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Abstract

Federated learning (FL) typically faces data heterogeneity, i.e., distribution shifting
among clients. Sharing clients’ information has shown great potentiality in mitigat-
ing data heterogeneity, yet incurs a dilemma in preserving privacy and promoting
model performance. To alleviate the dilemma, we raise a fundamental question:
Is it possible to share partial features in the data to tackle data heterogeneity? In
this work, we give an affirmative answer to this question by proposing a novel
approach called Federated Feature distillation (FedFed). Specifically, FedFed
partitions data into performance-sensitive features (i.e., greatly contributing to
model performance) and performance-robust features (i.e., limitedly contributing
to model performance). The performance-sensitive features are globally shared to
mitigate data heterogeneity, while the performance-robust features are kept locally.
FedFed enables clients to train models over local and shared data. Comprehensive
experiments demonstrate the efficacy of FedFed in promoting model performance.
The code is publicly available at: https://github.com/tmlr-group/FedFed

1 Introduction

Federated learning (FL), beneficial for training over multiple distributed data sources, has recently
received increasing attention [1, 2, 3]. In FL, many clients collaboratively train a global model by
aggregating gradients (or model parameters) without the need to share local data. However, the
major concern is heterogeneity issues [4, 5, 6] caused by Non-IID distribution of distributed data
and diverse computing capability across clients. The heterogeneity issues can cause unstable model
convergence and degraded prediction accuracy, hindering further FL deployments in practice [1].

To address the heterogeneity challenge, the seminal work, federated averaging (FedAvg), introduces
the model aggregation of locally trained models [4]. It addresses the diversity of computing and
communication but still faces the issue of client drift induced by data heterogeneity [7]. Therefore,
a branch of works for defending data heterogeneity has been explored by devising new learning
objectives [6], aggregation strategies [8], and constructing shareable information across clients [9].
Among explorations as aforementioned, sharing clients’ information has been considered to be a
straightforward and promising approach to mitigate data heterogeneity [9, 10].

However, the dilemma of preserving data privacy and promoting model performance hinders the
practical effectiveness of the information-sharing strategy. Specifically, it shows that a limited
amount of shared data could significantly improve model performance [9]. Unfortunately, no
matter for sharing raw data, synthesized data, logits, or statistical information [10, 11, 12, 7] can
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incur privacy concerns [13, 14, 15]. Injecting random noise to data provides provable security for
protecting privacy [16, 17]. Yet, the primary concern for applying noise to data lies in performance
degradation [18] as the injected noise negatively contributes to model performance. Consequently,
effectively fulfilling the role of shared information necessitates addressing the dilemma of data
privacy and model performance.

We revisit the purpose of sharing information to alleviate the dilemma in information sharing and
performance improvements and ask:

Q.1 Is it possible to share partial features in the data to mitigate heterogeneity in FL? This question
is fundamental to reaching a new phase for mitigating heterogeneity with the information-sharing
strategy. Inspired by the partition strategy of spurious feature and robust feature [19], the privacy
and performance dilemma could be solved if the data features were separated into performance-
robust and performance-sensitive parts without overlapping, where the performance-robust features
contain almost all the information in the data. Namely, the performance-robust features that limitedly
contribute to model performance are kept locally. Meanwhile, the performance-sensitive features that
could contribute to model generalization are selected to be shared across clients. Accordingly, the
server can construct a global dataset using the shared performance-sensitive features, which enables
clients to train their models over the local and shared data.

Q.2 How to divide data into performance-robust features and performance-sensitive features? The
question is inherently related to the spirit of the information bottleneck (IB) method [20]. In IB, ideal
features should discard all information in data features except for the minimal sufficient information
for generalization [21]. Concerning the information-sharing and performance-improvement dilemma,
the features discarded in IB may contain performance-robust features, i.e., private information, thus,
they are unnecessary to be shared for heterogeneity mitigation. Meanwhile, the performance-sensitive
features contain information for generalization, which are the minimum sufficient information and
should be shared across clients for heterogeneity mitigation. Therefore, IB provides an information-
theoretic perspective of dividing data features for heterogeneity mitigation in FL.

Q.3 What if performance-sensitive features contain private information? This question lies in the
fact that a non-trivial information-sharing strategy should contain necessary data information to
mitigate the issue of data heterogeneity. That is, the information-sharing strategy unavoidably causes
privacy risks. Fortunately, we can follow the conventional style in applying random noise to protect
performance-sensitive features because the noise injection approach can provide a de facto standard
way for provable security [16]. Notably, applying random noise to performance-sensitive features
differs from applying random noise for all data features. More specifically, sharing partial features
in the data is more accessible to preserve privacy than sharing complete data features, which is
fortunately consistent with our theoretical analysis, see Theorem 3.3 in Sec. 3.3.

Our Solution. Built upon the above analysis, we propose a novel framework, named Federated
Feature distillation (FedFed), to tackle data heterogeneity by generating and sharing performance-
sensitive features. According to the question Q.1, FedFed introduces a competitive mechanism by
decomposing data features x ∈ Rd with dimension d into performance-robust features xr ∈ Rd

and performance-sensitive features xs ∈ Rd, i.e., x = xr + xs. Then following the question Q.2,
FedFed generates performance-robust features xr in an IB manner for data x. In line with Q.3,
FedFed enables clients to securely share their protected features xp by applying random noise n to
performance sensitive features xs, i.e., xp = xs + n, where n is drawn from a Gaussian distribution
N (0, σ2

sI) with variance σ2
s . To this end, the server can construct a global dataset to tackle data

heterogeneity using the protected features xp, enabling clients to train models over the local private
and globally shared data.

We deploy FedFed on four popular FL algorithms, including FedAvg [4], FedProx [6], SCAF-
FOLD [7], and FedNova [22]. Atop them, we conduct comprehensive experiments on various
scenarios regarding different amounts of clients, varying degrees of heterogeneity, and four datasets.
Extensive results show that the FedFed achieves considerable performance gains in all settings.

Our contributions are summarized as follows:
1. We pose a foundation question to challenge the necessity of sharing all data features for

mitigating heterogeneity in FL with information-sharing strategies. The question sheds light
on solving the privacy and performance dilemma, in a way of sharing partial features that
contribute to data heterogeneity mitigation (Sec 3.1)
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2. To solve the dilemma in information sharing and performance improvements, we propose a
new framework FedFed. In FedFed, each client performs feature distillation—partitioning
local data into performance-robust and performance-sensitive features (Sec 3.2) —and
shares the latter with random noise globally (Sec 3.3). Consequently, FedFed can mitigate
data heterogeneity by enabling clients to train their models over the local and shared data.

3. We conduct comprehensive experiments to show that FedFed consistently and significantly
enhances the convergence rate and generalization performance of FL models across different
scenarios under various datasets (Sec 4.2).

2 Preliminary

Federated Learning. Federated learning allows multiple clients to collaboratively train a global
model parameterized by ϕ without exposing clients’ data [4, 1]. In general, the global model aims to
minimize a global objective function L(ϕ) over all clients’ data distributions:

min
ϕ
L(ϕ) =

K∑
k=1

λkLk(ϕk), (1)

where K represents the total number of clients, λk is the weight of the k-th client. The local objective
function Lk(ϕk) of client k is defined on the distribution P (Xk, Yk) with random variables Xk, Yk:

Lk(ϕk) ≜ E(x,y)∼P (Xk,Yk)ℓ(ϕk;x,y), (2)
where x is input data with its label y and ℓ(·) stands for the loss function, e.g., cross-entropy loss. Due
to the distributed property of clients’ data, the global objective function L(ϕ) is optimized round-by-
round. Specifically, within the r-th communication round, a set of clients C are selected to perform
local training on their private data, resulting in |C| optimized models {ϕr

k}
|C|
k=1. These optimized

models are then sent to a central server to derive a global model for the (r + 1)-th communication
round by an aggregation mechanism AGG(·), which may vary from different FL algorithms:

ϕr+1 = AGG({ϕr
k}

|C|
k=1). (3)

Differential Privacy. Differential privacy [16] is a framework to quantify to what extent individual
privacy in a dataset is preserved while releasing the data.
Definition 2.1. (Differential Privacy). A randomized mechanism M provides (ϵ, δ)-differential
privacy (DP) if for any two neighboring datasets D and D′ that differ in a single entry, ∀S ⊆
Range(M),

Pr(M(D) ∈ S) ≤ eϵ · Pr(M(D′) ∈ S) + δ.
where ϵ is the privacy budget and δ is the failure probability.

The definition of (ϵ, δ)-DP shows the difference of two neighboring datasets in the probability that
the output ofM falls within an arbitrary set S is related to ϵ and an error term δ. Similar outputs
ofM on D,D′ (i.e., smaller ϵ) represent a stronger privacy guarantee. In sum, DP as a de facto
standard of quantitative privacy, provides provable security for protecting privacy.

Information Bottleneck. Traditionally, in the context of the Information Bottleneck (IB) framework,
the goal is to effectively capture the information relevant to the output label Y , denoted as Z,
while simultaneously achieving maximum compression of the input X . Z represents the latent
embedding, which serves as a compressed and informative representation of X , preserving the
essential information while minimizing redundancy. This objective can be formulated as:

LIB = I(X;Y |Z), s.t. I(X;Z) ≤ IIB (4)
where I(·) denote the mutual information and IIB is a constant. This function is defined as a
rate-distortion problem, indicating that IB is to extract the most efficient and informative features.

3 Methodology

We detail the Federated Feature distillation (FedFed) proposed to mitigate data heterogeneity in
FL. FedFed adopts the information-sharing strategy with the spirits of information bottleneck (IB).
Roughly, it shares the minimal sufficient features, while keeping other features at clients1.

1Appendix A displays FedFed’s overview.
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A B C

Figure 1: Have a Guessing Game! Question: Which one is the first image from? A or B or C?

3.1 Motivation

Data heterogeneity inherently comes from the difference in data distribution among clients. Aggregat-
ing models without accessing data would inevitably bring performance degradation. Sharing clients’
data benefits model performance greatly, but intrinsically violates privacy. Applying DP to protect
shared data looks feasible; however, it is not a free lunch with paying the accuracy loss on the model.

Draw inspiration from the content and style partition of data causes [19], we investigate the dilemma
in information sharing and performance improvements through a feature partition perspective. By
introducing an appropriate partition, we can share performance-sensitive features while keeping
performance-robust features locally. Namely, performance-sensitive features in the data are all we
need for mitigating data heterogeneity!

We will elucidate the definitions of performance-sensitive features and performance-robust features.
Firstly, we provide a precise definition of a valid partition (Definition 3.1), which captures the
desirable attributes when partitioning features. Subsequently, adhering to the rules of a valid partition,
we formalize the two types of features (Definition 3.2).

Definition 3.1. (Valid Partition). A partition strategy is to partition a variable X into two parts
in the same measure space such that X = X1 + X2. We say the partition strategy is valid if it
holds: (i) H(X1, X2|X) = 0; (ii) H(X|X1, X2) = 0; (iii) I(X1;X2) = 0; where H(·) denotes the
information entropy and I(·) is the mutual information.

Definition 3.2. (Performance-sensitive and Performance-robust Features). Let X = Xs +Xr be a
valid partition strategy. We say Xs are performance-sensitive features such that I(X;Y |Xs) = 0,
where Y is the label of X . Accordingly, Xr are the performance-robust features.

Intuitively, performance-sensitive features contain all label information, while performance-robust
features contain all information about the data except for the label information. More discussions
about Definition 3.1 and Definition 3.2 can be found in Appendix C.1. Now, the challenge turns out
to be: Can we derive performance-sensitive features to mitigate data heterogeneity? FedFed provides
an affirmative answer from an IB perspective, boosting a simple yet effective data-sharing strategy.

3.2 Feature Distillation

Given the motivation above, we propose to distil features such that data features can be partitioned
into performance-robust features depicting mostly data and performance-sensitive features favourable
to model performance. We design feature distillation and answer Q.2 below.

We draw inspiration from the information bottleneck method [21]. Specifically, only minimal suffi-
cient information is preserved in learned representations while the other features are dismissed [21].
This can be formulated as 2:

min
Z

I(X;Y |Z), s.t. I(X;Z) ≤ IIB, (5)

where Z represents the desired representation extracted from input X with its label Y , I(·) is the
mutual information, and IIB stands for a constant. Namely, given the learned representation Z, the
mutual information between X and Y is minimized. Meanwhile, Z dismisses most information about
the input X so that the mutual information I(X;Z) is less than a constant IIB.

Similarly, in FedFed, only minimal sufficient information is necessary to be shared across clients
to mitigate data heterogeneity, while the other features are dismissed before sharing data, i.e., kept
locally on the client. The differences between IB and FedFed have two folds: 1) FedFed aims to make

2We follow the formulation used in Tishby and Zaslavsky [21, 23].
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the dismissed features close to the original features (i.e., depict most private data information), while
IB focuses on the dissimilarity between the preserved and original features (i.e., contain minimal
sufficient information about data); 2) FedFed dismisses information in the data space while IB does
that in the representation space. More specifically, the objective of feature distillation is:

min
Z

I(X;Y |Z), s.t. I(X;X − Z|Z) ≥ IFF, (6)

where Z represents the performance-sensitive features in X , Y is the label of X , (X − Z) stands
for performance-robust features that are unnecessary to be shared, and IFF is a constant. In Eq.
(6), the (X − Z) should represent data mostly conditioned on performance-sensitive features Z,
while the Z should contain necessary information about the label Y . Consequently, learning with
the objective can divide data features into performance-sensitive features and performance-robust
features, achieving the goal of feature distillation.

To make the feature distillation tractable, we derive an objective equal to the original objective in Eq.
(6) (see Appendix C.2 for more details) for client k as follows:

min
θ
−E(x,y)∼P (Xk,Yk) log p(y|z(x; θ)), s.t. ||z(x; θ)||22 ≤ ρ, (7)

where θ is the parameter to be optimized for generating performance-sensitive features z(·; θ), (x,y)
represents the input pair drawn from the joint distribution P (Xk, Yk) of client k, p(y|·) is the
probability of predicting Y = y, and ρ > 0 stands for a constant. The underlying insight of the
objective function in Eq. (7) is intuitive. Specifically, the learned performance-sensitive features
z(·; θ) are capable of predicting the label y while having the minimal ℓ2-norm.

Unfortunately, the original formulation in Eq. (7) can hardly be used for dividing data features. This
is because the feature distillation in Eq. 7 cannot make the preserved features x − z(x; θ) similar
to the raw features x. Namely, the original Eq. (7) cannot guarantee the desired property of the
preserved features. To solve the problem, we propose an explicit competition mechanism in the
data space. Specifically, we model preserved features, i.e., performance-robust features, with q(x; θ)

explicitly and model the performance-sensitive features z(x; θ) ≜ x− q(x; θ) implicitly:

min
θ
−E(x,y)∼P (Xk,Yk) log p(y|x− q(x; θ)), s.t. ||x− q(x; θ)||22 ≤ ρ. (8)

Thus, by Eq. 8, performance-sensitive features can predict labels and performance-robust features are
almost the same as raw features.

The realization of Eq. (8) is straightforward. To be specific, we can employ a generative model
parameterized with θ to generate performance-robust features, i.e., q(x; θ) in Eq. (8). Meanwhile, we
train a local classifier f(·;wk) parameterized with wk for client-k to model the process of predicting
labels, i.e., − log p(y|·) in Eq. (8). Accordingly, the realization of feature distillation is formulated as
follows with z(x; θ) ≜ x− q(x; θ):

min
θ,wk

−E(x,y)∼P (Xk,Xk)ℓ(f(z(x; θ);wk),y), s.t.||z(x; θ)||22 ≤ ρ, (9)

where ℓ(·) is the cross-entropy loss, q(x; θ) stands for a generative model, and ρ represents a tunable
hyper-parameter. Built upon Eq. (9), we can perform feature distillation, namely, the outputs of
a generator q(x; θ) serve as performance-robust features and x− q(x; θ) are used as performance-
sensitive features. We merely share x− q(x; θ) to tackle data heterogeneity by training models over
both local and shared data. Algorithm 1 summarizes the procedure of feature distillation.

3.3 Protection for Performance-Sensitive Features

Until now, we have intentionally overlooked the overlap between performance-sensitive features and
performance-robust features. Since we prioritize data heterogeneity, overlapping is almost unavoid-
able in practice, i.e., performance-sensitive features containing certain data privacy. Accordingly,
merely sharing performance-sensitive features can risk privacy. Thus, we answer Q. 3 below.

Why employ DP? The constructed performance-sensitive features may contain individual privacy,
thus, the goal of introducing a protection approach is for individual privacy. In addition, the employed
protection approach is expected to be robust against privacy attacks [24, 25]. According to the above
analysis, differential privacy (DP) is naturally suitable in our scenario of feature distillation. Thus,
we employ DP to protect performance-sensitive features before sending them to the server.
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Algorithm 1 Feature Distillation
Server input: communication round Td, DP noise level σ2

s

Client k’s input: local epochs of feature distillation Ed, k-th local dataset Dk and rescale to [0, 1]

Initialization: server distributes the initial model w0, θ0 to all clients
Server Executes:
for each round t = 1, 2, · · · , Td do

server samples a subset of clients Ct ⊆ {1, ...,K},
server communicates wt, θt to selected clients
for each client k ∈ Ct in parallel do
wt+1

k , θt+1
k ← Local_FeatDis (wt, θt, σ2

s)
end for
wt+1, θt+1 ← AGG (wt

k, θ
t
k, k ∈ Ct)

end for
Ds = {Ds

k}Kk=1 ←Collecting xp generated by k-th client use Eq (9), where xp = xs + n

Local_FeatDis(wt, θt, σ2
s ):

for each local epoch e with e = 1, · · · , Ed do
wt+1

k , θt+1
k ← SGD update use Eq (9).

end for
Return wt+1

k , θt+1
k to server

How to apply DP? Applying noise (e.g., Gaussian or Laplacian) to performance-sensitive features
before sharing can protect features with DP guarantee [26, 16], i.e., xp = xs + n. Consequently,
the server can collect protected features xp from clients to construct a global dataset and send the
dataset back to clients. To give a vivid illustration, we provide a guessing game3 in Figure 1, showing
4 images. The first image represents the DP-protected performance-sensitive features of one image
(A, B, or C). It is hard to identify which one of the raw images (A, B, C) the first image belongs to.

Training with DP. The protected performance-sensitive features are shared, thus, the server can
construct a globally shared dataset. Using the global dataset, clients can train local classifier f(·;ϕk)
parameterized by ϕk with the private and shared data:

min
ϕk

E(x,y)∼P (Xk,Yk)ℓ(f(x;ϕk),y) + E(xp,y)∼P (h(Xk),Yk)ℓ(f(xp;ϕk),y), (10)

where f(·;ϕk) is trained for model aggregation, (xp,y) are protected performance-sensitive features
that are collected from all clients, and h(Xk) := z(Xk) + n with noise n. Pseudo-code of how to
apply FedFed are listed in Appendix B.

DP guarantee. Following DP-SGD [27], we employ the idea of the ℓ2-norm clipping relating
to the selection of the noise level σ. Specifically, we realize the constraint in Eq. (9) as follows:
∥z(x; θ)∥2 ≤ ρ∥x∥, with 0 < ρ < 1 (i.e., ∥xs∥ ≤ ρ∥x∥). For aligning analyses with conventional
DP guarantee, we let the random mechanism on performance-robust features xr be xr + n, n ∼
N (0, σ2

rI). Similar for performance-sensitive features, we have xs + n, n ∼ N (0, σ2
sI). Since xr

is kept locally, an adversary views nothing (or random data without any entropy). This keeps equal
to adding a sufficiently large noise, i.e., σr = ∞ on xr to make it random enough. Consequently,
FedFed can provide a strong privacy guarantee. Moreover, for each client, we show that FedFed
requires a relatively small noise level σ for achieving identical privacy, which is given in Theorem 3.3
(detailed analysis is left in Appendix D).

Theorem 3.3. Let σ be the noise scale for FedFed and σ′ be the noise scale for sharing raw x. Given
identical ϵ, δ, we attain σ < σ′ such that σ ∝ ∥xs∥2.

Besides each client, we give the privacy analysis for the FL system paired with the proposed FedFed.

Theorem 3.4 (Composition of FedFed). For k clients with (ϵ, δ)-differential
privacy, FedFed satisfies (ϵ̂δ̂, 1 − (1 − δ̂)Πi(1 − δi))-differential privacy,

3We reveal the answer in Appendix F.2
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Table 1: Top-1 accuracy with(without) FedFed under different heterogeneity degree, local epochs,
and clients number on CIFAR-10.

centralized training ACC = 95.48% w/(w/o) FedFed

ACC↑ Gain↑ Round ↓ Speedup↑ ACC↑ Gain↑ Round ↓ Speedup↑

α = 0.1, E = 1,K = 10 (Target ACC =79%) α = 0.05, E = 1,K = 10 (Target ACC =69%)

FedAvg 92.34(79.35) 12.99↑ 39(284) ×7.3(×1.0) 90.02(69.36) 20.66↑ 44(405) ×9.2(×1.0)
FedProx 92.12(83.06) 9.06↑ 62(192) ×4.6(×1.5) 90.73(78.98) 11.75↑ 48(203) ×8.4(×2.0)

SCAFFOLD 89.66(83.67) 5.99↑ 34(288) ×8.4(×1.0) 81.04(37.87) 43.17↑ 37(None) ×10.9(None)
FedNova 92.23(80.95) 11.28↑ 33(349) ×8.6(×0.8) 91.21(65.08) 26.13↑ 32(None) ×12.7(None)

α = 0.1, E = 5,K = 10 (Target ACC =85%) α = 0.1, E = 1,K = 100 (Target ACC =49%)

FedAvg 93.24(83.79) 9.45 ↑ 17(261) ×15.4(×1.0) 84.06(49.72) 34.34↑ 163(967) ×5.9(×1.0)
FedProx 91.39(82.32) 8.97 ↑ 76(None) ×3.4(None) 87.01(50.01) 37.00↑ 127(831) ×7.6(×1.2)

SCAFFOLD 92.34(85.31) 7.03 ↑ 15(66) ×17.0(×4.0) 79.60(52.76) 26.84↑ 171(627) ×5.7(×1.5)
FedNova 92.85(86.21) 6.64 ↑ 31(120) ×8.4(×2.2) 86.64(45.97) 40.67↑ 199(None) ×4.9(None)

“Round”: communication rounds arriving at the target accuracy. “None”: not attaining the target accuracy. Results in “(·)”
indicates training without FedFed.

Table 2: Top-1 accuracy with(without) FedFed under different heterogeneity degree, local epochs,
and clients number on FMNIST.

centralized training ACC = 95.64% w/(w/o) FedFed

ACC↑ Gain↑ Round ↓ Speedup↑ ACC↑ Gain↑ Round ↓ Speedup↑

α = 0.1, E = 1,K = 10 (Target ACC =86%) α = 0.05, E = 1,K = 10 (Target ACC =78%)

FedAvg 92.34(86.73) 5.61↑ 14(121) ×8.6(×1.0) 90.69(78.34) 12.35↑ 16(420) ×26.3(×1.0)
FedProx 92.09(87.73) 4.36 ↑ 32(129) ×2.1(×0.9) 89.68(82.03) 7.65↑ 16(44) ×26.3(9.5)

SCAFFOLD 91.62(86.31) 3.89↑ 29(147) ×4.2(× 0.8) 80.48(76.63) 3.85↑ 139(None) ×6.2(None)
FedNova 92.39(87.03) 5.36↑ 18(88) ×6.7(×1.4) 89.72(79.98) 9.74↑ 16(531) ×26.3(× 0.8)

α = 0.1, E = 5,K = 10 (Target ACC =87%) α = 0.1, E = 1,K = 100 (Target ACC =90%)

FedAvg 92.26(87.43) 4.83↑ 19(276) ×14.5(×1.0) 92.71(90.21) 2.5↑ 243(687) ×2.8(×1.0)
FedProx 91.79(86.63) 5.16↑ 34(None) ×8.1(None) 92.82(90.17) 2.65↑ 284(501) ×2.4(×1.4)

SCAFFOLD 92.92(87.21) 5.71↑ 8(112) ×34.5(×2.5) 90.28(84.87) 5.41↑ 952(None) ×0.7 (None)
FedNova 92.30(87.67) 4.63↑ 8(187) ×34.5(×1.5) 91.04(85.32) 5.72↑ 589(None) ×1.2(None)

where, ϵ̂δ̂ = min{kρ
√

R log(1/δ)

σs
,
ρ
√

R log(1/δ)

σs
[ e

ρ
√

R log(1/δ)/σs−1

eρ
√

R log(1/δ)/σs+1
k + ϵ(2k log(e +

(ρ

√
kRδ̂ log(1/δ))/(σ2

s δ̂)))
1/2],

ρ
√

R log(1/δ)

σs
· [ e

ρ
√

R log(1/δ)/σs−1

eρ
√

R log(1/δ)/σs+1
k +

√
2k log(1/δ̂)]}.

Atop composition theorem [28], Theoreom 3.4 shows that FedFed is able to provide a strong privacy
guarantee for FL systems.

4 Experiments

We organize this section in the following aspects: a) the main experimental settings that we primarily
followed (Sec 4.1); b) the main results and observations of applying FedFed to existing popular FL
algorithms (Sec 4.2); c) the sensitivity study of hyper-parameters on effecting model performance
(Sec 4.3); and d) empirical analysis of privacy with two kinds of attacks (Sec 4.4).

4.1 Experimental Setup

Federated Non-IID Datasets. Following previous works [10, 29], we conduct experiments over
CIFAR-10, CIFAR100 [30], Fashion-MNIST(FMNIST) [31], and SVHN [32]. Following [5], we
employ latent Dirichlet sampling (LDA) [33] to simulate Non-IID distribution.In our experiments,
following [5, 34], we set α = 0.1 and α = 0.05 by LDA. Besides, we evaluate FedFed with other
two widely adopted partition strategies: #C = k [4, 5] and Subset method [9], mainly including
label skew and quantity skew (Appendix F.1 shows more detail of data distribution).
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Table 3: Top-1 accuracy with(without) FedFed under different heterogeneity degree, local epochs,
and clients number on CIFAR-100.

centralized training ACC = 75.56% w/(w/o) FedFed

ACC↑ Gain↑ Round ↓ Speedup↑ ACC↑ Gain↑ Round ↓ Speedup↑

α = 0.1, E = 1,K = 10 (Target ACC =67%) α = 0.05, E = 1,K = 10 (Target ACC =61%)

FedAvg 69.64(67.84) 1.8↑ 283(495) ×1.7 (×1.0) 68.49(62.01) 6.48↑ 137(503) ×3.7(×1.0)
FedProx 70.02(65.34) 4.68 ↑ 233(None) ×2.1(None) 69.03(61.29) 7.74↑ 141(485) ×3.6(1.0)

SCAFFOLD 70.14(67.23) 2.91↑ 198(769) ×2.5(× 0.6) 69.32(58.78) 10.54↑ 81(None) ×6.2(None)
FedNova 70.48(67.98) 2.5↑ 147(432) ×3.4(×1.1) 68.92(60.53) 8.39↑ 87(None) ×5.8(None)

α = 0.1, E = 5,K = 10 (Target ACC =69%) α = 0.1, E = 1,K = 100 (Target ACC =48%)

FedAvg 70.96(69.34) 1.62↑ 79(276) ×3.5(×1.0) 60.58(48.21) 12.37↑ 448(967) ×2.2(×1.0)
FedProx 69.66(62.32) 7.34↑ 285(None) ×1.0(None) 67.69(48.78) 18.91↑ 200(932) ×4.8(×1.0)

SCAFFOLD 70.76(70.23) 0.53↑ 108(174) ×2.6(×1.6) 66.67(51.03) 15.64↑ 181(832) ×5.3(×1.2)
FedNova 69.98(69.78) 0.2↑ 89(290) ×3.1(×1.0) 67.62(48.03) 19.59↑ 198(976) ×4.9(×1.0)

Table 4: Top-1 accuracy with(without) FedFed under different heterogeneity degree, local epochs,
and clients number on SVHN.

centralized training ACC = 96.56% w/(w/o) FedFed

ACC↑ Gain↑ Round ↓ Speedup↑ ACC↑ Gain↑ Round ↓ Speedup↑

α = 0.1, E = 1,K = 10 (Target ACC =88%) α = 0.05, E = 1,K = 10 (Target ACC =82%)

FedAvg 93.21(88.34) 4.87↑ 105(264) ×2.5(×1.0) 93.49(82.76) 10.73↑ 194(365) ×1.9(×1.0)
FedProx 91.80(86.23) 5.574↑ 233(None) ×1.1(None) 93.21(79.43) 13.78↑ 37(None) ×9.9(None)

SCAFFOLD 88.41(80.12) 8.29↑ 357(None) ×0.(None) 90.27(75.87) 14.4↑ 64(None) ×5.7(None)
FedNova 92.98(89.23) 3.75↑ 113(276) ×2.3(×1.0) 93.05(82.32) 10.73↑ 37(731) ×9.9(×0.5)

α = 0.1, E = 5,K = 10 (Target ACC =87%) α = 0.1, E = 1,K = 100 (Target ACC =89%)

FedAvg 93.77(87.24) 6.53↑ 105(128) ×1.2(×1.0) 91.04(89.32) 1.72↑ 763(623) ×0.8(×1.0)
FedProx 91.15(77.21) 13.94↑ 142(None) ×0.9(None) 91.41(88.76) 2.65↑ 733(645) ×0.8(×1.0)

SCAFFOLD 93.78(80.98) 12.8↑ 20(None) ×6.4(None) 92.73(88.32) 4.41↑ 507(687) ×1.2(×0.9)
FedNova 93.66(89.03) 4.63↑ 52(177) ×2.5(×0.7) 84.05(81.87) 2.18↑ None(None) None(None)

Models, Metrics and Baselines. We use ResNet-18 [35] both in the feature distillation and classifier
in FL. We evaluate the model performance via two popular metrics in FL: a) communication rounds
and b) best accuracy. Typically, the target accuracy is set to be the best accuracy of vanilla FedAvg.
As a plug-in approach, we apply FedFed to prevailing existing FL algorithms, such as FedAvg [4],
FedProx [6], SCAFFOLD [7], and FedNova [22] to compare the efficiency of our method. More
experimental settings and details are listed in Appendix B.1.

4.2 Main Results

Generative Model Selection. We consider two generative models in this paper to distill raw data,
i.e., Resnet Generator, a kind of vanilla generator used in many works [36, 37], and β-VAE [38],
an encoder-decoder structure by variational inference. We verify the effectiveness of FedFed with
different generative models. According to results shown in Figure 2 (a), we observe that β-VAE gets
better performance in FedFed. Thus, we mainly report the results of β-VAE in the rest.

Result Analysis. The experimental results on CIFAR-10, CIFAR-100, FMNIST, and SVHN are
shown respectively in Tables 1, 2, 3, and 4. It can be seen that the proposed method can consistently
and significantly improve model accuracy under various settings. Moreover, FedFed can promote the
convergence rate of different algorithms4. Specifically, FedFed brings significant performance gain in
CIFAR-10 under the K = 100 setting shown in Table 1 and also notably speeds up the convergence
rate in FMNIST under the α = 0.05, E = 1,K = 10 setting. However, attributable to the original
FL methods almost reaching a performance bottleneck, FedFed achieves limited performance gain
in SVHN and FMNIST. FedFed also has limited improvement in CIFAR-100. A possible reason

4More supporting figures of convergence rate are moved to appendix F.4

8



(a) (b) (c)

Figure 2: More facts of FedFed. (a) Convergence rate of different generative models (i.e., β-VAE[38]
and ResNet generator[37]) compared with vanilla FedAvg. (b) Test accuracy and convergence rate on
different federated learning algorithms with or without FedFed under α = 0.1, E = 1,K = 100. (c)
Test accuracy on FMNIST with different noise level σ2

s in Theorem 3.3, obtaining various privacy ϵ
(lower ϵ is preferred). As the noise increased, the level of protection gradually increased.

Table 5: Experiment results of different Non-IID
partition methods on CIFAR-10 with 10 clients.

Test Accuracy w/(w/o) FedFed
Partition
Method FedAvg FedProx SCAFFOLD FedNova

α = 0.1 92.34(79.35) 92.12(83.06) 89.66(83.67) 92.23(80.95)
#C = 2 89.23/42.54 88.17/58.45 84.43/46.82 89.54/45.42
Subset 90.29/39.53 89.11/32.87 89.92/35.26 90.00/38.52

Table 6: Experiment results with different noise
adding on CIFAR-10.

Test Accuracy on Different Noise with FedFed
Noise Type FedAvg FedProx SCAFFOLD FedNova

Gaussian Noise 92.34 92.12 89.66 92.23
Laplacian Noise 92.30 91.36 91.24 91.73

is that existing methods can achieve performance comparable to centralized training. Moreover,
we conducted an additional experiment involving sharing the full data with DP protection. The
results, presented in Appendix F.3, indicate that sharing the full data with DP protection leads to a
degradation in the performance of the FL system. This degradation occurs because protecting the full
data necessitates a relatively large noise to achieve the corresponding protection strength required to
safeguard performance-sensitive features.

Surprising Observations. We find that training among 100 clients in CIFAR-10 and CIFAR100
reaches a significant improvement (e.g., at most 40.67%!). A possible reason is that the missed data
knowledge can be well replenished by FedFed. Moreover, all methods paired with FedFed under
various settings can achieve similar prediction accuracies, demonstrating that FedFed endows FL
models robustness against data heterogeneity. Table 5 shows that two kinds of heterogeneity partition
cause more performance decline than LDA (α = 0.1). Yet, FedFed attains noteworthy improvement,
indicating the robustness against Non-IID partition.

4.3 Ablation Study

DP Noise. To explore the relationship between privacy level ϵ and prediction accuracy, we conduct
experiments with different noise levels σ2

s . As shown in Figure 2(c), the prediction accuracy decreases
with increasing noise level (more results in Appendix F.5). To verify whether the FedFed is robust
against the selection of noise, we also consider Laplacian noise in applying DP to privacy protection.
The results of Laplacian noise are reported in Table 6, demonstrating the robustness of FedFed.

Hyper-parameters. We further evaluate the robustness of FedFed against hyper-parameters. During
the feature distillation process, as the constraint parameter ρ in Eq. 9 decreases, the DP strength to
protect performance-sensitive features decreases, and the performance of the global model decreases,
owing to the less information contained in performance-sensitive features.

4.4 Privacy Verification

Besides the theoretical analysis, we provide empirical analysis to support the privacy guarantee of
FedFed. We wonder whether the globally shared data can be inferred by some attacking methods.
Thus, we resort to model inversion attack [39], widely used in the literature to reconstruct data.
The results5 in Figure 3 (a) and (b) indicate that FedFed could protect globally shared data. We
also conduct another model inversion attack [40] and the results can be found in Appendix E.1.

5More details and results can be found in Appendix E.1.
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Figure 3: Attack results on FedFed. (a) shows the protected data xp. (b) reports the model inversion
attacked data. (c) shows results of membership inference attacks: the green star represents the recall
for FedFed, while the blue stars show the searching process varying with σ2

s for sharing raw data.

Additionally, we perform membership inference attack [41] to illustrate the difference between
FedFed and sharing all data features with DP protection. The results illustrated in Figure 3 (c) show
that noise level σ2 = 0.3 over raw data x can achieve similar protection as noise σ2

s = 0.15 over
globally shared data xp, which aligns with Theorem 3.3. More details can be found in Appendix E.2

5 Related Work

Federated Learning (FL) models typically perform poorly when meeting severe Non-IID data [2, 7].
To tackle data heterogeneity, advanced works introduce various learning objectives to calibrate the
updated direction of local training from being far away from the global model, e.g., FedProx[6],
FedIR [42], SCAFFOLD [7], and MOON [43]. Designing model aggregation schemes like Fe-
dAvgM [33], FedNova [22], FedMA [44], and FedBN [45] shows the efficacy on heterogeneity
mitigation. Another promising direction is the information-sharing strategy, which mainly focuses on
synthesizing and sharing clients’ information to mitigate heterogeneity [9, 46, 47]. To avoid exposing
privacy caused by the shared data, some methods utilize the statistics of data [48], representations
of data [12], logits [49, 10], embedding [50]. However, advanced attacks pose potential threats to
methods with data-sharing strategies [51].

FedFed is inspired by [34], where pure noise is shared across clients to tackle data heterogeneity. In
this work, we relax the privacy concern by sharing partial features in the data with DP protection. In
addition, our work is technically similar to an adversarial learning approach [52]. Our method distin-
guishes by defining various types of features and delving into the exploration of data heterogeneity
within FL. More discussion can be found in Appendix G.

6 Conclusion

In this work, we propose a novel framework called FedFed to tackle data heterogeneity in FL by
employing the promising information-sharing approach. Our work extends the research line of
constructing shareable information of clients by proposing to share partial features in data. This
shares a new route of improving training performance and maintaining privacy. Furthermore, FedFed
has served as a source of inspiration for a new direction focused on improving performance in open-
set scenarios [53]. Another avenue of exploration involves deploying FedFed in other real-time FL
application scenarios, such as recommendation systems [54] and healthcare system [55], to uncover
its potential benefits.

Limitation. In reality, limited local hardware resources may limit the power of FedFed, since
FedFed introduces some extra overheads like communication and storage overheads. We leave it as
future works to explore a hardware-friendly version or real-world application [56, 57]. Additionally,
FedFed raises potential privacy concerns that we leave as a future research exploration, such as
integrating cryptography [58, 59]. We anticipate that our work will inspire further investigations to
comprehensively evaluate the privacy risks associated with information-sharing strategies aimed at
mitigating data heterogeneity.
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A Overview of FedFed Framework
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Figure 4: Overview of FedFed
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Figure 5: The Pipeline of Feature Distillation

The training process of the federated learning system with FedFed can be summarized into four phases.
Firstly, every participant of FL distils the local private raw data x and decouples x into performance-
robust features xr and performance-sensitive features xs during the feature distillation phase. Then
all clients send xp to construct a global dataset, xs with DP protection and keep xr locally. In the
local training phase, the selected clients sample a subset from the globally shared dataset and update
the local model with local raw data x and sampled information xp from server. Finally, clients upload
the latest local model and aggregate a global model based on a certain aggregation algorithm, like
the weighted average strategy in FedAvg. Figure 4 shows the overview of FedFed framework, while
Figure 5 depicts its pipeline of feature distillation. The loss function of feature distillation in Figure 5
can be formulated as Eq (9).

B Federated Learning Algorithms with FedFed

B.1 Implementation Details

We list all relevant parameters in this paper in Table 7. We fine-tune learning rate in the set of
{0.0001, 0.001, 0.01, 0.1} and report the best results and corresponding learning rate. Whereas, we
use 0.01 as the learning rate. In our work, we deploy FedFed on SCAFFOLD and set the learning
rate ηk to 0.0001 for the SVHN dataset. Furthermore, we use ηk = 0.001 in SVHN while FedNove
is deployed with our method.

The batch size is set as 64 when K = 10 and 32 for K = 100. On the server side, we select 5 clients
for aggregation per round when K = 10, and 10 clients per round when K = 100. This corresponds
to a sampling rate of 50% for 10 clients (K = 10) and 10% for 100 clients (K = 100). The noise
level in our experiments is N (0, 0.15). Besides, all experiments are performed on Python 3.8, 36
core 3.00GHz Intel Core i9 CPU, and NVIDIA RTX A6000 GPUs.
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Table 7: The values of all parameters in this paper

Symbolic representation Value Description

Federated Learning Relevant

α 0.1/0.05 heterogeneity degree

Td 15 communication round of feature distillation

Tr 1,000 communication round of classifier training

Ed 1 local epochs of feature distillation

E/Er 1/5 local epochs of classifier training

σ2
s 0.15 DP noise level, added to xs

|Ct|/|Cr| 5/10 #selected clients every communication round

K 10/100 #clients of federated system

Training Process Relevant

ηk 0.01/0.001/0.0001 learning rate

B 32/64 batch size

M 0.9 momentum

wd 0.0001 weight decay for regularization

“#” represents the number of, and “/” denotes we try these values for these symbolic representations.

B.2 Pseudo-code and Explaination

In this section, we give the pseudo-code of FL algorithm with FedFed. Algorithm 2 gives the
procedure of FedAvg and FedProx with FedFed. The difference between FedAvg and FedProx is the
local objective function, and we highlight it in the following equation:

min
ϕk

E(x,y)∼P (Xk,Xk)ℓ(f(x;ϕk),y) + E(xp,y)∼P (h(Xk),Yk)ℓ(f(xp;ϕk),y) +
µ

2
||ϕ− ϕr||2, (11)

SCAFFOLD attempts to estimate the client shift degree to correct client update direction. Particularly,
it works through server control variate c and client control variate ck of client k. SCAFFOLD
with FedFed is summarized in Algorithm 3. And FedNova is proposed to resolve the objective
inconsistency for defying data heterogeneity. The outline of our plugin deploys on FedNova in the
Algorithm 4. In accordance with our process of how to apply FedFed, every participant of the FL
system can deploy our framework easily without any modification of objective function or aggregation
scheme in their own methods.

C Full Analysis on Information Theory Perspective

C.1 Features Partition

From an information theory perspective, we present formal definitions, namely Definition 3.1 and
Definition 3.2, to define performance-robust features and performance-sensitive features. Specifically,
Definition 3.1 captures the desirable attributes when we partition the features, which are abstracted to
be a variable in general. A valid partition should maintain all information of the original variable
X losslessly. That is, neither extra information is introduced nor key information is lost. So we
can get (i) and (ii) in Definition 3.1. After determining the measure space, we partition the X to be
X = X1 +X2. The mutual information of X1 and X2 is none. Here, X1 and X2 can be symmetric.
Or saying, there is no overlap between X1 and X2, as described by (iii) in Definition 3.1.
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Algorithm 2 FedAvg/FedProx with FedFed
Server Input: initial global model ϕ0, communication round Tr.
Client k’s Input: local epochs Er, local private datasets Dk, learning rate ηk.

Initialization: server distributes the initial model ϕ0 to all clients,
Generate globally shared dataset Ds. ← Detail in Algorithm 1

Distribute Ds to all clients and Dk
t = Dk ∪ Ds.

Server Executes:
for each round r = 1, 2, · · · , Tr do

server samples a subset of clients Cr ⊆ {1, ...,K}
server communicates ϕr to selected clients k ∈ Cr

for each client k ∈ Cr in parallel do
ϕr+1
k ← Client_Training(k, ϕr)

end for
ϕr+1 ← AGG(ϕr+1

k )
end for

Client_Training(k, ϕr):
ϕr initialize local model ϕr

k
for each local epoch e with e = 1, 2, · · · , Er do
ϕr+1
k ← SGD update with Dk

t using Eq. (10), FedProx uses Eq. (11)
end for
Return ϕr+1

k to server

Built upon the Definition 3.1, we present the definition of performance-sensitive features and
performance-robust features, as in Definition 3.2. Intuitively, performance-sensitive features contain
all label information, while performance-robust features contains all information about the data except
for the label information. That is, the features to be partitioned are either performance-sensitive
features or performance-robust features.

C.2 FedFed on Information Bottleneck Perspective

In this section, we analyse FedFed under an information bottleneck(IB) aspect. In conventional,
information bottleneck [21] can be formalized as:

min
Z

I(X;Y |Z), s.t. I(X;Z) ≤ Ic. (12)

where to restrict the complexity of encoding Z. Information entropy is denoted as H(·) and I(·; ·)
is the mutual information of two variables. In FedFed, our competitive mechanism stems from IB
getting the following definition:

min
Z

I(X;Y |Z), s.t. I(X − Z;X|Z) ≥ Ic,

⇔ min
Z

H(Y |Z), s.t. H(Z) ≤ Hc,

⇔ min
z
−E log p(y|z), s.t. ||z||22 ≤ ρ.

(13)

According to our framework, z can be defined as: z = z− xr = x− q(x; θ), and then we can the
get the optimization view of FedFed:

min
θ
−E(x,y)∼P (Xk,Yk) log p(y|x− q(x; θ)), s.t. ||x− q(x; θ)||22 ≤ ρ. (14)

Ultimately, in an information bottleneck perspective, minθ −E(x,y)∼P (Xk,Yk) log p(y|x− q(x; θ))

intend to contain more information that can be used for generalization. ||x− q(x; θ)||22 ≤ ρ aims at
distilling raw data for minimum features which means maximal compression of xs.
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Algorithm 3 SCAFFOLD with FedFed
Server Input: initial global model ϕ0, communication round Tr, server control variate c = 0.
Client k’s Input: local epochs Er, local private datasets Dk, learning rate ηk, variate ck =
0.

Initialization: server distributes the initial model ϕ0 to all clients,
Generate globally shared dataset Ds. ← Detail in Algorithm 1

Distribute Ds to all clients and Dk
t = Dk ∪ Ds.

Server Executes:
for each round r = 1, 2, · · · , Tr do

server samples a subset of clients Cr ⊆ {1, ...,K}
server communicates ϕr to selected clients k ∈ Cr

for each client k ∈ Cr in parallel do
∆ϕr+1

k ,∆c← Client_Training(k, ϕr, c)
end for
ϕr+1 ← AGG(∆ϕr+1

k ), c← c+ |Cr|
K ∆c

end for

Client_Training(k, ϕr, c):
ϕr initialize local model ϕr

k
for each local epoch e with e = 1, 2, · · · , Er do
ϕr+1
k ← ϕr

k − ηk[∇ϕr
k
Lk(ϕ

r
k)− ck + c], (SGD update with Dk

t use Eq. (10))
end for
c⋆k ← (i)∇ϕr

k
Lk(ϕ

r
k), or(ii)ck − c+ 1

Eηk
(ϕr

k − ϕr+1
k )

∆c← c⋆k − ck, ∆ϕr+1
k ← ϕr+1

k − ϕr

ck ← c⋆k
Return (∆ϕr+1

k ,∆c) to server

Proof. To get Eq (13), we firstly have:
I(X;Y |Z) = I(X;Y )− I(X;Y ;Z)

= H(X) +H(Y )−H(X,Y )− [I(Y ;Z)− I(Y ;Z|X)]

= H(X) +H(Y )−H(X,Y )− [H(Y ) +H(Z)−H(Y,Z)]

+ [H(Y |X)−H(Y |X,Z)]

= H(X) +H(Y )−H(X,Y )−H(Y )−H(Z)

+H(Y,Z) +H(Y |X)−H(Y |X,Z)

= H(X)−H(X,Y )−H(Z) +H(Y,Z) +H(Y |X)−H(Y |X,Z)

= H(Y,Z)−H(Z)−H(Y |X,Z)

= H(Z) +H(Y |Z)−H(Z)−H(Y |X,Z)

= H(Y |Z)−H(Y |X,Z)

= H(Y |Z)−H(Y |X).

I(X − Z;X|Z) = I(X − Z;X)− I(X − Z;X;Z)

= H(X − Z) +H(x)−H(X − Z,X)− [I(X;Z)− I(X;Z|X − Z)]

= H(X − Z) +H(X)−H(X − Z,X)− [H(X) +H(Z)−H(X,Z)]

+ [H(X|X − Z)−H(X|X − Z,Z)]

= H(X − Z) +H(X)−H(X − Z,X)−H(X)−H(Z)

+H(X,Z) +H(X|X − Z)−H(X|X − Z,Z)

= H(X − Z)−H(X − Z,X)−H(Z) +H(X,Z) +H(X|X − Z)

= H(X − Z)−H(X)−H(Z) +H(X) +H(X|X − Z)

= H(X − Z)−H(Z) +H(X|X − Z)

= H(X,X − Z)−H(Z)

= H(X)−H(Z).

I(X − Z;X|Z) ≥ Ic ⇔ H(X)−H(Z) ≥ Ic ⇒ H(Z) ≤ H(x)− Ic = Hc ⇒ H(Z) ≤ Hc.
(15)
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Algorithm 4 FedNova with FedFed
Server Input: initial ϕ0, communication round Tr.
Client k’s Input: Epochs Er, local private datasets Dk, learning rate ηk, momentum factor ϱk.

Initialization: server distributes the initial model ϕ0 to all clients,
Generate globally shared dataset Ds. ← Detail in Algorithm 1

Distribute Ds to all clients and Dk
t = Dk ∪ Ds

Server Executes:
for each round r = 1, 2, · · · , Tr do

server samples a subset of clients Cr ⊆ {1, ...,K}
server communicates ϕr to selected clients k ∈ Cr

for each client k ∈ Cr in parallel do
∆ϕr+1

k , ak ← Client_Training(k, ϕr)
end for
ϕr+1 ← ϕr −

∑
k∈Cr

ak

K

∑
k∈Cr

∆ϕr+1
k

K
end for

Client_Training(k, ϕr):
ϕr initialize local model ϕr

k
for each local epoch e with e = 1, 2, · · · , Er do
ϕr+1
k ← SGD updata with Dk

t use Eq. (10))
end for
ak ← [E − ϱk(1− ϱE)/(1− ϱk)]/(1− ϱk)
∆ϕr+1

k ← (ϕr+1
k − ϕr

k)/(ηkak)

Return ∆ϕr+1
k , ak to server

Then, we get minZ I(X;Y |Z), s.t. I(X − Z;X|Z) ≥ Ic ⇔ minZ H(Y |Z), s.t. H(Z) ≤ Hc.

Furthermore, we have:

H(Y |Z) =

∫
z

p(z)H(Y |Z = z)dz =

∫
z

p(z)

∫
y

p(y|z) log 1

p(y|z)
dydz

= −
∫
z

∫
y

p(y, z) log p(y|z)dydz

= −E log p(y|z).

H(Z) ≤ 1

2

d∑
i=1

lnVar(zi)2πe =
1

2

d∑
i=1

lnVar(zi) +
1

2

d∑
i=1

ln 2πe

≤ 1

2

d∑
i=1

lnVar(zi) +
1

2
d ln 2πe =

1

2

d∑
i=1

lnE(z2i ) +
1

2
d ln 2πe

=
1

2
lnE(

d∑
i=1

z2i ) +
1

2
d ln 2πe ≤ Hc

⇒E||z||22 ≤ e2Hc−d ln 2πe = ρ,

(16)

which completes the proof.

D Full Analysis on Differentially Private Features

Our security analyses contain two steps, saying, differential privacy for each client and the overall
analyses for FedFed. Built upon previous works [27, 16], we derive Lemma D.1 below. For FedFed,
we attain Lemma D.2 by limiting σr →∞.

Lemma D.1. For sharing raw features x, (ϵ, δ)-DP holds if ϵ′ = O(
√
R log(1/δ)(ρ/σs + (1 −

ρ)/σr)).
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Lemma D.2. For sharing performance-sensitive features xs, (ϵ, δ)-DP holds if ϵ =

O(ρ
√

R log(1/δ)/σs).

D.1 Analysis and Proof for Theorem 3.3

Recall that DP-SGD [27] samples i.i.d. noise from unbias Gaussian distribution N (0, S2
fσ

2), where
Sf is the sensitivity. At the algorithmic level, the noise sampled from N (0, σ2C2I) is added to a
batch of gradients handled by clipping value C.

For aligning analyses with conventional DP guarantees, we adopt similar notations and expressions.
Specifically, we denote the noise distribution operated on xr to beN (0, σ2

rI) and the noise distribution
operated on xs to be N (0, σ2

sI). Notably, FedFed only adds DP noise to xs in practice. Since xr is
kept by the corresponding client, an adversary could attain nothing (or be regarded as random data
without any entropy). This could be regarded as adding a sufficiently large noise on xr, thus we
consider the σr →∞. As for xs, we employ the ℓ2-norm clipping when selecting the noise level σs.

Now, let’s come back to the setting of sharing all raw data x. We still regard x to be two parts, i.e.,
x = xr + xs for the latter comparison to FedFed. This trick is motivated by cryptographic standard
proof with ideal/real paradigm [60]. For both xr and xs, the noise addition follows DP-SGD’s idea,
except for adding noise to the sampled data for updating gradients, rather than the latter-computed
real gradients. We remark that this method works for FL but may be different for centralized training
(with identical training set in the whole training process).

Using the property of post-processing [16], the noise added to the data passes to (or projects to) the
following gradient updates. For the view of each client, we know that Theorem D.36 holds for σ
operated on x from [27].
Theorem D.3. There exist constants c1 and c2 so that given the sampling probability q = L/N and
the number of steps T , for any ϵ < c1q

2T . The algorithm of DP-SGD is (ϵ, δ)-differentially private

for any δ > 0 if we choose σ = c2
q
√

T log(1/δ)

ϵ .

For strong composition theorem, the choice of σ in Theorem D.3 is O(q
√

T log(1/δ)/ϵ). In DP-
SGD, the T denotes the number of training steps, which means the times of using/sampling private
data for DP training. Such meaning represents communication rounds in FL, in which each client
receives globally shared data at each round of communication. In the FedFed, we denote the number
of communication rounds to be R. Now, let’s handle the q, where q represents the ratio of lot size
and the inputting dataset size. In DP-SGD, the per-lot data is directly sampled from the database of
size N . In other words, a lot of data is the subset of the input dataset. In the FedFed, the training data
fed to each client’s model is the same as the database size, i.e., q = N/N = 1.

DP-SGD asks for the generality and thus bounds ∥f(·)∥ = e. Yet, FedFed sets σ ∝ ∥xs∥, which
does not ask for a general case. We use the notation ∥xs∥2 to represent the domain of performance-
sensitive features. On the other hand, ∥x∥2 represents the domain of all features (namely, the “domain
of datasets”). We additionally borrow the definition of l2-norm and move ∥xs∥ out in the proof. By
Equation 8, the client takes ρ∥x∥ for selecting σ. Since we aim to make an asymptotic analysis here,
we ignore the scalars and constants here. Thus, we attain O(ρ

√
R log(1/δ)/ϵ) for selecting σ. By

rearranging variables, we have ϵ = ρ
√
R log(1/δ)/σ for a loose analysis.

Before continuing the proof, we derive Lemma D.4 to get the relation between ∥xr∥ and ∥x∥ for
latter usage.
Lemma D.4. Let xr = x−xs. Then, it holds that (1−ρ)∥x∥ ≤ ∥xr∥ ≤ (1+ρ)∥x∥ if ∥xs∥ = ρ∥x∥
satisfies.

Proof of Lemma D.4: ∥x − xr∥ = ρ∥x∥ ⇒ ∥x − xr∥2 = ρ2∥x∥2 ⇒ ∥x∥2 + ∥xr∥2 − 2x⊤xr =
ρ2∥x∥2 ⇒ ∥x∥2 + ∥xr∥2 − 2∥x∥∥xr∥ cos⟨x,xr⟩ = ρ2∥x∥2. Since ∥x∥ > 0 and ∥xr∥ > 0, we get,

∥x∥/∥xr∥+ ∥xr∥/∥x∥ − 2 cos⟨x,xr⟩ = ρ2∥x∥/∥xr∥.
Let ∥xr∥ = α∥x∥, and our objective is to get the α. By replacing ∥x∥/∥xr∥ and ∥xr∥/∥x∥ with
1/α and α respectively, we get,

1/α+ α− 2 cos⟨x,xr⟩ = ρ2/α.

6Previously “≥”, we take the special case “=” the same as DP-SGD.
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Since −1 ≤ cos⟨x,xr⟩ ≤ 1, we get,

−2 ≤ 1/α+ α− ρ2/α ≤ 2⇒ −2α ≤ 1/+ α2 − ρ2 ≤ 2α.

Since 0 < ρ < 1, we take 1/+ α2 − ρ2 ≤ 2α and get (α− 1)2 ≤ ρ2. Then, we get the meaningful
answers −ρ ≤ α− 1 ≤ ρ⇒ 1− ρ ≤ α ≤ 1 + ρ. Therefore, we attain,

(1− ρ)∥x∥ ≤ α∥x∥ ≤ (1 + ρ)∥x∥ ⇒ (1− ρ)∥x∥ ≤ ∥xr∥ ≤ (1 + ρ)∥x∥.

Following above, we can establish the relationship between ∥x∥2 and ∥xs∥2 as follows:

∥xs∥2 ≤ ρ∥x∥2.

And the relation between noise level σs and xs is:

σs ∝ ∥xs∥2 ≤ ρ∥x∥2 = ρM,

where we re-scale data into [0, 1] and assume the ℓ2-norm of data is less than M > 0. To ensure the
∥xe∥2 ≤ ρM , we clip the norm for each sample, which is widely used in DP [27].

Now, let’s go back to derive Lemma D.1 and Lemma D.2, and continue the proof. For sharing
raw data x, we employ the same method as aforementioned. Since ∥xs∥ = ρ∥x∥, we get ϵ′e =

ρ
√
R log(1/δ)/σs. By Lemma D.4, we know that (1− ρ) ≤ ∥xr∥

∥x∥ ≤ (1 + ρ) holds. Thus, we attain,

(1− ρ)
√
R log(1/δ)/σr ≤ ϵ′r ≤ (1 + ρ)

√
R log(1/δ)/σr.

Here, we take ϵ′r ≥ (1− ρ)
√
R log(1/δ)/σr since we expect a loose case. By combining ϵ′e and ϵ′r,

we attain,
ϵ′ = O(

√
R log(1/δ)(ρ/σs + (1− ρ)/σr))

for sharing raw x, as Lemma D.1. Now, let’s take FedFed into consideration. The major difference
is that xr is kept locally in the whole training process. The root cause lies in that the xr owned by
the client is privacy-insensitive to this corresponding client. We regard σr operated on xr to be a
sufficiently large value. Thus, given ρ≪ 1, we get,

lim
σr→∞

ϵr = (1− ρ)
√

R log(1/δ)/σr → 0.

That is, for sharing xs in FedFed, we have ϵ = ϵs = O(ρ/σs

√
log( 1δ )), as Lemma D.2.

Let’s conversely think Lemma D.1 and Lemma D.2. Now, the proof in the following is very
straightforward. If we take identical σs operated on xs for FedFed and sharing raw x. We know
that ϵ′ > ϵ. Conversely, if we take identical ϵ, ϵ′, we should increase 1/σs and thus reduce σs, given
constant ρ

√
R log(1/δ). Thus, for protecting training data in FL, we can attain Theorem 3.3 to

summarize the superiority of FedFed when asking for an identical privacy guarantee. Theorem 3.3
explains the reason for the superior model performance of FedFed, which intrinsically boils down to
a relatively small σ compared with sharing raw data x.

D.2 Analysis and Proof for Theorem 3.4

Previously, we showcase the view of each client for analyzing privacy. Albeit we do not aim at a new
DP theorem, we expect a tighter privacy analysis for FedFed by using the advanced result [28]. Vadhan
and Wang [61] prove that when the interactive mechanisms being composed are pure differentially
private, their concurrent composition achieves privacy parameters (with respect to pure or approximate
differential privacy) that match the (optimal) composition theorem for noninteractive differential
privacy. To be specific, we follow the proof logic of Theorem D.7 [28] for analyzing globally shared
data from all clients.

Given (ϵk, δ)-DP at each client side, we utilize the composition theorem to analyze overall privacy
in FedFed. The concept of sensitivity below is originally used for sharing a dataset for achieving
(ϵ, δ)-differential privacy.

Definition D.5 (Sensitivity [28]). The sensitivity of a query function F : D → R for any two
neighboring datasets D,D′ is ∆ = maxD,D′ ∥F(D)−F(D′)∥, where ∥ · ∥ denotes L1 or L2 norm.
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Privacy loss is a random variable that accumulates the random noise added to the algorithm/model,
which is utilized in Theorem D.7.
Definition D.6 (Privacy Loss [28]). . LetM : D→ R be a randomized mechanism with input domain
D and range R. Let D,D′ be a pair of adjacent dataset and aux be an auxiliary input. For an outcome
o ∈ R, the privacy loss at o is defined by L(o)

Pri ≜ log(Pr[M(aux, D) = o]/Pr[M(aux, D′) = o]).

Theorem D.7 (Composition Theorem [28]). For any ϵ > 0, δ ∈ [0, 1], and δ̂ ∈ [0, 1], the class of
(ϵ, δ)-differentially private mechanisms satisfies (ϵ̂δ̂, 1− (1− δ̂)Πi(1−δi))-differential privacy under

k-fold adaptive composition for ϵ̂δ̂ = min{kϵ, (eϵ− 1)ϵk/(eϵ+1)+ ϵ

√
2k log(e+

√
kϵ2/δ̂), (eϵ−

1)ϵk/(eϵ + 1) + ϵ

√
2k log(1/δ̂)}.

Proof. Definition D.6 gets L(o)
Pri on an outcome variable o over databases D and D′. This proof starts

with a particular random mechanismM† with further generalization. The mechanismM† does not
depend on the database or the query but relies on hypothesis hp. For hp = 0, the outcome Oi of
M†

i is independent and identically distributed from a discrete random distribution Ohp=0 ∼ P†,0.
P†,0(o) is defined to be: δ for o = 0; (1 − δ)eϵ/(1 + eϵ) for o = 1; (1 − δ)/(1 + eϵ) for o =

2; 0 for o = 3. For hp = 1, the outcome Oi of M†
i is Ohp=1 ∼ P†,1. P†,1(o) is defined to be:

0 for o = 0; (1− δ)/(1 + eϵ) for o = 1; (1− δ)eϵ/(1 + eϵ) for o = 2; δ for o = 3.

LetR(ϵ, δ) be privacy region of a single access toM†. The privacy region consists of two rejection
regions with errors, i.e., rejecting true null-hypothesis (type-I error) and retaining false null-hypothesis
(type-II error). Let ϵ†k, δ

†
k beM†

i ’s parameters for defining privacy. R(M, D,D′) of any mechanism
M can be regarded as an intersection of {(ϵ†k, δ

†
k)} privacy regions. For an arbitrary mechanismM,

we need to compute its privacy region using the (ϵ†k, δ
†
k) pairs. Let D,D′ be neighbouring databases

and O be the outputting domain. Define (symmetric) P,P ′ to be probability density function of the
outputsM(D),M(D′), respectively. Assume a permutation π over O such that P ′(o) = P(π(o)).
Let S denote the complement of a rejection region. Since R(M, D,D′) is convex, we have 1 −
P(S) ≥ −eϵ

†
kP ′(S)+ 1− δ†k ⇒ P(S)− eϵ

†
kP ′(S) ≤ δ†k. Define Dtϵ†(P,P ′) = maxS⊆O{P(S)−

eϵ
†P ′(S)}. Thus,M’s privacy region is the set: {(ϵ†k, δ

†
k) : ϵ

†
k ∈ [0,∞)] s.t. P(o) = eϵ

†
kP ′(o), δ†k =

Dtϵ†k
(P,P ′)}. Next, we consider composition on random mechanismsM1, . . . ,Mi. By accessing

M†
i , P(O1,hp = o1, . . . , O

i,hp = oi) = Πi
j=1P†,hp(oj). By algebra on two discrete distributions,

Dt(i−2j)ϵ(Pi, (P ′)i) = 1− (1− δ)i + (1− δ)i
∑j−1

l=0

(
i
l (e

ϵ(i−l) − eϵ(i−2j+l))
)
/(1 + eϵ)k. Hence,

privacy region is an interaction of i regions, parameterized by 1− (1− δ̂)Πi(1− δi).

Now, by Lemma D.2, we get Theorem 3.4 directly. In summary, FedFed protects two types of data
features using two different protective manners, i.e., small noise for performance-sensitive features
and extremely large noise for performance-robust features, and thus attains higher model performance
and stronger security in the same time.

E More Results on Attack

E.1 More Details on Model Inversion Attack

In this section, we present additional results of the model inversion attack. When the central
server assumes the role of the attacker without access to the original data, it exhibits a diminished
performance in attacking the model. The raw data x of Figure 3 (a) and (b) can be found in Figure 6(a).
As we can see, xs still causes privacy leakage and Figure 6(b) also gives the intuitive necessity of DP
protection on xs.

Inspired by generative model inversion methods [40, 62], we conduct another experiment where one
of the clients acts as the attacker. Similar to GMI [40], the method involves leveraging an auxiliary
dataset and a public dataset to launch an attack on the target model. In our experiments, we utilize
the globally shared dataset as the auxiliary dataset, while the local private data serves as the public
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(a) Raw data x (b) Attack on xs (c) Attack on xp

Figure 6: Model inversion attack. White-Box attack performance-sensitive features xs and globally
shared data xp,xp = xs + n,n ∼ N (0, σ2

sI).

Figure 7: Generative-based model inversion attack results.

dataset because the client has access to its own local data. Under this scenario (results in Figure 7),
the attacker’s performance is better than when the server acts as the attacker, while the attacker is still
unable to recover data from the shared features. The model architectures of generative-based model
inversion attack are listed in Table 8.

E.2 More Details on Membership Inference Attack
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Figure 8: Attack process. Perform membership inference attack on global model per 10 communica-
tion rounds.

Is Theorem 3.3 true empirically?

Membership inference attack(MIA) [41, 15] attempts to infer whether a particular data point is in
the target model’s training set. Specifically, the global model on the server side can be regarded as
the target model in FL. In our setting, we train a shadow model with globally shared data. Then the
membership attack can be regarded as a binary classification task, member data or non-member data.
The input of the attack model is the top-k vector of the output from the shadow model. To compare
the superiority of sharing partial data rather than the complete data with DP, we conduct MIA to
explore the divergence experimentally. Sharing raw data cause more information leakage (higher
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Table 8: The model architectures used in generative-based model inversion attack

The encoder structure of the generator takes as input the globally shared data

Type Kernel Dilation Stride Outputs

conv 5x5 1 1x1 32
conv 3x3 1 2x2 64
conv 3x3 1 1x1 64
conv 3x3 1 2x2 128
conv 3x3 1 1x1 128
conv 3x3 1 1x1 128
conv 3x3 2 1x1 128
conv 3x3 4 1x1 128
conv 3x3 8 1x1 128
conv 3x3 16 1x1 128

The encoder structure of the generator takes as input the latent vector

linear 2048
deconv 5x5 1/2x1/2 256
deconv 5x5 1/2x1/2 128

The decoder structure of the generator

deconv 5x5 1/2x1/2 128
deconv 5x5 1/2x1/2 64
conv 3x3 1x1 32
conv 3x3 1x1 3

The global discriminator structure

conv 3x3 2x2 64
conv 3x3 2x2 128
conv 3x3 2x2 256
conv 3x3 2x2 512
conv 1x1 4x4 1

recall of MIA) than partial data with the same DP level. However, the FedFed needs a relatively small
noise σ to achieve comparable protection. The attack process is shown in Figure 8.

F Supplementary for Experiments

F.1 Visualization of Data Heterogeneity
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(c) Subset
Figure 9: Data distribution in various FL heterogeneity scenarios. Different colours denote different
labels and the length of each line denotes the data number. As we can see, in our FL setting, we
mainly perform on two kinds of Non-IID scenarios, including label skew and quantity skew.

We show the visualization of data distribution in Figure 9. The LDA partition and the #C = 2
partition have the label skew and the quantity skew simultaneously. And the Subset partition only has
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the label skew. #C = k means each client only has k different labels from dataset, and k controls
the unbalanced degree. The subset method makes each client have all classes from the data, but one
dominant class far away outnumbers other classes.

F.2 More Guessing Games

A B C

A B C

A B C

Figure 10: Guessing Games
Question: Which one is the first image from in each row? A or B or C?

Let’s play more guessing games here. We selected samples from the same category for the purpose of
reducing the difficulty. The answer in Figure 1 is C. The answers in Figure 10 are (B, A, A) in order.

F.3 Sharing Protected Partial Features vs. Protected Raw Data
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Figure 11: Performance on different information sharing strategies with DP protection: raw data and
xp under the same protection strength.

In this section, we compare the performance divergence of applying DP to protect different sharing
information, i.e., performance-sensitive features xp and raw data x. The results is shown in Figure 11

F.4 More experimental results

We provide more comparison results in this section to demonstrate the superiority of FedFed. Fig-
ure 12, Figure 13, Figure 14, Figure 15 have shown our enhancement in four datasets. In this
paper, we mainly have four settings in our experiments: (1) α = 0.1, E = 1,K = 10; (2)
α = 0.1, E = 5,K = 10; (3) α = 0.05, E = 1,K = 10; (4) α = 0.1, E = 1,K = 100.
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Table 9: Different sampling rates of FedFed under α = 0.1, E = 1,K = 100 over CIFAR-10

Sampling rates 5% 10% 20% 40% 60%

Accuracy 83.67 84.06 87.98 89.17 89.62

Round to reach target accuracy 182 163 90 70 61
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(a) α = 0.1, E = 1,K = 10
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(b) α = 0.1, E = 5,K = 10
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(c) α = 0.1, E = 1,K = 100

Figure 12: Convergence and test accuracy comparison on CIFAR-10.

In addition, we investigate the impact of varying sampling rates on the performance of our FL system,
and present the results in Table 9. We observe that increasing the sampling proportion leads to gradual
improvements in the model’s performance, as well as faster convergence. This is due to a larger
number of clients participating in each round, resulting in more consistent update directions for the
aggregated model and the global model.

We also conduct tests on FedFed using various levels of heterogeneity, such as α = 0.5 and α = 1.
The results are presented in Tables 10 and 11. As the value of α increases, the original performance
of FedAvg demonstrates significant improvement, while the performance enhancement of FedAvg
deployed with FedFed is comparatively lower. This discrepancy can be attributed to the reduction
in heterogeneity as α increases. When α reaches 1.0, the data distribution among clients becomes
nearly homogeneous. As a result, the effectiveness of FedFed in mitigating heterogeneity through
information sharing diminishes significantly.

F.5 More Results on Impact of DP noise

In this section, we present additional results on the impact of DP noise on three other datasets, as
shown in Figure 16. Our findings indicate that as the level of DP noise increases, the privacy budget
decreases and the ability to protect information increases, but the performance of the model decreases
accordingly. Thus, it is crucial to find a balance between privacy and performance in practical
applications of our FedFed.
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(a) α = 0.1, E = 1,K = 10
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(b) α = 0.1, E = 5,K = 10

0 250 500 750 1000
Round

20

40

60

Te
st

 A
cc

ur
ac

y 
[%

]

FedAvg+FedFed
SCAFFOLD+FedFed
FedProx+FedFed
FedNova+FedFed

FedAvg
SCAFFOLD
FedProx
FedNova

(c) α = 0.1, E = 1,K = 100

Figure 13: Convergence and test accuracy comparison on CIFAR-100.
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(a) α = 0.1, E = 1,K = 10
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(b) α = 0.1, E = 5,K = 10
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(c) α = 0.05, E = 1,K = 10

Figure 14: Convergence and test accuracy comparison on SVHN.
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(b) α = 0.1, E = 5,K = 10
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(c) α = 0.05, E = 1,K = 10

Figure 15: Convergence and test accuracy comparison on FMNIST.

F.6 More Explanation: Performance-Sensitive Features vs. Performance-Robust Features

For an intuitive understanding of why there is no drastic performance degradation for utilizing xs

as a substitute for raw data x. Formally, e.g. in the classification task, a classifier trained by x gets
comparable test accuracy on xs giving the verification that xs contains the primary features for
generalization and vice versa. Specifically, three classifiers trained on x, xs, and xr, Then test the
generalization ability on x, xr, and xs, separately. The result is shown in Figure 17.

As described above, xr extract from x in an IB manner contains more visual information about
private data x than xs. To measure the visual similarity among performance-robust features xr,
performance-sensitive features xs, and raw data x. We choose PSNR [63, 64], prominent visual
information comparisons of images, to calculate pixels error, the result is shown in Table 12.

Consequently, higher PSNR denotes that xr has the most visual information of x than xs. While xr

shares similarities with x in terms of its form or structure, it exhibits limitations that hinder its ability
to enhance performance. At the same time, xs has the commensurate generalization ability like x to
achieve our goal.

F.7 Overheads Analysis of FedFed

For the extra computation induced by FedFed, we provide two views to demonstrate the limited costs
of extra computation, i.e., training time and FLOPs.

Table 13 shows that training a generator requires less than 10% of the time needed to train a classifier.
Therefore, the additional training time required for the generator is limited.

Table 10: Top-1 Accuracy of α = 0.5, E = 1,K = 10 with 50% sampling rate.

CIFAR-10 FMNIST SVHN CIFAR-100

FedAvg 87.68 90.32 91.11 68.98

FedFed (Ours) 93.21 94.01 93.71 69.52
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Table 11: Top-1 Accuracy of α = 1.0, E = 1,K = 10 with 50% sampling rate.

CIFAR-10 FMNIST SVHN CIFAR-100

FedAvg 89.45 92.38 92.03 69.02

FedFed (Ours) 94.01 94.31 93.89 70.31
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Figure 16: The impact of DP noise on different datasets.

x

xs

xr

20
40

60
80

100

(a) The generalization ability of
classifier trained by raw data x.

x

xs

xr

20
40

60
80

100

(b) The generalization abil-
ity of classifier trained by
performance-sensitive features
xs.

x

xs

xr

20
40

60
80

100

(c) The generalization abil-
ity of classifier trained by
performance-robust features xr .

Figure 17: The generalization ability graphs of three classifiers trained by different data types.
The generalization ability means a well-trained model tests unseen information and measures the
capability to finish a certain task, i.e., classification test accuracy. In our setting, we evaluate the
generalization ability of classifiers on different information forms: raw data x, performance-sensitive
features xs, performance-robust features xr.

Table 12: The visual similarity of various feature types. PSNR of x and xr, x and xs.

xr xs

x 31.47± 1.57 18.87± 0.98



Tables 15 and 14 show the model complexity results, which indicate that the computation required
for the generator is approximately 8.2% of that required for the classifier. Additionally, the number
of communication rounds needed for the generator is significantly lower than that required by the
classifier, with only 15 rounds compared to 1000 rounds for the classifier (namely, Td = 15 and
Tr = 1000).

The use of FedFed incurs additional memory usage, as the size of the globally-shared dataset is
equivalent to the combined size of all clients’ data. This may have limited impacts on the bandwidth,
as the generated data is only sent once. To quantitatively measure its effects, we compared the size of
the dataset with that of the classifiers in Table 16. Sharing the generated dataset is equivalent to sharing
classifiers in multiple rounds. For example, for CIFAR10, the data requires approximately 586MB of
memory, while the classifier requires about 48MB. Thus, sharing the global dataset requires the same
amount of communication as sending a classifier in approximately 14 communication rounds.

Based on the aforementioned analysis, we provide a comprehensive examination of the communi-
cation overheads associated with the FedFed. Consider K clients in the FL system. Let m be the
size of a single local model. The size of local private data is ∥Dk∥ = a. Then, the ratio of the entire
dataset to a model parameter is γ, where γ = aK

m ≈ 14. The extra communication cost for a single
client is (m+m) ∗ Td + a+ aK where (m+m) ∗ Td denotes the cost of download/upload models
for Td rounds in Algorithm 1. Here, the a denotes the performance-sensitive features sent by each
client, and aK is the data received by each client from the globally shared dataset. In the general
process of FL, the overall communication costs are (m+m)Trβ, where β is the sampling rate of a
client. Therefore, the ratio of the extra communication overhead to the general FL process is:

(m+m) · Td + a(K + 1)

(m+m) · Tr · β
=

Td

Tr · β
+

a(K + 1)

2m · Tr · β
=

Td

Tr · β
+

γ

2Tr · β
+

γ

2K · Tr · β
(17)

Here, we detail two examples in our experiments:

* For K = 10, Td = 15, Tr = 1000, and β = 50%, the extra communication costs are
approximately 4.54%.

* When K = 100, Td = 15, Tr = 1000, and β = 10%, the extra communication costs are
approximately 22.07%.

To facilitate the further deployment of FedFed, we offer three strategies tailored to different storage
hardware configurations:

1. One-time download: Local clients download the globally shared dataset once. A globally
shared dataset costs approximately 14× the storage of a classifier model.

2. Partial download: A small portion of the globally shared dataset is selected and downloaded.
This strategy incurs approximately 1.5× communication cost compared to the previous
strategy, while the storage required by the clients is the same as that of local private data. This
represents a storage-friendly choice that may involve a trade-off in terms of performance.

3. Intermittent download: A small set of globally shared dataset is downloaded after every Z
rounds. This approach reduces the communication overhead to 1

Z of that of strategy 2 while
maintaining the storage overhead at the size of the local data.

Table 13: Comparison of training time between
Classifier and Generator

Training time of Generator 5,251 s

Training time of Classifier 62,901 s

Table 14: Parameters of Classifier and Generator

Parameters of Generator 48M

Parameters of Classifier 42MB

G More Related Works

G.1 Federated Learning with Heterogeneous Data.

FL allows the distributed clients to train a model across multiple datasets jointly. It “protects” user
privacy by controlling data accessibility among different clients, i.e., only the data owner has the right
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Table 15: FLOPs of Classifier and Generator

FLOPs of training Generator 16.03M FLOPs

FLOPs of training Classifier 556.66M FLOPs

Table 16: Parameters of Local Classifier and
Globally-shared Data

Parameters of Local Classifier 42MB

Parameters of Globally-shared Data 586MB

Table 17: Existing method about information sharing strategy to mitigate data heterogeneity in
Federated Learning.

Shared Info Protection on Shared Info Attack Test

FD+FAug [46] Model output & Synthetic info % —
FedMD [65] logits % —

XorMixFL [48] Statistic of data % —
FedDF [66] Statistic of logits % —

FedProto [50] Abstract class prototypes % —
FedFTG [67] Synthetic info % —
CCVR [10] Statistic of logits % Model inversion attack

Fed-ZDAC [12] Batch normalization features " —
FedAUX [68] Synthetic info " —

FedFed (ours) Protected partial features "
Model inversion attack

Membership inference attack

to access the corresponding data. FedAvg [4] is the seminal work designed to reduce communication
via more local training epochs and fewer communication rounds. In the following, many works
[9, 5] observe that the FedAvg’s divergence is considerable compared with centralized training if
clients hold heterogeneous distribution. Even worse, the gap accumulates as the weight aggregates,
potentially hurting model performance.

Recently, a series of works have tried to calibrate the updated direction of local training from the
global model. FedProx [6] adds an L2 distance as the regularization term in the objective function,
providing a theoretical guarantee of convergence. Similarly, FedIR [42] operates on a mini-batch by
self-normalized weights to address the non-identical class distribution. SCAFFOLD [7] restricts the
model using the previous knowledge. Besides, MOON [43] introduces contrastive learning at the
model level to correct the divergence between clients and the server.

Meanwhile, recent works propose designing new model aggregation schemes. FedAvgM [33]
performs momentum on the server side. FedNova [22] adopts a normalized averaging method to
eliminate objective inconsistency. A study [69] also indicates that biasing client selection with higher
local loss can speed up the convergence rate. The coordinate-wise averaging of weights also induces
noxious performance. FedMA [44] conducts a Bayesian non-parametric strategy for heterogeneous
data. FedBN [45] focuses on feature shift Non-IID and performs local batch normalization before
averaging models.

Another existing direction for tackling data heterogeneity is sharing data. This line of work mainly
assembles the data of different clients to construct a global IID dataset, mitigating client drift by
replenishing the lack of information of clients [9]. Existing methods include synthesizing data based
on the raw data by GAN [46]. However, the synthetic data is generally relatively similar to the
raw data, leading to privacy leakage at some degree. Adding noise to the shared data is another
promising strategy [70, 71]. Some methods employ the statistics of data [48] to synthesize for
sharing, which still contains some raw data content. Other methods distribute intermediate features
[12], logits [49, 10], or learn the new embedding [50]. These tactics will increase the difficulty of
privacy protection because some existing methods can reconstruct images based on feature inversion
methods [51]. Most of the above methods share information without a privacy guarantee or with
strong privacy-preserving but poor performance, posing the privacy-performance dilemma.

Concretely, in FD [46] all clients leverage a generative model collaboratively for data generation in
a homogeneous distribution. For better privacy protection, G-PATE [47] performs discriminators
with local aggregation in GAN. Fed-ZDAC(Fed-ZDAS) [12], depending on which side to play
augmentation, introduce zero-shot data augmentation by gathering intermediate activations and batch
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normalization(BN) statistics to generate fake data. Inspired by mixup data. Cronus [49] transmits
the logits information while CCVR [10] collects statistical information of logits to sample fake
data. FedFTG [67] use a generator to explore the input space of the local model and transfer local
knowledge to the global model. FedDF [66] utilizes knowledge distillation based on unlabeled data
or a generator and then conducts AVGLOGITS. We summarize existing information-sharing methods
in Table 17 to compare the dissimilarity with FedFed. The main difference between FedDF and
FedFed is that our method distils raw data into two parts (performance-sensitive features xe and
performance-robust features xr) rather than transferring distilled knowledge. We provide hierarchical
protections to preserve information privacy while overcoming the privacy-performance dilemma.

G.2 Differential Privacy with Federated Learning

Carlini et.al [72] found that memorizing sensitive data occurs in early training, regardless of data
rarity and model.

Training with differential privacy [73, 74] is a feasible solution to avoid its risk, albeit at some loss in
utility. Differential privacy guarantees that an adversary should not discern whether a client’s data
was used.

Huang et al [75] and Wei et al [76] are the first (to their knowledge) to analyze the relation between
convergence and utility in FL. Andrew et al [77] explore setting an adaptive clipping norm in the
federated setting rather than using a fixed one. Andrew et al [77] explore setting an adaptive clipping
norm in the federated setting rather than using a fixed one. They show that adaptive clipping to
gradients can perform as well as any fixed clip chosen by hand. Hoeven et al [78] introduce data-
dependent bounds and apply symmetric noise in online learning, which allows data providers to pick
noise distribution. Sun et al [79] explicitly vary ranges of weights at different layers in a DNN and
shuffle high-dimensional parameters at an aggregation for easing explodes of privacy budgets. Peng et
al [80] study the knowledge embedding problem using DP protection in FL. Applying differential
privacy and its variants to the federated setting become more prevailing nowadays.
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