
A Appendix

A.1 Background: Packed-Memory Arrays

This section provides background on a common list labeling data structure, the packed-memory array
(PMA), introduced by Bender et al. [4]. The data structure in [4] extends the LLAs of [30, 54, 55] by
adding lower-density thresholds. Lower-density thresholds provide the added guarantee that any two
elements in the array are Θ(1) slots apart. Both versions guarantee an amortized cost of O(log2 n).
For simplicity, we describe the PMA using only upper density thresholds.

Classic PMA. Consider an array with m = cn slots, for a constant c > 1. Divide the array into ranges
of size Θ(log n). These ranges form the leaves of an implicit binary tree on top of the Θ(n/ log n)
leaves. Each node in this implicit binary tree corresponds to a subarray containing all leaf ranges
within its subtree.

For a node in the implicit binary tree, define the size(u) as number of slots in its subarray and
density(u) as the number of elements in its subarray divided by size(u). Let the depth of the root
node be 0, nodes and leaf nodes be at depth d = Θ(log n/ log log n).

For each node u at depth k, let τk be the density threshold. Let τ0 and τd be constants such that
0 < τ0 < τd < 1. For a node at depth k, let τk = τ0 + (τd − τ0) · k

d .

A node u is within threshold if density(u) ≤ τk. If a node is within threshold, then all its descendants
are also within threshold.

To insert an element x, determine the leaf range r it belongs to. If the leaf range r is within threshold,
there is always a slot for x. Insert x in its slot and rebalance the r by evenly distributing all elements.
If the leaf range is out of threshold, find the first ancestor ra of the r that is within threshold and
rebalance all elements evenly in that range. Now r is within threshold and there is room to insert x.

To see why the amortized cost of insertion is O(log2 n), consider the insertion of element x that
causes a node u at depth k to be rebalanced. Then, a child v of u must be out of threshold, that is,
density(v) > τk+1. After we rebalance u, both v (and its sibling) have density at most τk (density
threshold of its parent u). The node u would need to rebalanced again when either v (or its sibling)
go out of treshold again. This requires at least (τk+1− τk) · size(v) additional insertions. A rebalance
of node u costs size(u). Thus, the amortized cost of rebalancing u is:

size(u)
(τk+1 − τk)size(v)

=
2

τk+1 − τk
=

2d

τd − τ0
= O(log n)

Since an insertion can contribute to O(log n) ancestors being out of balance, the overall amortized
cost of an insertion is O(log2 n).

A.2 Additional Experiments

In this section, we further describe the experimental setup and the datasets we use. We also present
more experimental results.

Experimental setup. We use a machine with 11th Gen Intel Core i7 CPU 2.80GHz, 32GB of RAM,
128GB NVMe KIOXIA disk drive, and running 64-bit Windows 10 Enterprise to run our experiments.
We remark that amortized cost, the average number of element movements, is hardware-independent.
We use the following density thresholds for the PMA and APMA: root’s lower threshold: 0.2, leaves’
lower threshold: 0.1, root’s upper threshold: 0.5, leaves’ upper threshold: 0.9. We add a −∞ element
at the beginning of each experiment. This is to make sure the internal predictor data structure in
APMA operates as expected from the beginning of the experiment (see [7]). The datasets we use
might include duplicate elements, and we use the same algorithm to insert these elements, even
though in Section 2, we assume the elements in the input sequence form a set. This does not affect
any of the algorithms and they are still well-defined. The relative order between duplicates can be
arbitrary. In LearnedLLA, when we insert an element x, to find the black box LLAs containing the
predecessor and successor of x, we use Python Sorted Containers library5 (note that since we only
measure the amortized cost, our results are independent of the function used to find these LLAs). For

5https://grantjenks.com/docs/sortedcontainers/

14



measuring the amortized cost in the experiments, we do not count the first assignment of a label to an
element as a relabel (note that this is in contrast to the theory section of the paper).

(a) (b) (c)

Figure 2: Gowalla (LocationID)

(a) (b) (c)

Figure 3: MOOC

(a) (b) (c)

Figure 4: AskUbuntu

Dataset description. Here we describe the real temporal datasets we use in our experiments. In all
cases, we use a prefix of the dataset in temporal order as the input sequence.

• Gowalla6 [14]: Gowalla is a location-based social networking website where users share
their locations by checking in. We use the location ID and latitude of the users that check in.

• MOOC7 [36]: The MOOC user action dataset represents the actions taken by users on a
popular MOOC platform. The actions are represented as a directed, temporal network. The
nodes represent users and course activities (targets), and edges represent the actions by users
on the targets. We use the user IDs as our input sequence.

• AskUbuntu8: This is a temporal network of interactions on the stack exchange web site
Ask Ubuntu. There are three different types of interactions represented by a directed edge
(u, v, t): i. user u answered user v’s question at time t, ii. user u commented on user v’s
question at time t, and iii. user u commented on user v’s answer at time t. We use the IDs
of target users in the answers-to-questions network as the input sequence.

• email-Eu-core9 [44] The network was generated using email data from a large European
research institution. The e-mails only represent communication between institution members
(the core), and the dataset does not contain incoming messages from or outgoing messages
to the rest of the world. A directed edge (u, v, t) means that person u sent an e-mail to

6https://snap.stanford.edu/data/loc-Gowalla.html
7https://snap.stanford.edu/data/act-mooc.html
8https://snap.stanford.edu/data/sx-askubuntu.html
9https://snap.stanford.edu/data/email-Eu-core-temporal.html

15



(a) (b) (c)

Figure 5: email-Eu-core

person v at time t. A separate edge is created for each recipient of the e-mail. We use the
IDs of target users as our input sequence.

Results. In Figures 2 to 5, we show plots for other datasets in Table 1. The setup is similar to
Figure 1.

Discussion. These results further support our conclusions. Note that in some cases, increasing the
size of the training set results in slightly worse performance for LearnedLLA. We believe this is
because as we increase the size of the training data, we use older data as training.

16


