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A Proof of Worst-case Regret Bounds (Theorem 3) and Sub-UCB Property
(Theorem 2)

Before proving Theorem 3, we first state and prove a useful lemma that gives us an upper bound to
the regret, which is useful for subsequent minimax ratio analysis and asymptotic analysis. This regret
bound consists of two components, which correspond to arms with suboptimality gaps at most or
greater than a predetermined threshold ∆ respectively . The former is bounded by T∆, while the
latter is upper bounded by a finer Õ(

∑
a:∆a>∆

µ̇1

∆a
+K) term.

Lemma 8. For KL-MS, its regret is bounded by: for any ∆ ≥ 0,

Reg(T ) ≤ T∆+O

 ∑
a:∆a>∆

(
µ̇1 +∆a

∆a

)
ln

(
T∆2

a

µ̇1 +∆a
∨ e2

)

Proof. Applying Theorem 1 with c = 1
4 , we have:

Reg(T )

≤T∆+
∑

a:∆a>∆

∆a ln(Tkl(µa + c∆a, µ1 − c∆a) ∨ e2)

kl(µa + c∆a, µ1 − c∆a)

+ 560

 ∑
a:∆a>∆

(
µ̇1 +∆a

c4∆a

)
ln

( µ̇1 +∆a

∆2
a

∧ T∆2
a

µ̇1 +∆a

)
∨ e2


 (Theorem 1)

≤T∆+O

 ∑
a:∆a>∆

(
µ̇1 +∆a

∆a

)
ln

(
T∆2

a

µ̇1 +∆a
∨ e2

) , (Lemma 27 and Lemma 26)

here, the second inequality is because we choose T∆2
a

µ̇1+∆a
as the upper bound in the lower order term

then we use Lemma 26 to lower bound kl(µa + c∆a, µ1 − c∆a) ≳ ∆2
a

µ̇a+∆a
and Lemma 27 that

x 7→ ln(Tx∨e2)
x is monotonically decreasing when x ≥ 0. Also by 1-Lipshitzness of z 7→ z(1− z),

we have (µ1 − c∆a)(1− (µ1 − c∆a)) ≤ µ̇1 + c∆a and all terms except T∆ will be merged into the
O(·) term.

Proof of Theorem 3. Let ∆ =
√

µ̇1K lnK
T , from Lemma 8 we have

Reg(T ) ≤T∆+O

 ∑
a:∆a>∆

(
µ̇1 +∆a

∆a

)
ln

(
T∆2

a

µ̇1 +∆a
∨ e2

)
≤T∆+O

 ∑
a:∆a>∆

µ̇1

∆a
ln

(
T∆2

a

µ̇1
∨ e2

)+O

 ∑
a:∆a>∆

ln
(
(T∆a) ∨ e2

)
≤T∆+O

Kµ̇1

∆
ln

(
T∆2

µ̇1
∨ e2

)+O
(
K ln (T )

)
(Lemma 27)

≤O
(√

µ̇1KT lnK
)
+O

(
K ln (T )

)
,
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where in the second inequality, we split fraction µ̇1+∆a

∆a
into µ̇1

∆a
and 1, then bound each term

separately. The second-to-last inequality is due to the monotonicity of x 7→ ln (bx2∨e2)
x proven in

Lemma 27; The last inequality is by algebra.

Proof of Theorem 2. This is an immediate consequence of Lemma 8 with ∆ = 0, along with the
observations that µ̇1+∆a

∆a
≤ 2

∆a
, and T∆2

a

µ̇1+∆a
≤ T .

B Proof of Asymptotic Optimality (Theorem 4)

We establish asymptotic optimality of KL-MS by analyzing the ratio between the expected regret to
lnT and letting T → ∞.

Proof. Starting from Theorem 1 and letting ∆ = 0 and c = 1
ln lnT :

lim sup
T→∞

Reg(T )

ln(T )

≤ lim
T→∞

∑
a∈[K]:∆a>0

∆a ln(Tkl(µa + c∆a, µ1 − c∆a) ∨ e2)

lnTkl(µa + c∆a, µ1 − c∆a)

+ lim
T→∞

560

 ∑
a∈[K]:∆a>0

(
µ̇1 +∆a

c4 lnT∆a

)
ln

((
µ̇1 +∆a

∆2
a

)
∨ e2

) (Theorem 1)

≤ lim
T→∞

∑
a∈[K]:∆a>0

∆a ln(Tkl(µa + c∆a, µ1 − c∆a) ∨ e2)

kl(µa + c∆a, µ1 − c∆a) lnT

= lim
T→∞

∑
a∈[K]:∆a>0

∆a ln(Tkl(µa + c∆a, µ1 − c∆a) ∨ e2)

kl(µa, µ1) lnT
· kl(µa, µ1)

kl(µa + c∆a, µ1 − c∆a)

=
∑

a∈[K]:∆a>0

∆a

kl(µa, µ1)
, (By the continuity of kl(·, ·))

where the first inequality is because of the fact that ln

( µ̇1+∆a

c2∆2
a

∧ c2T
µ̇1+∆a

∆2
a

)
∨ e2

 ≤

1
c2 ln

(
µ̇1+∆a

∆2
a

∨ e2
)

due to Lemma 28, and, the second inequality is due to that when T → ∞,

c4 lnT = lnT
(ln lnT )4 → ∞.

C Full Proof of Theorem 1

C.1 A general lemma on the expected arm pulls and its implication to Theorem 1

We first present a general lemma that bounds the number of pulls to arm a by KL-MS; due to its
technical nature, we defer its proof to Section C.2 and focus on its implication to Theorem 1 in this
section.

Lemma 9 (Lemma 5 restated). For any suboptimal arm a, let ε1, ε2 > 0 be such that ε1 + ε2 < ∆a.
Then its expected number of pulls is bounded as:

E
[
NT,a

]
≤1 +

ln
(
Tkl(µa + ε1, µ1 − ε2) ∨ e2

)
kl(µa + ε1, µ1 − ε2)

+
1

kl(µa + ε1, µ1 − ε2)
+

1

kl(µa + ε1, µa)
(8)

+ 6H ln

((
T

H
∧H

)
∨ e2

)
+

4

kl(µ1 − ε2, µ1)
, (9)

where H := 1
(1−µ1+ε2)(µ1−ε2)h2(µ1,ε2)

and h(µ1, ε2) := ln
(

(1−µ1+ε2)µ1

(1−µ1)(µ1−ε2)

)
.
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We now use Lemma 9 to conclude Theorem 1.

Proof of Theorem 1. Fix any c ∈ (0, 1
4 ]. Let ε1 = ε2 = c∆a; note that by the choice of c, ε1 + ε2 <

∆a. From Lemma 9, E
[
NT,a

]
is bounded by Eq. (9). We now plug in the value of ε1, ε2, and further

upper bound the third to the sixth terms of the right hand side of Eq. (9):

•
1

kl(µa + ε1, µ1 − ε2)
≤ 4(µ1 − ε2)(1− µ1 + ε2) + 4(∆a − ε1 − ε2)

(∆a − ε1 − ε2)2
≤ 4

(1− 2c)2
· µ̇1 +∆a

∆2
a

•
1

kl(µa + ε1, µa)
≤ 4µ̇a + 4ε1

ε21
≤ 6

c2
· µ̇1 +∆a

∆2
a

•
4

kl(µ1 − ε2, µ1)
≤ 16µ̇1 + 16ε2

ε22
≤ 16

c2
· µ̇1 +∆a

∆2
a

• By Lemma 22, H ≤ 2µ̇1+2ε2
ε22

≤ 2
c2 · µ̇1+∆a

∆2
a

, and by Lemma 27, the function H 7→

6H ln
(
( T
H ∧H) ∨ e2

)
is monotonically increasing, we have that

6H ln

(
(
T

H
∧H) ∨ e2

)
≤12

c2
·
(
µ̇1 +∆a

c2∆2
a

)
ln

( µ̇1 +∆a

c2∆2
a

∧ c2T∆2
a

µ̇1 +∆a

)
∨ e2


Combining all the above bounds and Eq. (9), KL-MS satisfies that, for any arm a, for any c ∈ (0, 1

4 ]:

E
[
NT,a

]
≤ ln(Tkl(µa + c∆a, µ1 − c∆a) ∨ e2)

kl(µa + c∆a, µ1 − c∆a)

+

(
34

c2
+

4

(1− 2c)2

)(
µ̇1 +∆a

c2∆2
a

)
ln

( µ̇1 +∆a

c2∆2
a

∧ c2T∆2
a

µ̇1 +∆a

)
∨ e2

 (10)

For any ∆ ≥ 0, we now bound the pseudo-regret of KL-MS as follows:
Reg(T )

=
∑

a:∆a>0

∆aE
[
NT,a

]
=

∑
a:∆a∈(0,∆]

∆aE
[
NT,a

]
+

∑
a:∆a>∆

∆aE
[
NT,a

]
≤∆T +

∑
a:∆a>∆

∆a
ln(Tkl(µa + c∆a, µ1 − c∆a) ∨ e2)

kl(µa + c∆a, µ1 − c∆a)

+

(
34

c2
+

4

(1− 2c)2

) ∑
a:∆a>∆

(
µ̇1 +∆a

c2∆a

)
ln

( µ̇1 +∆a

c2∆2
a

∧ c2T∆2
a

µ̇1 +∆a

)
∨ e2

 ,

where the last inequality is from Eq. (10). Then we pick c = 1
4 and conclude the proof of the

theorem.

C.2 Proof of Lemma 9: arm pull count decomposition and additional notations

In this subsection, we prove Lemma 9. We first recall the following set of useful notations defined in
Section 5:

Recall that u = ⌈ ln(Tkl(µa+ε1,µ1−ε2)∨e2)
kl(µa+ε1,µ1−ε2)

⌉, and we have defined the following events

At := {It = a}
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Bt :=
{
Nt,a < u

}
Ct :=

{
µ̂t,max ≥ µ1 − ε2

}
Dt :=

{
µ̂t,a ≤ µa + ε1

}
A useful decomposition of the expected number of pulls to arm a. With the notations above,
we bound the expected number of pulling any suboptimal a by decomposing the arm pull indicator
1 {It = a} according to events Bt−1, C

c
t−1 and Dt−1 in a cascading manner:

E[NT,a] = E

 T∑
t=1

1 {It = a}

 (11)

= 1 + E

 T∑
t=K+1

1 {At}

 (Definition of Algorithm 1)

= 1 + E

 T∑
t=K+1

1 {At, Bt−1}

+ E

 T∑
t=K+1

1
{
At, B

c
t−1

} (12)

≤ 1 + (u− 1) + E

 T∑
t=K+1

1
{
At, B

c
t−1

} (Lemma 18)

= u+ E

 T∑
t=K+1

1
{
At, B

c
t−1, Ct−1, Dt−1

}
︸ ︷︷ ︸

F1

(13)

+ E

 T∑
t=K+1

1
{
At, B

c
t−1, Ct−1, D

c
t−1

}
︸ ︷︷ ︸

F2

(14)

+ E

 T∑
t=K+1

1
{
At, B

c
t−1, C

c
t−1

}
︸ ︷︷ ︸

F3

(15)

Given the above decomposition, the lemma is now an immediate consequence of the definition
of u, Lemmas 10, 11 and 12 (that bounds F1, F2, F3 respectively), which we state and prove in
Appendix D.

D Bounding the number of arm pulls in each case

D.1 F1

In this section we bound F1. This is the case that µ̂t,a is small and µ̂t,max is large, so that
kl(µ̂t,a, µ̂t,max) do not significantly underestimate kl(µa, µ1), which will imply that suboptimal
arm a will be only pulled a small number of times due to the arm selection rule (Eq. (3)). Note that u
is set carefully so that F1 is bounded just enough to be lower than the lnT

kl(µa,µ1)
Bernoulli asymptotic

lower bound.

Lemma 10.

F1 ≤ 1

kl(µa + ε1, µ1 − ε2)

Proof. Recall the notations that At = {It = a}, Bc
t−1 =

{
Nt−1,a ≥ u

}
, Ct−1 ={

µ̂t−1,max ≥ µ1 − ε2
}

, Dt−1 =
{
µ̂t−1,a ≤ µa + ε1

}
. We have:
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F1 =E

 T∑
t=K+1

1
{
At, B

c
t−1, Ct−1, Dt−1

} (16)

=

T∑
t=K+1

E
[
E
[
1
{
At, B

c
t−1, Ct−1, Dt−1

}
| Ht−1

]]
(Law of total expectation)

=

T∑
t=K+1

E
[
1
{
Bc

t−1, Ct−1, Dt−1

}
E
[
1 {At} | Ht−1

]]
(Bt−1, Ct−1, Dt−1 are Ht−1-measurable)

≤
T∑

t=K+1

E
[
1
{
Bc

t−1, Ct−1, Dt−1

}
exp(−Nt−1,akl(µ̂t−1,a, µ̂t−1,max))

]
(By Lemma 23)

≤
T∑

t=K+1

E
[
1
{
Bc

t−1

}
exp(−u · kl(µa + ε1, µ1 − ε2))

]
(Based on Bc

t−1, Ct−1 and Dt−1, there is Nt−1,a ≥ u and kl
(
µ̂t−1,a, µ̂t−1,max

)
≥ kl (µa + ε1, µ1 − ε2))

≤T · exp(−u · kl(µa + ε1, µ1 − ε2)) (1 {·} ≤ 1)

≤T · 1

Tkl(µa + ε1, µ1 − ε2)
(Recall definition of u)

=
1

kl(µa + ε1, µ1 − ε2)

D.2 F2

In this section we upper bound F2. This is the case when the suboptimal arm a’s mean reward
is overestimated by at least ε2. Intuitively this should not happen too many times, due to the
concentration between the empirical mean reward and the population mean reward of arm a.
Lemma 11.

F2 ≤ 1

kl(µa + ε1, µa)

Proof. Recall the notations that At = {It = a}, Bc
t−1 =

{
Nt−1,a ≥ u

}
, Ct−1 ={

µ̂t−1,max ≥ µ1 − ε2
}

, Dc
t−1 =

{
µ̂t−1,a > µa + ε1

}
. We have:

F2 =E

 T∑
t=K+1

1
{
At, B

c
t−1, Ct−1, D

c
t−1

} (17)

≤E

 ∞∑
k=2

1
{
Bc

τa(k)−1, Cτa(k)−1, D
c
τa(k)−1

}
(implies that only when t = τa(k) for some k ≥ 2 the inner indicator is non-zero)

≤E

 ∞∑
k=2

1
{
Dc

τa(k)−1

} (Drop unnecessary conditions)

=E

 ∞∑
k=2

1
{
Dc

τa(k−1)

} (µ̂τa(k)−1,a = µ̂τa(k−1),a)

=E

 ∞∑
k=1

1
{
Dc

τa(k)

} (shift time index t)
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≤
∞∑
k=1

exp(−k · kl(µa + ε1, µa)) (By Lemma 25)

≤ exp(−kl(µa + ε1, µa))

1− exp(−kl(µa + ε, µa))
(Geometric sum)

≤ 1

kl(µa + ε1, µa)
(Applying inequality ex ≥ 1 + x when x ≥ 0)

(18)

Note that in the first inequality, we use the observation that for every t ≥ K+1 such that At happens,
there exists a unique k ≥ 2 such that t = τa(k). The third inequality is due to the Chernoff’s
inequality (Lemma 25) on the random variable µ̂τa(k),a − µa. Given any τa(k), µ̂τa(k),a is the
running average reward of the first k’s pulling of arm a. In each pulling of arm a the reward follows a
bounded distribution νa with mean µa independently.

D.3 F3

In this section we upper bound F3, which counts the expected number of times steps when arm
a is pulled while µ̂t−1,max underestimates µ1 by at least ε2. Our main result of this section is the
following lemma:

Lemma 12.

F3 ≤ 6H ln

((
T

H
∧H

)
∨ e2

)
+

4

kl(µ1 − ε2, µ1)
,

where we recall that H = 1
(1−µ1+ε2)(µ1−ε2)h2(µ1,ε2)

.

D.3.1 Roadmap of analysis

Before proving the lemma, we sketch the key ideas underlying our proof. First, note that by
the KL-MS sampling rule (Eq. (3)), at any time step t, pt,1 should not be too small (pt,1 =
exp(−Nt−1,1kl(µ̂t−1,1, µ̂t−1,max))/Mt), and as a result, the conditional probability of pulling arm a,
pt,a should be not much higher than that of arm 1, pt,1; using this along with a “probability transfer”
argument similar to [4, 11] (see Lemma 23 for a formal statement) tailored to KL-MS sampling rule,
we have:

F3 ≤ E

 T∑
t=K+1

1
{
At, C

c
t−1

} ≤E

 T∑
t=K+1

1
{
It = 1, Cc

t−1

}
exp(Nt−1,1 · kl(µ̂t−1,1, µ1 − ε2)


≤E

 T∑
t=K+1

1
{
It = 1, µ̂t−1,1 ≤ µ1 − ε2

}
exp(Nt−1,1 · kl(µ̂t−1,1, µ1 − ε2)


By filtering the time steps when It = 1, the above can be upper bounded by an expectation over the
outcomes in arm 1:

∞∑
k=1

E
[
1
{
µ̂(k),1 ≤ µ1 − ε2

}
exp(k · kl(µ̂(k),1, µ1 − ε2)

]
Intuitively, this is well-controlled, as by Chernoff bound (Lemma 25), the probability that
1
{
µ̂(k),1 ≤ µ1 − ε2

}
is nonzero is exponentially small in k; therefore, the expectation of

1
{
µ̂(k),1 ≤ µ1 − ε2

}
exp(k · kl(µ̂(k),1, µ1 − ε2) can be controlled. After a careful calculation

that utilizes a double-integral argument (that significantly simplifies similar arguments in [11, 24]),
we can show that it is at most

2H

⌊H⌋∑
k=1

1

k
+

1

kl(µ1 − ε2, µ1)
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Summing this over all k, we can upper bound F3 by

F3 ≤ O

(
H ln

(
H ∨ e2

)
+

1

kl(µ1 − ε2, µ1)

)
. (19)

A slight generalization of the above argument yields the following useful lemma which further
focuses on bounding the expected number of time steps when the number of pulls of arm 1 is in
interval (m,n]; we defer its proof to Section D.3.5:

Lemma 13. Recall the notations At = {It = a}, Ct−1 =
{
µ̂t−1,max ≥ µ1 − ε2

}
. Define event

St =
{
Nt,1 > m

}
and Tt =

{
Nt,1 ≤ n

}
where m ≤ n and m,n ∈ N ∪ {∞}. Then we have the

following inequality:

E

 T∑
t=K+1

1
{
At, C

c
t−1, St−1, Tt−1

} ≤
n∑

k=m+1

(
2H

k
+ 1

)
exp(−kkl(µ1 − ε2, µ1))

Naively, the bound of F3 given by Eq. (19), when combined with previous bounds on F1, F2, suffice
to bound E[NT,a] by

ln(Tkl(µa + c∆a, µ1 − c∆a) ∨ e2)

kl(µa + c∆a, µ1 − c∆a)
+O

((
µ̇1 +∆a

c2∆2
a

)
ln

(
µ̇1 +∆a

c2∆2
a

∨ e2
))

which establishes KL-MS’s asymptotic optimality in the Bernoulli setting and a O(
√
µ̇1KT lnT +

K lnT ) regret bound. To show a refined O(
√
µ̇1KT lnK +K lnT ) regret bound, we prove another

bound of F3:

F3 ≤ O

(
H ln

(
T

H
∨ e2

)
+

1

kl(µ1 − ε2, µ1)

)
. (20)

This bound is sometimes stronger than bound (19), since its logarithmic factor depends on T
H , which

can be substantially smaller than H . This alternative bound is crucial to achieve to achieve the
√
lnK

minimax ratio; see Appendix A and the proof of Theorem 3 therein for details.

To this end, we decompose F3 according to whether the number of times arm 1 get pulled exceeds
threshold H:

F3 ≤E

 T∑
t=K+1

1
{
At, C

c
t−1

}
=E

 T∑
t=K+1

1
{
At, C

c
t−1, Et−1

}
︸ ︷︷ ︸

=:F31

+E

 T∑
t=K+1

1
{
At, C

c
t−1, E

c
t−1

}
︸ ︷︷ ︸

=:F32

, (21)

where Et :=
{
Nt,1 ≤ H

}
.

Intuitively, F32 is small as when number of time steps arm 1 is pulled is large, µ̂t−1,1 ≤ µ1 − ε2
is unlikely to happen. Indeed, using Lemma 13 with m = ⌊H⌋, n = ∞, we immediately have
F32 ≤ O( 1

kl(µ1−ε2,µ1)
).

It remains to bound F31. These terms are concerned with the time steps when arm 1 is pulled at most
⌊H⌋ times. Inspired by [33, 23], we introduce an event E :=

{
∀k ∈

[
1, ⌊H⌋

]
, µ̂(k),1 ∈ Lk,1

}
(see

the definition of Lk,1 in Eq. (24)) and use it to induce a split:

F31 ≤E

 T∑
t=K+1

1
{
At, C

c
t−1, Et−1, E

}+ E

 T∑
t=K+1

1 {Ec}
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≤E

 T∑
t=K+1

1
{
At, C

c
t−1, Et−1, µ̂t−1,1 ≥ µ1 − αNt−1,1

}+ E

 T∑
t=K+1

1 {Ec}


A probability transferring argument on the first term shows that it is bounded by O

(
H ln

(
T
H ∨ e2

))
;

the second term is at most TP(Ec), which in turn is at most H using a peeling device and maximal
Chernoff inequality (Lemma 24). Combining these two, we prove Eq. (20), which concludes the
proof of Lemma 12.

D.3.2 Proof of Lemma 12

Additional notations. In the proof of Lemma 12, we will use the following notations: we denote
ramdom variable Xk := µ1 − µ̂(k),1, and denote its probability density function by pXk

(x). We also
define function fk(x) := exp(k · kl(µ1 − x, µ1 − ε2)).

Proof of Lemma 12. Recall that we introduce Et :=
{
Nt,1 ≤ H

}
; and according to Et−1 we obtain

the decomposition Eq. (21) above that F3 ≤ F31 + F32.

As we will prove in Lemmas 14 and 15, F31 and F32 are bounded by 6H ln

((
T
H ∧H

)
∨ e2

)
+

1
kl(µ1−ε2,µ1)

and 3
kl(µ1−ε2,µ1)

, respectively. The lemma follows from combining these two bounds by
algebra.

D.3.3 F31

Lemma 14.

F31 ≤ 6H ln

((
T

H
∧H

)
∨ e2

)
+

1

kl(µ1 − ε2, µ1)

Proof. We consider three cases.

Case 1: H < 1. In this case, Et cannot happen for t ≥ K +1 since we have pulled each arm once in
the first K rounds and NK,a for any arm should be at least 1. Therefore

F31 = 0 ≤ 6H ln

((
T

H
∧H

)
∨ e2

)
+

1

kl(µ1 − ε2, µ1)

Case 2: H > T
e . According to Lemma 22, we can upper bound F31 by

F31 ≤T < 4H

≤6H ln

((
T

H
∧H

)
∨ e2

)
+

1

kl(µ1 − ε2, µ1)

Case 3: 1 ≤ H ≤ T
e . It suffices to prove the following two inequalities:

F31 ≤ 6H ln

(
T

H
∨ e2

)
+

1

kl(µ1 − ε2, µ1)
(22)

F31 ≤ 6H ln(H ∨ e2) +
1

kl(µ1 − ε2, µ1)
(23)

Case 3 – Proof of Eq. (22). To show Eq. (22), we first set up some useful notations. Recall from
Section 2 that we denote τ1(s) = min{t ≥ 1 : Nt,1 = s} and µ̂(s),1 := µ̂τ1(s),1. For s ∈ N, we first
define interval Ls,1 as:

Ls,1 :=

{
µ ∈ [0, 1] : kl(µ, µ1) ≤

2 ln(T/s)

s
or µ ≥ µ1

}
. (24)
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For notational convenience, we also define αs = µ1 − inf Ls,1 and therefore Ls,1 = [µ1 − αs, 1].

Define E as
{
∀k ∈

[
1, ⌊H⌋

]
, µ̂(k),1 ∈ Lk,1

}
. We denote event Ek :=

{
µ̂(k),1 ∈ Lk,1

}
; in this

notation, E =
⋂⌊H⌋

k=1 Ek, that is, E happens iff all Ek holds simultaneously for all k less or equal to H .
Note that Lemma 24 implies that P(Ec) ≤ 2H

T .

Therefore,

F31 ≤E

 T∑
t=K+1

1
{
At, C

c
t−1, Et−1, E

}+ E

 T∑
t=K+1

1 {Ec}


≤E

 T∑
t=K+1

1
{
At, C

c
t−1, Et−1, ENt−1,1

}+ TP (Ec)

≤E

 T∑
t=K+1

1
{
At, C

c
t−1, Et−1, ENt−1,1

}+ 2H, (25)

where in the second inequality, we use the observation that if E happens and Nt−1,1 ≤ H , ENt−1,1

also happens; in the third inequality, we recall that P(Ec) ≤ 2H
T .

We continue upper bounding Eq. (25). For the first term in Eq. (25), we use a “probability transfer”
argument (Lemma 23) to bound the probability of pulling the suboptimal arm by the probability of
pulling optimal times an inflation term.

E

 T∑
t=K+1

1
{
At, C

c
t−1, Et−1, ENt−1,1

} (26)

=E

 T∑
t=K+1

1
{
Cc

t−1, ENt−1,1
, Et−1

}
· E
[
1 {At} | Ht−1

] (Law of total expectation)

≤E

 T∑
t=K+1

1
{
Cc

t−1, ENt−1,1
, Et−1

}
· exp(Nt−1,1 · kl(µ̂t−1,1, µ̂t−1,max))E

[
1 {It = 1} | Ht−1

]
(By Lemma 23)

=E

 T∑
t=K+1

1
{
It = 1, Cc

t−1, ENt−1,1
, Et−1

}
· exp(Nt−1,1 · kl(µ̂t−1,1, µ̂t−1,max))


(Law of total expectation)

Then we make a series of manipulations to reduce the above to bounding the expectation of some
function of the random observations drawn from the optimal arm. First, note that for the summation
inside the expectation above, each nonzero term corresponds to a time step t such that t = τ1(k) for
some unique k ≥ 2, therefore,

≤ E

 ∞∑
k=2

1
{
Cc

τ1(k)−1, ENτ1(k)−1,1
, Eτ1(k)−1

}
· exp(Nτ1(k)−1,1 · kl(µ̂τ1(k)−1,1, µ̂τ1(k)−1,max))


(27)

≤ E

 ∞∑
k=2

1
{
Cc

τ1(k)−1, ENτ1(k)−1,1
, Eτ1(k)−1

}
· exp(Nτ1(k)−1,1 · kl(µ̂τ1(k)−1,1, µ1 − ε2))


(when the condition Cc

τ1(k)−1 holds, µ̂τ1(k)−1,1 ≤ µ̂τ1(k)−1,max < µ1 − ε2)
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≤ E

 ∞∑
k=2

1
{
ENτ1(k)−1,1

, Eτ1(k)−1

}
· exp(Nτ1(k)−1,1 · kl(µ̂τ1(k)−1,1, µ1 − ε2))


(Dropping Cc

τ1(k)−1)

= E

 ∞∑
k=2

1 {Ek−1, k − 1 ≤ H} exp((k − 1) · kl(µ̂(k−1),1, µ1 − ε2))


(Nτ1(k)−1 = k − 1 and µ̂τ1(k)−1,1 = µ̂τ(k−1),1)

= E

 ∞∑
k=1

1 {Ek, k ≤ H} exp(k · kl(µ̂(k),1, µ1 − ε2))

 (shift index k by 1)

= E

⌊H⌋∑
k=1

1
{
ε2 ≤ µ1 − µ̂(k),1 ≤ αk

}
· exp(k · kl(µ̂(k),1, µ1 − ε2))

+

∞∑
k=⌊H⌋+1

0

(Under the conditions Ek, Eτ1(k+1)−1, when k ≥ ⌊H⌋+ 1, Eτ1(k+1)−1 is always false)

=

⌊H⌋∑
k=1

E
[
1 {ε2 ≤ Xk ≤ αk} · fk(Xk)

]
(Recall Xk = µ1 − µ̂(k),1)

(28)

Here the Eq. (28) is the sum of expectation of the function fk(Xk) over a bounded range
{ε2 ≤ Xk ≤ αk} from k = 1 to ⌊H⌋. Continuing Eq. (28),

E

 T∑
t=K+1

1
{
At, C

c
t−1, Et−1, ENt−1,1

} (29)

≤
⌊H⌋∑
k=1

E[fk(Xk)1[{ε2 ≤ Xk ≤ αk}] (30)

=

⌊H⌋∑
k=1

∫ αk

ε2

fk(x)pXk
(x) dx (pXk

(·) is the p.d.f. of Xk)

=

⌊H⌋∑
k=1

∫ αk

ε2

(
fk(ε2) +

∫ x

ε2

f ′
k(y) dy)

)
pXk

(x) dx (fk(x) = fk(ε2) +
∫ x

ε2
f ′
k(y) dy)

=

⌊H⌋∑
k=1

∫ αk

ε2

∫ x

ε2

f ′
k(y)pXk

(x) dy dx︸ ︷︷ ︸
A

+

⌊H⌋∑
k=1

∫ αk

ε2

pXk
(x) dx︸ ︷︷ ︸

B

(31)

We denote the first term in Eq. (31) as A and the second one as B. Next we are going to handle A
and B separately. Starting from the easier one,

B =

⌊H⌋∑
k=1

∫ αk

ε2

pXk
(x) dx (32)

≤
⌊H⌋∑
k=1

P(Xk ≥ ε2) (33)

=

⌊H⌋∑
k=1

P(µ̂(k),1 ≤ µ1 − ε2) (34)
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≤
⌊H⌋∑
k=1

exp(−k · kl(µ1 − ε2, µ1)) (Applying Lemma 25)

≤
∞∑
k=1

exp
(
−k · kl(µ1 − ε2, µ1)

)
(35)

≤
exp

(
−kl(µ1 − ε2, µ1)

)
1− exp

(
−kl(µ1 − ε2, µ1)

) (Geometric sum)

=
1

exp
(
kl(µ1 − ε2, µ1)

)
− 1

(36)

≤ 1

kl(µ1 − ε2, µ1)
(ex ≥ x+ 1 when x ≥ 0)

(37)

On the other hand,

A =

⌊H⌋∑
k=1

∫ αk

ε2

∫ x

ε2

f ′
k(y)pXk

(x) dy dx (38)

=

⌊H⌋∑
k=1

∫ αk

ε2

∫ αk

y

f ′
k(y)pXk

(x) dxdy (Switching the order of integral)

=

⌊H⌋∑
k=1

∫ αk

ε2

k
dkl(µ1 − y, µ1 − ε2)

dy
fk(y)P(y ≤ Xk ≤ αk) dy (Calculate inner integral)

≤
⌊H⌋∑
k=1

∫ αk

ε2

k
dkl(µ1 − y, µ1 − ε2)

dy
fk(y) exp (−k · kl(µ1 − y, µ1)) dy (Apply Lemma 25)

≤
⌊H⌋∑
k=1

∫ αk

ε2

k
dkl(µ1 − y, µ1 − ε2)

dy
dy (fk(y) exp (−k · kl(µ1 − y, µ1) ≤ 1 when y ∈ [ε2, αk])

=

⌊H⌋∑
k=1

kkl(µ1 − αk, µ1 − ε2) (Fundamental Theorem of Calculus)

≤
⌊H⌋∑
k=1

2 ln
T

k
(Recall definition of αk)

≤2⌊H⌋ lnT − 2

∫ ⌊H⌋

1

ln k dk (Integral inequality Lemma 20)

=2⌊H⌋ lnT − 2(k ln k − k)|⌊H⌋
1 (the anti-derivative of lnx is x lnx− x)

=2⌊H⌋ lnT − 2⌊H⌋ ln
(
⌊H⌋

)
+ 2⌊H⌋ (39)

=2⌊H⌋ ln
(

T

⌊H⌋

)
+ 2⌊H⌋ (40)

≤2H ln

(
T

H
∨ e2

)
+ 2H (x ln T

x is monotonically increasing when x ∈ (0, T
e ))

(41)

The fist inequality is due to the Lemma 25. In the second inequality, we use the fact that when
y ∈ [ε2, αk], fk(y) exp (−k · kl(µ1 − y, µ1)) ≤ 1. This is because

fk(y) exp (−k · kl(µ1 − y, µ1)) = exp(k · (kl(µ1 − y, µ1 − ε2)− kl(µ1 − y, µ1))) ≤ 1
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In the third one we use the definition of αk to bound kl(µa − αk, µ1 − ε2) by ln
(

T
k

)
. In the fourth

inequality, we apply integral inequality Lemma 20 by letting f(x) := ln(x), a = 2 and b = ⌊H⌋. For
the last inequality, we use the fact that x 7→ x ln

(
T
x

)
is monotonically increasing when x ∈ (0, T

e ).

We conclude that F31 is bounded by
F31 ≤A+B + 2H (42)

≤2H ln

(
T

H
∨ e2

)
+ 2H +

1

kl(µ1 − ε2, µ1)
+ 2H (43)

≤6H ln

(
T

H
∨ e2

)
+

1

kl(µ1 − ε2, µ1)
(44)

Case 3 – Proof of Eq. (23). Applying Lemma 13 by letting m = 0 and n = ⌊H⌋, we have that

F31 =E

 T∑
t=K+1

1
{
At, C

c
t−1, Et−1

} (45)

≤
⌊H⌋∑
k=1

2 exp(−kkl(µ1 − ε2, µ1))

k(µ1 − ε2)(1− µ1 + ε2)h2(µ1, ε2)
+

⌊H⌋∑
k=1

exp(−kkl(µ1 − ε2, µ1)) (46)

≤2H

⌊H⌋∑
k=1

1

k
+

1

kl(µ1 − ε2, µ1)
(47)

≤6H ln(H ∨ e2) +
1

kl(µ1 − ε2, µ1)
(48)

where in the second inequality, we use that exp(−kkl(µ1 − ε2, µ1)) ≤ 1 and the definition of H , as
well as the fact that

∑⌊H⌋
k=1 exp(−kt) ≤

∑∞
k=1 exp(−kt) = e−t

1−e−t ≤ 1
t ; in the third inequality, we

use the algebraic fact that for t > 0,
∑⌊H⌋

k=1
1
k ≤ (1 + ln(⌊H⌋) ≤ 2(ln(⌊H⌋) ∨ 1) ≤ 2 ln(H ∨ e2).

Therefore, when H ∈ (1, T
e ), F31 can be bounded using Eq. (22) and Eq. (23) simultaneously,

concluding the proof in Case 3.

In summary, in all three cases, F31 is upper bounded by 6H ln

((
T
H ∧H

)
∨ e2

)
+ 1

kl(µ1−ε2,µ1)
;

this concludes the proof.

D.3.4 F32

As mentioned in the proof roadmap, intuitively, F32 is small, since when number of times arm 1 is
pulled is large, µ̂t−1,1 ≤ µ1 − ε2 is unlikely to happen. Here, we control F32 using Lemma 13.

Claim 15.

F32 ≤ 3

kl(µ1 − ε2, µ1)

Proof. F32 is the case where the number of arm pulling of optimal arm 1 is lower bounded by H .

F32 =E

 T∑
t=K+1

1
{
At, C

c
t−1, E

c
t−1

} (49)

≤
∞∑

k=⌊H⌋+1

2 exp(−kkl(µ1 − ε2, µ1))

k(µ1 − ε2)(1− µ1 + ε2)h2(µ1, ε2)
+

1

kl(µ1 − ε2, µ1)
(Lemma 13)

≤
∞∑

k=⌊H⌋+1

2 exp(−kkl(µ1 − ε2, µ1))

H(µ1 − ε2)(1− µ1 + ε2)h2(µ1, ε2)
+

1

kl(µ1 − ε2, µ1)
(⌊H⌋+ 1 ≥ H)
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≤
∞∑

k=⌊H⌋+1

2 exp(−kkl(µ1 − ε2, µ1)) +
1

kl(µ1 − ε2, µ1)
(By the definition of H)

≤2 exp(−(⌊H⌋+ 1)kl(µ1 − ε2, µ1))

1− exp(−kl(µ1 − ε2, µ1))
+

1

kl(µ1 − ε2, µ1)
(Geometric sum)

≤ 2

1− exp(−kl(µ1 − ε2, µ1))
+

1

kl(µ1 − ε2, µ1)
(exp(−x) ≤ 1 when x ≤ 0)

≤ 3

kl(µ1 − ε2, µ1)
(50)

The first inequality is true because Lemma 13 by letting m = ⌊H⌋ and n = ∞, as well as the fact
that for t > 0,

∑∞
k=⌊H⌋+1 exp(−kt) ≤

∑∞
k=1 exp(−kt) = e−t

1−e−t ≤ 1
t .

D.3.5 Proof of Lemma 13

Proof of Lemma 13. For any fixed k, recall that we denoted fk(x) = exp(k · kl(µ1 − x, µ1 − ε2)),
Xk = µ1 − µ̂τ1(k),1 and the pdf of Xk as pXk

(x).

E

 T∑
t=u+1

1
{
At, C

c
t−1, St−1, Tt−1

} (51)

=

T∑
t=u+1

E
[
1
{
Cc

t−1, St−1, Tt−1

}
E
[
At | Ht−1

]]
(Law of total expectation)

≤
T∑

t=u+1

E
[
1
{
Cc

t−1, St−1, Tt−1

}
· exp(Nt−1,1 · kl(µ̂t−1,1, µ̂t−1,max))E

[
It = 1 | Ht−1

]]
(Lemma 23)

≤
T∑

t=u+1

E
[
1
{
Cc

t−1, St−1, Tt−1

}
· exp(Nt−1,1 · kl(µ̂t−1,1, µ1 − ε2))E

[
It = 1 | Ht−1

]]
(when Cc

t−1 happens, kl(µ̂t−1,1, µ̂t−1,max) ≤ kl(µ̂t−1,1, µ1 − ε2))

=

T∑
t=u+1

E
[
1
{
It = 1, Cc

t−1, St−1, Tt−1

}
· exp(Nt−1,1 · kl(µ̂t−1,1, µ1 − ε2))

]
(Law of total expectation)

≤E

 ∞∑
k=2

1
{
Cc

τ1(k)−1, k − 1 ∈ (m,n]
}
· exp(Nτ1(k)−1,1 · kl(µ̂(k−1),1, µ1 − ε2))


(for any t such that 1 {It = 1} is nonzero, t = τ1(k) for some unique k; Nτ(k)−1,1 = k − 1, and µ̂τ(k)−1,1 = µ̂(k−1),1)

=E

 ∞∑
k=2

1
{
Cc

τ1(k)−1, k ∈ (m+ 1, n+ 1]
}
· exp((k − 1) · kl(µ̂(k−1),1, µ1 − ε2))

 (algebra)

≤E

 n+1∑
k=m+2

1
{
µ1 ≥ µ1 − µ̂(k−1),1 > ε2

}
· exp((k − 1) · kl(µ̂(k−1),1, µ1 − ε2))

 (52)

=E

 n∑
k=m+1

1
{
µ1 ≥ µ1 − µ̂(k),1 > ε2

}
· fk(µ1 − µ̂(k),1)

 , (shift k by 1)

(53)

here, for the second to last inequality, we use the fact that when Sτ1(k)−1 happens, k − 1 > m, and
when Tτ1(k)−1 happens, k−1 ≤ n. In the last inequality, we use the fact that when Cc

τ1(k)−1 happens,
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µ̂τ1(k)−1,max < µ1 − ε2. Combining this with the fact that µ̂(k−1),1 = µ̂τ1(k)−1,1 ≤ µ̂τ1(k)−1,max,
we have µ1 − µ̂(k−1),1 > ε2.

Hence Eq. (53) becomes

(53) = E

 n∑
k=m+1

1 {µ1 ≥ Xk > ε2} · fk(Xk)


=

n∑
k=m+1

∫ µ1

ε2

fk(x)pXk
(x) dx

=

n∑
k=m+1

∫ µ1

ε2

pXk
(x)

fk(ε2) +

n∑
k=m+1

∫ x

ε2

f ′
k(y) dy

 dx

(fk(x) = fk(ε2) +
∫ x

ε2
f ′
k(y) dy))

=

n∑
k=m+1

∫ µ1

ε2

pXk
(x)fk(ε2) dx+

n∑
k=m+1

∫ µ1

ε2

∫ x

ε2

pXk
(x)f ′

k(y) dy dx

=

n∑
k=m+1

∫ µ1

ε2

pXk
(x)fk(ε2) dx︸ ︷︷ ︸

A

+

n∑
k=m+1

∫ µ1

ε2

∫ µ1

y

pXk
(x)f ′

k(y) dxdy︸ ︷︷ ︸
B

(Exchange the order of integral)

For A:

A =

n∑
k=m+1

∫ µ1

ε2

pXk
(x)fk(ε2) dx (54)

≤
n∑

k=m+1

∫ µ1

ε2

pXk
(x)fk(ε2) dx (55)

≤
n∑

k=m+1

exp
(
−k · kl (µ1 − ε2, µ1)

)
fk(ε2) (By Lemma 25)

=

n∑
k=m+1

exp
(
−k · kl (µ1 − ε2, µ1)

)
(56)

where the last equality is because fk(ε2) = 1. For B:

B (57)

=

n∑
k=m+1

∫ µ1

ε2

∫ x

ε2

f ′
k(y)pXk

(x) dy dx (58)

=

n∑
k=m+1

∫ µ1

ε2

∫ µ1

y

f ′
k(y)pXk

(x) dxdy (Switching the order of integral)

=

n∑
k=m+1

∫ µ1

ε2

k
dkl(µ1 − y, µ1 − ε2)

dy
fk(y)P(y ≤ x ≤ µ1) dy (Calculate inner integral)

=

n∑
k=m+1

∫ µ1

ε2

fk(y) · k
dkl(µ1 − y, µ1 − ε2)

dy
· exp(−k · kl(µ1 − y, µ1)) dy (Apply Lemma 25)
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=

n∑
k=m+1

∫ µ1

ε2

exp
(
k(kl(µ1 − y, µ1 − ε2)− kl(µ1 − y, µ1))

)
· kdkl(µ1 − y, µ1 − ε2)

dy
dy (59)

=

n∑
k=m+1

∫ µ1

ε2

k exp
(
−kkl(µ1 − ε2, µ1)

)
· (60)

exp

(
k (y − ε2) ln

(
(1− µ1)(µ1 − ε2)

(1− µ1 + ε2)µ1

))
dkl(µ1 − y, µ1 − ε2)

dy
dy

(By Lemma 29 with ϕ(x) = x ln(x) + (1− x) ln(1− x), which induces Bϕ(z, x) = kl(z, x))

=

n∑
k=m+1

∫ µ1

ε2

k exp
(
−kkl(µ1 − ε2, µ1)− k (y − ε2)h(µ1, ε2)

)dkl(µ1 − y, µ1 − ε2)

dy
dy

(Recall ln( (1−µ1+ε2)µ1

(1−µ1)(µ1−ε2)
) = h(µ1, ε2))

=

n∑
k=m+1

exp(−kkl(µ1 − ε2, µ1))· (61)
∫ µ1

ε2

k exp
(
−k (y − ε2)h(µ1, ε2)

) dkl(µ1 − y, µ1 − ε2)

dy
dy︸ ︷︷ ︸

INT

 (62)

Here, in the third to the last equation we have applied Lemma 29 and ϕ(x) = x ln(x)+(1−x) ln(1−
x),Bϕ(z, x) becomes kl(z, x). We set z := (µ1 − y, 1− µ1 + y), x := (µ1 − ε2, 1− µ1 + ε2) and
y := (µ, 1−µ1). Under this setting, according to Lemma 29, we have kl(µ1 − y, µ1 − ε2)− kl(µ1 −
y, µ1) = −kl(µ1 − ε2, µ1) + (y − ε2) ln

(
(1−µ1)(µ1−ε2)
(1−µ1+ε2)µ1

)
.

Next, we need to give an upper bound to the integral part INT carefully. By applying the observation
below, the integral will become

INT =

∫ µ1

ε2

k exp
(
−k (y − ε2)h(µ1, ε2)

) dkl(µ1 − y, µ1 − ε2)

dy
dy (63)

=

∫ µ1

ε2

k exp
(
−k (y − ε2)h(µ1, ε2)

) dkl(µ1 − y, µ1 − ε2)

d(µ1 − y)

d(µ1 − y)

dy
dy (64)

=−
∫ µ1

ε2

k exp
(
−k (y − ε2)h(µ1, ε2)

)(
ln (

µ1 − y

1− µ1 + y
)− ln (

µ1 − ε2
1− µ1 + ε2

)

)
dy (65)

=

∫ µ1

ε2

k exp
(
−k (y − ε2)h(µ1, ε2)

) ∫ µ1−ε2

µ1−y

(
1

x
+

1

1− x
) dxdy (ln a

b =
∫ b

a
1
x dx)

=

∫ µ1−ε2

0

∫ µ1

µ1−x

k exp
(
−k (y − ε2)h(µ1, ε2)

)
(
1

x
+

1

1− x
) dy dx

(Change the order of integral)

=

∫ µ1−ε2

0

exp
(
kε2h(µ1, ε2)

)
h(µ1, ε2)

(
exp

(
−k (µ1 − x)h(µ1, ε2)

)
− exp

(
−kµ1h(µ1, ε2)

))
·

(66)

(
1

x
+

1

1− x
) dx (Calculate inner integral)

=
exp

(
−k (µ1 − ε2)h(µ1, ε2)

)
h(µ1, ε2)

· (67)
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∫ µ1−ε2

0

exp (kxh(µ1, ε2))− 1

x
dx︸ ︷︷ ︸

part I

+

∫ µ1−ε2

0

exp (kxh(µ1, ε2))− 1

1− x
dx︸ ︷︷ ︸

part II

 (68)

Part I For part I, we can bound it by

Part I =
∫ µ1−ε2

0

exp
(
kxh(µ1, ε2)

)
− 1

x
dx (69)

=

∫ (µ1−ε2)kh(µ1,ε2)

0

kh(µ1, ε2)
exp (y)− 1

y

1

kh(µ1, ε2)
dy

(change variable y = kxh(µ1, ε2))

=

∫ (µ1−ε2)kh(µ1,ε2)

0

exp (y)− 1

y
dy (70)

≤ 2
exp

(
(µ1 − ε2)kh(µ1, ε2)

)
(µ1 − ε2)kh(µ1, ε2)

(Using Lemma 19 by letting t = (µ1 − ε2)kh(µ1, ε2))

(71)

Part II For part II,

part II =
∫ µ1−ε2

0

exp
(
kxh(µ1, ε2)

)
− 1

1− x
dx (72)

≤
∫ µ1−ε2

0

exp
(
kxh(µ1, ε2)

)
− 1

1− µ1 + ε2
dx (Bound denominator by 1− µ1 + ε2)

=
1

1− µ1 + ε2

(
1

kh(µ1, ε2)
exp

(
kxh(µ1, ε2)

)
− x

)
|µ1−ε2
0 (calculate integral)

≤
exp

(
k (µ1 − ε2)h(µ1, ε2)

)
(1− µ1 + ε2)kh(µ1, ε2)

(73)

Hence from Eq.(71) and Eq.(73), by multiplying the first factor in the Eq. (68), we can bound INT by

INT ≤
exp

(
−k(µ1 − ε2)h(µ1, ε2)

)
h(µ1, ε2)

(part I + part II) (74)

≤
exp

(
−k(µ1 − ε2)h(µ1, ε2)

)
h(µ1, ε2)

(
2
exp

(
(µ1 − ε2)kh(µ1, ε2)

)
(µ1 − ε2)kh(µ1, ε2)

+
exp

(
k (µ1 − ε2)h(µ1, ε2)

)
(1− µ1 + ε2)kh(µ1, ε2)

)
(75)

≤ 2

kh2(µ1, ε2)
·
(

1

µ1 − ε2
+

1

1− µ1 + ε2

)
=

2

kh2(µ1, ε2)
·
(

1

(µ1 − ε2)(1− µ1 + ε2)

)
(76)

Therefore, we can upper bound B by

B ≤
n∑

k=m+1

exp(−kkl(µ1 − ε2, µ1)) · INT (77)

=

n∑
k=m+1

2 exp(−kkl(µ1 − ε2, µ1))

k(µ1 − ε2)(1− µ1 + ε2)h2(µ1, ε2)
(78)

In a summary, by combining Eq. (56) and Eq. (78), we have

T∑
t=K+1

P
(
At, B

c
t−1, C

c
t−1, St, Tt

)
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≤A+B

≤
n∑

k=m+1

(
2

k(µ1 − ε2)(1− µ1 + ε2)h2(µ1, ε2)
+ 1

)
exp(−kkl(µ1 − ε2, µ1)).

E Auxiliary Lemmas

E.1 Control Variance over Bounded Distribution

Lemma 16. Let ν be a distribution supported on [0, 1] with mean µ. Then, the variance of ν is no
larger than µ̇.

Proof. For a random variable X ∼ ν,

VarX∼ν [X] =E
[
X2
]
−
(
E[X]

)2
≤E [X]−

(
E[X]

)2
(X ≥ X2 when X ∈ [0, 1])

=µ− µ2

=µ̇ (Recall that µ̇ = µ(1− µ))

E.2 Controlling the Moment Generating Function

Lemma 17. Let ν be a distribution with mean µ and support set S = [0, 1]. Then, moment generating
function of X ∼ ν is smaller than 1− µ+ eλ. More specifically,

EX∼ν

[
eλX

]
≤ µeλ + (1− µ) (79)

Proof. Since ey is a convex function, we apply Jensen’s inequality on two point y = 0 and y = λ
with weights 1− x and x respectively.

exp
(
(1− x) · 0 + x · λ

)
≤(1− x) · e0 + x · eλ

⇒ E
[
exp (λx)

]
≤(1− µ) + µ · eλ

E.3 Upper Bounding the Sum of Probability of Cumulative Arm Pulling

Lemma 18. Let {Et}Tt=1 be a sequence of events determined at the time step t and N := Bt1−1.
M is an integer such that 1 ≤ N ≤ M ≤ T . Let t1, t2 be time indices in N such that t1 < t2 and
Ft :=

{∑t
i=1 1 {Ei} < M

}
which is the event of upper bounding cumulative count Then, it holds

deterministically that
t2∑

t=t1

1 {Et, Ft−1} ≤ M −N (80)

E.4 Useful Integral Bound

Lemma 19. Let f(t) =
∫ t

0
exp (x)−1

x dx. We have the inequality f(t) ≤ 2 · exp (t)
t .

Proof. According to the Taylor expansion of exp(x) at x = 0, we have

exp(x)− 1

x
=

∑∞
i=0

xi

i! − 1

x
=

∞∑
i=0

xi

(i+ 1)!
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Then for f(t),

f(t) =

∫ t

0

∞∑
i=0

xi

(i+ 1)!
dx

=

∞∑
i=0

∫ t

0

xi

(i+ 1)!
dx

=

∞∑
i=0

ti+1

(i+ 1) · (i+ 1)!

≤2 ·
∞∑
i=0

ti+1

(i+ 2)!

=2 ·
∞∑
i=2

ti−1

i!

≤2 · exp(t)
t

Lemma 20. Given an integrable function f(x) which is monotonically increasing in the range R+.
For two integers 1 ≤ a < b, we have the following inequality∫ b

a−1

f(x) dx ≤
b∑

i=a

f(i) ≤ f(a) +

∫ b

a

f(x) dx

Proof. For the LHS inequality,
b∑

i=a

f(i) =

b∑
i=a

f(i) · (i+ 1− i)

≥
b∑

i=a

∫ i

i−1

f(x) dx

=

∫ b

a−1

f(x) dx

For the RHS,
b∑

i=a

f(i) =

b∑
i=a

f(i) · (i+ 1− i)

= f(a) +

b∑
i=a+1

f(i) · (i− (i− 1))

≤ f(a) +

b∑
i=a+1

∫ i

i−1

f(x) dx

= f(a) +

∫ b

a

f(x) dx

E.5 Bounding H

Lemma 21. Given h(µ1, ε2) = ln
(

(1−µ1+ε2)µ1

(1−µ1)(µ1−ε2)

)
with 0 < ε2 < µ1, there exists an inequality

h(µ1, ε2) ≥
ε2(1 + ε2)

µ1(1− µ1 + ε2)
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Proof. Using concavity of logarithm function which is for two nonnegative point x, y

∀x, y > 0, ln y ≤ lnx+
y − x

x

We apply this property to get the lower bound h(µa, ε2) by

h(µ1, ε2) = ln

(
(1− µ1 + ε2)µ1

(1− µ1)(µ1 − ε2)

)
= lnµ1 − ln(µ1 − ε2) + ln (1− µ1 + ε2)− ln (1− µ1)

≥ ε2
µ1

+
ε2

1− µ1 + ε2
(concavity property of logarithm)

=
ε2(1 + ε2)

µ1(1− µ1 + ε2)

Lemma 22. Given H := 1
(1−µ1+ε2)(µ1−ε2)h2(µ1,ε2)

, h(µ1, ε2) := ln
(

(1−µ1+ε2)µ1

(1−µ1)(µ1−ε2)

)
, 0 ≤ ε2 ≤

1
2µ1 and 0 < µ1 ≤ 1. H is bounded by the following inequality

H ≤ 2µ̇1

ε22
+

2

ε2

where µ̇1 := (1− µ1)µ1.

Proof. According to Lemma 21, h(µ1, ε2) is lower bounded by

h(µ1, ε2) ≥
ε2(1 + ε2)

µ1(1− µ1 + ε2)

To upper bound H ,

H ≤ 1

(µ1 − ε2)(1− µ1 + ε2)
(

ε2(1+ε2)
µ1(1−µ1+ε2)

)2
=

µ2
1(1− µ1 + ε2)

(µ1 − ε2)ε22(1 + ε2)2

=
µ1

µ1 − ε2
·
(

1

1 + ε2

)2

· (1− µ1 + ε2)µ1

ε22

≤ 2 · 1 · (1− µ1 + ε2)µ1

ε22
(0 ≤ ε2 ≤ µ1

2 )

≤ 2µ̇

ε22
+

2

ε2

E.6 Probability Transferring Inequality

Lemma 23. Let Ht−1 be the σ-field generated by historical trajectory up to time (and including)
t− 1, which is defined as σ

(
{Ii, ri}t−1

i=1

)
(Ii is the arm pulling at the time round i and ri is its return

reward). Given the algorithm 1, the probability of pulling a sub-optimal arm a has the following
relationship.

P(It = a|Ht−1) ≤ exp(−Nt−1,akl(µ̂t−1,a, µ̂t−1,max))

Also,
P(It = a|Ht−1) ≤ exp(Nt−1,1kl(µ̂t−1,1, µ̂t−1,max))P(It = 1 | Ht−1)

Proof. For the first item, recall the definition of pt,a = exp
(
−Nt−1,akl(µ̂t−1,a, µ̂t−1,max)

)
/Mt.

P(It = a|Ht−1) = pt,a

=
exp(−Nt−1,akl(µ̂t−1,a, µ̂t−1,max))

Mt

≤ exp(−Nt−1,akl(µ̂t−1,a, µ̂t−1,max))
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Since Mt ≥ 1 from the fact that KL(µ̂t−1,a, µ̂t−1,max) = 0 when a = argmaxi∈[K] µ̂t−1,i, recall
the definition ofMt, we have Mt ≥ 1.

For the second item, recall the algorithm setting, there exists the following relationship
P(It = a|Ht−1)

=
exp(−Nt−1,akl(µ̂t−1,a, µ̂t−1,max)

Mt

=
exp(−Nt−1,akl(µ̂t−1,a, µ̂t−1,max))

exp(−Nt−1,1kl(µ̂t−1,1, µ̂t−1,max))
· exp(−Nt−1,1kl(µ̂t−1,1, µ̂t−1,max))

Mt

=
exp(−Nt−1,akl(µ̂t−1,a, µ̂t−1,max))

exp(−Nt−1,1kl(µ̂t−1,1, µ̂t−1,max))
· P(It = 1 | Ht−1)

≤ 1

exp(−Nt−1,1kl(µ̂t−1,1, µ̂t−1,max))
· P(It = 1 | Ht−1)

= exp(Nt−1,1kl(µ̂t−1,1, µ̂t−1,max))P(It = 1 | Ht−1)

The first inequality is due to kl(µ̂t−1,a, µ̂t−1,max) ≥ 0 and exp(−Nt−1,akl(µ̂t−1,a, µ̂t−1,max)) ≤
1.

E.7 Bounding the Deviation of Running Averages from the Population Mean

Lemma 24. The distribution of random variable X is νi which is a distribution with bounded support
[0, 1] and mean µ. Suppose that there is a sequence of sample {Xi}ki=1 draw i.i.d. from νi. Denote∑s

i=1 Xi/s as µ̂s.

Let ϵ > 0, assume T ≥ k ≥ 1. Then,

P
(
∃1 ≤ s ≤ k : kl(µ̂s, µ) ≥

2 ln(T/s)

s

)
≤ 2k

T

Proof. We apply the peeling device k
2n+1 < s ≤ k

2n to upper bound the upper left term

P
(
∃s ≤ k : kl(µ̂s, µ) ≥

2 ln(T/s)

s

)
(81)

≤
∞∑

n=0

P
(
∃s : s ∈ [k] ∩ (

k

2n+1
,
k

2n
], kl(µ̂s, µ) ≥

2 ln(T/s)

s

)
(82)

≤
∞∑

n=0

P

(
∃s : s ∈ [k] ∩ (

k

2n+1
,
k

2n
], kl(µ̂s, µ) ≥

2n+1 ln(2nT/k)

k

)
(Relax s to the maximum in each subcase)

(83)

For n ≥ ⌊log2 k⌋ + 1, [k] ∩ ( k
2n+1 ,

k
2n ] = ∅ , which means that the event{

∃s : s ∈ [k] ∩ ( k
2n+1 ,

k
2n ], kl(µ̂s, µ) ≥ 2n+1 ln(2nT/k)

k

}
cannot happen and its probability is 0 triv-

ially. Therefore,

(83) =
⌊log2 k⌋∑
n=0

P

(
∃s : s ∈ [k] ∩ (

k

2n+1
,
k

2n
], kl(µ̂s, µ) ≥

2n+1 ln
(
2nT/k

)
k

)
+

∞∑
n=⌊log2 k⌋+1

0

≤
⌊log2 k⌋∑
n=0

P

(
∃s ≥ k

2n+1
, kl(µ̂s, µ) ≥

2n+1 ln
(
2nT/k

)
k

)
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=

⌊log2 k⌋∑
n=0

P

(
∃s ≥ ⌈ k

2n+1
⌉, kl(µ̂s, µ) ≥

2n+1 ln
(
2nT/k

)
k

)

≤
⌊log2 k⌋∑
n=0

exp

(
−⌈ k

2n+1
⌉ ·

2n+1 ln
(
2nT/k

)
k

)
(Maximal Inequality Lemma 25)

=

∞∑
n=0

exp

(
− ln

2nT

k

)

=

∞∑
n=0

k

2nT

=
2k

T

The first inequality relies on the Lemma 25, for each choice of n, we set y to be
2n+1 ln(2n+1T/k)

k .

The following lemma is standard in the literature, see e.g. [33]; we include a proof for completeness.

Lemma 25. Given a natural number N in N+, and a sequence of R.V.s {Xi}∞i=1 is drawn from a
distribution ν with bounded support [0, 1] and mean µ. Let µ̂n = 1

n

∑n
i=1 Xi, n ∈ N, which is the

empirical mean of the first n samples.

Then, for y ≥ 0

P(∃n ≥ N, kl(µ̂n, µ) ≥ y, µ̂n < µ) ≤ exp(−Ny) (84)
P(∃n ≥ N, kl(µ̂n, µ) ≥ y, µ̂n > µ) ≤ exp(−Ny) (85)

Consequently, the following inequalities are also true:
P(µ̂N < µ− ε) ≤ exp(−N · kl(µ− ε, µ)) (86)
P(µ̂N > µ+ ε) ≤ exp(−N · kl(µ+ ε, µ)) (87)

Proof. First, we prove a useful fact that for any λ ∈ R, Sn(λ) := exp
(
nµ̂nλ− ngµ(λ)

)
(abbrev.

Sn) is a super-martingale sequence when n ∈ N+ and n ≥ N , where gµ(λ) := ln
(
1− µ+ µeλ

)
is

the log moment generating function of Bernoulli(µ).

Then, we have the following inequalities to finish the proof of the above fact:

E
[
Sn+1 | Sn, . . . , S1

]
=E

[
Sn+1 | Sn

]
=E

[
exp

(
(n+ 1)µ̂n+1λ− (n+ 1)gµ(λ)

)
| Sn

]
=E

[
Sn · exp

(
Xn+1λ− gµ(λ)

)
| Sn

]
=Sn ·

E
[
exp (Xn+1λ)

]
exp

(
gµ(λ)

)
≤Sn · 1− µ+ µeλ

1− µ+ µeλ
= Sn (Lemma 17)

here, for the first equality, note that Sn+1, which is determined by µ̂n+1 and µ̂n+1 is conditionally
independent of the trajectory up to time step n − 1 given the condition Sn. The second and third
equalities are due to the definitions of Sn+1 and Sn respectively. In the first inequality, we apply
Lemma 17 to upper bound the numerator E[exp (Xn+1λ)] by 1− µ+ µeλ.

We now prove Eq. (84) and Eq. (85) respectively.

For Eq. (84), we consider two cases:

Case 1: y > kl(0, µ) = ln 1
1−µ . In this case, event kl(µ̂n, µ) ≥ y can never happen. Therefore,

LHS = 0 ≤ RHS.
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Case 2: y ≤ kl(0, µ). In this case, there exists a unique z0 ∈ [0, µ) such that kl(z0, µ) = y. We
denote λ0 := ln z0(1−µ)

(1−z0)µ
< 0.

Observe that
y = kl(z0, µ) = z0λ0 − gµ(λ0)

Therefore, LHS of Eq. (84) is equal to
P(∃n ≥ N, kl(µ̂n, µ) ≥ y, µ̂n < µ) (88)

=P (∃n ≥ N, µ̂n ≤ z0) (89)

≤P
(
∃n ≥ N,nµ̂nλ0 − ngµ(λ0) ≥ nz0λ0 − ngµ(λ0)

)
(λ0 < 0 and µ̂n ≤ z0)

≤P
(
∃n ≥ N,nµ̂nλ0 − ngµ(λ0) ≥ ny

)
(By the definition of z0)

≤P
(
∃n ≥ N, exp(nλ0µ̂n − ngµ(z0)) ≥ exp(Ny)

)
(90)

=P(∃n ≥ N,Sn(λ0) ≥ exp(Ny)) (91)

≤E[SN (λ0)]

exp(Ny)
≤ exp(−Ny) (Ville’s maximal inequality)

For Eq. (85), we consider two cases:

Case 1: y > kl(1, µ) = ln 1
µ . In this case, event kl(µ̂n, µ) ≥ y can never happen. Therefore,

LHS = 0 ≤ RHS.

Case 2: y ≤ kl(1, µ). In this case, there exists a unique z1 ∈ (µ, 1] such that kl(z1, µ) = y. Let
λ1 := ln

(
z1(1−µ)
(1−z1)µ

)
> 0. Observe that

y = kl(z1, µ) = z1λ1 − gµ(λ1)

Then we have
P(∃n ≥ N, kl(µ̂n, µ) ≥ y, µ̂n > µ)

=P (∃n ≥ N, µ̂n ≥ z1)

≤P
(
∃n ≥ N,nµ̂nλ1 − ngµ(λ1) ≥ nz1λ1 − ngµ(λ1)

)
(λ1 > 0 and µ̂n ≥ z1)

≤P
(
∃n ≥ N,nµ̂nλ1 − ngµ(λ1) ≥ ny

)
(By the definition of z1)

≤P
(
∃n ≥ N, exp(nλ1µ̂n − ngµ(λ1)) ≥ exp(Ny)

)
=P(∃n ≥ N,Sn(λ1) ≥ exp(Ny))

≤E[SN (λ1)]

exp(Ny)
≤ exp(−Ny) (Ville’s maximal inequality)

where the first inequality is due to the fact that λ1 > 0 and the condition µ̂n ≥ z1 which is equivalent
to the event

{
kl (µ̂n, µ) ≥ kl (z1, µ) , µ̂n > µ

}
.

Finally we derive Eq. (86) and (87) from Eq. (84) and Eq. (85) respectively.

For Eq. (86), by letting y = kl(µ− ε, µ) we have that
P (µ̂N < µ− ε) =P

(
kl(µ̂N , µ) > kl(µ− ε, µ), µ̂n < µ

)
= P

(
kl(µ̂N , µ) > y, µ̂n < µ

)
≤P
(
∃n ≥ N, kl(µ̂n, µ) ≥ y, µ̂n < µ)

)
≤ exp(−Ny) = exp(−N · kl(µ− ε, µ))

For Eq. (87), by letting y = kl(µ+ ε, µ) we have that
P (µ̂N > µ+ ε) =P

(
kl(µ̂N , µ) > kl(µ+ ε, µ), µ̂n > µ

)
= P

(
kl(µ̂N , µ) > y, µ̂n > µ

)
≤P
(
∃n ≥ N, kl(µ̂n, µ) ≥ y, µ̂n > µ)

)
≤ exp(−Ny) = exp(−N · kl(µ+ ε, µ)
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E.8 Lower Bound of KL

Lemma 26. Given a KL-divergence kl(µi, µj) between two Bernoulli distribution ν(µi) and ν(µj)
where µi, µj ∈ [0, 1]. Denote µ̇i := µi(1− µi), µ̇j := µj(1− µj) and ∆ :=

∣∣µj − µi

∣∣, we have a
lower bound to kl(µi, µj).

kl(µi, µj) ≥
1

4

∆2

µ̇j +∆
≥ 1

8

(
∆2

µ̇i +∆
∨ ∆2

µ̇j +∆

)

Proof. It suffices to show kl(µi, µj) ≥ 1
4

(
∆2

µ̇j+∆

)
since by 1-Lipshizness of z 7→ z(1− z) we have

µ̇i ≤ µ̇j + 1 ·
∣∣µi − µj

∣∣ = µ̇j +∆ and 1
4

(
∆2

µ̇i+∆

)
≥ 1

4

(
∆2

µ̇j+2∆

)
≥ 1

8

(
∆2

µ̇j+∆

)
. Then we split µj

into two cases.

Case 1: µj ≤ 1
2 .

In this case, µj = µj · 1 ≤ µj · 2(1− µj) = 2µ̇j .

kl(µi, µj) ≥
∆2

2(µi ∨ µj)
=

∆2

2(µj +∆)
≥ ∆2

2
(
2µ̇j +∆

) ≥ ∆2

4µ̇j + 2∆
≥ 1

4

(
∆2

µ̇j +∆

)

Case 2: µj >
1
2

In this case, we have 1− µj ≤ (1− µj)2µj = 2µ̇j .

Using the following inequality
kl(µi, µj)

=kl(1− µi, 1− µj)

≥ ∆2

2
(
(1− µi) ∨ (1− µj)

)
≥ ∆2

2(1− µi)

≥ ∆2

2(1− µj +∆)

≥ ∆2

2
(
2µ̇j +∆

)
=

∆2

4µ̇j + 2∆

≥1

4

(
∆2

µ̇j +∆

)

E.9 Algebraic Lemmas

Lemma 27. Let q ≥ p > 0 and b > 0, and define fp,q(x) := ln(bxp∨eq)
x . Then f(x) is mono-

tonically decreasing in R+. Specifically, both f1,2(x) :=
ln(bx∨e2)

x and f2,2(x) :=
ln(bx2∨e2)

x are
monotonically decreasing.

Proof. Note that

fp,q(x) =

{
q
x bxp ≤ eq

ln(bxp)
x bxp > eq
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Algorithm 2 The KL-UCB algorithm (taken from Lattimore and Szepesvári [29, Section 10.2])
1: Input: K ≥ 2
2: for t = 1, 2, · · · , n do
3: if t ≤ K then
4: Pull the arm It = t and observe reward yt ∼ νi.
5: else
6: For every a ∈ [K], compute

UCBt(a) = max

{
µ ∈ [0, 1] : kl(µ̂t−1,a, µ) ≤

ln f(t)

Nt−1,a

}
,

where f(t) = 1 + t ln2 t.
7: Choose arm It = argmaxa∈[K] UCBt(a)
8: Receive reward yt ∼ νIt
9: end if

10: end for

• When x ∈ (0, e
q
p

b
1
p
), bxp < eq. In this case, fp,q is monotonically decreasing as fp,q(x) is

inverse proportional to x.

• When x ∈ [ e
q
p

b
1
p
,+∞), bxp ≥ eq . In this case,

f ′
p,q(x) =

p− ln(bxp)

x2
≤ p− q

x2
≤ 0,

which implies that fp,q is also monotonically decreasing in this region.

Lemma 28. For C ≥ 1 and a > 0,
ln(Ca ∨ e2) ≤ C ln(a ∨ e2)

Proof. From Lemma 27, f1,2(x) :=
ln(bx∨e2)

x is monotonically decreasing. Therefore, we have

ln(Ca ∨ e2)

Ca
≤ ln(a ∨ e2)

a
,

this yields the lemma.

E.10 Bregman divergence identity

Lemma 29 (Lemma 6.6 in Orabona [37]). Let Bϕ the Bregman divergence w.r.t. ϕ : X → R. Then,
for any three points x, y ∈ interior(X) and z ∈ X , the following equality holds:

Bϕ(z, x) +Bϕ(x, y)−Bϕ(z, y) =
〈
∇ϕ(y)−∇ϕ(x), z − x

〉
,

where Bϕ(z, x) := ϕ(z)− ϕ(x)−
〈
∇ϕ(x), z − x

〉
.

F Refined worst-case guarantees for existing algorithms

F.1 KL-UCB’s refined regret guarantee

In this section, we show that KL-UCB [13] also can enjoy a worst-case regret bound of the form√
µ̇1TK lnT in the bandits with [0, 1] bounded reward setting. We first recall the KL-UCB algorithm,

Algorithm 2, and we take the version of [29, Section 10.2].

The following theorem is a refinement of the guarantee of KL-UCB in [29, Theorem 10.6].

Theorem 30 (KL-UCB: refined guarantee). For any K-arm bandit problem with reward distributions
supported on [0, 1], KL-UCB (Algorithm 2) has regret bounded as follows. For any ∆ > 0 and
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c ∈ (0, 1
4 ],

Reg(T ) ≤ T∆+
∑

a:∆a>∆

∆a ln(1 + T ln2 T )

KL(µa + c∆a, µ1 − c∆a)
+O

 ∑
a:∆a>∆

µ̇1 +∆a

c2∆a

 . (92)

and consequently,

Reg(T ) ≤ O
(√

µ̇1TK lnT +K lnT
)
. (93)

Proof sketch. To show Eq. (92), fix any suboptimal arm a; it suffices to show that

E
[
NT,a

]
≤ ∆a ln(1 + T ln2 T )

KL(µa + c∆a, µ1 − c∆a)
+O

 ∑
a:∆a>∆

µ̇1 +∆a

c2∆a

 . (94)

To this end, following Lattimore and Szepesvári [29, proof of Theorem 10.6], let ε1, ε2 > 0 be such
that ε1 + ε2 < ∆a.

Define

τ = min

{
t : max

s∈{1,...,T}
kl(µ̂1,(s), µ1 − ε2)−

ln f(t)

s
≤ 0

}
,

and

κ =

T∑
s=1

1

{
kl(µ̂a,(s), µ1 − ε2) ≤

ln f(T )

s

}
.

A close examination of Lattimore and Szepesvári [29, proof of Lemma 10.7] reveals that a stronger
bound on E [τ ] holds, i.e.,

E [τ ] ≤ 2

kl(µ1 − ε2, µ1)

and similarly, a close examination of Lattimore and Szepesvári [29, proof of Lemma 10.8] reveals
that a stronger bound on E [κ] holds,

E [κ] ≤ ln f(T )

kl(µa + ε1, µ1 − ε2)
+

1

kl(µa + ε1, µa)

Therefore, by Lattimore and Szepesvári [29, proof of Theorem 10.6], we have

E
[
NT,a

]
≤ E [τ ] + E [κ] ≤ ln f(T )

kl(µa + ε1, µ1 − ε2)
+

1

kl(µa + ε1, µa)
+

2

kl(µ1 − ε2, µ1)
(95)

We now set ε1 = ε2 = c∆a. Observe that by Lemma 26,
1

kl(µa + ε1, µa)
≲

µ̇a + ε1
ε21

≲
µ̇1 +∆a

c2∆2
a

,

and
2

kl(µ1 − ε2, µ1)
≲

µ̇1 + ε2
ε22

≲
µ̇1 +∆a

c2∆2
a

Plugging these two inequalities into Eq. (95) yields Eq. (94).

As for Eq. (93), we note that 1
kl(µa+c∆a,µa−c∆a)

≲ µ̇1+∆a

c2∆2
a

, and therefore, Eq. (92) implies that for
any ∆ > 0,

Reg(T ) ≤∆T +
∑

a:∆a>∆

µ̇1 +∆a

c2∆a
ln f(T )

≤∆T +K
µ̇1 +∆

c2∆
ln f(T )

Choosing ∆ =
√
µ̇1

K ln f(T )
T yields Eq. (93).
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F.2 KL-UCB++’s refined regret guarantee

In this section, we show a worst-case regret guarantee of KL-UCB++ of order
Õ
(√

µ̇1K3T lnT +K2 lnT
)

by adapting the original KL-UCB++ analysis (Theorem 2
of [33]).

First, we derive a refined bound of the number of suboptimal arm pulling, corresponding to Eq. (24)
in [33], which we state in the following theorem.
Theorem 31 (KL-UCB++: refined upper bound of suboptimal arm pulling). For any suboptimal arm
a, the expected number of its pulling up to time step T , namely E

[
Na(T )

]
, is bounded by

E
[
Na(T )

]
≤ ln(T )

kl(µa + δ, µ1 − δ)
+O

(
(K + ln ln(T ))(µ̇1 +∆a)

δ2

)
, (96)

for any δ ∈ [ 88KT +
√

88µ̇1K
T , ∆a

3 ].

Proof. First we decompose the expected number of arm pulling w.r.t. suboptimal arm a, E
[
Na(T )

]
as

E
[
Na(T )

]
≤ 1 +

T−1∑
t=K

P
(
U1(t) ≤ µ1 − δ

)
︸ ︷︷ ︸

A

+
T−1∑
t=K

P
(
µ1 − δ < Ua(t) and It+1 = a

)
︸ ︷︷ ︸

B

Following [33], we can bound each term in A as:
P
(
U1(t) ≤ µ1 − δ

)
≤P

(
∃1 ≤ n ≤ f(δ), µ̂1,n ≤ µ1, kl(µ̂1,n, µ1) ≥

g(n)

n

)
︸ ︷︷ ︸

A1

+P
(
∃f(δ) ≤ n ≤ T, µ̂1,n ≤ µ1 − δ

)︸ ︷︷ ︸
A2

,

here, with foresight, we choose f(δ) = 1
kl(µ1−δ,µ1)

ln kl(µ1−δ,µ1)T
K .

Note that A2 ≤ exp(−f(δ)kl(µ1 − δ, µ1)) by the maximal inequality (Lemma 25).

A2 ≤ K

Tkl(µ1 − δ, µ1)
. (97)

For bounding A1, we rely on the following inequality borrowed from [33, page 7]: for any N such
that T

KN ≥ e3/2,5

P
(
∃1 ≤ n ≤ N, µ̂1,n ≤ µ1, kl(µ̂1,n, µ1) ≥

g(n)

n

)
≤4e2

ln( T
KN (1 + ln2( T

KN )))

ln( T
KN )

· Nkl(µ1 − δ, µ1)

ln( T
KN )

· K

Tkl(µ1 − δ, µ1)
.

Therefore, setting N = f(δ) we have the following inequality when T
Kf(δ) ≥ e3/2:

P
(
∃1 ≤ n ≤ f(δ), µ̂1,n ≤ µ1, kl(µ̂1,n, µ1) ≥

g(n)

n

)
≤4e2

ln( T
Kf(δ) (1 + ln2( T

Kf(δ) )))

ln( T
Kf(δ) )︸ ︷︷ ︸
C

· f(δ)kl(µ1 − δ, µ1)

ln( T
Kf(δ) )︸ ︷︷ ︸
D

· K

Tkl(µ1 − δ, µ1)
.

Also, based on the assumption that δ ≥ 88K
T +

√
88µ̇1K

T , we have that Tkl(µ1−δ,µ1)
K ≥ e3/2 and

T
Kf(δ) > 1 (we defer the justification at the end of this paragraph). Now:

5we only replaced their f(u) with N . The proof still goes through since the proof has no assumption except
T

Kf(u)
≥ e3/2.
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• For C, we apply the elementary inequality that ln(x(1+ln2 x))
ln x ≤ 2 for x > 1 with x = T

Kf(δ) ;
therefore, C ≤ 2.

• For D =
ln

kl(µ1−δ)T
K

ln
(

kl(µ1−δ)T
K / ln

kl(µ1−δ)T
K

) , we apply the elementary inequality that ln(x)
ln(x/ ln x) ≤ 2

for x ≥ e3/2 with x = Tkl(µ1−δ,µ1)
K ; therefore, D ≤ 2.

Now we are going to justify the condition that δ ≥ 88K
T +

√
88µ̇1K

T ensures these two elementary

inequalities being true. In proving Tkl(µ1−δ,µ1)
K ≥ e3/2, we use the KL lower bound lemma (lemma

26). More specifically,
Tkl (µ1 − δ, µ1)

K
≥ e3/2 (98)

⇐ Tδ2

4K(µ̇1 + δ)
≥ e3/2 (Lemma 26)

⇐ δ2 ≥ 44K(µ̇1 + δ)

T
(99)

⇐ δ2 ≥ 2 ·max

{
44µ̇1K

T
,
44Kδ

T

}
(100)

⇐ δ ≥ max

{
88K

T
,

√
88µ̇1K

T

}
(101)

⇐ δ ≥ 88K

T
+

√
88µ̇1K

T
(102)

In summary, from the above derivation, δ ≥ 88K
T +

√
88µ̇1K

T implies that Tkl(µ1−δ,µ1)
K ≥ e3/2. In

this case, furthermore we have T
Kf(δ) =

Tkl(µ1−δ,µ1)/K

ln(Tkl(µ1−δ,µ1)/K)
≥ 2

3e
3/2 > 1.

Therefore we bound A1 by

A1 ≤ 4e2 · 2 · 2 · K

Tkl (µ1 − δ, µ1)
≤ 16e2

K

Tkl (µ1 − δ, µ1)
. (103)

Combining Eq (97) and (103), we derive the upper bound for A:

A ≤
T−1∑
t=K

(
16e2 + 1

) K

Tkl(µ1 − δ, µ1)
≤
(
16e2 + 1

) K

kl(µ1 − δ, µ1)
≤ O

(
K(µ̇1 + δ)

δ2

)
,

(104)

where in the last inequality we use Lemma 26.

To bound B, we reuse the same idea in [33] but change the definition of n(δ) to accommodate our
new analysis,

n(δ) =

⌈ ln( T
K

(
1 + ln2( T

K )
))

kl (µa + δ, µ1 − δ)

⌉

applying the same analysis in [33] (specifically, from their Eq. (28) to Eq.(29)), we bound B by

B ≤n(δ)− 1 +
T∑

n=n(δ)

P
(
kl
(
µ̂a,(n), µ1 − δ

)
≤ kl (µa + δ, µ1 − δ)

)
(105)

≤n(δ)− 1 +

T∑
n=n(δ)

P
(
µ̂a,(n) ≥ µa + δ

)
(106)
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≤n(δ)− 1 +

T∑
n=1

exp
(
−nkl(µa + δ, µa)

)
(Lemma 25)

≤n(δ)− 1 +
1

exp
(
kl(µa + δ, µa)

)
− 1

(Geometric sum)

≤n(δ)− 1 +
1

kl(µa + δ, µa)
(ex ≥ x+ 1 when x ≥ 0)

≤
ln

(
T
K

(
1 + ln2

(
T
K

)))
kl (µa + δ, µ1 − δ)

+
4 (µ̇a + δ)

δ2
(Lemma 26)

=
ln (T )

kl (µa + δ, µ1 − δ)
+

ln

(
1
K

(
1 + ln2

(
T
K

)))
kl (µa + δ, µ1 − δ)

+
4 (µ̇1 +∆a + δ)

δ2

(By the 1-Lipshitzness of µ 7→ µ̇)

≤ ln (T )

kl (µa + δ, µ1 − δ)
+O


ln

(
1
K

(
1 + ln2

(
T
K

)))
δ2/(µ̇1 +∆a)

+
4 (µ̇1 +∆a + δ)

δ2

 (Lemma 26)

≤ ln (T )

kl (µa + δ, µ1 − δ)
+O

(
ln lnT · µ̇1 +∆a

δ2

)
. (107)

Combining Eq.(104) and Eq.(107), we get the final inequality Eq.(96).

Based on the above refinement and replace δ by c∆a, we can have the following theorem.

Theorem 32 (KL-UCB++: refined guarantee). For any K-arm bandit problem with reward distribu-
tions supported on [0, 1], KL-UCB++ has regret bounded as follows:

Reg(T ) ≤ O
(√

µ̇1TK3 lnT +K2 lnT
)
. (108)

Proof. Define S =

{
a ∈ [K] : 88K

T +
√

88µ̇1K
T ≤ ∆a

3

}
. For a ∈ S, applying Theorem 31 with

δ = ∆a

3 , and observe that by Lemma 26,
1

kl(µa + δ, µ1 − δ)
≲

µ̇a + δ

δ2
≲

µ̇1 +∆a

∆2
a

,

we get:

E[Na(T )] ≲
(µ̇1 +∆a) lnT

∆2
a

+O

(
(K + ln ln(T ))(µ̇1 +∆a)

∆2
a

)
(109)

≲O

(
(K + lnT )(µ̇1 +∆a)

∆2
a

)
(110)

Therefore, for any ∆ > 0, the regret given a timespan of T is bounded by

Reg(T ) ≤
∑

a:∆a≤∆

∆aE
[
Na(T )

]
+

∑
a:∆a>∆,a∈S

∆aE
[
Na(T )

]
+

∑
a:∆a>∆,a/∈S

∆aE
[
Na(T )

]

≤T∆+
∑

a:∆a>∆,a∈S

O

(
(K + lnT )(µ̇1 +∆a)

∆a

)
+

∑
a:∆a>∆,a/∈S

O

T

(
K

T
+

√
µ̇1K

T

)
≤T∆+O

(
K(K + lnT )(µ̇1 +∆)

∆

)
+O

(
K2 +

√
µ̇1K3T

)
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Choosing ∆ =

√
µ̇1K(K+ln(T ))

T yields Eq. (108).

F.3 The worst-case regret bound of UCB-V

In this section, we will show that the problem dependent regret bound presented in UCB-V[7] can
also be adaptive to µ̇1 in the bandits with [0, 1] bounded reward setting. The starting point is that we
will obtain a lemma (Lemma 33) to bound the arm pulling for all suboptimal arms like what we did
in our paper.

Lemma 33. Let Ni(T ) to be the number of the arm pulling in terms of the arm i until the time step
T (inclusively) in the algorithm UCB-V from [7]. Then we can bound E

[
Ni(T )

]
by the following

inequality

E
[
Ni(T )

]
≲

(
µ̇2
i

∆2
i

+
1

∆i

)
log T (111)

Proof. Inside the proof of Theorem 3 in [7], by setting c = 1, for each arm i, we obtain the following
inequality for any ζ > 0:

E
[
Ni(T )

]
≤ 1 + 8ET

(
µ̇2
i

∆2
i

+
2

∆i

)
+ Te−ET

(
24µ̇i

∆2
i

+
4

∆i

)
+

T∑
t=u+1

β (Et, T ) , (112)

where u := ⌈8ζ
(

µ̇2
k

∆2
k
+ 2

∆k

)
log T ⌉, ET := ζ log T and β (Et, t) := inf1<α≤3

(
log t
logα ∧ t

)
e−

Et
α . We

pick ζ = 1.1. The last term is bounded by
T∑

t=u+1

β (Et, t) ≤
T∑

t=u+1

3 · inf
1<α≤3

(
log t

logα
∧ t

)
e−

Et
α ≤

T∑
t=u+1

3 · log t

log (1.1)
e−

Et
1.1 (113)

≤ 3

log(1.1)

T∑
t=u+1

log t

t1.1
≲

∞∑
t=1

log t

t1.1
≲ 1 (114)

Therefore, we have the following inequality

E
[
Ni(T )

]
≲

(
µ̇2
i

∆2
i

+
1

∆i

)
log T (115)

By using the lemma 33 we just obtained, we can obtain the following theorem about worst-case regret
bound of UCB-V.

Theorem 34. The regret of the algorithm UCB-V[7] is bounded by:

Reg(T ) ≲
√

µ̇1KT ln(T ) +K ln(T ) (116)

Proof.

Reg(T ) =
∑

i:∆i≤∆

∆iE[Ni(T )] +
∑

i:∆i>∆

∆iE[Ni(T )]

≤ T∆+
∑

i:∆i>∆

∆iE[Ni(T )]

≲ T∆+
∑

i:∆i>∆

(
µ̇i

∆i
+ 1

)
log(T ) (By Eq. (115))

≤ T∆+
∑

i:∆i∈[∆,1/4]

(
µ̇i

∆i
+ 1

)
log(T ) +

∑
i:∆i>1/4

(
µ̇i

∆i
+ 1

)
log(T )
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≲ T∆+
∑

i:∆i∈[∆,1/4]

µ̇i

∆i
log(T ) +K log(T ) .

To bound the second term above, we consider two cases.

Case 1: µ1 < 3
4 .

In this case, one can show that µ̇i ≲ µ̇1. Thus,∑
i:∆i∈[∆,1/4]

µ̇i

∆i
ln(T ) ≲ K

µ̇1

∆
ln(T ) .

Case 2: µ1 ≥ 3
4 .

We observe that if i satisfies ∆i ∈ [∆, 1/4], then µ̇i = µi(1− µi) ≤ 1− µi = 1− µi + µ1 − µ1 =
1− µ1 +∆i ≲ µ̇1 +∆i. Thus,∑

i:∆i∈[∆,1/4]

µ̇i

∆i
ln(T ) ≲

∑
i:∆i∈[∆,1/4]

(
µ̇1

∆i
+ 1

)
ln(T ) ≤ K

µ̇1

∆
ln(T ) +K ln(T ) .

Altogether, we have

Reg(T ) ≲ T∆+K
µ̇1

∆
ln(T ) +K ln(T ) .

Let us choose ∆ =
√

Kµ̇1

T ∧ 1
4 . If T > Kµ̇1, then we obtain the desired bound. If T ≤ Kµ̇1, we

get ∆ = 1/4, so
Reg(T ) ≲ n+Kµ̇1 ln(T ) +K ln(T ) ≤ Kµ̇1 +Kµ̇1 ln(T ) +K ln(T ) ,

which is less than the desired bound. This concludes the proof.

G Improved minimax analysis of the sub-Gaussian MS

We sketch how to change the proof of the sub-Gaussian MS regret bound in Bian and Jun [11] so it
can achieve the minimax ratio of

√
ln(K).

It suffices to show that ∀a : µa < µ1,E[NT,a] ≲ σ2

ε2 ln(Tε2

σ2 ∨ e2). To bound E[NT,a], recall that
there are three terms to bound: (F1), (F2), and (F3). Recall the symbols in Bian and Jun [11]:

• σ2: the sub-Gaussian parameter.

• u :=
⌈
2σ2(1+c)2 ln(T∆2

a/(2σ
2)∨e2)

∆2
a

⌉
for some c > 0.

• ε > 0: an analysis parameter that will be chosen later to be ∆a up to a constant factor.

The reason why one does not obtain the minimax ratio of
√

ln(K) is that the bound obtained in Bian
and Jun [11] for (F3) is O(σ

2

ε2 ln(σ
2

ε2 ∨ e2)) rather than O(σ
2

ε2 ln(Tε2

σ2 ∨ e2)). To achieve the latter
bound for (F3), first we choose the splitting threshold σ2

ε2 which takes the same role as H for KL-MS
in the [0, 1]-bounded reward case and F3 will be separated into F31 and F32. F31 is the case where
F3 is with the extra condition that Nt−1,1 ≤ σ2

ε2 for 1 ≤ t ≤ T and F32 the case where F3 is with
the extra condition that Nt−1,1 > σ2

ε2 for 1 ≤ t ≤ T . It is easy to bound F32 using a similar argument
as our Claim 15 that F32 ≲ σ2

ε2 .

For F31, we define the following event

E :=

{
∀k ∈ [1, ⌊σ

2

ε2
⌋], µ̂(k),1 ≥ µ1 −

√
4σ2 ln(T/k)

k

}
where µ̂(k),1 is the empirical mean of arm 1 (the true best arm) after k arm pulls.
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We have

F31 = E

 T∑
t=K+1

1

{
It = a,Nt−1,a > u, µ̂t−1,max < µ1 − ε,Nt−1,1 ≤ σ2

ε2

}
= E

 T∑
t=K+1

1

{
It = a,Nt−1,a > u, µ̂t−1,max < µ1 − ε,Nt−1,1 ≤ σ2

ε2
, E

}+ E

 T−1∑
t=K+1

1 {Ec}


≤ E

 T∑
t=K+1

1
{
It = a,Nt−1,a > u, µ̂t−1,max < µ1 − ε, E

}+ T · P(Ec)

Note that one can show that T · P(Ec) ≲ σ2

ε2 using a similar argument to Lemma 24. One can also
see that the first term above corresponds to the first term of Eq. (25) in KL-MS, and one can use a
similar technique therein to bound the first term above by σ2

ε2 ln(Tε2

σ2 ∨ e2) up to a constant factor.

Adding the bounds of F31 and F32 together, we conclude that F3 ≲ σ2

ε2 ln(Tε2

σ2 ∨ e2).

H Additional Experiments

H.1 Regret comparison

We compare KL-MS with the Bernoulli Thompson Sampling and MS [11]. Bernoulli Thompson
Sampling chooses beta distribution as the prior (Beta(0.5, 0.5)) and the posterior. The reward
environment is borrowed from [25], where there are two reward environments. Both are two-arm
bandit, one has the mean reward [0, 20, 0, 25] and the other has the mean reward [0.80, 0.90]. From
Figure 1 and Figure 2 we find that the performance of KL-MS is better than MS by a margin, although
worse than Bernoulli Thompson Sampling. Nevertheless, we will see in the next section that Bernoulli
Thompson Sampling tends to generate somewhat unreliable logged data for offline evaluation.

Regret comparison with 2000 times simulation

Figure 1: µ = [0.20, 0.25], T = 10, 000 Figure 2: µ = [0.80, 0.90], T = 10, 000

H.2 Offline evaluation

This section presents our simulation results on offline evaluation using logged data. We use the
logged data generated by our algorithm, KL-MS, and standard Thompson Sampling, to estimate the
expected reward of the policy that takes an action uniformly at random in [K], which is equal to
µ̄ = 1

K

∑K
i=1 µi. The logged data are of the form (It, pt,It , rt)

T
t=1, where It is the action taken, pt,It

is the action probability (which can be exact or approximate), rt is the received reward, all at time
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step t. We consider the IPW estimator [22] that estimates µ, defined as

µ̂ =
1

T

T∑
t=1

1/K

pt,It
rt.

We set T , the time horizon of the interaction log, to be 1, 000 or 10, 000. For Thompson sampling,
we use Monte Carlo (MC) to estimate the action probabilities; we vary the number of MC samples
M in

{
103, 104, 105

}
. Note that MC estimation of action probabilities induces a high time cost: in

our simulations, for T = 103, KL-MS uses 0.43s to generate its logged data; in contrast, BernoulliTS
with M = 103 uses 15.21s to generate its logged data. This suggest that setting M = 104 or 105
may be impractical in applications.

Figures 3 to 14 shows the histogram of the IPW estimates of the average reward induced by logged
data generated by KL-MS and Bernoulli-TS with MC estimation of action probabilities, based
on N = 2000 independent trials in the same reward environment used in the previous experiment.
Repeatedly, We have two 2-armed bandit problems, whose mean rewards are [0.20, 0.25] and [0.8, 0.9]
respectively. Tables 2 to 9 report the MSE and the bias estimate of the respective estimator. It can be
seen from the figures and tables that: (1) the logged data induced by KL-MS consistently give more
accurate estimates of µ, compared to that of BernoulliTS with MC estimation of action probabilities;
(2) the offline evaluation performance of the logged data induced by BernoulliTS is sensitive to the
number of MC samples M ; while the performance of setting M = 104 or 105 is on par with KL-MS,
the estimation error of the more-practical M = 103 setting is evidently higher. (3) When time step T
is increasing, the error between the IPW estimator induced by BernoulliTS logged data and the true
performance become larger while KL-MS remains the same level of error which is smaller than the
BernoulliTS.

µ = [0.20, 0.25], T = 1, 000

Figure 3: M = 103 Figure 4: M = 104 Figure 5: M = 105

µ = [0.80, 0.90], T = 1, 000

Figure 6: M = 103 Figure 7: M = 104 Figure 8: M = 105
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µ = [0.20, 0.25], T = 10, 000

Figure 9: M = 103 Figure 10: M = 104 Figure 11: M = 105

µ = [0.80, 0.90], T = 10, 000

Figure 12: M = 103 Figure 13: M = 104
Figure 14: M = 105

Table 2: MSEs for µ = [0.20, 0.25],
T = 1, 000

M
103 104 105

BernoulliTS 0.00014 0.00012 0.00014
KL-MS 0.00001 0.00001 0.00001

Table 3: Bias for µ = [0.20, 0.25], T =
1, 000

M
103 104 105

BernoulliTS -0.00059 0.00106 -0.00068
KL-MS -0.00096 0.00118 0.00011

Table 4: MSEs for µ = [0.80, 0.90],
T = 1, 000

M
103 104 105

BernoulliTS 0.01464 0.01143 0.01228
KL-MS 0.00733 0.00782 0.00749

Table 5: Bias for µ = [0.80, 0.90], T =
1, 000

M
103 104 105

BernoulliTS 0.02911 0.01741 0.01636
KL-MS 0.01304 0.01412 0.01355

Table 6: MSEs for µ = [0.20, 0.25],
T = 10, 000

M
103 104 105

BernoulliTS 0.00017 0.00010 0.00009
KL-MS 0.00007 0.00006 0.00011

Table 7: Bias for µ = [0.20, 0.25], T =
10, 000

M
103 104 105

BernoulliTS 0.00637 0.00142 -0.00240
KL-MS 0.00052 0.00066 0.00220

Table 8: MSEs for µ = [0.80, 0.90],
T = 10, 000

M
103 104 105

BernoulliTS 0.06842 0.01276 0.01220
KL-MS 0.00898 0.00804 0.00929

Table 9: Bias for µ = [0.80, 0.90], T =
10, 000

M
103 104 105

BernoulliTS 0.17947 0.03401 0.04313
KL-MS 0.02046 0.01731 0.01123
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