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Abstract

Real-world data usually confronts severe class-imbalance problems, where several
majority classes have a significantly larger presence in the training set than minority
classes. One effective solution is using mixup-based methods to generate synthetic
samples to enhance the presence of minority classes. Previous approaches mix
the background images from the majority classes and foreground images from the
minority classes in a random manner, which ignores the sample-level semantic
similarity, possibly resulting in less reasonable or less useful images. In this work,
we propose an adaptive image-mixing method based on optimal transport (OT) to
incorporate both class-level and sample-level information, which is able to generate
semantically reasonable and meaningful mixed images for minority classes. Due to
its flexibility, our method can be combined with existing long-tailed classification
methods to enhance their performance and it can also serve as a general data
augmentation method for balanced datasets. Extensive experiments indicate that
our method achieves effective performance for long-tailed classification tasks. The
code is available at https://github.com/JintongGao/Enhancing-Minority-Classes-
by-Mixing.

1 Introduction
Large-scale balanced datasets play a vital role in the remarkable success of deep neural networks for
various tasks. However, datasets in many real-world applications often exhibit unexpected long-tailed
distributions where most of the data belongs to several majority classes while the rest spreads across
lots of minority classes. The model trained on such a long-tailed dataset will be biased toward
majority classes, leading to poor generalizations about minority classes.

Re-weighting [1, 2, 3, 4, 5, 6, 7], over-sampling [8, 9, 10, 11, 12], under-sampling [13, 14, 15, 16],
data augmentation [17, 18, 19, 20, 21, 22, 23], two-stage methods [24, 25, 26, 27], and other methods
[28, 29] are common solutions to the long-tailed problem. Among them, over-sampling and data
augmentation aim to balance the data distribution by oversampling or generating closely related
minority classes. As the representative data augmentation techniques, mixup and its variants [30,
31, 32] have performed satisfactorily in the computer vision fields, whose key idea is constructing
mixed samples by performing linear interpolations between data/features and corresponding labels.
Considering mixup-based methods are designed for balanced data, applying them to long-tailed
classification without any adjustments may ignore the specificity of long-tailed data distribution.
Recently, some novel mixup-based methods for the long-tailed problem have been explored [22, 33,
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Figure 1: Visualization of mixed samples created by CMO and ours(OTmix), respectively.

34, 21]. As a representative example, Context-rich Minority Oversampling (CMO) [20] generates
minority-centric images by mixing the background and foreground images, where background images
are mainly from the majority classes while foregrounds are mainly from minority classes. The critical
concept of CMO is to paste an image from a minority class (foreground) onto rich-context images
from a majority class (background). Despite the effectiveness of CMO, it cannot be guaranteed that all
the generated images are realistic and reasonable by randomly mixing the background and foreground
images. For example, we visualize mixed samples created by ours and CMO in Fig. 1, where we
take “Panda” and “Grey Whale” as two foreground images. CMO generates unreasonable mixed
samples since pandas are hardly seen in the sky, the beaches, or the streets, and grey whales rarely
appear in the desert, the flowers, or the sky. Therefore, instead of arbitrarily pairing the foreground
and background images, it is essential to consider the semantic distances between the foreground and
background images to generate more meaningful and advantageous samples.

In this work, we propose a more adaptive image-mixing method based on optimal transport (OT),
which is a powerful tool for computing the distance between two distributions under the form of
multiple sampling [35]. We consider an empirical distribution Pback over the background images and
an empirical distribution Qfore over the foreground images, where the former are more likely from the
majority and the latter from minority classes. To learn the semantic similarity between background
and foreground images, we formulate the learning of the similarity as the OT problem between Pback
and Qfore. In this way, we can view the learned transport plan as the similarity between foreground and
background samples, which can be naturally used as guidance to select the most relevant background
image for each foreground image. Due to the importance of cost function in learning the transport
plan for OT, we further design the cost function using the sample-level representation and class-level
label information. Hence, the rich context of the majority classes as background images can be better
transferred to the minority classes as foreground images for providing an adaptive way to learn the
similarity between them and generate more semantically meaningful mixed images. Interestingly, our
proposed OTmix can not only be combined with existing long-tailed methods but also be used as a
new image-mixing strategy for balanced datasets.

Our main contributions are summarized as follows: (1) We propose a novel image-mixing method for
generating reasonably mixed samples for long-tailed classification, where we introduce a distribution
over the background images mainly from majority classes and another distribution over the foreground
images mainly from minority classes. (2) By minimizing the OT distance between these two
distributions, we view the learned transport plan as similar in guiding the image-mixing process. (3)
We design the cost function based on the feature information and confusion matrix to learn the desired
transport plan. Extensive experiments demonstrate the effectiveness of our method for long-tailed
classification and also balanced classification.

2 Related Work
Data Processing Learning relatively balanced classes from the data perspective is an effective
solution to the long-tailed problem [36], which can be roughly divided into over-sampling, under-
sampling, and data augmentation. Since our proposed method is related to the over-sampling and
data augmentation methods, we describe them in detail below. Over-sampling aims to emphasize the
minority classes and increase the instance number of the minority classes [20, 8, 9]. For example,
the classical Synthetic Minority Over-sampling Technique (SMOTE) [12] uses the interpolation
between a given minority sample and its nearest minority neighbors to create new samples. Data
augmentation is another way of data processing to compensate the minority classes by generating and
synthesizing new samples [18, 23]. For example, Major-to-minor Translation (M2m) [17] defines
an optimization phase to augment minority classes via translating samples from majority classes.
The Meta Semantic Augmentation (MetaSAug) approach [24] is proposed to perform effective
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semantic data augmentation by learning more meaningful class-wise covariance. Sample-Adaptive
Feature Augmentation (SAFA) [19] aims to extract diverse and transferable semantic directions from
majority classes, and adaptively translate minority-class features along extracted semantic directions
for augmentation.

In addition, mixup-based methods [32, 37, 38, 30, 39, 31, 40, 41, 42], the effective data augmentation
methods in balanced datasets, have been developed to solve the long-tailed problem recently and are
closely related to our work. For example, Mixup Shifted Label-aware Smoothing Model (MiSLAS)
[27] uses mixup in its Stage-1 training without any adjustments. Rebalanced Mixup (Remix) [21]
provides a disproportionately higher weight to the minority class when mixing two samples. Uniform
Mixup (UniMix) [22] adopts a minority-favored mixing factor to encourage more majority-minority
pairs occurrence and is further combined with the Bayes Bias (Bayias) caused by the inconsistency
of prior. Targeted copy-paste augmentation [43] aligned with the novel domain enhances out-of-
domain robustness on long-tailed camera trap dataset. [44] improves minority class performance
from synthetic data by contrasting night and day backgrounds. To mitigate the overfitting issue
in subpopulation shift, Uncertainty-aware Mixup (UMIX) [33] adopts the sampling uncertainty to
reweight the mixed samples. CMO [20] constructs mixed samples between the background images
more likely from the majority classes and foreground images more likely from the minority classes.
However, it ignores the semantic similarity between images by randomly mixing them. Different
from CMO, we formulate the image-mixing problem as the OT problem between two distributions
and use the learned transport plan as guidance to mix images, providing a general and adaptive
image-mixing method for long-tailed learning.

Loss Function Engineering Designing effective training objectives is another solution to fight
against class imbalance [45, 7, 5]. Label-Distribution-Aware Margin Loss (LDAM) [1] is proposed
from the view of the generalization error bound, and LDAM-DRW adopts a deferred class-level
re-weighting method. Balanced Softmax (BALMS) [2] accommodates the label distribution shift
between training and testing and proposes a Meta Sampler that learns to re-sample training set by meta-
learning. Label Distribution Disentangling (LADE) [4] loss disentangles the source label distribution
from the model prediction based on the optimal bound of the Donsker-Varadhan representation.
Besides, Focal Loss [46] determines the weights for samples with the sample difficulty in the object
detection task, and Influence-balanced Loss (IB) [3] assigns different weights to samples according
to their influence on a decision boundary. Our method can be naturally combined with many loss
functions.

Other Methods Recently, two-stage algorithms have been proposed [1, 5, 24], such as MiSLAS
[27]. Meanwhile, a Bilateral Branch Network (BBN) [25] unifies the representation and classifier
learning stages to form a cumulative learning strategy. RoutIng Diverse Experts (RIDE) [28] uses
multiple experts to reduce the variance and bias of the long-tailed classifier. In addition, some
approaches employ meta-learning, such as MetaSAug [24] and BALMS [2]. Causal Norm (CN) [29]
pinpoints the causal effect of momentum and extracts the unbiased direct impact of each instance.

Optimal Transport As a powerful tool, OT has been applied to generative models [47, 48, 49, 50,
51], computer vision [52, 53, 7, 54, 55, 56, 57], text analysis [58, 59, 60, 61], and etc. To the best
of our knowledge, there are still very limited works for the imbalanced classification by means of
OT. For example, [7] proposes a re-weighting method based on OT, and [62] introduces Optimal
Transport via Linear Mapping (OTLM) to perform the post-hoc correction. Different from them, ours
falls into the data augmentation group by mixing images. Another recent work is Optimal Transport
for OverSampling (OTOS) [63], which moves random points from a prior uniform distribution into
that of minority class samples based on OT. However, our proposed OTmix introduces OT to guide
the mix between majority and minority images, which leverages the rich context of the majority
classes guided by OT. Alignmixup [38] adopts OT to align two images and interpolate between two
sets of features in a standard classification task, which is distinct from ours in terms of task and
technical detail.

3 Background
Long-tailed Classification Given a training set D={(xi, yi)}Ni=1 for a multi-class problem with
K classes, if each class k contains nk samples, we have that

∑K
k=1 nk = N . Without loss of

generality, we can always assume n1 ≥ n2 ≥ · · · ≥ nK for the long-tailed problem. Denote
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Figure 2: Adaptive image-mixing method with optimal transport.

the model parameterized with θ as g(θ), which is trained on D with the well-known Empirical
Risk Minimization (ERM) algorithm [32] ignores such class imbalance and performs poorly on the
minority classes [33].

CutMix Here, we use the CutMix [37] to mix samples because of its simplicity and effectiveness,
which replaces the image region with a patch from another training image. Denote x ∈ RW×H×C

and y denote a training image and its label, respectively. CutMix combines two training samples
(xi, yi) and (xj , yj) and generates the new sample (x̃ij , ỹij) as follows:

x̃ij = M⊙ xi + (1−M)⊙ xj , ỹij = λyi + (1− λ)yj , (1)

where the combination ratio λ is sampled from the beta distribution Beta(α, α), ⊙ is element-wise
multiplication, and the binary mask M ∈ {0, 1}W×H indicates where to drop out and fill in from
two images, 1 is a binary mask filled with ones. We provide more details about M in Appendix 7.1.

Optimal Transport OT measures the minimal cost to transport between two probability distribu-
tions [35, 64, 65, 66, 67]. We only provide a brief introduction to OT for discrete distributions and
refer the readers to [35] for more details. Denote two discrete probability distributions p=

∑n
i=1aiδxi

and q=
∑m

j=1bjδyj , where both a and b are discrete probability vectors summing to 1, xi and yj are
the supports of the two distributions respectively, and δ is a Dirac function. Then the OT distance
is formulated as follows: OT(p, q) = min

T∈Π(p,q)
⟨T,C⟩ , where C ∈ Rn×m

≥0 is the cost matrix with

element Cij=C(xi, yj) which reflects the cost between xi and yj and the transport probability matrix

T ∈ Rn×m
≥0 is subject to Π(p, q) :=

{
T |

∑n
i=1Tij=bj ,

∑m
j=1Tij=ai

}
. The optimization problem

above is often adapted to include a popular entropic regularization term H = −
∑

ij Tij lnTij for
reducing the computational cost, denoted as Sinkhorn algorithm [68].

4 Method
In this work, we propose a novel adaptive image-mixing data augmentation method based on OT for
long-tailed classification, where the overall framework is shown in Fig. 2. We consider a distribution
Pback over the background images mainly from majority classes and another distribution Qfore over
the foreground images mainly from minority classes. By minimizing the OT distance between these
two distributions, we design the sample-level and class-level cost functions and use the learned
transport plan as guidance for the image-mixing process to generate more semantically meaningful
mixed samples between the two distributions.

Main Objective Since majority classes usually have sufficient data and rich information, it is
natural to leverage the majority classes to enhance minority classes. In this work, we aim to generate
minority-centric images with majority contexts, combining the background and foreground images
based on CutMix. The critical question is how to pair a background image and a foreground image.
The first factor of the pairing strategy is that we would expect a background image to be more
likely from the majority classes and a foreground image to be more likely from the minority classes,
which has been modeled in CMO [20]. However, in addition to the first one, the second factor is
the semantic similarity between the background and foreground images, which has not been studied
in the literature and is the main focus of our paper. Specifically, suppose a set of candidate images
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already satisfy the first factor, i.e., background and foreground images are from majority and minority
classes, respectively. Pairing these images arbitrarily may not guarantee that the combined images
are semantically meaningful and helpful, e.g., in Fig. 1.

In this paper, we aim to generate semantically meaningful images by proposing a pairing pro-
cess that satisfies the first and second factors at the same time. Our proposal is derived from a
distribution-matching perspective. First, we consider the distribution Pback of the background images
as the empirical distribution of all the images in the training dataset, which is a (discrete) uniform
distribution:

Pback =
∑N

i=1

1

N
δ(xi, yi). (2)

Although Pback is uniformly distributed, because the majority classes have significantly more images
than the minority classes, it is natural that the samples from Pback are more likely to be images from
the majority classes, which is what we expect. Secondly, we introduce the distribution over the
foreground images, which is a discrete distribution over all the training images:

Qfore =
∑N

j=1wjδ(xj , yj), (3)

where wj is the weight of the j-th sample. In this case, we expect that a sample from Qfore is
more likely to be an image of the minority classes. Thus, Qfore cannot be a uniform distribution.
Accordingly, we can specify wj in several ways, such as the (smoothed) inverse class frequency [69,
70, 71], or the adequate number of samples [72]. Taking the inverse class frequency as the example,
we can sample the k-th class with the following probability: qk =

1/nr
k∑K

k=11/n
r
k

, where r > 0 controls

the smoothness of qk, r = 1 indicates the inverse class frequency and r = 1/2 means the smoothed
version, i.e., if r increases, the weight of the minority class becomes increasingly larger than that of
the majority class. Finally, we can use wj = qk

1
nk

if yj = k.

For now, with our construction of Pback and Qfore, the first factor is satisfied. For the second factor that
requires the semantic similarity between a pair of background and foreground images, we formulate
it as an optimization problem of the entropic OT:

OTϵ(Pback, Qfore)
def
= min

Tij∈Π(Pback,Qfore)

∑N,N
i,j CijTij − ϵ

[∑N,N
i,j − Tij lnTij

]
, (4)

where ϵ > 0 is the hyper-parameter for the entropic constraint, Cij is the transport cost function, and

the transport probability Tij satisfies Π(Pback, Qfore) :=
{
Tij |

∑N
i=1Tij = wj ,

∑N
j=1Tij =

1
N

}
.

Notably, as an upper-bounded positive metric, Tij indicates the transport probability between the
i-th background image and the j-th foreground image, which can be naturally used to measure the
importance of each background image for the foreground image when performing image-mixing.

Cost Function Cij measures the distance between (xi, yi) in Pback and (xj , yj) in Qfore. As the
main parameter for defining the transport distance between probability distributions, Cij plays an
important role in learning the optimal transport plan, which can be flexibly defined in different ways.
For clarity, we can reformulate the concerned model g(θ) as g2(g1(θ1); θ2), where g1(θ1) denotes
the feature extractor parameterized with θ1 and g2(θ2) is the classifier parameterized with θ2. We
explore a few conceptually intuitive options of Cij . A simple but straightforward way is defining the
sample-level Cij with the features of xi and xj :

Cij = 1− cos(zi, zj), (5)

where cos(·, ·) is the cosine similarity, zi = g1(xi; θ1) ∈ Re and zj = g1(xj ; θ1) ∈ Re denote the
e-dimensional representation of xi and xj , respectively. Now Cij will be small if two samples have
similar or close features, where the cost is influenced by the feature extractor θ1. Besides, we can
also define the class-level Cij only using the label information. Specifically, a normalized confusion
matrix F ∈ RK∗K

≥0 can be estimated with an unbiased validation set or a small balanced subset
sampled from D. Summarizing the prediction results of the target model g, the confusion matrix
F shows how the model g is confused when it makes predictions. Since we focus on combining
the foreground images mainly from minority classes and background images mainly from minority
classes, we can set the diagonal element in F to 0, denoted as F̂, to avoid mixing the images from the
same class. After that, we can define Cij with the ground-truth labels of two samples:

Cij = 1− F̂yi,yj
, (6)
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where F̂yi,yj indicates the element of row yi, column yj , of the matrix F̂. If yi and yj are from the
same class, F̂yi,yj

= 0 and Cij = 1; if yi and yj are not from the same class but are easy get to
confused by the model g, F̂yi,yj

would be large and Cij would be small. Now, Cij is affected by the
feature extractor θ1 and classifier θ2. Intuitively, based on the features and labels of samples, the cost
function can also be defined as:

Cij = ω(1− cos(zi, zj)) + (1− ω)(1− F̂yi,yj
), (7)

where ω is a hyper-parameter for balancing the feature and label information and Cij will be small
if two samples have similar features and are from two confused classes but yi ̸= yj . Once the cost
function Cij is defined, it can be fed into (4) for learning the transport plan Tij between foreground
images and background images, where a small Cij tends to produce a large Tij .

Image-mixing Process By minimizing the OT problem, the resultant transport plan T provides an
adaptive way to weigh the similarity between background and foreground images. Therefore, we can
select the most suitable background image xj′ for the foreground image xi as follows:

argmax j′

j′∈N
= {i ∈ N : j′ = max

j∈N
Tij}. (8)

We aim to generate new mixed samples by combining the foreground image xi and the most relevant
background image xj′ and their corresponding labels. As their name implies, xj′ is used as a
background image while xi provides the foreground patch, which can be pasted onto xj′ . Recalling
CutMix in (1), the detailed mixing process is expressed as:

x̃ij′ = M⊙ x′
j + (1−M)⊙ xi, ỹij′ = λy′j + (1− λ)yi. (9)

Training Details During the training process, we adopt a mini-batch setting to integrate our
proposed OTmix with deep neural networks, where we learn T and θ alternatively. More specifically,
at each iteration, we can sample a mini-batch Bfore from Qfore and another mini-batch Bback from Pback

to build Q̂fore and P̂back, both of which have M samples and M < N . In step (1), we can minimize
the OT distance between Q̂fore and P̂back with (4) to learn the transport plan T. In step (2), we can
use the learned transport plan to select the most relevant background image x′

j for each foreground
image xi based on (8). In step (3), we can generate the mixed samples with (9) and minimize the
classification loss to train the model g parameterized by θ:

L = E(xi,yi)∼Bfore

[
E(x′

j ,y
′
j)∼Bback

[ℓ (yij′ , g(x̃ij′ , θ))]
]
. (10)

Since the cost function relies on either the parameter θ1 in the feature extractor or the parameter θ
in the whole model g, it might be inaccurate in the early training stage, resulting in an undesired
transport plan matrix. Consequently, to avoid selecting the unsatisfactory background image for the
foreground image and generating harmful mixed samples, it is more beneficial to randomly select x′

j

for xi in the early stage. To this end, we adopt yrandom ∼ Bernoulli( t
T ) to decide whether randomly

mixing the background and foreground pair, where T is the number of training epochs and t indicates
the current epoch. In the early stage, such as t ≤ T/2, we can get yrandom=0 with a high probability,
where we randomly mix the background and foreground images like CMO [20]; in the late stage,
such as t > T/2, we are more likely to sample yrandom=1, where we can learn T with (4) and select
the most relevant background image for each foreground image. Moving beyond CMO, we introduce
a more adaptive and elegant image-mixing data augmentation method for long-tailed classification.
We summarize our proposed method in Algorithm 1 and highlight steps (1), (2), and (3).

Using OTMix for Balanced Classifications In this case, our method can be viewed as a better
alternative to other augmentation methods that mix images randomly [37, 30]. Applying OTMix in
balanced classifications is similar to doing it in the imbalanced problems except that we construct
both Pback and Qfore as uniform distributions.

5 Experiments
5.1 Experimental Settings and Implementation Details

Datasets Following [23, 25, 27, 20], we evaluate our method on long-tailed classification benchmark
datasets: CIFAR-LT-10 [73], CIFAR-LT-100 [73], ImageNet-LT [74], and iNaturalist 2018 [75]. For
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Algorithm 1 Adaptive Image-mixing Method with Optimal Transport.

Require: Training dataset D, model g with parameter θ, hyper-parameters {ω, α, β, ϵ, r};
1: Build discrete distributions Qfore with (3) and Pback with (2);
2: for t = 1, 2, ..., T do
3: Sample mini-batch Bfore from Qfore and Bback from Pback; Build Q̂fore with Bfore and P̂back with Bback;
4: Sample yrandom ∼ Bernoulli( t

T
) ;

5: if yrandom = 0 then
6: Generate the mixed samples with (1), where we randomly choose xj for xi;
7: else
8: Step (1): Learn the transport plan T by minimizing OTϵ(Q̂fore, P̂back) with (4);
9: Step (2): Select the most relevant background image x′

j for foreground image xi with (8);
10: Step (3): Generate the mixed samples (x̃ij′ , yij′) with (9);
11: end if
12: Update θ(t+1) ← θ(t) − β ▽θ L with (10);
13: end for

clarity, the imbalance factor is defined as the data point amount ratio between the most frequent and
the least frequent classes, i.e., φ= nK

n1
. Among them, CIFAR-LT-10 (CIFAR-LT-100) are created

from CIFAR-10 (CIFAR-100) [76] with φ={100, 50, 10}, respectively. ImageNet-LT, containing
1,000 classes with φ=256, is created from ImageNet [74]. Different from them, iNaturalist 2018 is a
real-world and large-scale imbalanced dataset with 8,142 classes and φ=500.

Baseline Methods We consider several baseline methods: (1) Empirical risk minimization (ERM),
training on the cross-entropy loss; (2) Mixup-based augmentation methods: Remix [21], Unimix [22],
CMO [20]; (3) Other augmentation methods: M2m [17], Open-sampling [18], FSA [23], SAFA [19];
(4) Losses designed for long-tailed classifications: LDAM[1], DRW [1], BALMS [2], IB [3], LADE
[4]; (6) Other methods: BBN [25], RIDE [28], Decouple [26], MisLAS [27].

Table 1: Top-1 errors (%) of ResNet-32 on CIFAR-LT-10 and
CIFAR-LT-100. "‡": our reproduced results. "†": results reported
in the original paper.

CIFAR-LT-10 CIFAR-LT-100
100 50 10 100 50 10

ERM‡ 26.9 22.9 12.9 63.2 56.3 43.4

LDAM‡[1] 26.3 21.6 13.4 61.1 56.0 44.4
ERM-DRW‡[1] 24.3 18.9 11.9 58.0 54.3 41.8
LDAM-DRW‡[1] 23.0 19.1 11.8 57.4 52.2 45.0
BALMS‡[2] 22.7 19.1 11.8 58.0 53.1 41.6
IB† [3] 21.7 18.3 11.7 55.0 51.1 42.0
LADE† [4] – – – 54.6 49.5 38.3

BBN† [25] 20.2 17.8 11.7 57.4 53.0 40.9
RIDE (3 experts)‡ [28] 18.4 16.0 13.7 51.4 48.6 40.2
MiSLAS† [27] 17.9 14.3 10.0 53.0 47.7 36.8

ERM + Open-sampling† [18] 22.4 18.2 10.6 59.7 55.2 41.9
ERM + M2m† [17] 21.7 – 12.1 57.1 – 41.8
LDAM-DRW + SAFA† [1] 19.5 16.4 11.1 54.0 50.0 40.9

ERM + Remix†[21] 24.6 – 11.8 58.1 – 40.6
ERM + UniMix†[22] 23.5 – – 58.5 – –
ERM + CMO[20] 25.0‡ 18.6‡ 11.5‡ 56.1† 51.7† 40.5†

RIDE (3 experts) + CMO [20] 17.8‡ 15.4‡ 12.1‡ 50.0† 47.0† 39.8†

ERM + OTmix 21.7 16.6 9.8 53.6 49.3 38.4
LDAM + OTmix 22.3 18.0 12.0 56.3 50.9 41.5
DRW + OTmix 16.9 13.8 9.4 52.0 47.4 37.3
LDAM-DRW + OTmix 18.2 16.0 11.8 52.0 47.6 41.0
BALMS + OTmix 16.0 13.5 9.8 53.2 47.7 37.7
RIDE (3 experts) + OTmix 17.3 14.8 11.3 49.3 46.2 39.2

Implementation Details For all
datasets, we use PyTorch [77] and
SGD optimizer with momentum 0.9.
Besides, we set ω for defining cost
function in (7) as 0.05, ϵ for entropic
constraint in (4) as 0.01, r for the
smoothness in (3) as 1, and α for
sampling combination ratio as 4. For
CIFAR-LT-10 and CIFAR-LT-100, we
use ResNet-32 [78] as the backbone
following [1] and use 240 epochs on
a single GTX 2080Ti and set the ini-
tial learning rate as 0.1, which is de-
cayed by 0.1, 0.1, and 0.01 at the
100th, 160th, and 200th epochs. For
the ImageNet-LT, we employ ResNet-
50 as the backbone following [20] and
use 200 epochs on four GTX 2080Ti
GPUs. The learning rate is initial-
ized as 0.1 and decays by 0.1, 0.1,
and 0.01 at the 40th, 80th, and 160th
epochs. For the iNaturalist 2018, we
use ResNet-50 as the backbone fol-
lowing [1] and train 210 epochs on four Tesla A100 GPUs with an initial learning rate of 0.1, which
is decayed by 0.1 in the 30th, 80th, 130th, and 180th epochs. Performances are mainly reported as
the overall top-1 errors (%). Following [79], we also report the error rates on three disjoint subsets:
many-shot classes with more than 100 training samples, medium-shot classes with 20 to 100 samples,
and few-shot classes with 20 samples.
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Table 2: Top-1 errors (%) of ResNet-50 on ImageNet-LT and iNaturalist 2018. "⋆": results reported
in CMO. "†": results reported in origin paper.

ImageNet-LT iNaturalist 2018
ALL Many Medium Few ALL Many Medium Few

ERM⋆ [20] 58.4 36.0 66.2 94.2 39.0 26.1 36.5 44.5

ERM-DRW[1] 49.9⋆ 38.3⋆ 52.7⋆ 71.2⋆ 36.3† – – –
LDAM-DRW⋆[1] 50.2 39.6 53.1 69.3 30.0 30.0 29.8 30.1
BALMS⋆[2] 49.0 39.1 51.2 67.9 30.0 30.0 29.8 30.1
IB† [3] – – – – 34.6 – – –
LADE⋆ [4] 48.1 37.7 50.7 68.8 30.0 – – –
Decouple-cRT⋆ [26] 52.7 41.2 56.0 73.9 31.8 26.8 31.2 33.9
Decouple-LWS⋆ [26] 52.3 42.9 54.8 70.7 30.5 29.0 30.2 31.8
BBN⋆ [25] – – – – 30.4 – – –
MiSLAS⋆ [27] 47.3 – – – 28.4 26.8 27.6 29.6
RIDE (3 experts)⋆ [28] 45.1 33.8 48.3 65.1 27.8 29.8 27.8 27.3
RIDE (4 experts)⋆ [28] 44.6 33.8 47.7 63.5 29.1 29.1 27.6 26.9

ERM + M2m† [17] 57.8 – – – – – – –
Focal Loss+ FSA⋆ [23] – – – – 34.1 – – –
LDAM-DRS + SAFA⋆ [19] – – – – 30.2 – – –

ERM + Remix† [21] 58.3 – – – 38.7 – – –
ERM + CMO† 50.9 33.0 57.7 79.5 31.1 23.1 30.7 33.4
RIDE (3 experts) + CMO⋆ [20] 43.8 33.6 46.1 64.4 27.2 31.3 27.4 26.9
ERM + OTmix 48.0 30.0 54.1 77.7 30.5 30.7 29.5 31.6
DRW + OTmix 46.6 33.0 51.0 69.6 28.9 29.4 28.1 29.6
LDAM-DRW + OTmix 47.5 37.2 48.9 71.8 30.4 31.5 29.8 30.6
BALMS + OTmix 44.4 36.0 47.6 57.3 28.5 28.9 28.0 29.2
RIDE (3 experts) + OTmix 42.7 40.6 43.5 55.9 27.0 28.7 27.2 26.2

5.2 Experiments on Long-tailed Classification
We conduct experiments on CIFAR-LT-10 and CIFAR-LT-100 of ResNet-32 in Table 1, where
OTmix+ERM achieves better performance than the mixup-based augmentation methods with ERM
loss, especially for CMO+ERM. It confirms the validity of selecting a suitable pair to mix. Besides,
OTmix with ERM loss produces comparable performance to complex long-tailed classification
methods, such as specially designed losses and other augmentation methods. Considering OTmix can
also be combined with some existing long-tailed losses and model architectures, we further combine
it with LDAM-DRW loss [1], BALMS loss [2], and also the network with multiple experts (RIDE)
[28]. It is clear that OTmix equipped with BALMS loss, DRW loss, and RIDE outperforms most of
the competing methods except on CIFAR-LT-10 with φ = 10, where it is only weaker than MisLAS.
These results illustrate the superiority of the proposed OTmix.

We further perform experiments on large-scale imbalanced ImageNet-LT and iNaturalist 2018 datasets.
Table 2 demonstrates that OTmix based on ERM loss can still produce a comparable performance
when compared with competing long-tailed losses, related mixup-based, and other data augmentation
methods. Similarly, combining ours with other losses or model architecture can overall outperform
these related baselines on ImageNet-LT and iNaturalist 2018, where RIDE (3 experts) + OTmix
performs best. Furthermore, our method can improve the performance of the medium and few classes,
which is the goal of long-tailed methods. We compare OTmix with mixup-based augmentation
methods under various loss functions in Appendix 7.2 and computational cost in Appendix 7.4.

5.3 Experiments on Balanced Classification
Table 3: Top-1 errors (%) of our methods using
ResNet-32 on balanced datasets.

Method CIFAR-10 CIFAR-100
ResNet-32 (baseline) 11.8 34.2
+ Mixup [32] 9.8 32.9
+ OTmix (Mixup) 8.1 32.3
+ Cutmix [37] 8.6 31.6
+ OTmix (Cutmix) 5.8 28.0
+ SaliencyMix [30] 7.2 31.2
+ OTmix (SaliencyMix) 5.1 21.7

To validate whether our proposed OTmix can be used
for the balanced classification task, we adopt the
commonly-used CIFAR-10 [76] and CIFAR-100 [76].
Notably, our proposed OTmix can be flexibly combined
with the classical mixup-based methods when mixing
images, where we consider Mixup [32], Cutmix [37],
and SaliencyMix [30]. We train the networks using
the same details as on the CIFAR-LT. At each training
iteration, we randomly sample two mini-batches, i.e.,
Bfore and Bback, from the balanced training dataset. Table 3 lists the experimental results on balanced
CIFAR datasets, where OTmix produces better performance. It indicates the benefit of building a
better image pair to perform image-mixing data augmentation for the balanced classification task.
Moreover, OTmix (SaliencyMix) achieves the best top-1 error of 5.1% and 21.7% on CIFAR-10
and CIFAR-100 datasets, respectively. These results show that OTmix is still effective on balanced
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classification tasks and can be combined with some advanced mixup-based methods, proving its
flexibility and availability.

5.4 Analytical Experiments
Here we implement the ablation study under various settings on CIFAR-LT-100 with φ=100 and
summarize the results in Table 4. Our best-performing method uses the combined cost function with
cosine similarity, sets the diagonal element in the confusion matrix F as 0, and relies on the maximum
value in the transport plan matrix to select the background image for each foreground image. To
reveal the influence of the cost function, we denote the cost function by only using the sample-level
cost and the class-level cost as “Sample-level cost only” and “Class-level cost only”, respectively.
Besides, we also consider using euclidean distance rather than cosine similarity to define the cost
function called “Euclidean distance”. Compared with ours, which combines the sample-level and
class-level costs and uses cosine similarity, all these variants perform slightly worse, demonstrating
the benefit of combining features and labels to compute the cost function and the effectiveness of
cosine similarity.

Table 4: Ablation study on CIFAR-LT-100.
Method All Many Medium Few

ERM + OTmix 53.6 27.7 53.2 83.3

Sample-level cost only 55.1 30.8 56.1 85.5
Class-level cost only 54.5 30.1 55.9 84.5
Euclidean distance 54.1 27.9 54.0 84.8

Keeping same category 54.9 29.0 55.1 85.0

Probability selection 55.0 28.0 55.7 85.6

Confusion matrix 57.1 29.4 59.5 86.8

To avoid mixing the background and foreground images
from the same category, we set the diagonal element
in F as 0 and use the resultant F̂ to compute the cost
function. Here, we consider its variant by calculating
the cost function using the original confusion matrix
F, denoted as “Keeping same category”, which can be
found to outperform by OTmix. It shows that avoiding
mixing samples from the same class is beneficial, no
matter from minority or majority classes. Besides, we
adopt the multinomial distribution, denoted as “Probability selection”, to select the corresponding
background image for the i-th foreground image, whose probability vector can be formulated as
p = softmax(Ti,1:M ). We observe that selecting background images according to probability
distribution is inferior to using the maximum value, where the latter chooses the most relevant
background image for each foreground image mainly from minority classes without randomness. It
proves the necessity of using the maximum value in the transport plan to build a pair for mixing.

Furthermore, we use the confusion matrix itself (“Confusion matrix” in Table 4) to design the image-
mixing pair instead of OT. The confusion matrix can be from a pre-trained model on the imbalanced
training set with standard ERM loss. Specifically, after sampling the background and foreground
images, if the class k1 of the foreground image is most easily confused with k2 of the background
image (k1 ̸= k2), we use them to construct a pair. However, using the confusion matrix to build the
image-mixing pair is inferior to ours. The possible reason is that OTmix provides a more adaptive
way to measure the importance of each background image for the foreground image at each training
iteration. We provide more analytical results in Appendix 7.3.

5.5 The Learned Transport Plan for Image-mixing

Figure 3: Our learned transport plan on
CIFAR-LT-10 with φ=100.

Recall that our method adaptively learns a transport plan be-
tween a batch of foreground images and a batch of background
images. Fig. 3 shows our learned transport plan on CIFAR-
LT-10 with φ = 100, whose list of class names is {airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, truck} from
k = 1 to 10. To facilitate the visualization, we set the size
of Bfore and Bback as M = 10, respectively. We observe that
the learned transport plan can effectively capture the seman-
tic correlations between foreground and background images.
For example, the foreground image from the “truck” class
(from the “ship” class) is highly related to the background
image from the “automobile” class (from the “airplane” class).
These correlations align with the confusion matrix in Fig. 6
of Appendix 7.3, however, OTmix is adaptive and specific to
batches, while the confusion matrix is global and fixed. In
addition to capturing the class-level similarity information, we
can find that different background images from the same class have different importance to the
same foreground image, i.e., the sample-level similarity information. For instance, the transport
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probabilities between the foreground dog image and two background cat images are 0.75 and 0.24,
respectively. We attribute that to our designed cost function based on the sample-level feature and
class-level confusion matrix when learning the transport plan. Therefore, a learned transport plan is
an effective and adaptive way to guide the image-mixing process for long-tailed classification. We
further compare the image-mixing statistical results of OTmix and CMO in Appendix 7.5 at one
epoch, i.e., the probability of each class in foreground distribution being mixed with each class in
background distribution.

5.6 Visualization Results and Analysis

T-SNE Visualization To gain additional insight, we provide the T-SNE visualization of BALMS,
BALMS+CMO, and BALMS+OTmix on CIFAR-LT-10 with φ = 100 in Fig. 4. Compared with
BALMS+CMO, the majority class is more separable from the minority class2 in OTmix. Besides,
the samples within the same class in our proposed method are usually closer than in CMO, i.e.,
small intra-class. It indicates that our proposed method can generate more effective mixed samples to
improve the long-tailed classification performance.

(a) BALMS (b) BALMS+CMO (c) BALMS+OTmix

Figure 4: T-SNE visualization of BALMS, BALMS+CMO, and BALMS+OTmix on CIFAR-LT-10.

Mixed Image Pairs Visualization To visually witness the intricate dynamics of the mixing process
in our method, we provide the visualization results of image pairs for semantically meaningful mixed
images on ImageNet-LT. As shown in Fig. 5, we plot the more semantically reasonable and relevant
background image for each foreground image given the learned transport plan. For example, the
semantic information of ”Grey fox” is semantically relevant to ”Dhole”. It visually reveals that our
method can generate meaningful and advantageous samples, benefiting the balanced and imbalanced
classification tasks. More visualization results are available in Appendix 7.5.

Figure 5: The visualization results of image pairs for meaningful mixed images on ImageNet-LT.

6 Conclusion
We have introduced a novel adaptive image-mixing augmentation method based on OT for long-
tailed classification, with the goal of generating more semantically meaningful samples. We view
the background images mainly from majority classes and the foreground images mostly from
minority classes as two distributions, where we aim to minimize the OT distance between these
two distributions. Moreover, we further design a combined cost function based on sample-level
and label-level information. By viewing the learned transport plan as guidance to build a pair for
image-mixing, we provide an effective way to weigh the background image for each foreground
image. Our proposed OTmix has shown appealing properties that can be either combined with
existing long-tailed methods or applied to balanced classifications. Experimental results validate that
OTmix achieves competing performance on commonly long-tailed problems and balanced datasets.
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7 Appendix

7.1 Details of CutMix

To sample the binary mask M, we first sample the bounding box coordinates B = (rx, ry, rw, rh)
indicating the cropping regions on xi and xj . The region B in xi is removed and filled in with the
patch cropped from B of xj . In our experiments, we sample rectangular masks M whose aspect ratio
is proportional to the original image. The box coordinates are uniformly sampled according to the:

rx ∼ Unif(0,W ), rw = W
√
1− λ,

ry ∼ Unif(0, H), rh = H
√
1− λ

(11)

making the cropped area ratio rwrh
WH = 1 − λ. With the cropping region, the binary mask M ∈

{0, 1}W×H is decided by filling with 0 within the bounding box B, otherwise 1.

7.2 More Comparison Results

In this section, we conduct comparison studies with mixup-based long-tailed methods, including
Remix [21], Unimix [22], and CMO [20] under various loss functions. We summarize the results on
CIFAR-LT-10 and CIFAR-LT-100 in Table 6 and list the results on ImageNet-LT and iNaturalist 2018
in Table 5. We can find that our OTmix surpasses related mixup-based methods with varying loss
functions and enhances the imbalanced classification. Besides, OTmix with different losses produces
different classification performances due to their characteristics, where OTmix with BALMS can
achieve better or competing performance than OTmix with other loss functions. These results reveal
the effectiveness of our proposed method when combined with other loss functions.

Table 5: Top-1 errors (%) of mixup-based long-tailed methods under various loss functions on
ImageNet-LT and iNaturalist 2018. "⋆": results reported in CMO. "†": results reported in origin
paper.

Method ImageNet-LT iNaturalist 2018
Mixup Loss ALL Many Medium Few ALL Many Medium Few

None⋆ ERM 58.4 36.0 66.2 94.2 39.0 26.1 36.5 44.5
Remix† ERM 58.3 – – – 38.7 – – –
CMO† ERM 50.9 33.0 57.7 79.5 31.1 23.1 30.7 33.4
OTmix ERM 48.0 30.0 54.1 77.7 30.5 30.7 29.5 31.6

None ERM-DRW 49.9⋆ 38.3⋆ 52.7⋆ 71.2⋆ 36.3† – – –
Remix† ERM-DRW – – – – 29.5 – – –
CMO† ERM-DRW 48.6 39.2 51.4 64.5 29.1 31.8 29.8 27.8
OTmix ERM-DRW 46.6 33.0 51.0 69.6 28.9 29.4 28.1 29.6

None⋆ LDAM-DRW 50.2 39.6 53.1 69.3 30.0 30.0 29.8 30.1
CMO† LDAM-DRW 48.9 38.0 52.6 69.2 30.9 24.7 30.5 32.7
OTmix LDAM-DRW 47.5 37.2 48.9 71.8 30.4 31.5 29.8 30.6
None⋆ BALMS 49.0 39.1 51.2 67.9 30.0 30.0 29.8 30.1
CMO† BALMS 47.7 38.0 50.9 63.3 29.1 31.2 30.0 27.7
OTmix BALMS 44.4 36.0 47.6 57.3 28.5 28.9 28.0 29.2

7.3 More Analytical Results

Confusion Matrix To verify whether our method improves the performance of minority classes,
we show the confusion matrices of ERM-DRW, ERM-DRW+CMO, and ERM-DRW+OTmix on
CIFAR-LT-10 with φ = 100 in Fig. 6. We can find that ERM-DRW suffers a severe performance
drop in the minority classes even though it can almost accurately predict the samples in the majority
classes. ERM-DRW+CMO can improve the accuracy of the minority classes, which coincides
with the statement of CMO. OTmix further enhances the generalization of minority classes and
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Table 6: Top-1 (%) errors of mixup-based long-tailed methods with various loss functions on CIFAR-
LT-10 and CIFAR-LT-100. "‡ ": our reproduced results. "†": results reported in the original paper.

Method CIFAR-LT-10 CIFAR-LT-100
Mixup Loss 100 50 10 100 50 10

None‡ ERM 26.9 22.9 12.9 63.2 56.3 43.4
CMO ERM 25.0‡ 18.6‡ 11.5‡ 56.1† 51.7† 40.5†

Remix† ERM 24.6 – 11.8 58.1 – 40.6
UniMix† ERM 23.5 – – 58.5 – –
OTmix ERM 21.7 16.6 9.8 53.6 49.3 38.4

None‡ LDAM 26.3 21.6 13.4 61.1 56.0 44.4
CMO‡ LDAM 25.9 22.7 13.1 58.0 54.3 44.1
UniMix† LDAM 24.6 – – 58.3 – –
OTmix LDAM 22.3 18.0 12.0 56.3 50.9 41.5

None‡ ERM-DRW 24.3 18.9 11.9 58.0 54.3 41.8
Remix† ERM-DRW 20.2 – 11.0 53.2 – 38.8
CMO ERM-DRW 19.5‡ 16.6‡ 11.3‡ 53.0† 49.1† 38.3†

OTmix ERM-DRW 16.9 13.8 9.4 52.0 47.4 37.3

None‡ LDAM-DRW 23.0 19.1 11.8 57.4 52.2 45.0
Remix† LDAM-DRW 20.7 – 13.2 55.0 – 40.5
CMO LDAM-DRW 19.0‡ 16.2‡ 12.4‡ 52.8† 48.3† 41.6†

OTmix LDAM-DRW 18.2 16.0 11.8 52.0 47.6 41.0

None‡ BALMS 22.7 19.1 11.8 58.0 53.1 41.6
CMO BALMS 19.7‡ 15.9‡ 11.0‡ 53.4† 48.6† 37.7†

OTmix BALMS 16.0 13.5 9.8 53.2 47.7 37.7

None‡ Focal 30.4 23.4 13.6 61.6 56.3 45.0
CMO‡ Focal 29.0 22.6 12.5 58.1 53.6 41.8
OTmix Focal 27.0 20.9 12.0 57.8 53.3 40.6

None‡ CB Softmax 26.0 21.1 12.3 – – –
CMO‡ CB Softmax 25.7 20.2 12.2 – – –
OTmix CB Softmax 24.0 18.8 12.0 – – –

None‡ CB Sigmoid 26.5 22.4 12.5 – – –
CMO‡ CB Sigmoid 27.4 20.8 12.1 – – –
OTmix CB Sigmoid 24.9 20.6 11.8 – – –

maintains performance in majority classes, which thus outperforms the strong baselines on the overall
performance. In Fig.7, we plot the classification results for each class on CIFAR-LT-10 with φ = 100,
where we adopt the BALMS loss and LDAM loss, respectively. Compared with these baselines,
OTmix provides a significant improvement in minority classes. We specifically note that the proposed
method improves the accuracy over BALMS by 23% and over LDAM by 15% for the least frequent
class 9 while degrading the accuracy for class 0 and class 1 by less than 2%. These results indicate
that ours can achieve a more balanced classifier and ameliorate the generalization of minority classes.

Discussion of Hyper-parameters and Training Settings To analyze the effect of different hyper-
parameters and settings of OTmix, we conduct analytical experiments on CIFAR-LT-10 with φ = 100.
The hyper-parameters include ω, α, and r, respectively. ω in (7) is employed to manage the degree of
combination of the confusion matrix and feature information in Fig. 8(a). The best performance is
achieved when ω = 0.05, indicating the class-level cost based on the confusion matrix dominating
the cost function. α affects the combined ratio in Cutmix in Appendix 7.1. As shown in Fig. 8(b),
the larger the value of α is, the more complementary the distribution tends to be closer to a uniform
distribution. The OTmix achieves an accuracy of 46.4% when α = 4.
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Figure 6: Confusion matrices of the ERM-DRW, ERM-DRW+CMO, and ERM-DRW+OTmix on
CIFAR-LT-10 with φ = 100.

(a) BALMS baseline (b) LDAM baseline

Figure 7: The classification results of different methods for each class on CIFAR-LT-10 with φ = 100,
where (a) uses the BALMS loss and (b) adopts the LDAM loss. Class 0 stands for the majority class,
and class 9 stands for the minority class.

(a) Hyper-parameter ω (b) Hyper-parameter α

(c) Hyper-parameter r (d) Training factor µ

Figure 8: Analytical experiments of different hyper-parameters and settings of the proposed method
on CIFAR-LT-100 with φ = 100: (a-c) with various hyper-parameters, (d) with the setting of training
factor.
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The hyper-parameter r controls the smoothness of qk, which further decides the sample weight of
foreground distribution in (4). As shown in Fig. 8(c), the smoothness factor r = 1 achieves the
best performance, which indicates the inverse class frequency. Recalling that we adopt yrandom ∼
Bernoulli( t

T ) to decide whether mixing the background and foreground pair with our OTmix, where
we use µ to set yrandom ∼ Bernoulli( t

T )
µ and explore the effect of µ. As plotted in Fig. 8(d), ours

with µ = 1 produces the best performance. That is to say, we will randomly mix the background and
foreground images with a high probability during the first half of training epochs, and we are more
likely to use OTmix to mix the background and foreground pairs in the latter half of epochs.

Mixed Fractions To examine the indispensability of the images unchanged in every batch, we
conduct an additional experiment with the fraction of the mixed images in every batch on CIFAR-LT-
10 and CIFAR-LT-100 under different methods and fractions. We denote Fraction = Mixed

Overall
in

every batch. From the results in Table 7, when the number of mixed samples decreases (Fraction ↓),
the performance of OTmix deteriorates significantly, which suggests that it is better to use mixed
samples alone in every batch in our method.

Table 7: Classification errors of ResNet-32 on CIFAR-LT-10 and CIFAR-LT-100 under different
methods and mixed fractions.

Method Fraction
CIFAR-LT-10 CIFAR-LT-100

100 50 10 100 50 10

ERM / 26.9 22.9 12.9 63.2 56.3 43.4
ERM + CMO 100% 25.0 18.6 11.5 56.1 51.7 40.5

ERM + OTmix 100% 21.7 16.6 9.8 53.6 49.3 38.4
ERM + OTmix 50% 24.7 20.0 12.3 55.1 52.0 40.4
ERM + OTmix 25% 23.6 20.1 11.1 58.1 53.1 40.5
ERM + OTmix 12.5% 27.2 21.8 12.1 57.1 52.7 41.1

Discussion of Confusion matrix Considering the confusion matrix played an important role in
learning the cost function based class-level, we discuss the performance of our method and the
computational cost of the normalized confusion matrix calculated on a balanced validation set, an
imbalanced training set, and a small balanced subset sampled from imbalanced training set in Table 8.
Meanwhile, the confusion matrix is represented as two states, fixed and adaptive. The former denotes
where the confusion matrix remains unchanged in our approach and the latter changes dynamically in
each epoch. From Table 8, we can draw a few observations: (1) With the same settings, the adaptive
methods perform significantly better overall and few than the fixed methods. (2) Compared with
the fixed balanced training setting Dbal

fixed, the fixed imbalanced training setting Dim
fixed is preferable

by providing more sample information (Dim
fixed ≫ Dbal

fixed). However, large-scale samples can
drastically increase the computational cost, making it difficult to implement adaptively. (3) Despite
the time spent in the balanced training setting less, the balanced validation setting exhibits superior in
terms of overall performance. To summarize, OTmix with the adaptively balanced validation setting
enhances the suitability of OTmix for long-tailed classification.

Table 8: Classification errors of the ERM+OTmix with different confusion matrices under various
methods and calculated settings on iNaturalist 2018.

Method Setting ALL Many Medium Few Time
Fix Balanced validation 31.0 29.3 29.5 33.3 86s
Fix Imbalanced training 31.5 31.0 30.2 33.2 1277s
Fix Balanced training 31.8 32.7 30.3 33.5 58s

Adaptive Balanced validation (OTmix) 30.5 30.7 29.5 31.6 86s
Adaptive Balanced training 31.1 32.9 30.6 31.1 58s
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7.4 Computational Cost

The optimal transport (OT) problem in our method between probability distributions is computed by
the Sinkhorn algorithm [68], which introduces the entropic regularization term for fast computation.
To compute the OT distance between n dimensional discrete distributions, the Sinkhorn algorithm
requires the computational cost of O(n2log(n)/ε2) reach ε-accuracy. In our case, n corresponds to
the batchsize, which is set to 128 in our experiments. We compare the computational cost of different
methods on a Pentium PC with a single GTX 3060 GPU.

Table 9: Computational cost (s) per training epoch on long-tailed datasets.
Method CIFAR-LT-10 CIFAR-LT-100 ImageNet-LT iNaturalist 2018
ERM 2.85 2.17 310.47 1251.29
ERM+CMO 3.35 2.85 319.73 1360.66
ERM+OTmix 4.59 3.79 333.64 1382.54

In addition, we also report the computational cost (s) per training epoch on long-tailed and balanced
datasets, respectively. As shown in Table 9 and Table 10, mixup-based methods usually take more time
than ERM. It is reasonable since mixup-based methods need to mix images. Besides, OTmix spends
more time than CMO since we solve an OT problem to pair a background image and a foreground
image. Still, introducing OTmix to existing mixup-based methods in balanced classification consumes
more time. However, it is worth noticing that we only need to employ the OTmix during the late half
phase of the training process. In summary, combining ours with others produces a better performance
on long-tailed and balanced datasets with an acceptable cost.

Table 10: Computational cost (s) per training epoch on balanced datasets.
Method CIFAR-10 CIFAR-100
ERM 11.9 12.8

ERM+Mixup 12.1 13.8
ERM+OTmix (Mixup) 17.1 18.1

ERM+Cutmix 13.2 15.7
ERM+OTmix (Cutmix) 19.1 21.5

ERM+SaliencyMix 14.2 17.9
ERM+OTmix (SaliencyMix) 21.5 24.9

7.5 More Visualization Results and Analysis

Statistical Results of Mixed Images To intuitively reveal that OTmix is more effective than CMO,
we show the statistical results of the mixed images generated by CMO and OTmix on CIFAR-LT-10,
respectively. Specifically, we summarize the 10× 10 matrix m for the ten-class classification task in
one training epoch, where element mij denotes the number of pairs between the foreground images
from the i-th class and the background images from the j-th class. As shown in Fig. 9(a), we can see
that regardless of the foreground image from which class, CMO mainly mixes it with the background
image from the majority classes. For example, the foreground images from the “truck” will be
mixed with the background images from the “airplane” class, even if the truck is more similar to the
automobile. However, Fig. 9(b) indicates that our proposed method builds more reasonable pairs by
selecting the most relevant background image for each foreground image. For example, the “horse” is
more easily confused with “deer” than “airplane”. These results validate that ours can provide more
reasonable generated samples than CMO.

Visualization Results of Mixed Image Pairs To gain a more intuitive insight into the dynamic
changes within the mixing process of our method, we provide more visualization results of mixed
image pairs on iNaturalist 2018 in Fig. 10. The foreground image and the selected background image
commonly have significant semantic similarity. It suggests that OTmix has the capacity to generate
reasonably mixed samples for long-tailed classification.
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(a) CMO (b) OTmix

Figure 9: Image-mixing statistical results of OTmix and CMO on CIFAR-LT-10 with φ = 100.

Figure 10: The visualization results of image pairs used to semantically meaningful mixed images on
iNaturalist 2018.

7.6 Negative Societal Impacts and Limitations

This work develops a simple and effective image-mixing method for long-tailed learning, which
has the potential to encourage researchers to derive new and better methods for the line of mixing
images or long-tailed learning. However, if there is a sufficiently malicious or ill-informed choice of
a long-tailed classification task or an image-mixing task, it may indirectly lead to a negative impact.
Employing an imprecise or incorrect confusion matrix can mislead our method to build unsatisfactory
pairs for image-mixing.
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