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Abstract

The divergence of the Q-value estimation has been a prominent issue in offline
reinforcement learning (offline RL), where the agent has no access to real dynamics.
Traditional beliefs attribute this instability to querying out-of-distribution actions
when bootstrapping value targets. Though this issue can be alleviated with pol-
icy constraints or conservative Q estimation, a theoretical understanding of the
underlying mechanism causing the divergence has been absent. In this work, we
aim to thoroughly comprehend this mechanism and attain an improved solution.
We first identify a fundamental pattern, self-excitation, as the primary cause of
Q-value estimation divergence in offline RL. Then, we propose a novel Self-Excite
Eigenvalue Measure (SEEM) metric based on Neural Tangent Kernel (NTK) to
measure the evolving property of Q-network at training, which provides an intrigu-
ing explanation on the emergence of divergence. For the first time, our theory
can reliably decide whether the training will diverge at an early stage, and even
predict the order of the growth for the estimated Q-value, the model’s norm, and
the crashing step when an SGD optimizer is used. The experiments demonstrate
perfect alignment with this theoretic analysis. Building on our insights, we propose
to resolve divergence from a novel perspective, namely regularizing the neural net-
work’s generalization behavior. Through extensive empirical studies, we identify
LayerNorm as a good solution to effectively avoid divergence without introducing
detrimental bias, leading to superior performance. Experimental results prove that
it can still work in some most challenging settings, i.e. using only 1% transitions
of the dataset, where all previous methods fail. Moreover, it can be easily plugged
into modern offline RL methods and achieve SOTA results on many challenging
tasks. We also give unique insights into its effectiveness. Code can be found at
https://offrl-seem.github.io.

1 Introduction
Off-policy Reinforcement Learning (RL) algorithms are particularly compelling for robot control [39;
13; 17] due to their high sample efficiency and strong performance. However, these methods often
suffer divergence of value estimation, especially when value over-estimation becomes unmanageable.
Though various solutions (e.g., double q-network [19]) are proposed to alleviate this issue in the online
RL setting, this issue becomes more pronounced in offline RL, where the agent can only learn from
offline datasets with online interactions prohibited [32]. As a result, directly employing off-policy
algorithms in offline settings confronts substantial issues related to value divergence [14; 30].

This raises a natural yet crucial question: why is value estimation in offline RL prone to divergence,
and how can we effectively address this issue? Conventionally, deadly triad [46; 4; 47; 48] is
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identified to be the main cause of value divergence. Specifically, it points out that a RL algorithm
is susceptible to divergence at training when three components are combined, including off-policy
learning, function approximation, and bootstrapping. As a special case of off-policy RL, offline
RL further attributes the divergence to distributional shift: when training a Q-value function using
the Bellman operator, the bootstrapping operation frequently queries the value of actions that are
unseen in the dataset, resulting in cumulative extrapolation errors [14; 30; 33]. To mitigate this issue,
existing algorithms either incorporate policy constraints between the learned policy and the behavior
policy [42; 14; 53; 23; 30; 12; 51; 8], or make conservative/ensemble Q-value estimates [31; 38; 2;
41; 57; 15]. While these methods demonstrate some effectiveness by controlling the off-policy degree
and bootstrapping—two components of the deadly triad—they often overlook the aspect of function
approximation. This neglect leaves several questions unanswered and certain limitations unaddressed
in current methodologies.

How does divergence actually occur? Most existing studies only provide analyses of linear functions
as Q-values, which is usually confined to contrived toy examples [47; 4]. The understanding and
explanation for the divergence of non-linear neural networks in practice are still lacking. Little is
known about what transpires in the model when its estimation inflates to infinity and what essential
mechanisms behind the deadly triad contribute to this phenomenon. We are going to answer this
question from the perspective of function approximation in the context of offline RL.

How to avoid detrimental bias? Despite the effectiveness of policy constraint methods in offline RL,
they pose potential problems by introducing detrimental bias. Firstly, they explicitly force the policy
to be near the behavior policy, which can potentially hurt performance. Also, the trade-off between
performance and constraint needs to be balanced manually for each task. Secondly, these methods
become incapable of dealing with divergence when a more challenging scenario is encountered, e.g.,
the transitions are very scarce. Instead, we are interested in solutions without detrimental bias.

Our study offers a novel perspective on the challenge of divergence in Offline-RL. We dissect the
divergence phenomenon and identify self-excitation—a process triggered by the gradient update
of the Q-value estimation model—as the primary cause. This occurs when the model’s learning
inadvertently elevates the target Q-value due to its inherent generalization ability, which in turn
encourages an even higher prediction value. This mirage-like property initiates a self-excitation cycle,
leading to divergence. Based on this observation, we develop theoretical tools with Neural Tangent
Kernel (NTK) to provide in-depth understanding and precise prediction of Q-value divergence. This
is the first work, to our knowledge, that accurately characterizes neural network dynamics in offline
RL and explains the divergence phenomenon. More specifically, our contributions are three-fold:

• Explanation: We offer a detailed explanation of Q-value estimation divergence in offline RL
settings with neural networks as non-linear estimators. We propose a novel metric, the Self-
Excite Eigenvalue Measure (SEEM), which is defined as the largest eigenvalue in the linear
iteration during training, serving as an indicator of divergence. It also elucidates the fundamental
mechanisms driving this divergence.

• Prediction: We can foresee the divergence through SEEM at an early stage of training before
its estimation explodes. If divergence occurs, our theoretical framework is capable of predicting
the growth pattern of the model’s norm and the estimated Q-value. When the SGD optimizer is
used, we can even correctly predict the specific timestep at which the model is likely to crash.
Our experiments show our theoretical analysis aligns perfectly with reality.

• Effective Solution: Drawing from our findings, we suggest mitigating divergence by regularizing
the model’s generalization behavior. This approach allows us to avoid imposing strict constraints
on the learned policy, while still ensuring convergence. Specifically, viewed through the lens
of SEEM, we find that MLP networks with LayerNorm exhibit excellent local generalization
properties while MLPs without LayerNorm don’t. Then we conduct experiments to demonstrate
that with LayerNorm in critic network, modern offline RL algorithms can consistently handle
challenging settings when the offline dataset is significantly small or suboptimal.

2 Preliminaries

Notation. A Markov Decision Process (MDP) is defined by tuple M = (S,A, P, r, ν), where
S ⊆ RdS is the state space and A ⊆ RdA is the action space. P : S × A 7→ ∆(S) is the transition
dynamics mapping from state-action pair to distribution in state space. r : S ×A 7→ R is the reward
function and ν ∈ ∆(S) is the initial state distribution. An offline RL algorithm uses an offline dataset
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Figure 1: NTK similarity and action similarity along the training in two offline D4RL tasks. Different
colors represent different seeds. The cosine similarity between the current step and the last step is
computed. We can see all runnings reach a steady NTK direction and policy actions after a time t0.

D = {(si, ai, s′i, ri)}
M
i=1, which consists of M finite samples from interactions with MDPM. We

write s ∈ D if there exists some k ∈ [M ] such that sk = s, similar for notation (s, a) ∈ D.

In this paper, we consider using a L-layer ReLU-activated MLP as the Q-value approximator.
Each layer has parameter weight W ℓ ∈ Rdℓ+1×dℓ and bias bℓ ∈ Rdℓ+1 . The activation function
is ReLU: σ(x) = max(x, 0). Integer dℓ represents the dimensionality of the ℓth hidden layer,
where d0 = dS + dA and dL = 1 since a scalar estimation is required for Q-value. Denote
θ = Vec[W 0, b0, . . . ,wL, bL] to be the vector of all learnable parameters. We use Q̂θ(s, a) =
fθ(s, a) to denote the estimated Q-value using neural network fθ with parameter θ. Also, π̂θ(s) =
argmaxa Q̂θ(s, a) is its induced policy. Sometimes we will write fθ(X) ∈ RM where X =
[(s1, a1), . . . , (sM , aM )] stands for the concatenation of all inputs (si, ai) ∈ D in dataset.

Considering a Q-learning-based offline RL algorithm that alternates between the following two steps:

Q̄← r(s, a) + γmax
a′

Q̂θ(s
′, a′), θ ← θ − η∇θ

(
Q̄− Q̂θ(s, a)

)2
, (1)

where η is the learning rate for updating the Q network. Practical algorithms might use its actor-critic
form for implementation, we stick to this original form for theoretical analysis. In the following
analysis, we call these two steps Q-value iteration.

Neural Tangent Kernel (NTK). NTK [21] is an important tool to analyze the dynamics and
generalization of neural networks. Intuitively, it can be understood as a special class of kernel
function, which measures the similarity between x and x′, with dependency on parameter θ. Given a
neural network fθ and two points x,x′ in the input space, the NTK is defined as kNTK(x,x

′) :=
⟨∇θfθ(x),∇θfθ(x

′)⟩, where the feature extraction is ϕθ(x) := ∇θfθ(x). If we have two batches
of input X,X ′, we can compute the Gram matrix as Gθ(X,X ′) = ϕθ(X)⊤ϕθ(X

′).

Intuitively speaking, NTK measures the similarity between two inputs through the lens of a non-linear
network fθ . Such similarity can be simply understood as the correlation between the network’s value
predictions of these two inputs. If kNTK(x,x

′) is a large value, it means these two points are “close”
from the perspective of the current model’s parameter. As a result, if the model’s parameter changes
near θ, say, from θ to θ′ = θ+∆θ, denote the prediction change for x as ∆f(x) = fθ′(x)− fθ(x)
and for x′ as ∆f(x′) = fθ′(x′) − fθ(x′). ∆f(x) and ∆f(x′) will be highly correlated, and the
strength of the correlation is proportional to kNTK(x,x

′). This intuition can be explained from
simple Taylor expansion, which gives ∆f(x) = ∆θ⊤ϕθ(x) and ∆f(x′) = ∆θ⊤ϕθ(x

′). These
two quantities will be highly correlated if ϕθ(x) and ϕθ(x′) are well-aligned, which corresponds to
large NTK value between x and x′. To summary, kNTK(x,x

′) characterizes the subtle connection
between fθ(x) and fθ(x′) caused by neural network’s generalization.

3 Theoretical Analysis

In this section, we will investigate the divergence phenomenon of Q-value estimation and theoretically
explains it for a more comprehensive understanding. Note that in this section our analysis and
experiments are conducted in a setting that does not incorporate policy constraints and exponential
moving average targets. Although the setting we analyze has discrepancies with real practice, our
analysis still provides valueable insight, since the underlying mechanism for divergence is the same.
We first focus on how temporal difference (TD) error changes after a single step of Q-value iteration
in Equation (1). Our result is the following theorem.
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Theorem 1. Suppose that the network’s parameter at iteration t is θt. For each transition
(si, ai, si+1, ri) in dataset, denote r = [r1, . . . , rM ]⊤ ∈ RM , π̂θt

(s) = argmaxa Q̂θt
(s, a). Denote

x∗
i,t = (si+1, π̂θt

(si+1)). Concatenate all x∗
i,t to be X∗

t . Denote ut = fθt
(X)− (r+ γ · fθt

(X∗
t ))

to be TD error vector at iteration t. The learning rate η is infinitesimal. When the maximal point of
Q̂θt

is stable as t increases, we have the evolving equation for ut+1 as ut+1 = (I + ηAt)ut, where
At = (γϕθt(X

∗
t )− ϕθt(X))

⊤
ϕθt(X) = γGθt(X

∗
t ,X)−Gθt(X,X).

G is defined in Section 2. Detailed proof is left in Appendix B. Theorem 1 states that when the
policy action π̂θt(s) that maximizes Q-values keep stable, leading to invariance of X∗

t , each Q-value
iteration essentially updates the TD error vector by a matrix At, which is determined by a discount
factor γ and the NTK between X and X∗

t .

3.1 Linear Iteration Dynamics and SEEM

Although Theorem 1 finds that TD update is a linear iteration under certain conditions, the dynamic
is still complex in general. The policy π̂θt(s) that maximizes Q-values may constantly fluctuate with
θt over the course of training, leading to variations of X∗

t . Also, the kernel Gθ(·, ·) has dependency
on parameter θ. This causes non-linear dynamics of ut and the model parameter vector θ. However,
according to our empirical observation, we discover the following interesting phenomenon.
Assumption 2. (Existence of Critical Point) There exists a time step t0, a terminate kernel k̄(·, ·) and

stabilized policy state-action X̄
∗ such that

∥∥∥ kt(x,x
′)

∥x∥·∥x′∥ −
k̄(x,x′)
∥x∥·∥x′∥

∥∥∥ = o(1) and
∥∥X∗

t+1 −X∗
t

∥∥ =

o(η) for any x,x′ ∈ S ×A when t > t0. We also assume that
∥∥X∗

t − X̄
∗∥∥ = o(1).
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Figure 2: Prediction Ability
- Linear decay of inverse Q-
value with SGD and L = 2.

This assumption states that the training dynamics will reach a steady
state, where the policy π̂θt stabilizes and NTK converges to a ter-
minate direction. Usually, constant NTK requires the width of the
network to be infinite[21]. But in our experiments1, the convergence
of NTK is still observed in all our environments despite finite width
(see Figure 1). Results of more environments are attached in the
appendix. It should be pointed out that NTK direction stability itself
does not imply model convergence; rather, it only indicates that
the model evolves in steady dynamics. Apart from NTK, we also
observe that π̂θt

converges after a certain timestep t0. Moreover, we
find that π̂θt

always shifts to the border of the action set with max
norm (see Figure 15). The reason for the existence of this critical
point is elusive and still unknown. We hypothesize that it originates
from the structure of gradient flow ensuring every trajectory is near
an attractor in the parameter space and ends up in a steady state.
Based on the critical point assumption, we prove that the further evolving dynamic after the critical
point is precisely characterized by linear iteration as the following theorem. We also explain why
such a stable state can persist in appendix.
Theorem 3. Suppose we use SGD optimizer for Q-value iteration with learning rate η to be infinitesi-
mal. Given iteration t > t0, and A = γḠ(X̄

∗
,X)− Ḡ(X,X), where Ḡ is the Gram matrix under

terminal kernel k̄. The divergence of ut is equivalent to whether there exists an eigenvalue λ of A
such that Re(λ) > 0. If converge, we have ut = (I+ ηA)t−t0 ·ut0 . Otherwise, ut becomes parallel
to the eigenvector of the largest eigenvalue λ of A, and its norm diverges to infinity at following order

∥ut∥2 = O

(
1

(1− C ′ληt)
L/(2L−2)

)
(2)

for some constant C ′ to be determined and L is the number of layers of MLP. Specially, when L = 2,
it reduces to O

(
1

1−C′ληt

)
.

Theorem 3 predicts the divergence by whether λmax(A) is greater to 0. We term this divergence
detector λmax(A) as Self-Excite Eigenvalue Measure, or SEEM. Essentially, Theorem 3 states that

1To affirm the practicability of our analysis, we conduct experiments on a widely used offline RL benchmark
D4RL [10], and utilize a 3-Layer MLP instead of a toy example. More details can be found in the appendix.
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Figure 3: The divergence indication property of SEEM. The left figure shows the SEEM value with
respect to different discount factors γ. Theorem 3 states that larger γ has a larger SEEM value. The
star point means the model’s prediction eventually exceeds a large threshold (106) in training, which
means diverging. We can see that positive SEEM is perfectly indicative of the divergence. This is
also true within the training process. From the middle and right figures, we can see that the prediction
Q-value (in blue) is stable until the normalized kernel matrix’s SEEM (in red) rises up to a large
positive value, then we can observe the divergence of the model.

we can monitor SEEM value to know whether the training will diverge. To validate this, we conduct
experiments with different discount factor γ. The first term in A is linear to γ, thus larger γ is
more susceptible to diverging. This is exactly what we find in reality. In Figure 3, we can see that
experiments with large γ have positive SEEM, and the training eventually diverges (⋆). Moreover,
SEEM can also faithfully detect the trend of divergence during the training course. On the right of
Figure 3, we can see that the surge of SEEM value is always in sync with the inflation of estimation
value. All these results corroborate our theoretical findings.

3.2 Prediction Ability

In Section 3.1, we have demonstrated that SEEM can reliably predict whether the training will
diverge. In fact, our theory is able to explain and predict many more phenomena, which are all exactly
observed empirically. Here we list some of them, and the detailed proofs are left in supplementary.

➢ Terminating (Collapsing) Timestep. Theorem 3 predicts that with an SGD optimizer and
2-layer MLP, the inverse of Q-value decreases linearly along the timestep, implying a terminating
timestep T = 1

C′λη . The Q-value estimation will approach infinite very quickly beside T , and
ends in singularity because the denominator becomes zero. From Figure 2, we can see that it
is true. The terminal Q-value prediction’s inverse does decay linearly, and we can predict when
it becomes zero to hit the singularity. Specifically, we use the data from 450th to 500th step to
fit a linear regression, obtaining the green dotted line 1/∥ut∥ ≈ −1.44× 10−3t+ 0.87, which
predicts a singular point at 605th iteration. We then continue training and find that the model
indeed collapses at the very point, whose predicted value and parameter become NaN.

➢ Linear Norm Growth for Adam. While Theorem 3 studies SGD as the optimizer, Adam is
more adopted in real practice. Therefore, we also deduce a similar result for the Adam optimizer.
Theorem 4. Suppose we use Adam optimizer for Q-value iteration and all other settings are
the same as Theorem 3. After t > t0, the model will diverge if and only if λmax(A) > 0. If it
diverges, we have ∥θt∥ = η

√
Pt+ o(t) and ∥ut∥ = Θ(tL) where P and L are the number of

parameters and the number of layers for network fθ, respectively.

Again, the detailed proof is left in the supplementary. Theorem 4 indicates that with a Adam
optimizer, the norm of the network parameters grows linearly and the predicted Q-value grows
as a polynomial of degree L along the time after a critical point t0. We verify this theorem in
D4RL environments in Figure 4. We can see that the growth of the norm ∥θt∥ exhibits a straight
line after a critic point t0. Moreover, we can see logQ ≈ 3 log t + c, which means Q-value
prediction grows cubically with time. Number 3 appears here because we use 3-layer MLP for
value approximation. All these findings corroborate our theory, demonstrating our ability to
accurately predict the dynamic of divergence in offline RL.

3.3 Discussions

Interpretation of SEEM and explain the self-excitation The intuitive interpretation for λmax(A)
is as below: Think about only one sample x = (s0, a0) and its stabilized next step state-action
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Figure 4: Prediction ability - Linear growth of network parameter’s norm and polynomial growth of
predicted Q-value with an Adam optimizer. Please note that in the 2th and 4th figures, both Q-value
and steps have been taken the logarithm base 10. Different color represents different seeds.

x∗ = (s1, a1). Without loss of generality, we assume fθt
(x) < r+γfθt+1

(x∗). If SEEM is positive,
we have γGθt

(x∗,x) is larger than Gθt
(x,x). Recall that Gθt

(x∗,x) depicts the strength of the
bond between x and x∗ because of generalization. So we know that, whren updating the value of
fθ(x) towards r + γfθt+1

(x∗), the Q-value iteration inadvertently makes fθt+1
(x∗) increase even

more than the increment of fθt+1
(x). Consequently, the TD error r + γfθ(x

∗) − fθ(x) expands
instead of reducing, due to the target value moving away faster than predicted value, which encourages
the above procedure to repeat. This forms a positive feedback loop and causes self-excitation. Such
mirage-like property causes the model’s parameter and its prediction value to diverge.

Stability of policy action π̂θt
(s). Previous Theorem 1 and Theorem 3 rely on the stability of the

policy action π̂θt
(s) after t0, and here we further elucidate why such stability occurs. Critic networks

without normalization have a tendency to output large values for extreme points, i.e., action Aex at
the boundary of action space (see detailed explanation in Section 4), making these extreme points
easily become policy actions during optimization. We have observed that policy actions tend to
gravitate toward extreme points when Q-value divergence takes place (see Figure 15), accounting
for the stability of policy action π̂θt(s). Consequently, as aforementioned, a loop is formed: Q̂(s, a)

keeps chasing Q̂(s′, Aex), leading the model’s parameter to diverge along certain direction to infinity.

Relations to Linear Setting. Since the linear regression model can be regarded as a special
case for neural networks, our analysis is also directly applicable to linear settings by plugging in
G(X,X) = X⊤X , which reduce to study of deadly triad in linear settings. Therefore, our analysis
fully contains linear case study and extends it to non-linear value approximation. In Appendix F.5,
we present that our solution (Section 4) can solve the divergence in Baird’s Counterexample, which
was first to show the divergence of Q-learning with linear approximation.

Similarities and Differences to Previous works. Our work shares similar observations of the con-
nection between Q-value divergence and feature rank collapse with DR3 [29]. However, our work is
different in the following aspects. First, DR3 attributes feature rank collapse to implicit regularization
where L(θ) = 0, and it require the label noise ε from SGD. Actually, such near-zero critic loss
assumption is mostly not true in the real practice of RL. Conversely, SEEM provides a mechanism
behind feature rank collapse and Q-value divergence from the perspective of normalization-free
network’s pathological extrapolation behavior. It is applicable to more general settings and provides
new information about this problem. Moreover, we formally prove in Theorems 3 and 4 that the
model’s parameter θ evolves linearly for the Adam optimizer, and collapses at a certain iter for
SGD by solving an ODE. This accurate prediction demonstrates our precise understanding of neural
network dynamics and is absent in previous work like DR3. Last, the solution to value divergence by
DR3 involves searching hyperparameter tuning for c0 and also introduces extra computation when
computing the gradient of ϕ(s′, a′) to getRexp(θ). Our method (elaborated in Section 4) is free of
these shortcomings by simple LayerNorm.

4 Reducing SEEM By Normalization

In Section 3, we have identified SEEM as a measure of divergence, with self-excitation being the
primary catalyst for such divergence. In essence, a large SEEM value arises from the improper
link between the dataset inputs and out-of-distribution data points. To gain an intuitive grasp, we
visualize the NTK value in a simple 2-dimensional input space for a two-layer MLP in Figure 5.
We designate a reference point x0 = (0.1, 0.2) and calculate the NTK value Gθ(x0,x) for a range
of x in the input domain. The heatmap displays high values at the boundaries of the input range,
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Figure 5: The normalized NTK map for 2-layer ReLU MLP with and without layernorm. The input
and hidden dimensions are 2 and 10,000. We can see that for the MLP without LayerNorm, prediction
change at x0 has a dramatic influence on points far away like x = (4, 4), meaning a slight change of
f(x0) will change f(x) dramatically (∼ 4.5×). However, MLP equipped with layernorm exhibits
good local property.

which suggests that even a slight increase (or decrease) in the prediction value at x0 will result in an
amplified increase (e.g., 4.5×) in the prediction value at a distant point(e.g., (4, 4)). Note that indeed
the absolute NTK surrounding x0 is positive. However, values farther from x0 are significantly larger.
As a result, the NTK around x0 is minimal and normalized to a value close to zero. Thus, the value
predictions of the dataset sample and extreme points have large NTK value and exhibit a strange but
strong correlation. As Q-value network is iteratively updated, it also tend to output large values for
these extreme points, which makes extreme points easily become policy actions in optimization.

This abnormal behavior contradicts the typical understanding of a “kernel function” which usually
diminishes with increasing distance, which represents the MLP’s inherent limitation in accurate
extrapolation. This indicates an intriguing yet relatively under-explored approach to avoid divergence:
regularizing the model’s generalization on out-of-distribution predictions. The main reason for such
an improperly large kernel value is that the neural network becomes a linear function when the input’s
norm is too large [54]. A more detailed explanation about linearity can be found at Appendix G.
Therefore, a simple method to accomplish this would be to insert a LayerNorm prior to each non-
linear activation. We conduct a similar visualization by equipping the MLP with LayerNorm [3].
As shown in Figure 5 right, the value reaches its peak at x0 and diminishes as the distance grows,
demonstrating excellent local properties for well-structured kernels.

Such architectural change is beneficial for controlling the eigenvalue of A by reducing the value of
improperly large entries since matrix inequality tells us λmax(A) ≤ ∥A∥F . Therefore, it is expected
that this method can yield a small SEEM value, ensuring the convergence of training with minimal
bias on the learned policy. We also provide theoretical justification explaining why LayerNorm
results in a lower SEEM value in the supplementary material. This explains why LayerNorm, as an
empirical practice, can boost performance in previous online and offline RL studies [41; 5; 25; 28].
Our contribution is thus two-fold: 1) We make the first theoretical explanation for how LayerNorm
mitigates divergence through the NTK analysis above. 2) We conduct thorough experiments to
empirically validate its effectiveness, as detailed in Section Section 5.
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Figure 6: The effect of various regularizations and normalizations on SEEM and Q-value. LayerNorm
yields a low SEEM and achieves stable Q-learning. Given the substantial disparity in the y-axis range
among various regularizations, we present the results using two separate figures.

To validate the effectiveness of LayerNorm in practical offline RL settings, we select the walker2d-
medium-expert-v2 task in D4RL to showcase how Q-value and SEEM evolves as the training
proceeds. For comparative analysis, we also consider four popular regularization and normalization
techniques, including BatchNorm [20], WeightNorm [44], dropout [45], and weight decay [35]. We

7



Table 1: Averaged normalized scores of the last ten consecutive checkpoints on Antmaze tasks over
10 seeds. diff-QL [51] reports the best score during the whole training process in its original paper.
We rerun its official code for the average score. We also compare our method with diff-QL by the
best score metrics in the parenthesis. The best score of diff-QL is directly quote from its paper.

Dataset TD3+BC IQL MSG sfBC diff-QL ours

antmaze-umaze-v0 40.2 87.5 98.6 93.3 95.6 (96.0) 94.3± 0.5 (97.0)
antmaze-umaze-diverse-v0 58.0 62.2 76.7 86.7 69.5 (84.0) 88.5± 6.1 (95.0)
antmaze-medium-play-v0 0.2 71.2 83.0 88.3 0.0 (79.8) 85.6± 1.7 (92.0)

antmaze-medium-diverse-v0 0.0 70.0 83.0 90.0 6.4 (82.0) 83.9± 1.6 (90.7)
antmaze-large-play-v0 0.0 39.6 46.8 63.3 1.6 (49.0) 65.4± 8.6 (74.0)

antmaze-large-diverse-v0 0.0 47.5 58.2 41.7 4.4 (61.7) 67.1± 1.8 (75.7)
average 16.4 63.0 74.4 77.2 29.6 (75.4) 80.8 (87.4)

use TD3 as the baseline algorithms. To simplify our analysis, the target network is chosen to be
the current Q-network with gradient stop instead of an Exponential Moving Average (EMA) of past
networks. In our experiments, it is observed that LayerNorm and WeightNorm constrain SEEM and
restrain divergence. However, weight decay and dropout did not yield similar results. As illustrated
in Figure 6, weight decay and dropout evolve similar to the unregularized TD3 w.o. EMA baseline.
WeightNorm reduces SEEM by a clear margin compared to the baseline, thus demonstrating slighter
divergence. In the right figure, we observe that behavior cloning effectively lowers SEEM at the
cost of introducing significant explicit bias. Importantly, LayerNorm achieves both a low SEEM and
stable Q-values without necessitating explicit policy constraints. A notable outlier is BatchNorm.
BatchNorm attains a relatively low maximum eigenvalue at the beginning of training but experiences
an increase over time. Correspondingly, the Q-curve displays substantial oscillations. This instability
could be ascribed to the shared batch normalization statistics between the value network and the
target network, despite their input actions originating from distinct distributions [6].

5 Agent Performance

Previous state-of-the-art offline RL algorithms have performed exceptionally well on D4RL Mujoco
Locomotion tasks, achieving an average score above 90 [2; 41]. In this section, we compare our
method with various baselines on two difficult settings, i.e., Antmaze and X% Mujoco task, to validate
the effectiveness of LayerNorm in offline settings. Further experiments can be found at Appendix F.

5.1 Standard Antmaze Dataset

In Antmaze tasks characterized by sparse rewards and numerous suboptimal trajectories, the prior
successful algorithms either relies on in-sample planning, such as weighted regression [26; 8], or
requires careful adjustment the number of ensembles per game [15]. Algorithms based on TD3 or SAC
failed to achieve meaningful scores by simply incorporating a behavior cloning (BC) term [12]. Even
Diff-QL, which replaces TD3+BC’s Gaussian policy with expressive diffusion policies to capture
multi-modal behavior [51], continues to struggle with instability, leading to inferior performance.

We first show policy constraint (BC) is unable to control q-value divergence while performing well in
some challenging environments, by using Antmaze-large-play as an running example. We conduct
experiments with Diff-QL by varying the BC (i.e., diffusion loss) coefficient from 0.5 to 10. As shown
in Figure 7, when the policy constraint is weak (BC 0.5), it initially achieves a decent score, but as the
degree of off-policy increases, the value starts to diverge, and performance drops to zero. Conversely,
when the policy constraint is too strong (BC 10), the learned policy cannot navigate out of the maze
due to suboptimal data, and performance remains zero. In contrast, simply incorporating LayerNorm
into Diff-QL, our method ensures stable value convergence under less restrictive policy constraints
(BC 0.5). This results in consistently stable performance in the challenging Antmaze-large-play task.
We report the overall results in Table 1, which shows that our method consistently maintains stable
average scores across six distinct environments. Additionally, we are able to boost the highest score,
while adopting the same evaluation metric used by Diff-QL. Ultimately, our method achieves an
average score of 80.8 on Antmaze tasks, exceeding the performance of previous SOTA methods.
In summary, our experimental findings demonstrates within suboptimal datasets, an overly strong
policy constraint is detrimental, while a weaker one may lead to value divergence. LayerNorm
proves effective in maintaining stable value convergence under less restrictive policy constraints,
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Figure 7: The detrimental bias in policy constraint. Although strong policy constraints succeed in
depressing divergence, constraining the policy around sub-optimal behavior sacrifices performance.
With LayerNorm to regularize SEEM without introducing a too strong bias, our method can achieve
both stable Q-value convergence and excellent performance. The shallow curves represent the
trajectory of individual seeds, while the darker curve denotes the aggregate across 3 seeds.

resulting in an excellent performance. The ablation study regarding the specific configuration of
adding LayerNorm can be found at Appendix F.4. The effect of other regularizations in Antmaze can
be found at F.3. We also experimented with the regularizer proposed in DR3 [29]. Despite conducting
a thorough hyperparameter search for the coefficient, it was observed that it had no substantive impact
on enhancing the stability and performance of diff-QL.

5.2 X% Offline Dataset

Past popular offline RL algorithms primarily require transitions rather than full trajectories for
training [40; 31; 26; 12; 7; 51]. A superior algorithm should extrapolate the value of the next state
and seamlessly stitch together transitions to form a coherent trajectory. However, commonly used
benchmarks such as D4RL and RL Unplugged [10; 16] contain full trajectories. Even with random
batch sampling, complete trajectories help suppress value divergence since the value of the next state
st+1 will be directly updated when sampling {st+1, at+1, st+2, rt+1}. On the one hand, working with
offline datasets consisting solely of transitions enables a more authentic evaluation of an algorithm’s
stability and generalization capabilities. On the other hand, it is particularly relevant in real-world
applications such as healthcare and recommendation systems where it is often impossible to obtain
complete patient histories.
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Figure 8: The performance of offline RL
algorithms with the varyingX% Mujoco
Locomotion dataset. As the number of
transitions decreases, all algorithms have
a dramatic drop in performance.

We first evaluate the performance of offline algorithms
within a transition-based scenario. We construct transition-
based datasets by randomly sampling varying proportions
(X%) from the D4RL Mujoco Locomotion datasets. Here,
we set several levels for X ∈ {1, 10, 50, 100}. When
X equals 100, it is equivalent to training on the original
D4RL dataset. As X decreases, the risk of encountering
out-of-distribution states and actions progressively esca-
lates. To ensure a fair comparison, we maintain the same
subset across all algorithms. We evaluate every algorithm
on Walker2d, hopper, and Halfcheetah tasks with medium,
medium replay, and medium expert levels. For compari-
son, we report the total score on nine Mujoco locomotion
tasks and the standard deviation over 10 seeds. Figure 8
reveal a marked drop in performance for all popular offline
RL algorithms when the dataset is reduced to 10%. When
the transition is very scarce (1%), all baselines achieve
about only 50 to 150 total points on nine tasks. Further, we observed value divergence in all
algorithms, even for algorithms based on policy constraints or conservative value estimation.

Subsequently, we demonstrate the effectiveness of LayerNorm in improving the poor performance in
X% datasets. By adding LayerNorm to the critic, value iteration for these algorithms becomes non-
expansive, ultimately leading to stable convergence. As Figure 9 depicts, under 10% and 1% dataset,
all baselines are greatly improved by LayerNorm. For instance, under the 1% dataset, LayerNorm
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enhances the performance of CQL from 50 points to 300 points, marking a 6x improvement. Similarly,
TD3+BC improves from 70 to 228, representing approximately a 3x improvement. This empirical
evidence underscores the necessity of applying normalization to the function approximator for
stabilizing value evaluation, particularly in sparse transition-based scenarios. Adding LayerNorm is
shown to be more effective than relying solely on policy constraints. Another notable observation
from Figure 9 is that with sufficient data (the 100% dataset) where previous SOTA algorithms
have performed excellently, LayerNorm only marginally alters the performance of algorithms. This
suggests that LayerNorm could serve as a universally applicable plug-in method, effective regardless
of whether the data is scarce or plentiful.
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Figure 9: The performance difference between baseline with LayerNorm and without it using the
same X% dataset. The error bar represents the standard deviation over 10 seeds.

5.3 Online RL Experiments - LayerNorm Allows Online Methods without EMA.

It is natural to ask whether our analysis and solution are also applicable to online settings. Previous
works [34; 13; 17; 61] has empirically or theoretically shown the effect of EMA in stabilizing Q-value
and prevent divergence in online setting. To answer the question, We tested whether LayerNorm can
replace EMA to prevent value divergence. We conducted experiments in two environments in online
settings: Hopper and Walker. Please refer to Figure 11 for the curves of return. Surprisingly, we
discovered that LayerNorm solution allows the SAC without EMA to perform equivalently well as
the SAC with EMA. In contrast, SAC without EMA and LayerNorm behaved aimlessly, maintaining
near-zero scores. It reveals LayerNorm (or further regularizations discovered by SEEM later) have
the potential of allowing online DQN-style methods to step away from EMA/frozen target approaches
altogether towards using the same online and target networks. These results partially reveals potential
implications of SEEM in an online learning setting.

6 Conclusion and Limitations

In this paper, we delve into the Q-value divergence phenomenon of offline RL and gave a com-
prehensive theoretical analysis and explanation for it. We identified a fundamental process called
self-excitation as the trigger for divergence, and propose an eigenvalue measure called SEEM to
reliably detect and predict the divergence. Based on SEEM, we proposed an orthogonal perspective
other than policy constraint to avoid divergence, by using LayerNorm to regularize the generalization
of the MLP neural network. We demonstrated empirical and theoretical evidence that our method
introduces less bias in learned policy, which has better performance in various settings. Moreover,
the SEEM metric can serve as an indicator, guiding future works toward further engineering that may
yield adjustments with even better performance than the simple LayerNorm. Despite the promising
results, our study has some limitations. we have not incorporated the impact of Exponential Moving
Average (EMA) into our analysis. Also, the existence of critical point is still not well-understood.
Moreover, our analysis does not extend to online RL, as the introduction of new transitions disrupts
the stability of the NTK direction. All these aspects are left for future work.

7 Acknowledgement

This work is supported by the National Key R&D Program of China (2022ZD0114900).

10



References
[1] Joshua Achiam, Ethan Knight, and Pieter Abbeel. Towards characterizing divergence in deep

q-learning. arXiv preprint arXiv:1903.08894, 2019. 14

[2] Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified q-ensemble. NIPS, 2021. 2, 8

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016. 7

[4] Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
Machine Learning Proceedings. 1995. 1, 2, 14

[5] Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement
learning with offline data. In ICML, 2023. 7, 14

[6] Aditya Bhatt, Max Argus, Artemij Amiranashvili, and Thomas Brox. Crossnorm: Normalization
for off-policy td reinforcement learning. arXiv preprint arXiv:1902.05605, 2019. 8, 14

[7] David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without
off-policy evaluation. NIPS, 2021. 9, 14

[8] Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement
learning via high-fidelity generative behavior modeling. In ICLR, 2023. 2, 8, 14

[9] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. NIPS, 2021. 14

[10] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning, 2020. 4, 9

[11] Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep
q-learning algorithms. In ICML, 2019. 14

[12] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
NIPS, 2021. 2, 8, 9, 14

[13] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In ICML, 2018. 1, 10, 14

[14] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In ICML, 2019. 1, 2, 14

[15] Kamyar Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic? estimating
uncertainties for offline rl through ensembles, and why their independence matters. NIPS, 2022.
2, 8

[16] Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. Rl unplugged: A
suite of benchmarks for offline reinforcement learning. NIPS, 2020. 9

[17] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In ICML, 2018. 1, 10

[18] Yizeng Han, Yifan Pu, Zihang Lai, Chaofei Wang, Shiji Song, Junfeng Cao, Wenhui Huang,
Chao Deng, and Gao Huang. Learning to weight samples for dynamic early-exiting networks.
In ECCV, 2022. 22

[19] Hado Hasselt. Double q-learning. NIPS, 2010. 1, 14, 23

[20] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In ICML, 2015. 7, 14

11



[21] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. NIPS, 2018. 3, 4

[22] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big
sequence modeling problem. In NIPS, 2021. 14

[23] Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Àgata Lapedriza,
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A Related Works

Value Divergence with Neural Network. In online reinforcement learning (RL), off-policy algo-
rithms that employ value function approximation and bootstrapping can experience value divergence,
a phenomenon known as the deadly triad [46; 4; 47; 48; 11]. Deep Q-Networks (DQN) typify this
issue. As they employ neural networks for function approximation, they are particularly susceptible to
Q-value divergence [19; 13; 48; 60]. Past research has sought to empirically address this divergence
problem through various methods, such as the use of separate target networks [39] and Double-Q
learning [19; 13]. Achiam et al. [1] analyze a linear approximation of Q-network to characterizes
the diverge, while CrossNorm [6] uses a elaborated version of BatchNorm [20] to achieve stable
learning. Value divergence becomes even more salient in offline RL, where the algorithm learns
purely from a fixed dataset without additional environment interaction [14; 30]. Much of the fo-
cus in the field of offline RL has been on controlling the extent of off-policy learning, i.e., policy
constraint [12; 40; 26; 14; 53; 51; 8; 42]. Several previous studies [41; 5; 25; 28] have empirically
utilized LayerNorm to enhance performance in online and offline RL. These empirical results partially
align with the experimental section of our work. However, our study makes a theoretical explanation
for how LayerNorm mitigates divergence through the NTK analysis. Specifically, we empirically
and theoretically illustrate how LayerNorm reduces SEEM. In addition to LayerNorm, our contri-
bution extends to explaining divergence and proposing promising solutions from the perspective of
reducing SEEM. Specially, we discover that WeightNorm can also be an effective tool and explain
why other regularization techniques fall short. Finally, we perform comprehensive experiments to
empirically verify the effectiveness of LayerNorm on the %X dataset, a practical setting not explored
in previous work. Thus, our contributions are multifaceted and extend beyond the mere application of
LayerNorm.

Offline RL. Traditional RL and bandit methods have a severe sample efficiency problem [32; 14; 36;
37]; offline RL aims to tackle this issue. However, offline RL presents significant challenges due to
severe off-policy issues and extrapolation errors. Some existing methods focuses on designs explicit or
implicit policy regularizations to minimize the discrepancy between the learned and behavior policies.
For example, TD3+BC [13; 12; 55; 56] directly adds a behavior cloning loss to mimic the behavior
policy, Diffusion-QL [51] further replace the BC loss with a diffusion loss and using diffusion models
as the policy. AWR-style [42; 52; 7] and IQL [26] impose an implicit policy regularization by
maximizing the weighted in-distribution action likelihood. Meanwhile, some other works try to
alleviate the extrapolation errors by modifying the policy evaluation procedure. Specifically, CQL [31]
penalizes out-of-distribution actions for having higher Q-values, while MISA [38] regularizes both
policy improvement and evaluation with the mutual information between state-action pairs of the
dataset. Alternatively, decision transformer (DT) [9] and trajectory transformer [22] cast offline
RL as a sequence generation problem, which are beyond the scope of this paper. Despite the
effectiveness of the above methods, they usually neglect the effect of function approximator and are
thus sensitive to hyperparameters for trading off performance and training stability. Exploration into
the function approximation aspect of the deadly triad is lacking in offline RL. Moreover, a theoretical
analysis of divergence in offline RL that does not consider the function approximator would be
inherently incomplete. We instead focus on this orthogonal perspective and provide both theoretical
understanding and empirical solution to the offline RL problem.

B Proof of Main Theorems

Before proving our main theorem, we first state an important lemma.

Lemma 1. For L-layer ReLU-activate MLP and fixed input x,x′, assume the biases are relatively
negligible compared to the values in the hidden layers. If we scale up every parameter of fθ to λ
times, namely θ′ = λθ, then we have following equations hold for any x,x′ ∈ S ×A∥∥fθ′(x)− λLfθ(x)

∥∥ =o(1) · ∥fθ′(x)∥∥∥∇θfθ′(x)− λL−1∇θfθ(x)
∥∥ =o(1) · ∥∇θfθ′(x)∥,∣∣∣kθ′(x,x′)− λ2(L−1)kθ(x,x

′)
∣∣∣ =o(1) · kθ′(x,x′).

Proof. Recursively define
zℓ+1 = W ℓz̃ℓ + bℓ, z̃0 = x

14



z̃ℓ = σ(zℓ).

Then it is easy to see that if we multiply each W ℓ and bℓ by λ, denote the new corresponding value
to be z′

ℓ and note that the bias term is negligible, we have

z′
1 =λz1

z′
2 =λW 2σ(z

′
1) + λb2

=λ2(W 2z̃1 + b2) + (λ− λ2)b2
=λ2z2 + (λ− λ2)b2
=λ2z2 + ϵ2 (negilible bias ∥ϵ2∥ = o(λ2))
. . .

z′
ℓ+1 =λW ℓσ(z

′
ℓ) + λbℓ+1

=λW ℓσ(λ
ℓzℓ + ϵℓ) + λbℓ+1

=λℓ+1W ℓσ(z
′
ℓ+1) + λbℓ+1 + λW ℓδℓ (δℓ = σ(λℓzℓ + ϵℓ)− σ(z′

ℓ+1))

=λℓ+1zℓ+1 + (λ− λℓ+1)bℓ+1 + λW ℓδℓ

Note that λ∥wℓδℓ∥ = λ∥W ℓ(σ(λ
ℓzℓ + ϵℓ)−σ(z′

ℓ+1))∥ ≤ λ∥W ℓ∥ · ∥(λℓzℓ + ϵℓ)− z′
ℓ+1∥, the last

step is because σ(·) is 1-Lipshitz, and we have (λℓzℓ + ϵℓ)− zℓ+1 = ϵℓ and ∥ϵℓ∥ = o(λℓ). When
value divergence is about to occur, the dot product Wizi becomes relatively large compared to the
scalar bi, and the effect of bias on the output becomes negligible. Therefore, we can recursively
deduce that the remaining error term

(λ− λℓ+1)bℓ+1 + λW ℓδℓ

is always negiligle compared with z′
ℓ+1. Hence we know fθ′(x) is close to λLfθ(x) with only o(1)

relative error.

Taking gradient backwards, we know that
∥∥∥ ∂f
∂W ℓ

∥∥∥ is proportional to both ∥z̃ℓ∥ and
∥∥∥ ∂f
∂zℓ+1

∥∥∥. There-
fore we know

∂fθ′

∂W ′
ℓ

= z̃′
ℓ

∂fθ′

∂z′
ℓ+1

= λℓz̃ℓ · λL−ℓ−1 ∂fθ
∂zℓ+1

= λL−1 ∂fθ
∂W ℓ

.

This suggests that all gradients with respect to the weights become scaled by a factor of λL−1.
The gradients with respect to the biases are proportional to λL−l. When λ is large enough to
render the gradient of the bias term negligible, it follows that

∥∥∇θfθ′(x)− λL−1∇θfθ(x)
∥∥ =

o(1) · ∥∇θfθ′(x)∥. This equation implies that the gradient updates for the model parameters are
dominated by the weights, with negligible contribution from the bias terms. And since NTK is the
inner product between gradients, we know Gθ′(x,x′)’s relative error to λ2(L−1)Gθ(x,x

′) is o(1)
negligible. We run experiments in Appendix F to validate the homogeneity. We leave analysis for
Convolution Network [27] and its variants [43; 49; 50] for future work.

Theorem 1 Suppose that the network’s parameter at iteration t is θt. For each transition
(si, ai, si+1, ri) in dataset, denote r = [r1, . . . , rM ]⊤ ∈ RM , π̂θt(s) = argmaxa Q̂θt

(s, a). Denote
x∗
i,t = (si+1, π̂θt

(si+1)). Concatenate all x∗
i,t to be X∗

t . Denote ut = fθt
(X)− (r+ γ · fθt

(X∗
t ))

to be TD error vector at iteration t. The learning rate η is infinitesimal. When the maximal point of
Q̂θt

is stable as t increases, we have the following evolving equation for ut+1

ut+1 = (I + ηAt)ut. (3)

where A = (γϕθt
(X∗

t )− ϕθt
(X))

⊤
ϕθt

(X) = γGθt
(X∗

t ,X)−Gθt
(X,X).

Proof. For the sake of simplicity, denote Zt = ∇θfθ(X)
∣∣∣
θt

,Z∗
t = ∇θfθ(X

∗
t )
∣∣∣
θt

. The Q-value

iteration minimizes loss functionL defined byL(θ) = 1
2 ∥fθ(X)− (r + γ · fθt(X

∗
t ))∥

2
2 . Therefore

we have the gradient as

∂L(θ)
∂θ

= Zt (fθ(X)− (r + γ · fθt
(X∗

t ))) = Ztut. (4)
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According to gradient descent, we know θt+1 = θt − ηZtut. Since η is very small, we know θt+1

stays within the neighborhood of θt. We can Taylor-expand function fθ(·) near θt as

fθ(X) ≈ ∇⊤
θ fθ(X)

∣∣∣
θt

(θ − θt) + fθt(X) = Z⊤
t (θ − θt) + fθt(X). (5)

fθ(X
∗
t ) ≈ (Z∗

t )
⊤(θ − θt) + fθt

(X∗
t ). (6)

When η is infinitesimally small, the equation holds. Plug in θt+1, we know

fθt+1
(X)− fθt

(X) = −ηZ⊤
t Ztut = −η ·Gθt

(X,X)ut. (7)

fθt+1(X
∗
t )− fθt(X

∗
t ) = −η(Z

∗
t )

⊤Ztut = −η ·Gθt(X
∗
t ,X)ut. (8)

According to Assumption 2, we know ∥X∗
t −X∗

t+1∥ = o(η). So we can substitute X∗
t+1 into X∗

t
since it is high order infinitesimal. Therefore, ut+1 boils down to

ut+1 = fθt+1
(X)− r − γfθt+1

(X∗
t+1) (9)

= fθt
(X)− η ·Gθt

(X,X)ut − r − γ(fθt
(X∗

t )− η ·Gθt
(X∗

t ,X) + o(η))ut (10)
= fθt

(X)− r − γfθt
(X∗

t )︸ ︷︷ ︸
ut

+η · (γGθt
(X∗

t ,X)−Gθt
(X,X) + o(η))ut (11)

= (I + ηAt)ut. (12)

where A = γGθt
(X∗

t ,X)−Gθt
(X,X).

Theorem 3 Suppose we use SGD optimizer for Q-value iteration with learning rate η to be infinitesi-
mal. Given iteration t > t0, and A = γḠ(X̄

∗
,X)− Ḡ(X,X), where Ḡ is the Gram matrix under

terminal kernel k̄. The divergence of ut is equivalent to whether there exists an eigenvalue λ of A
such that Re(λ) > 0. If converge, we have ut = (I+ ηA)t−t0 ·ut0 . Otherwise, ut becomes parallel
to the eigenvector of the largest eigenvalue λ of A, and its norm diverges to infinity at following order

∥ut∥2 = O

(
1

(1− C ′ληt)
L/(2L−2)

)
. (13)

for some constant C ′ to be determined and L is the number of layers of MLP. Specially, when L = 2,
it reduces to O

(
1

1−C′ληt

)
.

Proof. According to Assumption 2, max action becomes stable after t0. It implies ∥X∗
t−X̄

∗∥ = o(1).
The stability of the NTK direction implies that for some scalar kt and the specific input X∗,X , we
have Gθt

(X̄
∗
,X) = ktḠ(X∗,X) + ϵt,1 and Gθt

(X,X) = ktḠ(X,X) + ϵt,2 where ∥ϵt,i∥ =
o(kt), i = 1, 2. Therefore, we have

At =γGθt
(X∗

t ,X)−Gθt
(X,X) (14)

=γḠ(X∗
t ,X)− Ḡ(X,X) + (ϵt,1 − ϵt,2) (15)

=kt(γḠ(X̄
∗
,X)− Ḡ(X,X)) + (γϵt,3 + ϵt,1 − ϵt,2) (16)

(ϵt,3 = Ḡ(X̄
∗
t ,X)− Ḡ(X̄

∗
,X))

=ktA+ δt (17)

kt equals 1 if the training is convergent, but will float up if the model’s predicted Q-value blows
up. According to Assumption 2, the rest term δt = γϵt,3 + ϵt,1 − ϵt,2 is of o(1) norm and thus
negligible, we know all the eigenvalues of I + ηA have form 1+ ηλi. Considering η is small enough,
we have |1+ ηλi|2 ≈ 1+ 2ηRe(λ). Now suppose if there does not exists eigenvalue λ of A satisfies
Re(λ) > 0, we have |1 + ηλi| ≤ 1. Therefore, the NTK will become perfectly stable so kt = 1 for
t > t0, and we have

ut = (I + ηAt−1)ut−1 = (I + ηAt−1)(I + ηAt−2)ut−2 = . . . =

t−1∏
s=t0

(I + ηAs)ut0 (18)

=

t−1∏
s=t0

(I + ηA)ut0 = (I + ηA)t−t0 · ut0 . (19)
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Otherwise, there exists an eigenvalue for A satisfying Re(λ) > 0. Denote the one with the largest
real part as λ, and v to be the corresponding eigenvector. We know matrix I + ηA also has left
eigenvector v, whose eigenvalue is 1 + ηλ. In this situation, we know after each iteration, ∥ut+1∥
will become larger than ∥ut∥. Moreover, to achieve larger and larger prediction values, the model’s
parameter’s norm ∥θt∥ also starts to explode. We know ut is homogeneous with respect θt for
ReLU networks. The output fθt

(X) enlarges pL times when θt enlarges p times. When the reward
values is small with respect to the divergent Q-value, TD error ut = O(fθt

(X)) = O(θL
t ). Besides,

according to Lemma1, we know kt = O(∥θt∥2(L−1)) = O(∥ut∥2(L−1)/L) = O(∥ut∥2−2/L).

Denote g(ηt) = v⊤ut, left multiply v to equation ut+1 = (I + ηktA)ut. we have g(ηt + η) =
(1 + ηλkt)g(ηt). Since we know such iteration will let ut to be dominated by v and align with v, we
know g(ηt) = O(∥ut∥) for large t. Therefore kt = O(∥ut∥2(L−1)/L) = C · g(ηt)2−2/L. This boils
down to g(ηt+ η) = g(ηt) + Cηλg(ηt)2, which further becomes

g(ηt+ η)− g(ηt)
η

= Cλg(ηt)3−2/L (20)

Let η → 0, we have an differential equation dg
dt = Cλg(t)3−2/L. When L = 1, the MLP network

degenerates to a linear function. The solution of ODE is

∥ut∥ = g(ηt) = C ′eλt, (21)

reflecting the exponential growth under linear function that has been studied in previous works [47].
When L > 2, Solving this ODE gives

g(t) =
1

(1− C ′λt)
L/(2L−2)

. (22)

So at an infinite limit, we know ∥ut∥ = g(ηt) = O
(

1
(1−C′ληt)L/(2L−2)

)
. Specially, for the exper-

imental case we study in Figure 2 where L = 2, it reduces to O
(

1
1−C′ληt

)
. We conduct more

experiments with L = 3 in Appendix C.2 to verify our theoretical findings.

It is also worthwhile to point out another important mechanism that we found when the Q-value
network is in a steady state of diverging. Although we assume that the learning rate η is infinitesimal,
the argmax function is not L−Lipshitz. So why could both NTK function and optimal policy
action X∗

t converge in direction? We found that when the model enters such “terminal direction”,
(si, π̂θt

(si)) not only becomes the max value state-action pair, but also satisfies

π̂θt
(si) = argmax

a∈A

M∑
i=1

kθt
(xa,xi), xa = (si, a).

This means each x∗
t,i = (si, π̂θt(si)) also gain the maximum value increment among all the possible

actions, maintaining its policy action property. Such stationary policy action for all state causes the
model’s parameter to evolve in static dynamics, which in turn reassures it to be policy action in the
next iteration. Therefore, after the critical point t0, model’s parameter evovlves linearly to infinity, its
NTK and policy action becomes stationary, and all these factors contribute to the persistence of each
other.

C More Observations and Deduction

C.1 Model Alignment

In addition to the findings presented in Theorem 1 and Theorem 3, we have noticed several intriguing
phenomena. Notably, beyond the critical point, gradients tend to align along a particular direction,
leading to an infinite growth of the model’s parameters in that same direction. This phenomenon is
supported by the observations presented in Figure 16, Figure 17, and Figure 18, where the cosine
similarity between the current model parameters and the ones at the ending of training remains close
to 1 after reaching a critical point, even as the norm of the parameters continually increases.
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C.2 Terminal Time

Theorem 3 claims ∥ut∥ = O(fθt(X)) = O
(

1
(1−C′ληt)L/(2L−2)

)
, implying the relation

1/q(2L−2)/L ∝ 1− C ′ληt. (23)

Beisdes, it implies the existence of a “terminal time” 1
C′ηλ that the model must crash at a singular

point. When the training approaches this singular point, the estimation value and the model’s norm
explode rapidly in very few steps. We have run an experiment with L = 2 in Figure 2, from which we
can see that Q-value’s inverse proves to decay linearly and eventually becomes Nan at the designated
time step. When L = 3, from our theretical analysis, we have 1/q

4
3 ∝ 1− C ′ληt. The experimental

results in Figure 10 corroborate this theoretical prediction, where the inverse Q-value raised to the
power of 4/3 is proportional to 1−C ′ληt after a critical point and it eventually reaches a NAN value
at the terminal time step.

400 600 800 1000
Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1/
q4 3

y = -0.00270 * x + 2.83

R-squared = 0.99855
1/q4/3 v.s. step

Figure 10: Linear decay with SGD and L=3.

C.3 Adam Case

In this section, we will prove that if the algorithm employs Adam as the optimizer, the model still
suffers divergence. Moreover, we demonstrate that the norm of the network increase linearly, of
which the slope is η

√
P , where P is the number of parameters and η is the learning rate. Also, the

Q-value prediction will increase at Lth-polynomial’s rate, where L is the number of layers of model
fθ . Experimental results in Figure 4 verified our findings. Besides, we show that all runnings across
D4RL environments represents the linear growth of the norm of the Q-network in Figure 16, Figure 17,
and Figure 18.

Theorem 4. Suppose we use Adam optimizer for Q-value iteration and all other settings are the same
as Theorem 3. After t > t0, the model will diverge if and only if λmax(A) > 0. If it diverges, we
have ∥θt∥ = η

√
Pt+ o(t) and ∥ut∥ = Θ(tL) where P and L are the number of parameters and the

number of layers for network fθ, respectively.

Proof. We only focus on the asymptotic behavior of Adam. So we only care about the dynamics for
t > T for some large T . Also, at this regime, we know that the gradient has greatly aligned with the
model parameters. So we assume that

∇L(θt) = −C · θt. C > 0 (24)
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Recall that each iteration of the Adam algorithm has the following steps.

gt = ∇L(θt), (25)
mt = β1mt−1 + (1− β1)gt, (26)

vt = β2vt−1 + (1− β2)g2t , (27)

m̂t =
mt

1− βt
1

, (28)

v̂t =
vt

1− βt
2

, (29)

θt+1 = θt −
η√
v̂t + ϵ

m̂t. (30)

Instead of exactly solving this series, we can verify linear growth is indeed the terminal behavior of
θt since we only care about asymptotic order. Assume that θt = kt for t > T , we can calculate mt

by dividing both sides of the definition of mt by βt
1, which gives

mt

βt
1

=
mt−1

βt−1
1

+
1− β1
βt
1

gt. (31)

mt

βt
1

=

t∑
s=0

1− β1
βs
1

gs. (32)

mt = −C
t∑

s=0

(1− β1)βt−s
1 ks = −kCt+ o(t) (33)

, where gt is given in Equation (24). Similarly, we have

vt = kC2t2 + o(t2) (34)

Hence we verify that

θt+1 − θt = −η ·
mt

1− βt
1

·

√
1− βt

2

vt
→ η · kCt√

k2C2t2
= η

therefore we know each iteration will increase each parameter by exactly constant η. This in turn
verified our assumption that parameter θt grows linearly. The slope for the overall parameter is thus
η
√
P . This can also be verified in Figure 4. When we have θt = η

√
P θ̄, where θ̄ is the normalized

parameter, we can further deduce the increasing order of the model’s estimation. According to lemma
1, the Q-value estimation (also the training error) increase at speed O(tL).

D LayerNorm’s Effect on NTK

In this section, we demonstrate the effect of LayerNorm on SEEM. Our demonstration is just an
intuitive explanation rather than a rigorous proof. We show that adding a LayerNorm can effectively
reduce the NTK between any x0 and extreme input x down from linear to constant. Since each
entry of Gram matrix G is an individual NTK value, we can informally expect that G(X∗

t ,X)’s
eigenvalue are greatly reduced when every individual NTK value between any x0 and extreme input
x is reduced.

We consider a two-layer MLP. The input is x ∈ Rdin , and the hidden dimension is d. The parameters
include W = [w1, . . . ,wd]

⊤ ∈ Rd×din , b ∈ Rd and a ∈ Rd. Since for the NTK value, the last
layer’s bias term has a constant gradient, we do not need to consider it. The forward function of the
network is

fθ(x) =

d∑
i=1

aiσ(w
⊤
i x+ bi).

Proposition 1. For any input x and network parameter θ, if∇θfθ(x) ̸= 0, then we have

lim
λ→∞

kNTK(x, λx) = Ω(λ)→∞. (35)
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Proof. Denote zi = w⊤
i x+ bi, according to condition∇θfθ(x) ̸= 0, we know there must exist at

least one i such that zi > 0, denote this set as P . Now consider all the i ∈ [d] that satisfy zi > 0 and
w⊤

i x > 0 (otherwise take opposite sign of λ), we have

∂f

∂ai

∣∣∣
x
=σ(w⊤

i x+ bi) = w⊤
i x+ bi, (36)

∂f

∂wi

∣∣∣
x
=aix, (37)

∂f

∂bi

∣∣∣
x
=ai. (38)

Similarly, we have

∂f

∂ai

∣∣∣
λx

=σ(λw⊤
i x+ bi) = λw⊤

i x+ bi, (39)

∂f

∂wi

∣∣∣
λx

=λaix, (40)

∂f

∂bi

∣∣∣
λx

=ai. (41)

So we have∑
i∈P

〈
∂f(x)

∂θi
,
∂f(λx)

∂θi

〉
= λ

(
(w⊤

i x)
2 + biw

⊤
i x+ a2i ∥x∥2

)
+O(1) = Θ(λ).

Denote N = {1, . . . , d} \ P . We know for every j ∈ N either ∂f(x)
∂aj

= ∂f(x)
∂bj

= ∂f(x)
∂wj

= 0, or

w⊤
j x < 0. For the latter case, we know limλ→∞

∂f(λx)
∂aj

= ∂f(λx)
∂bj

= ∂f(λx)
∂wj

= 0. In both cases, we
have

lim
λ→∞

∑
j∈N

〈
∂f(x)

∂θj
,
∂f(λx)

∂θj

〉
= 0.

Therefore, according to the definition of NTK, we have

lim
λ→∞

kNTK(x, λx) = lim
λ→∞

〈
∂f(x)

∂θi
,
∂f(λx)

∂θi

〉
= Θ(λ)→∞.

For the model equipped with LayerNorm, the forward function becomes

fθ(x) = a⊤σ(ψ(Wx+ b)),

where ψ(·) is the layer normalization function defined as

ψ(x) =
√
d · x− 11⊤x/d∥∥x− 11⊤x/d

∥∥ .
Denote P = I − 11⊤/d, note that the derivative of ψ(·) is

ψ̇(x) =
∂ψ(x)

∂x
=
√
d ·

(
I

∥Px∥
− Pxx⊤P

∥Px∥3

)
P . (42)

Specially, we have

ψ(λx) =
√
d · λx− λ11

⊤x/d

λ
∥∥x− 11⊤x/d

∥∥ = ψ(x). (43)

Now we state the second proposition.

Proposition 2. For any input x and network parameter θ and any direction v ∈ Rdin , if the network
has LayerNorm, then we know there exists a universal constant C, such that for any λ ≥ 0, we have

kNTK(x,x+ λv) ≤ C. (44)
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Proof. Since for finite range, there always exists a constant upper bound, we just need to analyze the
case for λ→ +∞ and shows that it is constant bounded. First compute∇θfθ(x) and get

∂f

∂a

∣∣∣
x
=σ(ψ(Wx+ b)), (45)

∂f

∂W

∣∣∣
x
=a⊤σ′(ψ(Wx+ b))ψ̇(Wx+ b)x, (46)

∂f

∂b

∣∣∣
x
=a⊤σ′(ψ(Wx+ b))ψ̇(Wx+ b). (47)

These quantities are all constant bounded. Next we compute limλ→∞∇θfθ(x+ λv)

∂f

∂a

∣∣∣
x+λv

=σ(ψ(W (x+ λv) + b))), (48)

∂f

∂W

∣∣∣
x+λv

=a⊤σ′(ψ(W (x+ λv) + b)))ψ̇(W (x+ λv) + b)(x+ λv), (49)

∂f

∂b

∣∣∣
x+λv

=a⊤σ′(ψ(Wx+ b))ψ̇(W (x+ λv) + b). (50)

According to the property of LayerNorm in Equation (43), we have

lim
λ→∞

∂f

∂a

∣∣∣
x+λv

= lim
λ→∞

σ(ψ(W (x+ λv) + b)) (51)

=σ(ψ(W (λv))) (52)
=σ(ψ(Wv)) = Constant (53)

lim
λ→∞

∂f

∂W

∣∣∣
x+λv

= lim
λ→∞

a⊤σ′(ψ(W (x+ λv) + b)))ψ̇(W (x+ λv) + b)(x+ λv) (54)

= lim
λ→∞

a⊤σ′(ψ(Wv)))ψ̇(W (x+ λv) + b)(x+ λv) (55)

= lim
λ→∞

a⊤σ′(ψ(Wv)))
√
d ·
(

I

∥PλWv∥
− P (λWv)(λWv)⊤P

∥P (λWv)∥3

)
P (x+ λv)

(56)

= lim
λ→∞

a⊤σ′(ψ(Wv)))
√
d ·

(
P (x+ λv)

λ∥PWv∥
− PWvv⊤W⊤P (x+ λv)

λ∥PWv∥3

)
(57)

=a⊤σ′(ψ(Wv)))
√
d ·

(
Pv

∥PWv∥
− PWvv⊤W⊤Pv

∥PWv∥3

)
(58)

=Constant. (59)

lim
λ→∞

∂f

∂b

∣∣∣
x+λv

= lim
λ→∞

a⊤σ′(ψ(Wv)))
√
d ·
(

I

λ∥PWv∥
− PWvWv)⊤P

λ∥P (Wv)∥3

)
P (60)

=0. (61)

Therefore we know its limit is also constant bounded. So we know there exists a universal constant
with respect to θ,x,v such that kNTK(x,x+ λv) =

〈
∂f(x)
∂θi

, ∂f(x+λv)
∂θi

〉
≤ C.

E Experiment Setup

SEEM Experiments For the experiments presented in Section Section 3.1, we adopted TD3 as our
baseline, but with a modification: instead of using an exponential moving average (EMA), we directly
copied the current Q-network as the target network. The Adam optimizer was used with a learning rate
of 0.0003, β1 = 0.9, and β2 = 0.999. The discount factor, γ, was set to 0.99. Our code builds upon
the existing TD3+BC framework, which can be found at https://github.com/sfujim/TD3_BC.
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SEEM Reduction Experiments For the experiments discussed in Section Section 4, we maintained
the same configuration as in the SEEM experiments, with the exception of adding regularizations and
normalizations. LayerNorm was implemented between the linear and activation layers with learnable
affine parameters, applied to all hidden layers excluding the output layer. WeightNorm was applied
to the output layer weights.

Offline RL Algorithm Experiments For the X% Mujoco Locomotion offline dataset experiments
presented in Section Section 5, we used true offline RL algorithms including TD3+BC, IQL, Diff-
QL, and CQL as baselines. We implement our method on the top of official implementations of
TD3+BC and IQL; for CQL, we use a reliable JAX implementation at https://github.com/
sail-sg/offbench [25]; for Diffusion Q-learning (i.e., combining TD3+BC and diffusion policy),
we use an efficient JAX implementation EDP [24]. LayerNorm was directly added to the critic
network in these experiments. For the standard Antmaze experiment, we assign a reward +10 to
the successful transitions, otherwise 0. Considering the extreme suboptimality in Antmaze medium
and large datasets, we adopt Return-based Offline Prioritized Replay (OPER-R) with pbase = 0 to
rebalance these suboptimal datasets [58; 59; 18]. Specifically, instead of uniform sampling during
policy improvement, we assign a higher probability to the transitions in the successful trajectories.
Meanwhile, a uniform sampler is still used for policy evaluation. When removing OPER-R, diff-QL
with LayerNorm can still achieve a stable performance with slightly lower scores (see Table 2).

Linear Decay of Inverse Q-value with SGD Given that the explosion in D4RL environments
occurs very quickly in the order of 1

1−C′ληt and is difficult to capture, we opted to use a simple
toy task for these experiments. The task includes a continuous two-dimensional state space s =
(x1, x2) ∈ S = R2, where the agent can freely navigate the plane. The action space is discrete, with
8 possible actions representing combinations of forward or backward movement in two directions.
Each action changes the state by a value of 0.01. All rewards are set to zero, meaning that the true
Q-value should be zero for all state-action pairs. For this task, we randomly sampled 100 state-action
pairs as our offline dataset. The Q-network was implemented as a two-layer MLP with a hidden size
of 200. We used SGD with a learning rate of 0.01, and the discount factor, γ was set to 0.99.

Table 2: Ablate on Antmaze. The best score metrics is presented in the parenthesis.

Dataset diff-QL ours w.o. OPER-R ours

antmaze-umaze-v0 95.6 (96.0) 94.3 94.3± 0.5 (97.0)
antmaze-umaze-diverse-v0 (84.0) 88.5 88.5± 6.1 (95.0)
antmaze-medium-play-v0 0.0 (79.8) 77.0 85.6± 1.7 (92.0)

antmaze-medium-diverse-v0 6.4 (82.0) 70.4 83.9± 1.6 (90.7)
antmaze-large-play-v0 1.6 (49.0) 47.8 65.4± 8.6 (74.0)

antmaze-large-diverse-v0 4.4 (61.7) 60.3 67.1± 1.8 (75.7)
average 29.6 (75.4) 73.1 80.8 (87.4)
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Figure 11: SAC in the online setting.

F More Experiments

F.1 Validate the homogeneity in Lemma 1.

We define a family of 3-layer ReLU-activated MLPs (with bias term) with different scaling λ of the
same network parameter θ (from D4RL training checkpoints when value divergence happens), and
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feed these networks with the same input. We show one example in the below table, which confirms
that the L-degree homogeneity of output, gradient and NTK is valid at high precision, the NTK is
almost parallel, too. The larger the scaling factor is, the more accurate kL increasing pattern is for
output ( kL−1 for gradient and k2(L−1) for NTK). Further, we empirically validated the L-degree
homogeneity of NTK holds for all checkpoints in D4RL experiments where divergence happens.

Table 3: Validate homogeneity in Lemma 1.
λ 5 10

fλθ(x)/fθ(x) 124.99 (53) 999.78 (103)
grad scale 25.001 (52) 100.001 (102)
NTK scale 624.99(54) 9999.84 (104)
NTK cos 1− 10−6 1− 10−6

F.2 Ablate the contributions of EMA, Double-Q, and LayerNorm.

We conducted an ablation study in the following sequence: “DDPG without EMA”, “DDPG + EMA”,
“DDPG + EMA + DoubleQ”, and “DDPG + EMA + DoubleQ + LayerNorm”. Each successive
step built upon the last. We carried out these experiments in settings of 10% and 50% Mujoco
- environments notably susceptible to divergence. We report the total scores across nine tasks
in Figure 12. It clearly reveals that the EMA and double-Q, which are used as common pracitce
in popular offline RL algorithms such as CQL, TD3+BC contribute to preventing diverngence and
thus boosting performance. Nevertheless, built upon EMA and DoubleQ, our LayerNorm can futher
significantly boost the performance by surpressing divergence.

50% Mujoco Dataset 10% Mujoco Dataset
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er
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rm
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w.o. EMA
+EMA
+DoubleQ
+LayerNorm

Figure 12: Ablate EMA, Double-Q, and LayerNorm on 10% and 50% Mujoco datasets.

F.3 Benchmarking Normalizations.

Previously, we have demonstrated that LayerNorm, BatchNorm, and WeightNorm can effectively
maintain a low SEEM and stabilize Q convergence in Section 4. Our next goal is to identify
the most suitable regularization method for the value network in offline RL. Prior research has
shown that divergence is correlated with poor control performance[48; 19]. In this context, we
evaluate the effectiveness of various regularization techniques based on their performance in two
distinct settings - the Antmaze task and the X% Mujoco dataset we mentioned above. Previous
offline RL algorithms have not performed particularly well in these challenging scenarios. As
displayed in Figure 13, TD3+BC, when coupled with layer normalization or batch normalization,
yields significant performance enhancement on the 10% Mujoco datasets. The inability of batch
normalization to improve the performance might be attributed to the oscillation issue previously
discussed in Section 4. In the case of Antmaze tasks, which contain numerous suboptimal trajectories,
we select TD3 with a diffusion policy, namely Diff-QL [51], as our baseline. The diffusion policy is
capable of capturing multi-modal behavior. As demonstrated in Figure 13 and Table 4, LayerNorm
can markedly enhance performance on challenging Antmaze tasks. In summary, we empirically find
LayerNorm to be a suitable normalization for the critic in offline RL.
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Figure 13: Normalizations effect on 10% Mujoco Locomotion Datasets.

Table 4: Normalizations effect on two challenging Antmaze tasks.
Dataset diff-QL LN BN WN

antmaze-large-play-v0 1.6 72.7 1.0 35.0
antmaze-large-diverse-v0 4.4 66.5 2.1 42.5

F.4 How LayerNorm should be added.

The inclusion of LayerNorm is situated between the linear and activation layers. However, the ideal
configuration for adding LayerNorm can vary and may depend on factors such as 1) the specific
layers to which LayerNorm should be added, and 2) whether or not to apply learnable per-element
affine parameters. To explore these variables, we conducted an assessment of their impacts on
performance in the two most challenging Antmaze environments. Our experimental setup mirrored
that of the Antmaze experiments mentioned above, utilizing a three-layer MLP critic with a hidden
size configuration of (256,256,256). We evaluated variants where LayerNorm was only applied to a
portion of hidden layers and where learnable affine parameters were disabled. As seen in Table 5, the
performances with LayerNorm applied solely to the initial layers LN (0), LN (0,1) are considerably
lower compared to the other setups in the ‘antmaze-large-play-v0’ task, while applying LayerNorm
to all layers LN(0,1,2) seems to yield the best performance. For the ‘antmaze-large-diverse-v0’ task,
performances seem to be more consistent across different LayerNorm applications. Overall, this
analysis suggests that applying LayerNorm to all layers tends to yield the best performance in these
tasks. Also, the utilization of learnable affine parameters appears less critical in this context.

Table 5: The effect of LayerNorm implementations on two challenging Antmaze tasks.
Dataset w.o. LN LN LN LN LN LN LN

(0) (0,1,) (1,2) (2) (0,1,2) (no learnable)

antmaze-large-play-v0 1.6 0 0 8.3 17.8 72.7 72.8
antmaze-large-diverse-v0 4.4 60.2 68 77.1 65.5 66.5 66.7

F.5 Baird’s Counterexample.

Here, we will present our solution allow linear approximation to solve Baird’s Counterexample
, which was first used to show the potential divergence of Q-learning. Baird’s Counterexample
specifically targets linear approximation. Neural networks exhibited stable convergence within the
Baird counterexample scenario. Thus, we investigated cases of divergence within linear situations
and discovered that incorporating LayerNorm in front of linear approximation could effectively lead
to convergence (see Figure 14). This finding is not entirely surprising. Since a linear regression
model can be considered a special case of neural networks, our analysis can be directly applied to
linear settings.
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Figure 14: Baird’s Counterexample.

G Discussion

SEEM and Deadly Triad. Deadly Triad is a term that refers to a problematic interaction observed
in reinforcement learning algorithms, where off-policy learning, function approximation, and boot-
strapping converge, leading to divergence during training. Existing studies primarily analyze linear
functions as Q-values, which tend to limit the analysis to specific toy examples. In contrast, our work
uses NTK theory to provide an in-depth understanding of the divergence of Q-values in non-linear
neural networks in realistic settings, and introduces SEEM as a tool to depict such divergence. SEEM
can be used to understand the Deadly Triad as follows: If a policy is nearly on-policy, X∗

t is merely a
perturbation of X . Consequently, At = γGθt(X

∗
t ,X)−Gθt(X,X) ≈ (γ− 1)Gθt(X,X), with

G tending to be negative-definite. Without function approximation, the update of Q(X) will not
influence Q(X∗

t ), and the first term in At becomes zero. At = −Gθt(X,X) ensures that SEEM
is non-positive and Q-value iteration remains non-expansive. If we avoid bootstrapping, the value
iteration transforms into a supervised learning problem with well-understood convergence properties.
However, when all three components in Deadly Triad are present, the NTK analysis gives rise to the
form At = γGθt

(X∗
t ,X)−Gθt

(X,X), which may result in divergence if the SEEM is positive.

Linearity Prediction Outside Dataset Range. As has been pointed out in [54] (Fig. 1), ReLU-
activated MLP without any norm layer becomes a linear function for the points that are excessively
out of the dataset range. This fact can be comprehended in the following way: Consider an input λx,
the activation state for every neuron in the network becomes deterministic when λ→∞. Therefore,
the ReLU activation layer becomes a multiplication of a constant 0-1 mask, and the whole network
degenerates to a linear function. If the network becomes a linear function for inputs λx0, λ ≥ C,
this will cause an arbitrarily large NTK value between extreme points λx0 and dataset point x0.
Because now fθ(λx) can be written in equivalent form WT (λx), so ϕ(λx) = λW becomes linear
proportional to λ. This further induces linear NTK value between x and λx that is unbounded. This
phenomenon can be intuitively interpreted as below, since the value prediction of fθ(x) on line λx0 is
almost a linear function WTx for large λ, any subtle change of effective parameter W will induce a
large change on λx0 for large λ. This demonstrates a strong correlation between the value prediction
between point x0 and far-away extreme point λx0. The rigorous proof can be found in Proposition 1.

Policy Constraint and LayerNorm. We have established a connection between SEEM and value
divergence. As shown in Figure 6, policy constraint alone can also control SEEM and prevent
divergence. In effect, policy constraint addresses an aspect of the Deadly Triad by managing the
degree of off-policy learning. However, an overemphasis on policy constraint, leading to excessive
bias, can be detrimental to the policy and impair performance, as depicted in Figure 7. Building on
this insight, we focus on an orthogonal perspective in deadly triad - regularizing the generalization
capacity of the critic network. Specifically, we propose the use of LayerNorm in the critic network to
inhibit value divergence and enhance agent performance. Policy constraint introduces an explicit bias
into the policy, while LayerNorm does not. Learning useful information often requires some degree
of prior bias towards offline dataset, but too much can hinder performance. LayerNorm, offering an
orthogonal perspective to policy constraint, aids in striking a better balance.
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Figure 15: An observation that policy actions tend to gravitate toward extreme points when Q-value
divergence occurs. In D4RL environments, where action spaces are bounded, the ratio of the policy
action norm to the norm of points at the boundary (i.e., extreme points) provides an indication of
whether the current action is approaching these extreme points. To facilitate the observation of
Q-value divergence, the experimental setup employed is consistent with that described in Section 3
of the paper. From the figure, it can be seen that the ratios for policy actions are nearly 1, suggesting
a close proximity to the extreme points. In contrast, the ratios for actions within the dataset are
significantly lower than 1.

H More Visualization Results

In Assumption 2, we posit that the direction of NTK and the policy remains stable following a
certain period of training. We validates this assumption through experimental studies. We observe
the convergence of the NTK trajectory and policy in all D4RL Mujoco Locomotion and Antmaze
tasks, as depicted in the first two columns of Figures Figure 16, Figure 17, and Figure 18. We also
illustrate the linear growth characteristic of Adam optimization (as outlined in Theorem Theorem 4)
in the fourth column. As a consequence, the model parameter vectors maintain a parallel trajectory,
keeping the cosine similarity near 1 as shown in the third column. Figure 19 and Figure 20 showcase
how SEEM serves as a “divergence detector”in Mujoco and Antamze tasks. The surge in the SEEM
value is consistently synchronized with an increase in the estimated Q-value.
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Figure 16: NTK similarity, action similarity, model parameter similarity, and model parameter norm
curves in D4RL Mujoco Walker2d tasks.
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Figure 17: NTK similarity, action similarity, model parameter similarity, and model parameter norm
curves in D4RL Mujoco Halfcheetah and Hopper tasks.
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Figure 18: NTK similarity, action similarity, model parameter similarity, and model parameter norm
curves in Antmaze tasks.
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Figure 19: The normalized kernel matrix’s SEEM (in red) and the estimated Q-value (in blue) in
D4RL Mujoco tasks. For each environment, results from three distinct seeds are reported.
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(a) The normalized kernel matrix’s SEEM (in red) and the estimated Q-value (in blue) in D4RL Mujoco tasks.
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(b) The unnormalized kernel matrix’s SEEM. The three curves in each environment correspond directly to those
presented in Figure (a)

Figure 20: In Figure (a), an inflation in the estimated Q-value coincides with a surge in the normalized
SEEM. However, there are some anomalies, such as the second running in the ’umaze-diverse’
environment, where the Q-value rises while the unnormalized SEEM remains low. However, the
corresponding normalized SEEM in Figure (b) suggests an actual inflation of SEEM. Furthermore,
for scenarios where the Q-value converges, as seen in the second running in ’large-diverse’, the
unnormalized SEEM maintains an approximate zero value.
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