular prediction tasks. Self-
supervised learning (SSL) on graphs is particularly prominent in the molecular domain highlighted
by the works of GNN PreTrain [38], BGRL [73], and Noisy Nodes [22]. We will extend the proposed
method to different models and different pretraining strategies in our future work.

7 Conclusion

In this paper, we first define the compositional generalization problem by assuming the samples in
the training and test sets share the same generating mechanism while the generating factors of these
two sets can have different distributions. Then, by proposing the compositionality ladder, we analyze
the desired properties of the representations. By linking the compositionality, compressibility, and
Kolmogorov complexity together, we find iterated learning, which is well-studied in cognitive science,
is beneficial for our problem. To appropriately apply iterated learning, we attach an SEM layer to
the backbone model to discretize the representations. On the datasets where the true generating
factors are accessible, we show that the representations learned by SEM-IL can better portray the
generation factors and hence lead to better test performance. We then extend the proposed algorithm
to molecular property prediction tasks and find it improves the generalization ability.

The main drawback of the current solution is the time-consuming training: we must run multiple
generations and some common features might be re-learned multiple times, which is inefficient.
Hence a more efficient way of imposing compressibility is desired.

Overall, though, our analysis and experiments show the potential of the SEM-IL framework on
compositional generalization problems. We believe a better understanding of where the compress-
ibility bias comes from in the context of deep learning can inspire more efficient and non-trivial IL
framework designs. Clearly defining the compositional generalization problem and finding more
related practical applications can also promote the development of IL-related algorithms.
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Algorithm 1: Proposed IL-SEM algorithm
Split the network into h(x) and g(z), then add an SEM bottleneck to discretize z
for t = 0 to Tgen do

Initialize the student speaker hS
t (x)

5

# Imitation Phase (start from the second generation)
if t > 0 then

for i = 0 to Iimit do
Sample a batch x from the training set Dtrain

Sample the pseudo labels from teacher’s prediction (one-hot vectors) g1:m ∼ hT
t (x)

Calculate the student’s prediction z = [ẑ1, ..., ẑm] = hS
t (x)

Update hS
t (·) with multi-label cross-entropy loss Lml =

∑m
i=1 g

⊤
i · log ẑi

end for
end if
# Interaction Phase (regular training on the downstream task)
for i = 0 to Iint do

Initialize the listener gt(z) randomly
Sample a batch (x, y) from the training set Dtrain

Calculate the downstream prediction ŷ = (gt ◦ hS
t )(x)

Update the parameters of hS
t and gt to minimize the downstream loss Lds(ŷ, y)

end for
The student becomes the teacher for the next generation: hT

t+1 ← hS
t

end for
Return the last (or the best) (gt ◦ hS

t )(x) for the downstream task

A The Ladder of Compositionality

Table 3: What information contained in z on the ladder and their corresponding capabilities. H(·) is
the entropy,↔ means bijection,⇔ means isomorphism bijection.

Infor. in z Train acc. ID-gen OOD-gen with
seen concepts Comp-gen

Stage I H(G | z) > 0 × × × ×
Stage II H(G | z) = 0

H(z | G) > 0
✓ ✓ × ×

Stage III z↔ G ✓ ✓ ✓ ×
Stage IV z⇔ G ✓ ✓ ✓ ✓

To figure out what z we need in order to generalize well compositionally, we propose the “ladder
of compositionality” in Figure 1. To justify our claims, this appendix will discuss how we could
climb the ladder step by step by analyzing how the corresponding requirements are generated. A
formal definition of the compositional mapping in terms of group theory, which is necessary for
reaching the final stage of the ladder, is also provided. In short, we find only relying on the mutual
information between z and G (or between x and y) cannot reach the final rung of the ladder: we need
other inductive biases, which is the main motivation of this paper.

A.1 Stage I: z misses some important information in G

The learned representation would have H(G | z) > 0 at this stage. As Y = GenY(G, ϵ) and
Ŷ = g(z) are assumed to be invertible (here Y and Ŷ are random variables), this condition can be
rewritten as I(Y ; Ŷ ) < H(Y ) 6. Hence following the analysis in [69], a model with such an encoder
z = h(x) even cannot achieve high enough training performance, let alone generalizing to unseen

5In practice, we can choose to randomly initialize the speaker (usually when the model is small), copy the
pretrained checkpoint (when the model is large), or copy the parameters of the teacher in previous generations
(the seed iterated learning variant mentioned in [50]).

6Using the fact that H(G | z) = H(Y | Ŷ ) = H(Y )− I(Y ; Ŷ ).
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test distributions. This condition might occur when the model underfits the training data, e.g., at the
beginning of training or the model’s capacity is too small. To make an improvement, one can increase
the model size or train longer.

A.2 Stage II: z not only contains all information in G but also some in O

At this stage, the learned representation would have H(G | z) = 0 and H(z | G) > 0. This means
h(x) remembers additional information that G doesn’t have, e.g., noisy information in O. From
H(G | z) = 0, we know H(Y | Ŷ ) = 0 and hence I(Y ; Ŷ ) = H(Y ). Then the model would have
perfect training performance and could also be able to generalize well when training and test datasets
share the same distribution. However, when facing the out-of-distribution generalization problem,
especially when a spurious correlation exists between some factors in O and G, the extra information
learned by z can mess the predictions up. Such a phenomenon is named “short-cut learning” and
is quite common in many deep-learning systems [20]. For example, if the background strongly
correlates with the object in the training set (e.g., a cow usually co-occurs with the grass while a
seagull usually co-occurs with the beach), the DNN then tends to rely more on these “short-cut”
features (e.g., the background rather than the object) during training. If such correlations disappear or
reverse in the test set, the models relying on factors in O cannot generalize well to a new distribution.

Making improvement – loss based on information-bottleneck To make an improvement, the
model should eliminate the task-irrelevant information as much as possible. Based on this principle,
authors of [74] propose to minimize the following information bottleneck equations:

max I(Z;Y )− βI(Z;X), β > 0, (3)
which means the learned z should extract as much as information from Y (or equivalently, G) and
forget as much as irrelevant information about X (i.e., those in O). This method is also widely
applied in other relevant tasks, like domain adaptation [46], invariant risk minimization [1], and etc.

Making improvement – data augmentation Another simple and efficient way to make improve-
ments is data augmentation: one can identify some task-irrelevant factors in O and design specific
data augmentation methods to teach the model to be insensitive to them. For example, if we believe
that the label of an image should be irrelevant to color jittering, random cropping, rotation, flipping,
etc., we can apply random augmentations during training and treat the differently augmented x and x′

as the same class. Then the model would inherently learn to be insensitive to such factors and hence
forget the corresponding information. One interesting thing about data augmentation is that it can
be designed and applied in a reverse direction, i.e., we can break some semantic factors and train
the model to be insensitive to the broken samples. For example, believing the shape of the image
and order of the words are semantic factors in G, the authors of [56] propose to randomly rotate the
image patches or words to make negative samples. Those models that perform well on such negative
samples are more likely to rely on the factors in O.

Making improvement – auxiliary task design, e.g., SSL Furthermore, one can also consider
designing auxiliary tasks in addition to the downstream task, e.g., pretrain using self-supervised
learning (SSL) and finetune on the target task. In [67], the authors empirically show that the
representations learned via SSL usually generalize better than those learned via supervised learning
when facing OOD downstream problems, even though the models are trained using a similar amount
of data samples. There are also some works demonstrating that SSL representations encode more
semantic information about the input image [10], which is a sign that auxiliary tasks like SSL can
introduce extra biases that favor information in G.

Consider the first group of SSL methods, which are usually based on contrastive loss, e.g., SimCLR
[11], MoCo [30], etc. These methods usually require h(xi) and h(x′i) to be similar while h(xi) and
h(xj), i ̸= j to be distinct, where xi is the anchor input, x′i is the augmentation of it, and xj is another
different image. The carefully designed augmentation can encourage the model to ignore some
task-irrelevant factors that belong to O. Imagine x′i is generated by deleting the background of xi.
As the training enforces dz(h(x), h(x′)) to be small, the learned model will then become insensitive
to the information in the background, and hence avoid relying on this “short-cut” feature. Note that
the contrastive SSL is utilizing the bias from data augmentation in a more aggressive way: the SSL
algorithm will tell the model that x and x′ are the same image while the supervised learning only
inform the model that x and x′ belong to the same class.
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Another line of SSL is built on reconstruction tasks, like denoising auto-encoder (DAE [77]) and
masked auto-encoder (MAE [29]). The h(x) in these methods is usually trained in an auto-encoder
fashion: using a reconstruction network r(z) : Z → X, we require the reconstructed xrecon =
(r ◦ h)(x) to be similar to the original input x. As the above equation has a trivial solution, i.e.,
(r ◦ h)(·) = identity, which means h(x) copies every details about x (including all O and G), some
early works like denoising auto-encoder propose to add noise on x to encourage non-trivial solutions.
Depending on the noise we introduce, the model will learn to ignore different factors accordingly,
which seems quite similar to the data augmentation mentioned in contrastive SSL methods. To
encourage h(x) to extract more useful semantic information in G, methods like MAE [29] propose to
mask most of the patches of the input image and try to make reconstructions based on the remaining
patches. Such methods exhibit amazing reconstruction performance (not in terms of high resolution,
but the precise semantic reconstruction), which also implies that the h(x) trained in this way is
capable of extracting high-level semantic generating factors (those are likely in G). Furthermore,
methods like BEiT [4] and iBOT [83] also patchify and mask the input images, and concurrently,
impose extra constraints on z by comparing them with the descriptions generated by the big language
model. Such designs also encourages h(x) to extract high-level semantic information, as illustrated
in [10].

In summary, as the SSL algorithms learn good z by designing loss or tasks on it, we can introduce
extra inductive bias via auxiliary tasks. By requiring z to be invariant when adding noise or conducting
data augmentation on x, the task-irrelevant information can be ruled out during learning. By requiring
z contains the necessary information for reconstruction when only part of x is observable, the task-
relevant semantic information can be highlighted during learning. By combining these principles,
it is possible for us to learn good h(x) that only extracts information in G. With the help of these
methods, our z might learn exactly all information in G, which means the third rung is achieved.

A.3 Stage III: z learns exactly all information in G, i.e., h(·) leads to a bijection

Starting from Stage II, if we can design clever training methods (e.g., adding regularization, data
augmentation, auxiliary task, etc.) and make our h(x) to be insensitive to some O, ideally, we can learn
an almost perfect encoder that extracts exactly all information contained in G. In this case, we have
H(G | z) = 0 and H(z | G) = 0, i.e., h(·) leads to a bijection between z-space and G-space, which
is denoted as z ↔ G. Ideally, such z can generalize well even when Ptrain ̸= Ptest, as long as all
the concepts in the test set are seen by h(x) during training, i.e., supp[Ptest(G)] ⊆ supp[Ptrain(G)].
However, we speculate that even h(x) on Stage III will struggle in the comp-gen problem, as the
problem assumes supp[Ptest(G)] ∩ supp[Ptrain(G)] = ∅. In other words, we need the model to
decompose and recombine the learned concepts in a systematic way, which is similar to the ground-
truth-generating mechanism. To achieve this goal, we need to consider how to achieve Stage IV.

A.4 Stage IV: h(·) leads to a isomorphism bijection between z and G

To generalize well compositionally, we not only need z contains exactly all information in G, the
structure of G should also be embodied in z, which means h(·) should lead to an isomorphism
bijection between z-space and G-space (i.e., z⇔ G). Specifically, we need:

Hypothesis 1 in detail. To generalize well compositionally, we need z⇔ G, which requires:

1. z↔ G, i.e., h(·) leads to a bijection between z and G;
2. P (z) and P (G) factorize in a similar way;
3. Each zi maps to some Gwi , where w is a permutation vector of length m, and such a

mapping is invariant7;
4. For each zi, the mapping between zi = k and Gwi

= uk is invariant8, where u is a
permutation vector of length vwi

.

We call such mappings compositional and call the other bijections holistic. To better understand the
difference between these two types of mappings, we consider a simple example where the generating
factors are G = [G1, G2], G1 = {blue, red} and G2 = {circle, box}, and the representations are

7For example, z1 always encode color and z2 always encode shape.
8For example, z1 = 0 always means blue and z1 = 1 always means red.
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Figure 5: A compositional mapping and a holistic mapping. Although holistic mapping in this
example seems to have fewer “crossings”, it has lower topological similarity.

Table 4: An example of coding the mappings, where α is how many characters (including space and
unique symbol, e.g.,→ and :) are used to express the grammar.

A compositional mapping
5 rules, α = 43

A holistic mapping
4 rules, α = 56

S → z2, z1
z2: 0 → blue S: → blue circle
z2: 1 → red S: → red circle
z1: 0 → circle S: → red box
z1: 1 → box S: → blue box

z = [z1, z2], z1 = {0, 1} and z2 = {0, 1}. Hence the space of G is { blue circle, blue box, red
circle, red box }, and the space of z is {00, 01, 10, 11}. To generate a compositional mapping, we
can first decide the meaning of zi, e.g., z1 represents the shape and z2 represents the color. After that,
we assign vocabularies in zi to denote different meanings, e.g., z1 = 0 → circle, z1 = 1 → box,
z2 = 0 → blue, and z2 = 1 → red. Combining these two steps, we generate a compositional
mapping, as illustrated in Figure 5(a). Any bijections that cannot be decomposed in this way
are holistic mappings, like Figure 5(b). Obviously, the compositional mappings can generalize
compositionally while the holistic ones cannot. However, finding a compositional mapping from all
possible bijections is a hard problem, as the number of compositional mappings is much smaller than
the holistic ones: assuming we have m = 3 different Gi and each with v = 3 possible values, there
are roughly 103 compositional mappings (m!(v!)m), and 1028 holistic mappings ((vm)!−m!(v!)m).

Another important characteristic of compositional mappings is the “distance-preserving” ability. In
other words, they will map two x with similar G to two similar z in the representation space, i.e., z
preserve the topological structure of G. We can use topological similarity (ρ, defined in Equation 2)
to quantify how compositional a mapping is. Usually, for all bijections, mappings with larger ρ are
more compositional.

To sum up the aforementioned four stages of the learned z, we list the conditions that z must satisfy
and their capabilities in Table 3.
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A.5 Relationship with disentangled representations

Readers might notice that our problem settings and the requirements for z mentioned in Hypothesis 1
are quite similar to those discussed in disentanglement representation learning [32]. Here we explain
the connections and differences between them.

We care more about downstream tasks. In disentanglement representation learning, people focus
more on a general property of the learned representation by assuming the existence of independent
semantic generating factors. Disentanglement is then considered a desired property of such represen-
tations. Works in this line try to formalize this property and believe this property is beneficial for
multiple downstream tasks. However, as the downstream task is not incorporated in such analysis,
it is hard to conclude whether specific factors are semantic or not (remember the split of O and G
highly depends on the task). On the other hand, this paper focuses more on the generalization ability
of the learned representations on specific downstream task(s). We directly optimize the loss of the
downstream task in the interaction phase, which we believe can regularize the representations more
efficiently.

We don’t strictly require a disentangled z. Although representations with properties like con-
sistency or restrictiveness mentioned in [68] could be beneficial for the downstream tasks, it seems
not necessary to have all of them. In other words, disentanglement is a sufficient but not necessary
requirement for a model to generalize well in downstream tasks. That is because the factorization of
G could be non-trivial (as nature is not simple). We believe that capturing the hidden structure of G
and GenY(·) using z and g(·) is more important than mapping an involved generating mechanism to
a disentangled system. Additionally, implicitly splitting O from G is rather crucial in our settings,
which is rarely discussed in the fields of disentanglement representation learning.

We mainly consider discrete factors. Inspired by how human language evolves, it is natural to
start from the discrete factors and representation due to the discreteness of human language. Our
experimental results also benefit a lot from the discreteness, e.g., using cross-entropy loss to amplify
the learning speed advantage, sampling pseudo labels to strengthen the inductive bias, using group
theory to formalize the compressibility and Kolmogorov complexity, etc. However, as nature might
not be purely discrete, incorporating the continuous latent space is crucial to enlarge the scope of our
study. We would leave this in our future work.

B Compositionality, Compressibility, Kolmogorov complexity, and number of
active bases

This appendix links several key concepts related to compositional mappings together, i.e., com-
pressibility, Kolmogorov complexity, and number of active bases. The analysis here provides good
intuition on why we might expect iterated learning to be helpful in comp-gen.

B.1 Higher compositionality, lower Kolmogorov complexity

We first complete the proof of Proposition 1.
Proposition 1 (Informal). For m, v ≥ 2, among all bijections, any compositional mapping has much
lower Kolmogorov complexity than a typical non-compositional mapping.

Proof. Recall the fact that any bijection from z to G can be represented by an element in the
symmetry group Svm . From the definition of the symmetry group, we know each element in Svm

can be represented by a permutation matrix of size vm. As there is only one 1 in each row and
column of a permutation matrix, any permutation matrix can be uniquely represented by a permuted
sequence of length vm. Specifically, assume we have a sequence of natural numbers {1, 2, ..., vm},
each permuted sequence Perm({1, 2, ..., vm}) represents a distinct permutation matrix, and hence
represents a distinct bijection from z to G. In other words, we can encode one bijection from z to G
using a sequence of length vm, i.e., Perm({1, 2, ..., vm}), and bound the corresponding Kolmogorov
complexity (in bits) as

K(bijection) ≤ vm · log2 vm = vm ·m · log2 v, (4)
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As an arbitrary bijection from z to G doesn’t have any extra information to improve the coding
efficiency, Equation (4) provides an upper bound of the minimal Kolmogorov complexity.

On the contrary, as each compositional mapping can be represented by an element in Sm
v ⋊ Sm, we

can encode the mappings more efficiently. Specifically, we need to first use m sequences with length
v, i.e., Perm({1, 2, ..., v}), to represent the assignment of “words” for each zi. After that, we need
one sequence of length m, i.e., Perm({1, 2, ...,m}) to encode the assignment between zi and Gj .
The corresponding Kolmogorov complexity is then bounded as

K(comp) ≤ v · log2 v +m · log2 m, (5)

Although this is only an upper bound, by a counting argument most such mappings must have a
complexity no less than, say, a constant multiple of that bound.

To compare the Kolmogorov complexity, we can define a ratio as γ ≜ K(bijection)
K(comp) . Obviously, when

m ≤ v, γ ≥ vm−1·m
2 , which is larger than 1 as long as m, v ≥ 2. When m > v, γ ≥ vm log2 v

2 log2 m , which
is also larger than 1 when m, v ≥ 2.

Actually, there might be some mappings that are not purely compositional or holistic. For example,
we can have a mapping with zi≤10 sharing the reused rules while other zi>10 doesn’t. Then this
type of mapping can be represented by an element in S10

v ⋊ S10 ⋊ Svm−10 . As a mapping in this
subset shares 10 common rules, its Kolmogorov complexity is between K(bijection) and K(comp).
Intuitively, for all bijections, smaller K(·) means higher compressibility and higher compositionality.

B.2 Regularize the Kolmogorov complexity using iterated learning

From the analysis in Appendix A.4 and B.1, we know that finding mappings with lower Kolmogorov
complexity is the key to generalizing well compositionally. From existing works in cognitive science,
we know iteratively introducing new agents to learn from old agents can impose the compress-
ibility pressure and hence make the dominant mapping more compact after several generations
[42]. Although iterated learning reliably prompts the emergence of compositional mapping in lab
experiments, directly applying it to deep learning is not trivial: as we are not sure whether the
preference for compositionality still exists for the neural agents. Hence in this subsection, we study
a simple overparameterized linear model on a 0/1 classification task to show that iterated learning
can indeed introduce a non-trivial regularizing effect. Combining with the fact that mappings with
lower Kolmogorov complexity are more likely to capture the ground truth generating mechanism
and hence generalize better [71], we can conclude that iterated learning is helpful for compositional
generalization problems.

Consider a general supervised learning problem, in which we want to learn a mapping f ∈ F : X→ Y
that could approximate the underlying relationship between random variables X and Y . As we usually
have a finite number of training samples and the space of all possible mappings is large, the model
could just remember all (x, y) pairs in the training set to achieve a perfect training performance.
To avoid this trivial solution, we usually expect the optimal f∗ to have specific properties, e.g.,
smoothness or Lipschitz continuousness, etc. Hence usually, we want to optimize a problem with a
corresponding regularization term:

f∗ ≜ argmin
f∈F

R(f) s.t.
1

N

∑
n

∥f(xn)− yn∥22 ≤ ϵ, (6)

where R : F → R is regularizing f and ϵ is the training loss tolerance. This regularization term is
usually the inner product of f on the functional space, i.e., R(f) = ∥f∥H, where H is a reproducing
kernel Hilbert space (RKHS) determined by some kernel function κ(·, ·). For example, if we consider
∀(x, y) ∈ [0, 1]2 and κ(x, y) = min(x, y), then ∥f∥H = ∥f ′∥[0,1]2 [64]. In other words, the
regularizer will penalize functions with higher first-order derivatives.

In order to make the analysis generalize to other properties of f , we define a linear differential
operator L as [Lf ] ≜

∫
X
u(x, ·)f(x) dx, where u(·, ·) is a kernel function. Then, the regularization

term is:

R(f) = ∥f∥H = ⟨f, f⟩H = ⟨Lf, Lf⟩X2 =

∫
X

∫
X

u(x, x†)f(x)f(x†) dxdx† (7)
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Substituting this definition back to Equation 6 and then applying the Karush-Kuhn-Tucker (KKT)
conditions, the closed-form solution for this optimization problem is (i.e., Proposition 1 in [53]):

f∗(x) = g⊤x (cI +G)−1Y, (8)

where c is a bounded constant, Y = [y1| . . . |yN ]⊤ is the stacked training labels. The matrix
G ∈ RN×N and its vector gx ∈ RN×1 is defined as:

G[j, k] ≜
1

N
g(xj , xk); gx[k] ≜

1

N
g(x, xk). (9)

The g(x,q) is the Green’s function [63] of this operator and is defined by:∫
X

u(x, x†)g(x,q) dx† = δ(x− q), (10)

where δ is the Dirac delta function. Following the definition of Green’s function, we know G is
positive definite and hence decompose it as:

G = V ⊤DV, (11)

where D = diag([d1, . . . , dN ]) is determined by its eigenvalues and V contains N corresponding
eigenvectors. Now, we can stack the model’s prediction for different input samples xn and get the
vector form solution of problem 6:

f∗ ≜ [f∗(x1)| · · · |f∗(xk)]
⊤ = G⊤(cI +G)−1Y = V ⊤D(cI +G)−1V Y (12)

With this solution, following the settings in [53], we can explain where the compressibility pressure
(the one that favors mappings with lower Kolmogorov complexity) comes from. Specifically, the
optimal model for the first generation is f∗0 = V ⊤D(c0I + G)−1V Y0. Then in the following
generations, the model in generation t will learn from the predictions of the model in the previous
generation. As the problem is identical (the only difference is the labels) for different generalizations,
we can have the following recursion formulas:

f∗t = V ⊤D(ctI +G)−1V Yt and Yt = f∗t−1. (13)

Solving this yields the expression of the labels in the t-th generation:

Yt = V ⊤At−1V Yt−1 = V ⊤

(
t−1∏
i=0

Ai

)
V Y0, (14)

where At ≜ D(ctI +D)−1 is a N ×N diagonal matrix. Substituting this back to Equation 12, we
finally obtain the following expression:

f∗
t (x) = g⊤x V

⊤D−1

(
t∏

i=0

Ai

)
V Y0 (15)

f∗t = GV ⊤D−1

(
t∏

i=0

Ai

)
V Y0

= V ⊤

(
t∏

i=0

Ai

)
V Y0. (16)

From this solution, the model’s prediction at t-th generation can be considered as a weighted
combination of transformed Y0. The matrix V will first map Y0 to a space determined by the Green’s
function. Different dimensions of this space are then rescaled by a diagonal matrix

∏t
i=0 Ai. After

that, the vector is transformed back to the origin space by multiplying V ⊤. Among these terms,∏t
i=0 Ai is the only one that depends on t. Recall the definition of At = D(ctI +D)−1, we can

conclude that
∏t

i=0 Ai is also a diagonal matrix where each entry has the form like
∏

t
dj

ct+dj
(here

dj is the j-th eigenvalue of G). As ct > 0,∀t, as stated in [53], all the diagonal entries will gradually
decrease when t grows. The dimensions with smaller

∏
t

dj

ct+dj
decrease faster, and vice versa. Recall
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the role played by this diagonal matrix, we can imagine that the number of active bases in V is
decreasing when t grows, which is a strong and unique inductive bias (i.e., compressibility pressure)
introduced by this recursive training fashion9.

Now, we can link these theoretical analyses to the Kolmogorov complexity and compressibility
pressure. The crux is the understanding of “active bases”. Consider a toy example where G =
[G1, G2], where each Gi has 4 possible values (there are N = 16 different objects). Then, to
memorize these 16 samples, the model needs 16 bases like “S 00 → blue circle”. However, for
compositional mappings, only 9 bases are enough10: because the model reuse some rules.

In summary, when t is small, there is no preference for compositional mappings because the number
of active bases is large enough to remember most of the training samples. As t increases, the model
then needs to be clever enough to reuse some bases, where the structure of the mapping emerges. If t
is too large, where the compressibility pressure is too strong, the model will degenerate into a very
naive solution, which is harmful for generalization (hence we need the interaction phase in iterated
learning, discussed later).

C Experiments on Controlled Vision dataset

C.1 Experimental Settings

Train split

G1

G2

Test split Others3dShapesdSprites MPI3D-Real

Figure 6: The toy vision datasets and a train/test split example. All images have size 64*64. Pixels in
dSprite are binary values while those in 3dShape and MPI3D contain 3 channels.

Table 5: Vision datasets considered in this paper. The numbers in the parentheses represent how many
different values of the attribute. The last column means how many different samples we select for
each G. Hence the number of samples in both training and test sets of these three datasets would be
9000, 8000, and 7200.

G1 G2 G3 G4 |G| O # per G
dSprites shape (3) scale (6) pos-x (10 out of 32) pos-y (10 out of 32) 1600 orientation (40) 5

3dShape floor hue (10) wall hue (10) object hue (10) object scale (8) 8000 object shape (4)
orientation (15) 1

MPI3D object color (6) object shape (6) horizontal x
(10 out of 40)

vertical y
(10 out of 40) 3600 size (2) camera (3)

background (3) 2

Data generating factors In this paper, we conduct experiments on three vision datasets, i.e.,
dSprites [52], 3dShapes [9], MPI3D-real [23], where the ground truth G are given. The summary and
examples of these datasets are provided in Table 5 and Figure 6.

Here we specify how to split the dataset and generate the downstream labels using 3dShapes as an
example. We denote the hue of the floor, wall, and object as G1, G2, and G3, respectively; each
has 10 possible values, linearly spaced in [0, 1]. The object scale, G4, has 8 possible values linearly
spaced in [0, 1]. The remaining two factors, object shape (4 possible values) and object orientation
(15 possible values), are treated as other factors and merged into O. Data augmentation methods such
as adding Gaussian noise, random flipping, and so on, are also merged into O. Under this setting, the
universe of G, i.e., G, has 8000 different values, which is further divided into Gtrain and Gtest. For

9The authors in [53] also prove that such a regularization cannot be achieved by other forms of regularizations.
10Specifically, we need one basis like “S → z1 z2”, four bases like “z0 i → some color”, and four bases like

“z1 j → some shape”. Please refer to Table 4.

22



the sys-gen problem, we assume Gtrain ∩ Gtest = ∅. One measure of the difficulty of the problem is
the split ratio, α = |Gtrain|/|G|; smaller α generally means a more challenging problem.

Data generating mechanisms For the training set, we first select G ∈ Gtrain, and then generate
multiple input signals using x = GenX(G,O), where O is uniformly random. The x in the test set is
generated in a similar way, but without including data augmentation in O. Labels for all pairs in the
dataset are generated by y = GenY(G, ϵ). The main downstream task we study here is regression:
GenY(G, ϵ) = a⊤G + ϵ, where a = [a1, ..., am]⊤ is a column vector and all ai are chosen from
[0, 1]11. These examples assume y is generated by a simple combination of different Gi, where
recovering the generating factors is necessary to generalize well compositionally.

Model and training settings The model structure for this section is illustrated in Figure 2. We
consider using a randomly initialized 4-layer CNN for dSprites and ReNet18 [31] for 3dShapes
and MPI3D. Unless otherwise specified, we consider a linear head g(z), and a typical Lds, i.e.,
cross-entropy loss for classification and mean square error loss for regression. The networks are
optimized using a standard SGD optimizer with a learning rate of 10−3 and a weight decay rate of
5 ∗ 10−4. Actually, we find the results are insensitive to these settings.

C.2 More Results

C.2.1 Some interesting observations
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Figure 7: Left to right: 1.) zoom in on the curves of training and test loss; 2.) demonstration of
what will happen to test loss when replacing the sampling by argmax in the imitation phase; 3.) how
the average predicting entropy, i.e., E[H(z̄l)], changes; 4.) histograms of predicting probabilities in
different generations. All panels come from experiments of SEM-IL on 3dShapes.

See the first panel in Figure 7, which demonstrates the training and testing loss when training a model
using SEM-IL. In the first generation, we see the training loss is always smaller than the test one.
The test loss then plateaus after some epochs, which matches our expectations. However, in the
following generations, the test loss would decrease faster than the training one at the beginning of the
interaction phase, which is quite counter-intuitive. We would explore why this happens and whether
it is a sign of increased topological similarity in the future.

Another observation is about the sampling mechanism applied in the imitation phase. Remember in
Algorithm 1, the pseudo labels used in the imitation phase are sampled from the teacher’s prediction
z̄l. Hence if the teacher is confident in some attributes, the generated labels would be consistent in
different epochs, and vice versa. From Figure 4, we provide the scatter plot of the correlation between
the teacher’s confidence and the student’s learning speed. Here we verify this hypothesis through an
ablation study. Specifically, we replace the sampling procedure with an argmax function, i.e., the
teacher always provides the label with the largest predicting probability regardless of its confidence.
As illustrated in the second panel in Figure 7, the test performance of the argmax-case is much worse
than the standard SEM-IL method.

The benefits introduced by sampling pseudo labels can also be interpreted as we are making self-
adapting τ for different input samples in SEM. In the origin SEM, we only have one τ to control
the average entropy of the backbone’s prediction (lower τ leads to peakier predicting distributions,
and vice versa). However, a model trained using SEM-IL equivalently has different τ for different x.

11We also tried a simple non-linear mapping from G to y, i.e., GenY(G, ϵ) = a1 ·G1+a2 ·G2+a3 ·G4G3+ϵ,
and a multi-task scenario, where a ∈ R|y|×m is a matrix. The resulting trends in these settings are quite similar.
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To understand this, we can compare the entropy of h1(x) and h1(x′), where the teacher is confident
in (x, g1 = 0) and less confident in (x′, g1 = 0). Then during imitation, the student will remember
(x, g1 = 0) much faster than (x′, g1 = 0) and hence assign z̄1 = 0 higher probability when the
input is x. On the contrary, for the input x′, as the student might receive different corresponding
pseudo labels during imitation, it would assign a lower probability for z̄1 = 0 given x′. As a result,
the entropy H(z̄1 | x) and H(z̄1 | x′) of the student model would be very different as the teacher
have different confidence when generating the pseudo labels, which is equivalent as automatically
selecting different τ for x and x′.

The last two panels in Figure 7 demonstrate how the entropy of the model’s prediction on G changes
in different generations. (Remember the output of the backbone after SEM, i.e., z = [z̄1, . . . , z̄m],
are m simplicial vectors with length v.) From the figures, we see the entropy gradually decreases as
the training goes on, which means the model is becoming more and more confident in its predictions
on average. However, the last panel shows that there are still many unconfident predictions even
after converging on the downstream task performance: we speculate that these factors contain little
information on G as they might have high entropy.

C.2.2 Influence of task difficulty

As the ground-truth generating factors are accessible for these vision datasets, we could explore how
the difficulty of the task, i.e., α, influence the performance gap among different methods. As shown
in Table 6, SEM-IL brings a significant enhancement when α is not too big nor too small. When α is
big, the test loss might be very small and there is no room to make considerable improvement. On
another extreme, if α is too small, some attributes might be never observed during training, which is
hard for the model to extract correct generating factors. Remember we expect to generalize to “red
circle” by knowing the concept of red and circle from other combinations: if there is only “blue” and
“box” in the training set, it is impractical for a model to learn such a concept (maybe the model can
extrapolate, but that is another topic). We speculate most real tasks are in a relatively small α regime,
as the generating factors and their possible values can be very large. Please note that as the train/test
split and GenY all depend on the random seeds, the variance of the numbers in these tables could be
large. However, we observe the SEM-IL consistently outperforms other methods under each task
generated by different random seeds.

Table 6: Relative improvement comparison for different α on three datasets. We report the average
and standard error of 4 different runs. ∆1 is calculated by SEMIL-Baseline

Baseline , while ∆2 is calculated by
SEMIL-Baseline

SEMIL . The test MSE for different settings are the numbers multiplying 10−3. Note that the
numbers of different datasets are not comparable, as the model structure and generating factors of
them are different. When α is too small, the model fails to converge on MPI3D, which means MPI3D
might be a more challenging dataset.

α 0.8 0.5 0.2 0.1 0.02

3dShapes

Baseline 3.778±0.792 7.902±2.000 28.01±11.75 57.87±9.852 355.5±136.0
NIL-only 3.866±0.733 7.536±1.966 33.18±15.16 56.46±12.54 330.5±183.1
SEM-only 2.531±0.742 5.15±0.415 21.41±5.274 55.48±15.76 292.7±148.0
SEM-IL 0.633±0.117 1.27±0.112 5.165±0.697 17.52±3.103 221.0±122.5

Relative ∆1 0.8324 0.8396 0.8156 0.6972 0.3783
Relative ∆2 4.968 5.236 4.423 2.303 0.6086

MPI3D

Baseline 45.42±10.97 61.95±17.80 125.9±29.30 234.0±34.94 Not Converge
NIL-only 43.38±14.03 57.34±17.35 110.8±36.06 203.3±73.62 Not Converge
SEM-only 42.91±10.05 57.69±18.34 116.5±38.50 204.1±72.68 Not Converge
SEM-IL 31.20±8.053 40.33±12.12 73.43±22.63 137.8±67.36 Not Converge

Relative ∆1 0.313 0.349 0.417 0.411 -
Relative ∆2 0.456 0.536 0.714 0.698 -

dSprites

Baseline 0.172±0.145 7.906±2.309 109.2±10.28 313.5±28.47 839.7±73.85
NIL-only 0.136±0.123 3.678±0.869 56.42±7.169 241.0±24.68 630.2±32.53
SEM-only 0.126±0.119 7.667±1.937 108.8±8.563 315.2±23.77 658.0±82.52
SEM-IL 0.085±0.042 2.487±0.874 40.11±9.726 213.1±38.11 596.8±41.94

Relative ∆1 0.506 0.685 0.633 0.320 0.289
Relative ∆2 1.023 2.179 1.722 0.471 0.407
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C.3 Other baselines from disentangled representation learning

Most related works consider sys-gen as an NLP or emergent language problem rather than a general
representation learning problem, so to the best of our knowledge, there are no specific advanced
baselines for this concrete problem. The most related works are some VAE-based methods in
disentanglement learning. In this part, we re-implement β-VAE and compare them with the baseline
method in our setting. Specifically, we first pre-train the encoder of VAE on the same training set
and then attach a task head for the downstream task to the “µ-part” of the encoder’s prediction (note
that the encoder will output “µ-part” and “σ-part” together). We observe that the VAE-based method
performs worse than the baseline method, even though they seem to recover some disentangled factors
when conducting latent traversal. This observation is consistent with the findings in [65] and [81],
where the authors claim that the disentangled representations are incapable of reliably generalizing to
new conceptual combinations. We also speculate that the challenging requirement of the comp-gen
problem, i.e., Gtrain ∩ Gtest = ∅, exacerbates this: there will not be enough variations in x to make
the VAE model capture the latent vectors precisely. However, as VAE is also an encoder-decoder
system, it is possible to combine SEM-IL with it, which is left for our future work.

D Experimental Settings and More Results on Molecular Graph Dataset

Train: Valid: Test:

(a). The standard scaffold split (b). A more challenging comp-gen split

Step2: calculate the similarity score for each x in 
training set using the fingerprint vector

Step3: order all training x by the score

Step4: prune 𝜂% training samples with highest scores

Step1:
Fingerprint

[0 1 0 1 0 0 0 1 0 1]

Figure 8: Left: an example of the scaffold split, the figures are copied from [79]. Right: the procedure
of a more challenging few-shot split used in Table 1.

In this part, we provide an overview of the molecular graph learning dataset we used in this paper.
Ogbg-molhiv and ogbg-molpcba [37] are molecular property prediction datasets proposed by
MoleculeNet and then adopted by open graph benchmark (OGB) project [79]. The molhiv dataset
contains roughly 40K samples, and the task is to predict whether a molecule is capable of inhibiting
HIV replication (i.e., a binary classification task). The molpcba dataset is more complex, as it
contains roughly 400K samples, and the target is to predict 128 different bioassays, which is a
multi-task binary classification task. Ogb-PCQM4Mv2 [36] is a large-scale molecular dataset that
contains roughly 4000K samples. The task is to predict the HOMO-LUMO gap (i.e., a regression
task), which is a quantum physical property that is hard to calculate in traditional methods. As the test
split is private, we treat the original validation split as the test split and only report the performance on
it in the paper. All of the aforementioned datasets use scaffold splitting, which separates structurally
different molecules into different subsets, as illustrated in the left panel in Figure 8. Under such a
split, some specific structures in the test set might never occur during training, which makes it a good
testbed for systematic generalization ability.

To make the task more challenging, which could simulate the scenario where supp[Ptrain(G)] ∩
supp[Ptest(G)] = ∅, we prune the training set following a procedure demonstrated in the right panel
of Figure 8. Specifically, we first calculate the fingerprint of each x in both training, validation, and
test sets using RDKit (please refer to Section 5.2 for more details). Similar to the settings used in
Table 2, the fingerprint of each x is defined as FP(x) ∈ {0, 1}k. In this vector, FPi(x) = 1 means the
molecule contain the i-th structure. Then, the score for each x in the training set is defined as how
many samples in the validation and test sets share the identical FP(x) with it. To prune the training
samples which are similar to the validation and test set, we delete η% samples with the highest scores
(for Table 1, η = 50). If we believe these 10 structures are part of G, the remaining training samples
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are more likely to have non-overlapping G compared with the test set, which makes the task a better
testbed for systematic generalization.

The implementation of the GCN/GIN backbone used in this work is taken from the open-source code
released by OGB [37]. We use the default setting of hyperparameters for all experiments (including
baseline, baseline+, and interaction phase of SEM-only and SEM-IL). For the backbone structure,
the depth of the GCN/GIN is 5, hidden embedding is 300, the pooling method is taking the mean,
etc. For the training on downstream tasks, we use the AdamW [49] optimizer with a learning rate
of 10−3, and use a cosine decay scheduler to stable the training. For the SEM layer, we search L
from [10, 200] and V from [5, 100] on the validation set. For the IL-related methods, we select the
imitation steps from {1,000; 5,000; 10,000; 50,000; 100,000}.
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