
A Implementation details

We utilize ResNet-18 backbone [1] as �1(·) pretrained on the train split of the corresponding dataset
with MOCOv2 [2]. Features are obtained after avgpool with dimension equal to 512. For the
ImageNet-1k dataset, we utilize ResNet-50 backbone as �1(·) pretrained with MOCOv2. Here,
features are obtained after avgpool with dimension equal to 2048. We use the same backbone and
pretraining strategy for baselines as well. To enforce orthogonality constraint on the weights of
the task encoder we apply Pytorch parametrizations [3]. When precomputing representations we
employ standard data preprocessing pipeline of the corresponding model and do not utilize any
augmentations during HUME’s training. In all experiments, we use the following hyperapameters:
number of iterations T = 1000, Adam optimizer [4] with step size ↵ = 0.001 and temperature of the
sparsemax activation function � = 0.1. We anneal temperature and step size by 10 after 100 and 200
iterations. We set regularization parameter ⌘ to value 10 in all experiments and we show ablation for
this hyperparameter in Appendix B. To solve inner optimization problem we run gradient descent
for 300 iterations with step size equal to 0.001. At each iteration we sample without replacement
10000 examples from the dataset to construct subset (Xtr, Xte), |Xtr| = 9000, |Xte| = 1000. Since
STL-10 dataset has less overall number of samples, we use 5000 (|Xtr| = 4500, |Xte| = 500) in
the inductive setting and 8000 (|Xtr| = 7200, |Xte| = 800) in the transductive setting. For the
ImageNet-1000 dataset we use inner and outer step size equal to 0.1, number of inner steps equal to
100, sample 20000 examples with |Xtr| = 14000, |Xte| = 6000 on each iteration. We do not anneal
temperature and step size for the ImageNet-1000 dataset and other hyperparameters remain the same.
To reduce the gradient variance, we average the final optimization objective (Eq. 7) over 20 random
subsets on each iteration. To stabilize training in early iterations, we clip gradient norm to 1 before
updating task encoder’s parameters. We use Nneigh = 500 in Algorithm G1 to construct reliable
samples for semi-supervised learning.

B Robustness to a regularization parameter

HUME incorporates entropy regularization of the empirical label distribution in the final optimization
objective (Eq. 7) to avoid trivial solutions, i.e., assigning all samples to a single class. To investigate
the effect of the corresponding hyperparameter ⌘, we run HUME from 100 random initializations
W1 for each ⌘ 2 {0, 1, 2, 5, 10} on the CIFAR-10 dataset. Figure B1 shows results with different
values of hyperaparameter ⌘. The results show that ⌘ is indeed a necessary component of HUME
objective, i.e., setting ⌘ = 0 leads to degenerate labelings since assigning all samples to a single class
is trivially invariant to any pair of representation spaces. Furthermore, the results show that HUME is
robust to different positive values of the parameter ⌘. We set ⌘ = 10 in all experiments.

Figure B1: Performance of HUME on the CIFAR-10 dataset with different values of the entropy regularization.
We use MOCOv2 self-supervised representations pretrained on the CIFAR-10 dataset and BiT large pretrained
model.
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C Ablation study on different self-supervised methods

In all experiments, we use MOCOv2 [2] self-supervised representations. Here, we evaluate HUME’s
performance with different self-supervised learning method. In particular, we utilize SimCLR [5]
and [6] to obtain representation space �1(·). Table C1 shows the results in the inductive setting
using DINO large pretrained model as the second representation space. The results show that HUME
instantiated with MOCO consistently outperforms HUME instantiated with SimCLR on all of the
datasets. This is expected result since MOCO representations are stronger also when assessed by a
supervised linear probe. Alternatively, utilizing BYOL shows consistent improvements over MOCO
representations. These results demonstrate that HUME can improve by employing stronger self-
supervised representations. Interestingly, even with SimCLR representations HUME still outperforms
unsupervised baselines pretrained with MOCOv2 in Table 2.

Table C1: Comparison of different self-supervised representations. We use DINOv2 large pretrained model.
Stronger self-supervised representations lead to better performance.

STL-10 CIFAR-10 CIFAR-100-20
Method ACC ARI ACC ARI ACC ARI
SimCLR Linear 85.3 71.2 87.1 74.4 70.4 49.7
MOCO Linear 88.9 77.7 89.5 79.0 72.5 52.6
BYOL Linear 92.1 83.6 90.7 81.0 77.2 59.3

HUME SimCLR 86.9 74.3 85.2 71.8 51.8 33.9
HUME MOCO 90.8 81.2 88.4 77.6 55.5 37.7
HUME BYOL 91.5 82.7 89.8 79.7 56.0 40.3

D Correlation plots on the STL-10 and CIFAR-100-20 datasets.

(a) (b)

Figure D1: Correlation plot between distance to ground truth human labeling and HUME’s objective on the
(a) STL-10 dataset and (b) CIFAR-100-20 dataset. HUME generates different labelings of the data to discover
underlying human labeling. For each labeling (data point on the plot), HUME evaluates generalization error
of linear classifiers in different representation spaces as its objective function. The value of ⇢ corresponds to
Pearson correlation coefficient and p is the p-value of the corresponding two-sided test. HUME ’s objective is
well correlated with a distance to human labeling. In particular, tasks with lower HUME’s objective tend to better
match ground truth labeling, i.e., ⇢ = 0.9, p = 7.1⇥10�37 on the STL10 dataset and ⇢ = 0.47, p = 5.9⇥10�7

on the CIFAR-100-20 dataset.
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The HUME’s objective is to search over the labelings of a dataset by minimizing a generalization
error. To show the correlation between HUME’s objective and the ground truth labeling, we plot
correlation between generalization error of the labeling measured by cross-validation accuracy with
respect to the found labeling and accuracy of the found labeling with respect to ground truth labeling.
In addition to the results on the CIFAR-10 dataset presented in the main paper, Figure D1 shows the
correlation plots on the STL-10 and CIFAR-100-20 datasets. The results demonstrate that HUME
achieves the lowest generalization error for tasks that almost perfectly correspond to the ground
truth labeling on the STL-10 dataset, allowing HUME to recover human labeling without external
supervision. On the CIFAR-100-20 dataset even the supervised linear model on top of MOCOv2
self-supervised representations does not attain low generalization error (72.5% accuracy in Table 1).
Consequently, HUME’s performance also reduces, thus this additionally suggests that employing
stronger representations will lead to better performance of HUME as also shown in Appendix C.
Nevertheless, Figure D1b shows fairly-positive correlation (⇢ = 0.47, p = 5.9 ⇥ 10�7) between
distance to ground truth human labeling and HUME’s objective, thus confirming the applicability
of HUME to more challenging setups when one of the representation spaces might be insufficiently
strong.

E Quality of the reliable samples produced by HUME

HUME can be used to produce reliable samples which can be further utilized with any semi-supervised
learning (SSL) method. To measure the quality of reliable samples, we use two different statistics of
the produced reliable samples: per class balance and per class accuracy. Per class balance measures
number of samples for each ground truth class, i.e.,

P
j2R[yj = k], where R is the set of indices of

produced reliable samples, yj is the ground truth label of sample j, k represents one of the ground
truth classes number and [·] corresponds to Iverson bracket. Per class accuracy measures the average
per class accuracy of the corresponding set of the reliable samples with respect to ground truth
labeling. We follow standard protocol for the evaluation of SSL learning methods [7] and consider 4,
100 samples per class on the STL-10 dataset and 1, 4, 25, 400 samples per class on the CIFAR-10
dataset. We provide results averaged across all classes in Table E1 and the corresponding standard
deviations across classes in Table E2. In addition to the provided statistics, Figure E1 presents
accuracies of the reliable samples on the STL-10 and CIFAR-100-20 datasets for wider range of
number of reliable samples per class. Overall, the results show that on the STL-10 and CIFAR-10
datasets HUME shows almost perfect balance and mean per class accuracy, i.e., up to 100 samples
per class on STL-10 and up to 400 samples per class on CIFAR-10, thus demonstrating that HUME
can produce reliable pseudo-labels for SSL methods.

Table E1: Mean per class balance and mean per class accuracy for the reliable samples produced by HUME
on the STL-10, CIFAR-10 and CIFAR-100 datasets. Mean is computed over the number of classes in the
corresponding dataset.

STL-10 CIFAR-10 CIFAR-100-20
Quantity 4 100 1 4 25 400 1 10 50 100
Mean Per Class Balance 4.0 100.0 1.0 4.0 25.0 400.0 0.6 6.3 26.3 52.6
Mean Per Class Accuracy 100.0 99.6 100.0 100.0 99.6 99.7 72.7 62.3 51.1 48.9

Table E2: Standard deviations of per class balance and per class accuracy for the reliable samples produced by
HUME on the STL-10, CIFAR-10 and CIFAR-100 datasets. Standard deviations are computed over the number
of classes in the corresponding dataset.

STL-10 CIFAR-10 CIFAR-100-20
Quantity 4 100 1 4 25 400 1 10 50 100
Mean Per Class Balance 0.0 1.4 0.0 0.0 0.5 1.3 0.6 5.2 23.6 45.6
Mean Per Class Accuracy 0.0 0.9 0.0 0.0 1.2 0.4 44.1 41.9 46.5 47.2
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Figure E1: Accuracy of the reliable samples on the (a) STL-10 dataset and (b) CIFAR-100-20 dataset.

F Ablation study on different aggregation strategies on the STL-10 and
CIFAR-100-20 datasets

We additionally study the effect of the proposed aggregation strategy on the STL-10 and CIFAR-
100-20 datasets in an inductive setting. We employ MOCOv2 self-supervised representations as
representation space �1(·) and show the results for different large pretrained models as representation
space �2(·). Figure F1 shows the results for the STL-10 and CIFAR-100-20 datasets, respectively.
We observe the similar behaviour to the results obtained in the main paper on the CIFAR-10 dataset.
Namely, the proposed aggregation strategy stabilizes the results and provides robust predictions. It is
worth noting that even using top-5 labelings in the majority vote is enough to produce stable results.
For weaker models such as BiT, aggregation strategy has more effect on the performance and the
optimal strategy is to aggregate around top-10 tasks. This is expected given the high correlation
between HUME’s objective and accuracy on ground truth labels since this strategy gives robust
performance and tasks are closer to human labeled tasks. Larger models such as DINO show high
robustness to the aggregation strategy. It is important to emphasize that in experiments we always
report average across all tasks and do not optimize for different aggregation strategies.

(a) (b)

Figure F1: Different aggregation strategies on the (a) STL-10 dataset and (b) CIFAR-100-20 dataset. We use
MOCOv2 self-supervised representations pretrained on the corresponding dataset and each line on the plot
corresponds to the type of the large pretrained model.
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G Algorithm for constructing reliable samples

We showed that HUME can be utilized to construct a set of reliable labeled examples to transform an
initial unsupervised learning problem to a semi-supervised problem. It is worth noting that standard
semi-supervised setting requires a balanced labeled set, i.e., equal number of labeled samples for
each class. For simplicity, we adapt the approach presented in SPICE [8] to produce a balanced set of
reliable samples. Namely, we sort all samples per class by (i) number of labelings in the majority
vote which predict the same class, and (ii) number of neighbours of the sample which have the same
class. Thus, we consider a sample reliable if both quantities are high. Finally, given the sorted order
we take the required number of samples to stand as a set of reliable samples. The proposed algorithm
is outlined in Algorithm G1.

Algorithm G1 Reliable samples construction
Input: Dataset D, number of classes K, number of samples per class Nk, number of neighbours

Nneigh, self-supervised representation space �1(·), trained labelings ⌧1, . . . , ⌧m
1: Compute majority vote: ⌧MAJ(x) = arg max

k=1,...,K

Pm
i=1 [⌧i(x) = k]

2: Count number of agreed labelings:
A⌧ (x) =

Pm
i=1 [⌧i(x) = ⌧MAJ(x)]

3: Find nearest neighbours in representation space �1:
N (x) Nneigh nearest neighbours for sample x 2 D

4: Count number of agreed nearest neighbours:
Ann(x) =

P
z2N (x) [⌧MAJ(z) = ⌧MAJ(x)]

5: Initialize set of reliable samples: R = ;
6: for k = 1 to K do
7: Take per class samples: Sk = {x 2 D|⌧MAJ(x) = k}
8: Sort Sk in descending order by lexicographic comparison of tuples (Ann(x),A⌧ (x))
9: Take top-Nk samples from the sorted Ŝk and update set of reliable samples:

R = R [ top-Nk(Ŝk)
10: end for
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