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Abstract

We propose a new family of label randomizers for training regression models under
the constraint of label differential privacy (DP). In particular, we leverage the trade-
offs between bias and variance to construct better label randomizers depending on
a privately estimated prior distribution over the labels. We demonstrate that these
randomizers achieve state-of-the-art privacy-utility trade-offs on several datasets,
highlighting the importance of reducing bias when training neural networks with
label DP. We also provide theoretical results shedding light on the structural
properties of the optimal unbiased randomizers.

1 Introduction

Differential privacy (DP) [DMNS06] has gained significant importance in recent years as a mathemat-
ically sound metric for rigorously quantifying the potential disclosure of personal user information
through ML models [ACG+16, RE19, TM20]. DP guarantees that the model generated by the
training process remains statistically indistinguishable, even if the data contributed by any individual
user to the training dataset is modified arbitrarily.

In certain scenarios, the training features of a specific example are already accessible to potential
adversaries, while only the training label is considered sensitive. For instance, within the context of
digital advertising, it is typical to train conversion models that aim to predict whether a user, who
interacts with an advertisement on a publisher’s website, will ultimately make a purchase of the
advertised item on the advertiser’s website. The conversion label, which indicates whether the user
completed the purchase or not, is not initially known to the publisher website and is considered
sensitive information that spans multiple websites.1 This particular setting, referred to as label DP,
was initially studied in the work of [CH11]. Subsequently, it has garnered attention in various recent
works, such as [GGK+21, MEMP+21, EMSV22]2.

For regression objectives (such as the squared loss and the Poisson log loss), the state-of-the-art is
given by the prior work of [GKK+23]. Their algorithm works in the so-called features-oblivious
setting (Figure 1), which consists of a features party that has access to all the features, and a labels
party that has access to all the labels. The labels party applies a mechanism that is DP with respect to
the labels in order to produce the message M(·) that it sends to the features party, who then uses the

1Given the announcement of various web browsers and mobile platforms regarding the deprecation of
third-party cookies, which were previously employed to track user behavior across different websites, the need
for training models that protect the privacy of labels has become increasingly important.

2as well as in proposals for industry-wide web and mobile standards [Har23].
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Figure 1: Feature-oblivious label DP model training studied in [GKK+23].

features along with the incoming message in order to train the model (which as a consequence would
also satisfy label DP). It proceeds by using part of the privacy budget in order to estimate a prior over
the labels, and then constructs a randomizer optimizing the “noisy label loss” (see Definition 4) with
respect to this prior.

In this work, we introduce a novel mechanism with bias-limiting constraints, motivated by the theory
of bias-variance trade-offs. We show that while these constraints lead to significantly higher noisy
label loss, the models trained on the privatized labels performs surprisingly well, achieving the
state-of-the-art utility-privacy trade-off on multiple real world datasets.

Organization. Section 2 provides some background definitions related to (label-)DP and learning.
In Section 3, we present the new label DP randomizers obtained by imposing unbiasedness constraints.
Section 4 provides an experimental evaluation demonstrating that our method achieves state-of-the-art
privacy-utility trade-offs across multiple datasets. We provide some related work in Section 5. We
conclude with some future directions in Section 6. All missing proofs along with additional related
work, as well as details on the experimental evaluation are provided in the Appendix.

2 Preliminaries

Let D be an unknown distribution on X × Y . We consider the regression setting where Y ⊆ R;
let P denote the marginal distribution of D on Y . In supervised learning, we have a set {(x, y)}
of examples drawn from D. The goal is to learn a predictor fθ to minimize the expected loss
LD(fθ) := E(x,y)∼D ℓ(fθ(x), y), for some loss function ℓ : R × Y → R. Some commonly-used
loss functions used in regression tasks are the Poisson log loss ℓPoi(ỹ, y) := ỹ − y · log(ỹ) and the
squared loss ℓsq(ỹ, y) := 1

2 (ỹ − y)2.

We recall the definition of DP; for more background, see the book of Dwork and Roth [DR14].

Definition 1 (DP; [DMNS06]). Let ε ∈ R>0. A randomized algorithmA is said to be ε-differentially
private (denoted ε-DP) if for any two “adjacent” input datasets X and X ′, and any measurable subset
S of outputs of A, it holds that Pr[A(X) ∈ S] ≤ eε · Pr[A(X ′) ∈ S].

In the context of supervised learning, an algorithm produces a model as its output, while the labeled
training set serves as the input. Two inputs are considered “adjacent” if they differ on a single training
example. This concept of adjacency is intended to safeguard both the features and the label of any
individual example. However, in certain scenarios, protecting the features may either be unnecessary
or infeasible, and the focus is solely on protecting the labels. This leads to the following definition:

Definition 2 (Label DP; [CH11]). A randomized training algorithm A is said to be ε-label differen-
tially private (denoted ε-LabelDP) if it is ε-DP when two input datasets are “adjacent” if they differ
on the label of a single training example.

We recall the notion of feature-oblivious label DP [GKK+23]. In this scenario, there are two parties:
the features party and the labels party. The features party has the sequence (xi)

n
i=1 of all feature

vectors across the n users; the labels party has the sequence (yi)
n
i=1 of the corresponding labels.

The labels party sends a single (possibly randomized) message M(y1, . . . , yn) to the features party.
Based on its input and the received message, the features party generates an ML model as its output.

Definition 3 (Feature-Oblivious Label DP [GKK+23]). In the above scenario, the output of the
features party satisfies feature-oblivious ε-LabelDP if the message M(y1, . . . , yn) is ε-DP where
two inputs are considered “adjacent” if they differ on a single yi.
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3 Label-DP Randomizers

A standard recipe for learning with label DP is to: (i) compute noisy labels using a local DP
randomizerM and (ii) use a learning algorithm on the dataset with noisy labels. Many of the baseline
algorithms that we consider follow this recipe, through different ways of generating noisy labels,
such as, (a) (continuous/discrete) Laplace mechanism, (b) (continuous/discrete) staircase mechanism,
etc. (see Appendix F for formal definitions). Prior work by [GKK+23] argues that intuitively such a
learning algorithm will be most effective when the noisy label “mostly agrees” with the true label.
This was formalized in the goal of minimizing the noisy label loss, which is the expected loss between
the true label and the noisy label, for the true label drawn from a prior distribution, for some loss
function ℓ.
Definition 4 (Noisy label loss). For a loss function g : R × Y → R, the noisy label loss of a
randomizerM with respect to prior P is G(M;P) := Ey∼P,ŷ∼M(y) g(ŷ, y), where ŷ is the noisy
label generated byM on input y.

This was motivated by the triangle inequality [GKK+23, Eq. (1)], namely,

E
(x,y)∼D

ℓ(fθ(x), y) ≤ E
y∼P

ŷ∼M(y)

ℓ(ŷ, y) + E
(x,y)∼D
ŷ∼M(y)

ℓ(fθ(x), ŷ) . (1)

The work of [GKK+23] focused on optimizing noisy label loss; they showed that the optimal
randomizer takes the form of “Randomized-Response on Bins” (see Appendix F for more details).
However, if we notice carefully, the noisy label loss does not depend on the number of examples, so
the RHS of (1) does not go to zero as the number of examples goes to infinity, even though we would
like the excess population loss of the learnt predictor to asymptotically go to zero. In this paper, we
provide an alternative insight into the goal of minimizing the noisy label loss.

For any distribution D over X × Y , and any label randomizerM mapping Y to Ŷ ⊆ R, let DM be
the distribution over X × Ŷ sampled as (x,M(y)) for (x, y) ∼ D. The Bayes optimal predictor for
any distribution D over X ×Y w.r.t. loss ℓ, is a predictor f∗

D : X → R that minimizes LD(f), which
roughly corresponds to the best predictor we could hope to learn with unbounded number of samples
from D. We show that, when training with a loss from a broad family that includes ℓsq and ℓPoi, the
Bayes optimal predictor is preserved after applying the label randomizer iff E[M(y)] = y holds for
all y ∈ Y (i.e., the randomizer is unbiased).
Theorem 5. Suppose ℓ is a loss function such that for all distributions P over Y , the minimizer
ŷ∗ := minŷ∈R Ey∼P ℓ(ŷ, y) exists and is given as ŷ∗ = Ey∼P [y]. Then the following are equivalent:

▷ E[M(y)] = y holds for all y ∈ Y ,
▷ For all distributions D over X × Y , it holds that f∗

D = f∗
DM

.

The main observation is that f∗
D(x0) = E[y | x = x0] with probability 1 over x0, and

similarly, f∗
DM

(x0) = E[M(y) | x = x0] with probability 1 over x0. We defer the
full proof to Appendix A, but for now we demonstrate a simple example where a predictor
learned using noisy labels produced by the optimal RR-on-Bins randomizer can in fact be sub-
optimal. Let X = {a, b} and Y = {0, 1, 2} and the distribution D be defined in Table 1.

0 1 2
a 0.35 0.1 0.05
b 0.25 0.15 0.1

Table 1: Example D

The Bayes optimal predictor for D w.r.t. ℓsq (or even ℓPoi) is given as
f∗
D(a) = 0.4 and f∗

D(b) = 0.7. On the other hand, the optimalM =

RR-on-BinsΦε randomizer for ε = 0.5 (see Appendix F for notation),
corresponds to the map Φ(0) ≈ 0.396 and Φ(1) = Φ(2) ≈ 0.720.
The Bayes optimal predictor for DM is given as f∗

DM
(a) = 0.542 and

f∗
DM

(b) = 0.558. The squared loss of these predictors are given as
LD(f

∗
D) = 2.625 and LD(f

∗
DM

) = 2.726, the latter being sub-optimal.
Thus, preserving the Bayes optimal predictor is a desirable property of a label randomizer, as any
learning algorithm that converges to the optimal predictor can also be trained on the noisy labels and
will approach the predictor for the original distribution.

Additionally, we can relate the property E[M(y)] = y to the unbiasedness of the gradients obtained
in SGD. First, we observe that the gradient with respect to the parameters for ℓsq and ℓPoi are affine
in y, namely,

∇θℓsq(fθ(x), y) = (fθ(x)− y) · ∇θfθ(x) , ∇θℓPoi(fθ(x), y) = (1− y/fθ(x)) · ∇θfθ(x).

3



Thus, the error in the gradient estimate when using the noisy label ŷ instead of y is given as

∇θℓsq(fθ(x), ŷ)−∇θℓsq(fθ(x), y) = (y − ŷ) · ∇θfθ(x),

∇θℓPoi(fθ(x), ŷ)−∇θℓPoi(fθ(x), y) = (y − ŷ) · ∇θfθ(x)
fθ(x)

.

Let S = {(x1, y1), . . . , (xb, yb)} be a mini-batch of examples and let Ŝ = {(x1, ŷ1), . . . , (xb, ŷb)}
be the mini-batch with noisy labels as returned by the randomizerM. Also consider the dataset with
expected noisy labels S̃ = {(x1, ỹ1), . . . , (xb, ỹb)}, where ỹi = Eŷ∼M(y) ŷ. The difference between
a mini-batch gradient w.r.t. noisy labels and the gradient of the population loss decomposes for ℓsq as
follows (similar decomposition holds for ℓPoi):

∇θLŜ(fθ)−∇θLD(fθ)

= ∇θLS(fθ)−∇θLD(fθ) + ∇θLS̃(fθ)−∇θLS(fθ) + ∇θLŜ(fθ)−∇θLS̃(fθ) (2)
= ∇θLS(fθ)−∇θLD(fθ)︸ ︷︷ ︸

(a)

+ E
(x,y)∈S

(y − E ŷ) · ∇θfθ(x)︸ ︷︷ ︸
(b)

+ E
(x,y)∈S

(E ŷ − ŷ) · ∇θfθ(x)︸ ︷︷ ︸
(c)

.

The term (a) is the difference between the mini-batch gradient and the population gradient, the
inherent stochasticity in mini-batch SGD, which has zero bias. The terms (b) and (c) form precisely
the bias-variance decomposition for the additional stochasticity in the gradient introduced by the
label noise, with the term (c) having zero bias. In the case of stochastic convex optimization, it is
well known that with access to biased gradients, it is impossible to achieve vanishingly small excess
loss; whereas, with access to gradients with zero bias and any finite variance, it is possible to achieve
an arbitrarily small excess loss using sufficient number of steps of stochastic gradient descent (see
Appendix D for more details). Motivated by this reasoning, our approach is to use a randomizer that
has the smallest variance possible while ensuring zero bias, namely the term (b) is zero.

3.1 Computing Optimal Unbiased Randomizers

We consider a label randomizer that minimizes the noisy label loss, while being unbiased. Namely,
we say that an ε-DP randomizerM that maps the label set Y ⊆ R to R is unbiased if it satisfies
Eŷ∼M(y) ŷ = y for all input labels y ∈ Y . We use a linear programming (LP) based algorithm
(Algorithm 1) to compute an unbiased randomizer that minimizes the noisy label loss. In order to
keep this approach computationally tractable we require that both Y and Ŷ are finite; as we discuss
shortly, it is possible to handle general Y by discretization using randomized rounding, and moreover
the excess noisy label loss due to consideration of a discrete Ŷ can be bounded as well. Even though
Algorithm 1 is general, we will only consider g = ℓsq henceforth (irrespective of the training loss ℓ).

Algorithm 1 ComputeOptUnbiasedRandε

Parameters: Privacy parameter ε ≥ 0.
Input: P = (py)y∈Y—prior over input labels Y ,

Ŷ = (ŷi)i∈I—a finite sequence of potential output labels.
Output: An ε-DP label randomizer.

Solve the following LP in variables M = (My→i)y∈Y,i∈I :

min
M

∑
y∈Y py

(∑
ŷ∈Ŷ My→i · g(ŷi, y)

)
, subject to

[Non-negativity] ∀y ∈ Y, i ∈ I : My→i ≥ 0

[Normalization] ∀y ∈ Y :
∑

i∈I My→i = 1

[ε-LabelDP] ∀i ∈ I,∀y, y′ ∈ Y s.t. y ̸= y′ : My′→i ≤ eε ·My→i

[Unbiasedness] ∀y ∈ Y :
∑

i∈I My→i · ŷi = y

return Label randomizerM mapping Y to Ŷ given by Pr[M(y) = ŷi] = My→i.

In Figure 2, we illustrate a prior P over Y = {0, 1, 2}, using the example in Table 1, and the
corresponding unbiased randomizer returned by ComputeOptUnbiasedRandε=0.5(P, Ŷ) for a certain
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Figure 2: (a) An example prior P over Y = {0, 1, 2}. (b) The optimal unbiased randomizer returned
by ComputeOptUnbiasedRandε=0.5(P, Ŷ) using a fine grid for Ŷ , indicated by the probability mass
function for each input label.

fine-grained choice of Ŷ . It is worth noting that this randomizer is quite unlike “randomized response”
or any additive noise mechanism! Additionally, the output labels are all outside [0, 2], which is the
convex hull of Y . We have observed the same in our experiments in Section 4 as well. One may find
it surprising that these “out of domain” noisy labels in fact yield better trained models! This could be
attributed to the Bayes optimal predictor for this randomizer being precisely f∗

D, since E[M(y)] = y
for all y ∈ Y (Theorem 5).

There are however a couple of challenges to be addressed. First, it is unclear if the optimal unbiased
randomizer has only finitely many labels, and even if so, what is the number of distinct output labels.
Secondly, one needs to fix the choice of Ŷ before hand, and it is unclear how one can choose it in a
way that the LP is feasible and moreover, the solution is close to the optimal unbiased randomizer.
We address these challenges as follows.

Structure of optimal unbiased randomizers. Addressing the first challenge, we show that there is
an optimal unbiased randomizer that has a small number of distinct output labels.
Theorem 6. For any convex loss g, all distributions P over R with finite support, and ε > 0, there
exists an ε-DP unbiased randomizer M∗ ∈ infε-DP unbiased M G(M;P) with at most 2|Y| output
labels.

The main ideas in the proof are as follows: we use the convexity of g to show that an optimal ε-DP
unbiased randomizerM must be of a certain form; if not we can use Jensen’s inequality to construct
another randomizerM′ with that form such that G(M′;P ) ≤ G(M;P). In particular, we show that
the randomizer must be a staircase mechanism as defined in [KOV16], a mechanism that maximally
satisfies the DP constraints. This already implies that the number of output labels is at most 2|Y|. We
use the ordering of the labels, along with similar reductions using convexity of g, to show that the
optimal ε-DP unbiased randomizer further lies within a special subset of staircase mechanisms with
2|Y| output labels. The detailed proof is provided in Appendix B.

Choosing Ŷ to ensure feasibility and good coverage. To address the second challenge, we use a
finite set of output labels. We show an upper bound on the excess noisy label loss due to discretization.

We use a heuristic (Algorithm 2) for setting Ŷ to be a grid, in a way that ensures that the LP in
Algorithm 1 has a feasible solution while keeping Ŷ small enough to be able to efficiently solve the
LP. To compute the endpoints of the grid, we use an unbiased randomizer with a finite and bounded
support: the ε-DP debiased randomized response (ε-dbRR) on the set of labels, which operates by
mapping the inputs to a unique set of values such that under randomized response the randomizer is
unbiased (see Appendix F for a definition). We choose the endpoints of our grid to be precisely the
minimum and maximum among the possible outputs of ε-dbRR (see Algorithm 2 for details). With
those two endpoints defined, we create the grid by evenly spacing output labels along this interval.
The number of output labels we generate is as large as possible while maintaining that the LP solver
terminates in a reasonable amount of time. We show that having these endpoints suffices to ensure
feasibility of the LP in Algorithm 1.

Proposition 7. If Ŷ contains just the smallest and largest values among the outputs of ε-dbRR, the
LP in ComputeOptUnbiasedRandε(P, Ŷ) is feasible.
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Algorithm 2 FeasibleOutputSetε

Parameters: Privacy parameter ε ≥ 0.
Input: Set of input labels Y . Positive integer n ≥ 2 representing size of output |Ŷ|.
Output: Set of output values Ŷ that guarantee feasibility of LP in Algorithm 1.
L←

(
(eε + |Y| − 1) ·min(Y)−

∑
y∈Y y

)
/(eε − 1)

U ←
(
(eε + |Y| − 1) ·max(Y)−

∑
y∈Y y

)
/(eε − 1)

∆← (U − L)/(n− 1)

return Ŷ = (L,L+∆, L+ 2∆, . . . , U −∆, U)

We defer the proof to Appendix F; the main idea is that these endpoints create an interval that contains
the interval one would obtain from the debiased randomized response on the two label set of the
minimum label and maximum label. Because the Ŷ we choose has labels less than this minimum and
larger than this maximum, all labels in between can be generated by interpolation.

Additionally, we show that using the randomizer optimized on the grid Ŷ gives bounded excess noisy
label loss compared to optimizing over a continuous set of labels for Lipschitz loss functions.

Lemma 8. LetM be the optimal unbiased randomizer with Ŷ = [L,U ], and letM∆ be the optimal
unbiased randomizer with Ŷ = {L,L + ∆, . . . , U − ∆, U}. If g(ŷ, y) is K-Lipschitz in ŷ, then
G(M∆;P) ≤ G(M;P) +K∆.

In the case of g(ŷ, y) = 1
2 (ŷ − y)2, we have K = (U − L). Therefore, as the grid gets finer, the

excess noisy label loss ofM∆ obtained from 1 over the noisy label loss ofM scales linearly in the
discretization parameter ∆. We present the proof in Appendix E.

For large ε values, we experimentally observe that the optimal unbiased randomizer appears to
approach ε-dbRR. For small ε values, we also experimentally observe that the optimal unbiased
randomizer appears to be supported on the labels of the debiased randomized response on the two
label set of the minimum label and the maximum label. This justifies our choice of endpoints for grid.

Algorithm 3 LabelRandomizerε1,ε2 .

Parameters: Privacy parameters ε1, ε2 ≥ 0.
Input: Labels y1, . . . , yn ∈ Y .
Output: ŷ1, . . . , ŷn ∈ Ŷ .
P ′ ←MLap

ε1 (y1, . . . , yn)

Ŷ ← FeasibleOutputSetε1(Y)
M← ComputeOptUnbiasedRandε2(P

′, Ŷ)
for i ∈ [n] do
ŷi ←M(yi)

return (ŷ1, . . . , ŷn)

Splitting budget between prior and label.
So far, we have assumed a known prior P over
input labels Y . However, this is typically not
the case, and so we use the standard Laplace
mechanism to privately estimate the prior. Given
n samples drawn from P , MLap

ε constructs a
histogram over Y and adds Laplace noise with
scale 2/ε to each entry, followed by clipping (to
ensure that entries are non-negative) and normal-
ization. For completeness, we include a formal
description ofMLap

ε in Appendix C.

Our randomizer for the unknown prior case, de-
scribed in Algorithm 3, thus operates by splitting
the privacy budget into ε1, ε2, usingMLap

ε1 to get an approximate prior distribution P ′, and using
the randomizer returned by ComputeOptUnbiasedRandε2(P

′, Ŷ) to randomize the labels. It follows
that the entire algorithm is (ε1 + ε2)-DP.

Handling continuous Y . While we focused on the case of finite sets Y , the approach can be
extended to the case where Y is a continuous set, say Y = [L,U ]. In this case, we can first choose
a finite discrete subset Ỹ ⊆ Y that contains both L and U , e.g., Ỹ = {L,L+∆, . . . , U}, and then
apply unbiased randomized rounding URRỸ(·) to all labels before applying any mechanismM.

Namely, for any label y ∈ [L,U ] such that y1 ≤ y ≤ y2 for y1, y2 being consecutive elements of Ỹ ,
URRỸ(y) returns ỹ drawn as y1 with probability y2−y

y2−y1
and y2 with probability y−y1

y2−y1
. This ensures

that E[ỹ] = y and hence, for any unbiased mechanismM that acts on inputs in Ỹ , it holds for all

6
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Figure 3: Illustration of various ε-DP label randomizers for ε = 4. The 2D density plot contours are
generated in log scale using Gaussian kernel density estimates. The legends show the MSE between
the original labels and the ε-DP randomized labels.

y ∈ Y that E[M(URRỸ(y))] = E[URRỸ(y)] = y. Furthermore, as the gap between consecutive
points of Ỹ decreases, the variance introduced by URRỸ also decreases.

4 Experimental Evaluation

We evaluate our randomizer on three datasets, and compare with the Laplace mechanism [DMNS06],
the additive staircase mechanism [GV14], and the RR-on-Bins method [GKK+23]. The Laplace
mechanism and the additive staircase mechanism both have a discrete and a continuous variant.
Following [GKK+23], we use the continuous variants for real-valued labels (the Criteo Sponsored
Search Conversion dataset), and the discrete variants for integer-valued labels (the US Census dataset
and the App Ads Conversion Count dataset). Note that in the experiments from [GKK+23], the
noised labels from both the Laplace mechanism and the additive staircase mechanism were clipped
to be in the valid label value range, as for small ε’s, the magnitude of the noised labels could be
orders of magnitudes larger than the original label values, potentially causing numerical instability
in model training. However, in our study, we found that with more careful hyperparameter tuning
and early stopping (see Appendix G), the learning could be stabilized for sufficiently small values
(e.g., ε ≥ 0.3) that is practically useful in ML, and in this case, the unclipped (therefore also
unbiased) version of both the Laplace and the additive staircase mechanisms outperform their clipped
counterpart. For reference, we present the results for both clipped and unclipped variants for those
two mechanisms. We note that all of these mechanisms can be implemented in the feature-oblivious
label DP setting (Figure 1). More details on model and training configurations are presented in
Appendix G.

4.1 Criteo Sponsored Search Conversion

The Criteo Sponsored Search Conversion Log Dataset [TY18] is a collection of 15, 995, 634 data
points derived from a sample of 90-day logs of live traffic from Criteo Predictive Search (CPS). Each
example contains information of an user action (e.g., a click on an advertisement) and a subsequent
conversion (purchase of the related product) within a 30-day attribution window. We use the setup
of feature-oblivious label DP to predict the revenue in C (i.e., the SalesAmountInEuro field in
the dataset) of a conversion. We apply the following preprocessing steps: filtering out examples
with SalesAmountInEuro being −1, and clipping the labels at the 95th percentile of the value
distribution (400C).

In Figure 3, we visualize an example of the various label randomizers. For ε = 4, the optimal
RR-on-Bins randomizer maps the input values to one of four distinct values. On the other hand,
for the optimal unbiased randomizer, the joint distribution of the sensitive labels and randomized
labels maintains an overall concentration along the diagonal. The joint distribution for the Laplace
mechanism is quite spread out.

In Figure 4, we compare the noisy label loss on the training set and the mean squared error on the test
set for all the randomizers considered. For each randomizer, the label randomization and training was
run with 10 independent random seeds, and the plots show the average and standard deviation bars.
For RR-on-Bins and the optimal unbiased randomizer, we use ε1 = 0.017 for privately estimating the
prior usingMLap

ε1 , and ε2 = ε− ε1 for randomizing the label, following the guidance in Appendix C.
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Figure 4: Comparison of different label DP randomizers on the Criteo Search dataset: (a) shows the
mean squared error between the original labels and the privatized labels on the training set from each
randomizer; (b) shows the mean squared error between the model predictions and the groundtruth
labels on the test set. The solid line indicates the non-private baseline.
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Figure 5: Comparison of different label DP randomizers: (a) shows the mean squared error of the
prediction on the US Census test set. The solid line indicates the non-private baseline. (b) shows the
relative Poisson loss (i.e., (L− L⋆)/L⋆) with respect to the non-private baseline Poisson loss L⋆.

We find that the optimal unbiased randomizer (Algorithm 3) achieves the smallest test mean squared
error across a wide range of ε values. It is interesting to note that the unbiased randomizers (Laplace
and additive staircase mechanisms and the optimal unbiased randomizer) vastly outperform the
biased randomizers (clipped versions of Laplace and additive staircase mechanisms as well as the
RR-on-Bins) in terms of test loss, even though the noisy label loss is an order of magnitude larger for
the unbiased randomizers.

4.2 US Census

The 1940 US Census dataset3 is widely used in the evaluation of data analysis with DP [WDZ+19,
CJG21, GKM+21]. This digitally released dataset in 2012 contains 131, 903, 909 examples. We
follow the task studied in [GKK+23] and evaluate label DP algorithms by learning to predict the
number of weeks each respondent worked during the previous year (the WKSWORK1 field).

In Figure 5a we compare the mean squared error on the test set for all the randomizers considered.
For each randomizer, the label randomization and training was run with 10 independent random seeds,
and the plots show the average and standard deviation bars. For RR-on-Bins and the optimal unbiased
randomizer, we use ε1 = 0.002 for privately estimating the prior usingMLap

ε1 , and ε2 = ε− ε1 for
randomizing the label, following the guidance in Appendix C. We find that the optimal unbiased
randomizer achieves the smallest test mean squared error across a wide range of ε values.

3https://www.archives.gov/research/census/1940
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4.3 App Ads Conversion Count

We also evaluate on a conversion count prediction dataset collected from a commercial mobile app
store. Each example in this dataset corresponds to an ad click and the task is to predict the number of
post-click conversion events in the app after a user installs the app within a certain time window.

In Figure 5b we compare the relative Poisson loss on the test set for all the randomizers considered.
For each randomizer, the label randomization and training was run with 6 independent random seeds.
For the optimal unbiased randomizer, Laplace and additive staircase mechanisms, at low ε’s we
experience blowup in the training loss during training. The plot show the average and standard
deviation bars, at the time of lowest training loss, right before blowup. We see that for all ε’s, all of
the unbiased randomizers vastly outperform the others, including RR-on-Bins. Among the unbiased
randomizers (optimal unbiased randomizer, Laplace and additive staircase mechanisms), the optimal
unbiased randomizer performs the best at all ε’s. One caveat is that for the smaller ε’s, one can see
the standard error increase. We hypothesize this is not an inherent feature of the randomizers but due
to the blow up of the model training, reducing the training length and adding additional variance to
the error, a behavior that seems specific to the AppAds dataset.

5 Related Work

DP learning has been the subject of considerable research spanning different settings that include
empirical risk minimization [CMS11], PAC learning [BLM20], training neural networks [ACG+16],
online learning [JKT12], and regression [Wan18]. For the label DP setting, [CH11, BNS16] studied
the sample complexity of classification, while [WX19] studied sparse linear regression in the local
DP model [EGS03, KLN+11]. For training deep neural networks with label DP, [GGK+21] studied
the classification setting and gave a multi-stage training procedure where the priors on the labels in
the previous stage are used to define an LP that is optimized to find the randomization mechanism
for the next stage. For the classification loss, they characterized the optimal solution as the so-called
RRTop-k. By contrast, the work of [GKK+23] showed that for regression objectives the optimal
solution to the LP is an RR-on-Bins solution. A crucial insight in our work is that the addition of an
unbiasedness constraint to the LP leads to solutions that (i) are not RR-on-Bins solutions, (ii) can
have substantially higher variance than RR-on-Bins, and (iii) nevertheless have a much lower train
and test error due to the reduction in bias.

Kairouz et al. [KOV16] defined a family of staircase mechanisms and showed they are optimal
among local DP algorithms for minimizing an objective function given a prior. We extend the notion
of staircase mechanisms to include real-valued labels that affect the optimization function. The
structural properties that we prove (Theorem 6) utilize the ordering of the labels and the unbiasedness
condition, which we show is critical for training neural networks for regression with label DP and
high accuracy. Moreover, their work shows the presence of staircase mechanisms in the context of
optimizing mutual information and KL-divergence objectives, whereas we show their presence in the
context of regression.

A two-party learning setting with one features party and one labels party was recently studied in the
work of [LSY+21]. They focus on the interactive setting, which is arguably less practical than the
(non-interactive) feature-oblivious setting studied in [GKK+23] that we also consider.

We also note that the label DP mechanism of [MEMP+21], which builds on the PATE framework
[PAE+17, PSM+18], and the works of [EMSV22, TNM+22], which leverage unsupervised and
semi-supervised learning algorithms, cannot be implemented in the feature-oblivious setting. The
DP-SGD algorithm of [ACG+16], which protects both the features and the label of each training
example and which has been applied to different domains including computer vision [DBH+22]
and language models [YNB+22] also cannot implemented in the feature-oblivious label DP setting.
The same is also true for label DP algorithms for logistic regression [GR21] that are based on linear
queries (where the features are assumed to be known and non-sensitive, and the linearity is with
respect to the labels).

Over the past decade, there has been a significant body of research on DP ML (e.g., [CMS11,
ZZX+12, SCS13]). In particular, DP regression has been the focus of several prior papers including
[ZZX+12, KST12, Wan18, SÁZL18, AMS+22].
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The label DP setting has also been studied in several papers including [CH11, BNS16, WX19,
GGK+21, MEMP+21, YSMN21, EMSV22, BMS22, GKK+23]. The Randomized Response (RR)
mechanism [War65], a basic form of label DP, was introduced several decades ago and is widely
studied/used.

6 Conclusion

In this work, we show that using unbiased ε-DP label randomizers lead to better trained models, and
in particular, choosing the label randomizer that minimizes the noisy label squared loss seems to
perform the best in terms of test performance, by empirically demonstrating this on three datasets.
We also provide theoretical results shedding light on the structure of these randomizers, as well as
why they might lead to better trained models.

Discussion. While we focused entirely on ε-DP (“pure-DP”), for our specific approach, it does
not seem that relaxing to (ε, δ)-DP (“approximate-DP”) will be beneficial. For the first stage of
estimating the histogram privately, one could potentially use an approximate-DP mechanism, but we
believe that is unlikely to change the prior significantly. For the second stage of randomizing labels,
it is known that approximate-DP may not be helpful in the local model [BNS18].

In this work, we use hyperparameter tuning to choose the best architecture, which in general has
additional privacy costs, and how to tune hyperparameters privately and efficiently is an active
research topic [PS22, SSS23]. Consequently, it is common in the private ML literature to separate the
question of private hyperparameter tuning and private training, and focus on comparing the privacy-
utility trade-off under optimal hyperparameters, e.g., [MEMP+21, HLY+23, KCS+22, DBH+22].
We also follow this convention.

Limitations and future work. While LPs are somewhat efficient, it would be desirable to have a
more efficient algorithm for computing the optimal unbiased randomizer. The RR-on-Bins randomizer
introduced in [GKK+23] has an important advantage that one does not need to construct the set of
potential output labels Ŷ before hand, and in fact, there is a simple dynamic programming algorithm
to compute the optimal randomizer along with the output labels. Moreover, the RR-on-Bins family of
randomizers has a clean structure. Understanding more structural properties of the optimal unbiased
randomizers, and designing better algorithms for computing them, would be an interesting future
direction to pursue.

To further improve the benefit of this optimal prior-based unbiased label randomizer, it might be
possible to first partition the input examples into groups of “related examples”, purely using the input
features and compute the optimal unbiased randomizer for each group, by privately estimating the
prior over labels for each group. This could lead to better test performance, as the randomizer can
adapt to the different priors across these groups, unlike the “static” label randomizers such as Laplace
and additive staircase mechanisms. For example, such an approach was used in the setting of image
classification using self-supervised learning in [GGK+21].

As shown in (2), there is a bias-variance trade-off when it comes to choosing a label randomizer.
While RR-on-Bins minimizes the noisy label loss (corresponding to the variance), the method in
our work minimizes the bias (in fact, making it zero), at the cost of greatly increasing the variance.
However, it might be possible in some settings that allowing a small amount of bias might greatly
reduce the variance, thereby improving performance. This might be especially relevant when ε is very
small. This could be done for example by adding a regularizer to reduce the bias, without enforcing
hard unbiased constraints, as currently done in Algorithm 1. We leave this investigation to future
work.

10



References
[ACG+16] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal

Talwar, and Li Zhang. Deep learning with differential privacy. In CCS, pages 308–318,
2016.

[AMS+22] Daniel Alabi, Audra McMillan, Jayshree Sarathy, Adam Smith, and Salil Vadhan.
Differentially private simple linear regression. PETS, 2:184–204, 2022.

[BLM20] Mark Bun, Roi Livni, and Shay Moran. An equivalence between private classification
and online prediction. In FOCS, 2020.

[BMS22] Raef Bassily, Mehryar Mohri, and Ananda Theertha Suresh. Differentially private
learning with margin guarantees. In NeurIPS, 2022.

[BNS16] Amos Beimel, Kobbi Nissim, and Uri Stemmer. Private learning and sanitization: Pure
vs. approximate differential privacy. ToC, 12(1):1–61, 2016.

[BNS18] Mark Bun, Jelani Nelson, and Uri Stemmer. Heavy hitters and the structure of local
privacy. In PODS, pages 435–447, 2018.

[CH11] Kamalika Chaudhuri and Daniel Hsu. Sample complexity bounds for differentially
private learning. In COLT, pages 155–186, 2011.

[CJG21] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Data poisoning attacks to local
differential privacy protocols. In USENIX Security, pages 947–964, 2021.

[CMS11] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private
empirical risk minimization. JMLR, 12(3), 2011.

[DBH+22] Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. Un-
locking high-accuracy differentially private image classification through scale. arXiv
preprint arXiv:2204.13650, 2022.

[DHS15] Ilias Diakonikolas, Moritz Hardt, and Ludwig Schmidt. Differentially private learning
of structured discrete distributions. In NIPS, pages 2566–2574, 2015.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating
noise to sensitivity in private data analysis. In TCC, pages 265–284, 2006.

[DR14] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3-4):211–407, 2014.

[EGS03] Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting privacy
breaches in privacy preserving data mining. In PODS, pages 211–222, 2003.

[EMSV22] Hossein Esfandiari, Vahab Mirrokni, Umar Syed, and Sergei Vassilvitskii. Label
differential privacy via clustering. In AISTATS, pages 7055–7075, 2022.

[GGK+21] Badih Ghazi, Noah Golowich, Ravi Kumar, Pasin Manurangsi, and Chiyuan Zhang.
Deep learning with label differential privacy. NeurIPS, pages 27131–27145, 2021.

[GKK+23] Badih Ghazi, Pritish Kamath, Ravi Kumar, Ethan Leeman, Pasin Manurangsi, Avinash
Varadarajan, and Chiyuan Zhang. Regression with label differential privacy. In ICLR,
2023.

[GKM+21] Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Rasmus Pagh, and Amer Sinha. Differ-
entially private aggregation in the shuffle model: Almost central accuracy in almost a
single message. In ICML, pages 3692–3701, 2021.

[GR21] Alexandre Gilotte and David Rohde. Learning a logistic model from aggregated data.
AdKDD Workshop, 2021.

[GV14] Quan Geng and Pramod Viswanath. The optimal mechanism in differential privacy. In
ISIT, pages 2371–2375, 2014.

[Har23] Charlie Harrison. Consider a randomized-response-like privacy mechanism, April
2023. github.com/patcg-individual-drafts/ipa/issues/60.

[Haz22] Elad Hazan. Introduction to Online Convex Optimization. MIT Press, 2022.
[HLY+23] Jiyan He, Xuechen Li, Da Yu, Huishuai Zhang, Janardhan Kulkarni, Yin Tat Lee,

Arturs Backurs, Nenghai Yu, and Jiang Bian. Exploring the limits of differentially
private deep learning with group-wise clipping. In ICLR, 2023.

11

github.com/patcg-individual-drafts/ipa/issues/60


[JKT12] Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta. Differentially private online
learning. In COLT, pages 24:1–24:34, 2012.

[KCS+22] Alexey Kurakin, Steve Chien, Shuang Song, Roxana Geambasu, Andreas Terzis, and
Abhradeep Thakurta. Toward training at imagenet scale with differential privacy.
CoRR, abs/2201.12328, 2022.

[KLN+11] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova,
and Adam D. Smith. What can we learn privately? SIAM J. Comput., 40(3):793–826,
2011.

[KOV16] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. Extremal mechanisms for local
differential privacy. JMLR, 17:17:1–17:51, 2016.

[KST12] Daniel Kifer, Adam Smith, and Abhradeep Thakurta. Private convex empirical risk
minimization and high-dimensional regression. In COLT, pages 25.1–25.40, 2012.

[LSY+21] Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi Zhang, Junyuan Xie, Virginia
Smith, and Chong Wang. Label leakage and protection in two-party split learning. In
ICLR, 2021.

[MEMP+21] Mani Malek Esmaeili, Ilya Mironov, Karthik Prasad, Igor Shilov, and Florian Tramer.
Antipodes of label differential privacy: PATE and ALIBI. NeurIPS, 34:6934–6945,
2021.

[PAE+17] Nicolas Papernot, Martín Abadi, Ulfar Erlingsson, Ian Goodfellow, and Kunal Talwar.
Semi-supervised knowledge transfer for deep learning from private training data. In
ICLR, 2017.

[PS22] Nicolas Papernot and Thomas Steinke. Hyperparameter tuning with Rényi differential
privacy. In ICLR, 2022.

[PSM+18] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar,
and Úlfar Erlingsson. Scalable private learning with PATE. In ICLR, 2018.

[RE19] Carey Radebaugh and Ulfar Erlingsson. Introducing TensorFlow Privacy: Learning
with Differential Privacy for Training Data, March 2019. blog.tensorflow.org.

[SÁZL18] Michael Thomas Smith, Mauricio A. Álvarez, Max Zwiessele, and Neil Lawrence.
Differentially private regression with Gaussian processes. In AISTATS, 2018.

[SCS13] Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent
with differentially private updates. In GlobalSIP, pages 245–248, 2013.

[SSS23] Tom Sander, Pierre Stock, and Alexandre Sablayrolles. TAN without a burn: Scaling
laws of DP-SGD. In ICML, pages 29937–29949, 2023.

[TM20] Davide Testuggine and Ilya Mironov. PyTorch Differential Privacy Series Part 1:
DP-SGD Algorithm Explained, August 2020. medium.com.

[TNM+22] Xinyu Tang, Milad Nasr, Saeed Mahloujifar, Virat Shejwalkar, Liwei Song, Amir
Houmansadr, and Prateek Mittal. Machine learning with differentially private labels:
Mechanisms and frameworks. PETS, 4:332–350, 2022.

[TY18] Marcelo Tallis and Pranjul Yadav. Reacting to variations in product demand: An
application for conversion rate (CR) prediction in sponsored search. In IEEE BigData,
pages 1856–1864, 2018.

[Wan18] Yu-Xiang Wang. Revisiting differentially private linear regression: optimal and
adaptive prediction & estimation in unbounded domain. In UAI, pages 93–103, 2018.

[War65] Stanley L Warner. Randomized response: A survey technique for eliminating evasive
answer bias. JASA, 60(309):63–69, 1965.

[WDZ+19] Tianhao Wang, Bolin Ding, Jingren Zhou, Cheng Hong, Zhicong Huang, Ninghui
Li, and Somesh Jha. Answering multi-dimensional analytical queries under local
differential privacy. In SIGMOD, pages 159–176, 2019.

[WX19] Di Wang and Jinhui Xu. On sparse linear regression in the local differential privacy
model. In ICML, pages 6628–6637, 2019.

12

blog.tensorflow.org
medium.com


[YNB+22] Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam
Kamath, Janardhan Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al.
Differentially private fine-tuning of language models. In ICLR, 2022.

[YSMN21] Sen Yuan, Milan Shen, Ilya Mironov, and Anderson Nascimento. Label private deep
learning training based on secure multiparty computation and differential privacy. In
NeurIPS Workshop Privacy in Machine Learning, 2021.

[ZZX+12] Jun Zhang, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, and Marianne Winslett. Functional
mechanism: regression analysis under differential privacy. VLDB, 5(11):1364–1375,
2012.

13



A Bayes Optimal Predictor Using Noisy Labels

We prove Theorem 5, restated below for convenience.
Theorem 5. Suppose ℓ is a loss function such that for all distributions P over Y , the minimizer
ŷ∗ := minŷ∈R Ey∼P ℓ(ŷ, y) exists and is given as ŷ∗ = Ey∼P [y]. Then the following are equivalent:

▷ E[M(y)] = y holds for all y ∈ Y ,
▷ For all distributions D over X × Y , it holds that f∗

D = f∗
DM

.

Proof. If M is unbiased, then Eŷ∼M(y)[ŷ] =
∑

ŷ∈Ŷ ŷ · Pr[M(y) = ŷ] = y for all input labels
y ∈ Y . We have the following equalities (we restrict ourselves to the case of finite Y and Ŷ , but the
proof generalizes easily to measurable sets Y and Ŷ):

E
ŷ∼M(y)
(x,y)∼D

[ŷ | x = x0] =
∑

y∈Y,ŷ∈Ŷ

ŷ · Pr[ŷ | y, x = x0] · Pr[y | x = x0]

=
∑

y∈Y,ŷ∈Ŷ

ŷ · Pr[ŷ | y] · Pr[y | x = x0] (∵ feature obliviousness)

=
∑
y∈Y

Pr[y | x = x0] ·

∑
ŷ∈Ŷ

ŷ · Pr[ŷ | y]


=

∑
y∈Y

Pr[y | x = x0] · y (∵ unbiasedness)

= E
y∼D(x0)

[y | x = x0],

showing that the Bayes optimal predictors are equal at all values x0.

Conversely, suppose we have a y′ ∈ Y such that Eŷ∼M(y′)[ŷ] ̸= y′. Then take any distribution D
for which there is some x0 with Pr[y = y′ | x = x0] = 1. Then clearly Ey∼D(x0)[y | x = x0] = y′.
However, Eŷ∼M(y),y∼D(x0)[ŷ | x = x0] = Eŷ∼M(y′)[ŷ] ̸= y′. Hence the Bayes optimal predictors
differ at x0.

B Structural Properties of Optimal Unbiased Randomizers

We prove Theorem 6, restated below for convenience. We use the following assumption about the
label loss g, which in particular, is satisfied by ℓsq that we primarily use.
Assumption 9. The loss g : R × R → R is such that for all y, it holds that g(ŷ, y) is convex in ŷ,
and minimized at ŷ = y for all y.

Theorem 6. For any convex loss g, all distributions P over R with finite support, and ε > 0, there
exists an ε-DP unbiased randomizer M∗ ∈ infε-DP unbiased M G(M;P) with at most 2|Y| output
labels.

We recall the definition of a signature matrix from [GKK+23]. Consider any feasible solution
M := (My→i)y∈Y,i∈I of the LP in Algorithm 1. Note that for reasons that will be clear shortly, we
do not require the ŷi values to be distinct, and we will assume without loss of generality that ŷi ≤ ŷj
for all i < j ∈ I. Let pmin

i = miny My→i and let pmax
i = maxy My→i. Note that if M encodes an

ε-DP randomizer, it holds that pmax
i ≤ eε · pmin

i .
Definition 10 (Signature matrix). For any ε-DP randomizer encoded by M , the corresponding
signature matrix entry SM (y, i) for all y ∈ Y and i ∈ I is defined as

SM (y, i) =


0 if My→i = 0

U if My→i = pmax
i = eε · pmin

i

L if My→i = pmin
i = e−ε · pmax

i

S otherwise.
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We show that for any ε-DP unbiased randomizerM(0), there exists another ε-DP unbiased random-
izerM, which satisfies certain nice properties, while not increasing the noisy label loss.

Claim 11. Suppose |Y| ≥ 2. For any ε-DP unbiased randomizerM(0) mapping to a finite set of
output labels, there exists an ε-DP unbiased randomizerM with output label sequence Ŷ = (ŷi)i∈I ,
encoded by (My→i)y,i such that the following hold:

▷ G(M0;P ) ≥ G(M;P ).
▷ Each column of SM consists of only U’s and L’s, with at least one U and one L.
▷ With row indices in Y sorted in increasing order from top to bottom, every non-zero column of

SM matches the regular expression L∗U+L∗. For each i ∈ I , let Φ1(i) and Φ2(i) be the smallest
and the largest y respectively for which SM (y, i) = U.

▷ For all i < i′ it holds that Φ1(i) ≤ Φ1(i
′) and Φ2(i) ≤ Φ2(i

′), with at least one of the
inequalities being strict.

Before we prove Claim 11, we prove Theorem 6 using it.

Proof of Theorem 6. If |Y| = 1, then it is immediate that the optimal unbiased randomizer simply
returns the unique value in Y with probability 1. If |Y| ≥ 2, then for any optimal unbiased randomizer
M(0), we can apply Claim 11 to get another optimal unbiased randomizerM that satisfies the stated
conditions. Let I ̸=0 ⊆ I be the subsequence of all outputs for which My→i ̸= 0 (for all y). The
sequence (Φ1(i),Φ2(i)) ordered in increasing order of i ∈ I̸=0 is strictly increasing in the partial
order Y × Y , that is, at least one of Φ1(i) or Φ2(i) strictly increases from one i to next. It is easy to
see that this can happen at most 2|Y| times, thereby concluding that |I̸=0| ≤ 2|Y|.

To prove Claim 11, we perform several transformations to the given ε-DP randomizerM(0), which
is say encoded by M (0) = (M

(0)
y→i)y,i for some Ŷ = (ŷi)i∈I , such that the randomizer obtained in

each step satisfies EM(r)(y) = EM(r+1)(y) for all y ∈ Y and G(M(r);P ) ≥ G(M(r+1);P ).

Combining columns with identical signatures. For convenience let k := |Y|. Let bj be the
k-dimensional binary vector corresponding to the binary representation of j for j ≤ 2k − 1. A matrix
S(k) ∈ {1, eε}k×(2k−2) is called a Staircase Pattern Matrix [KOV16] if the jth column of S(k) is
S
(k)
j = (eε − 1)bj + 1, for j ∈ {1, . . . , 2k − 2}. For example,

S(3) =

[
1 1 1 eε eε eε

1 eε eε 1 1 eε

eε 1 eε 1 eε 1

]

SinceM(0) is ε-DP, we have that each column of M (0), namely (M
(0)
y→i)y∈Y is a conic combination

of the columns of S(k).

Claim 12. LetM(0) be an ε-DP randomizer, mapping Y to a finite subset Ŷ(0) of R. Then there
exists an ε-DP randomizerM(1) mapping Y to Ŷ(1) ⊆ R encoded by (My→ŷ)y∈Y,ŷ∈Ŷ(1) such that:

▷ G(M(1);P) ≤ G(M(0);P) for any convex loss g.
▷ E[M(1)(y)|y] = E[M(0)(y)|y].
▷ |Ŷ| ≤ 2|Y|.
▷ The vector (My→ŷ)y∈Y is a positive multiple of a staircase column, with the staircase column

being unique for each ŷ ∈ Ŷ(1).

The proof idea of combining columns of staircase type to potentially decrease loss was shown in
[KOV16].

Proof. By ε-DP constraint, the columns of M (0) lie in the cone made by convex combinations of the
rays {c, c · eε}|Y| where c ≥ 0. Because positive multiples of the staircase columns are specifically
these rays, except the ray {c}|Y| which is already in the convex hull, this column ofM(0) is a convex
combination of positive multiples of the staircase columns.
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Let vŷ be the columns of M (0) indexed by Ŷ(0), which by the above can be written as:

vŷ =

2k−2∑
j=1

cjŷ · S
(k)
j .

Define for each j:

Cj =
∑
ŷ∈Ŷ0

cjŷ and ŷj =

∑
ŷ∈Ŷ0 ŷ · cjŷ

Cj
.

Define M (1) as being supported only at ŷj with the vector of probabilities being Cj · S(k)
j . We now

prove M (1) has all the desired properties.

▷ (Defines a Mechanism):

2k−2∑
j=1

Cj · S(k)
j =

2k−2∑
j=1

 ∑
ŷ∈Ŷ0

cjŷ

 · S(k)
j =

∑
ŷ∈Ŷ0

vŷ =
−→
1 .

▷ (Does not increase loss): This follows by Jensen’s inequality and the linearity of expectation:

G(M(0);P) =
2k−2∑
j=1

∑
y∈Y

(S
(k)
j )y·

∑
ŷ

g(ŷ, y) · cjŷ

 ≥ 2k−2∑
j=1

∑
y∈Y

(S
(k)
j )y·

(
g(ŷj , y) · Cj

)
= G(M(1);P).

▷ (Expectation does not change): Because M (0) is unbiased:∑
ŷ∈Ŷ0

ŷ · vŷ = (y)y∈Ŷ .

We have
2k−2∑
j=1

ŷj · Cj · S(k)
j = (y)y∈Ŷ ,

showing that M (1) is unbiased.
▷ (Bounded by 2|Y| and multiple of unique staircase columns): This is clear by construction.

While the finite case is easier to read, the above proof can be done also when the range of M (0) is R
and vŷ is a vector of absolutely continuous probability distributions. The only change is that sums
over ŷ ∈ Ŷ(0) become integrals. The projections of vŷ onto the staircase columns are continuous
maps. Lastly, because a continuous function that is bounded by a function in L1 is itself in L1, all
the integrals become well-defined and finite. Therefore, our theorem regarding the structure of the
optimal unbiased ε-DP mechanism does not depend on a finiteness condition.

Each row matches the pattern L∗U+L∗. We now use the ordering of the input and output labels
as real numbers to make further deductions.

Claim 13. Suppose |Y| ≥ 2. For any ε-DP randomizerM(1) obtained via Claim 12, there exists an
ε-DP randomizerM(2) mapping Y to Ŷ ⊆ R encoded by M := (My→ŷ)y∈Y,ŷ∈Ŷ such that:

▷ G(M(2);P) ≤ G(M(1);P) for any convex loss g,
▷ E[M(2)(y)|y] = E[M(1)(y)|y],
▷ Every row of SM matches the regular expression L∗U+L∗.

Proof. The only way a row of SM does not match the regular expression L∗U+L∗ is if (i) there is no
U present, or (ii) if there is an L between an two U’s. It is easy to see that (i) is not possible because∑

ŷ My→i = 1 for all y ∈ Y , and if one row has no U’s, this would imply no row has any U’s, which
is not possible by the uniqueness of the columns if |Y| ≥ 2, and we know such anM exists.
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If (ii) is true, then we can construct M(2) as follows. For any y and ŷ1 < ŷ2 < ŷ3 such that
SM(1)(y, ŷ1) = SM(1)(y, ŷ3) = U and SM(1)(y, ŷ2) = L, consider a perturbation (for a small enough
η > 0), where we set

M
(2)
y→ŷ1

= M
(1)
y→ŷ1

− (y3 − y2)η ,

M
(2)
y→ŷ2

= M
(1)
y→ŷ2

+ (y3 − y1)η ,

M
(2)
y→ŷ3

= M
(1)
y→ŷ3

− (y2 − y1)η .

This choice ensures that M (2) remains an unbiased randomizer. By Jensen’s inequality, due to
convexity of g, it holds that G(M(2);P ) < G(M(1);P ). We can keep repeating these steps, in
addition to Claim 12 if necessary, till we arrive atM(2) such that each row of SM(2) matches the
regular expression L∗U+L∗.

Set of U’s in any row cannot be a subset of the set of U’s in another, and are “moving forward”.
Claim 14. For an ε-DP unbiased randomizerM(2) obtained via Claim 13, let T (y) ⊆ Ŷ be defined
as T (y) := {ŷ : SM (y, ŷ) = U}. Then, for all y ̸= y′, it holds that T (y) ̸⊂ T (y′), and moreover if
y < y′, then minT (y) < minT (y′) and maxT (y) < maxT (y′).

Proof. If T (y) ⊂ T (y′), then it holds that My→ŷ ≤My′→ŷ with the inequality being strict for some
ŷ. Thus, we have

∑
ŷ My→ŷ <

∑
ŷ My′→ŷ = 1, which is a contradiction.

Given that both T (y) and T (y′) are contiguous subsets of Ŷ , it follows that one of following holds:

▷ minT (y) < minT (y′) and maxT (y) < maxT (y′), or
▷ minT (y) > minT (y′) and maxT (y) > maxT (y′).

However, if y < y′, the latter is not possible because in that case, we would have y′ = Eŷ∼M(2)(y′) <
Eŷ∼M(2)(y) = y, which is a contradiction.

Putting together the claims. Finally, we put together Claims 12 to 14 to prove Claim 11.

Proof of Claim 11. Given any ε-DP unbiased randomizerM, we apply Claims 12 and 13 to obtain
the ε-DP unbiased randomizer M(2), which satisfies the conditions in Claim 14. Consider the
signature matrix SM corresponding toM(2), with the row indices sorted in increasing order of Y .

If a column has a signature with an L between two U’s, this would contradict Claim 14, since the U’s
only “move forward”.

Additionally, for the signatures of column ŷ1 < ŷ2, the first U of column ŷ2 cannot come before the
first U of column ŷ1, as this would also contradict the claim of the U’s moving forward. Similarly, the
last U of column ŷ1 cannot come after the last U of column ŷ2. Finally, the columns must be unique,
since each column is a unique staircase matrix vector. Thus, each column of SM matches the regular
expression L∗U+L∗.

C Optimal Unbiased Randomizers with Approximate Prior

We elaborate on the approach of splitting privacy budget for estimating the prior and for generating
noisy labels as described in Section 3.

To privately estimate the prior, we use the Laplace mechanism. The Laplace distribution with scale
parameter b, denoted by Lap(b), is the distribution supported on R whose probability density function
is 1

2b exp(−|x|/b). The Laplace mechanism is presented in Algorithm 4.

It is well-known (e.g., [DMNS06]) that this mechanism satisfies ε-DP. It is also well-known that this
yields an approximation of the true distribution up to small total variation distance (e.g., [DHS15]).

In [GKK+23], it is argued that the best choice of (ε1, ε2) that minimizes the excess noisy label loss
achieved by randomizer computed in Algorithm 3 over the optimal unbiased randomizer computed
using the true prior and privacy parameter ε, is given as ε1 =

√
k/n. (We follow the same budget

splitting method in our experiments.)
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Algorithm 4 Laplace Mechanism for Estimating Probability DistributionMLap
ε .

Parameters: Privacy parameter ε ≥ 0.
Input: Labels y1, . . . , yn ∈ Y .
Output: A probability distribution P ′ over Y .

for y ∈ Y do
hy ← number of i such that yi = y
h′
y ← max{hy + Lap(2/ε), 0}

return Distribution P ′ over Y such that p′y =
h′
y∑

y∈Y h′
y

D Excess Loss of SGD with Biased Gradient Oracles

Consider a convex objective L(·) over RD, for which we have a gradient oracle, that given w, returns
a stochastic estimate g(w) of ∇L(w). We say that the gradient oracle has bias α and variance
σ2 if g(w) = ∇L(w) + ζ(w) such that ∥E ζ(w)∥ ≤ α and E ∥ζ(w) − E ζ(w)∥2 ≤ σ2 holds for
all w. When optimizing over a convex set K ⊆ RD, projected GD with step size η is defined as
iteratively performing wt+1 ← ΠK(wt − ηg(wt)), where ΠK(·) is the projection onto K. We recall
the following guarantee on the expected excess loss using a standard analysis (see [Haz22]).
Lemma 15. For a L-Lipschitz loss function, and a gradient oracle with bias α and variance σ2,
projected GD over a set K with diameter R, with step size η = R√

((L+α)2+σ2)T
achieves

E
[
L
(

1
T

∑T
i=1 wi

)]
− L(w∗) ≤ RL√

T
·
√

1 + 2α
L + α2+σ2

L2 + αR.

In particular, if α = 0, we get

E
[
L
(

1
T

∑T
i=1 wi

)]
− L(w∗) ≤ RL√

T
·
√
1 + σ2

L2 .

The dependence on the bias is essentially tight, for any first order method. Consider the loss
function L(w) = 1

2αw defined over the domain K = [0, R]. However, if the gradient oracle is
allowed to have a bias of magnitude α, it is impossible using any first order algorithm to distinguish
between the gradients of L and that of L′(w) := − 1

2αw. Note that both L and L′ are L-Lipschitz
for L ≥ 1

2α. While L is minimized at w = 0, L′ is minimized at w = R. For any w ∈ K,
min{L(w)− L(0),L′(w)− L′(R)} ≥ 1

4αR.

Thus, with access to gradients with bias α, it is impossible for any first order method to achieve an
excess loss that is smaller than Ω(αR), whereas, with access to gradients with zero bias and variance
σ2, it is possible to achieve an arbitrarily small excess loss using sufficient number of steps of SGD.

E Noisy Label Loss Bound from Discretization

Here we prove Lemma 8, restated below for convenience.

Lemma 8. LetM be the optimal unbiased randomizer with Ŷ = [L,U ], and letM∆ be the optimal
unbiased randomizer with Ŷ = {L,L + ∆, . . . , U − ∆, U}. If g(ŷ, y) is K-Lipschitz in ŷ, then
G(M∆;P) ≤ G(M;P) +K∆.

Proof. Given any unbiased mechanism M, we construct a mechanism Mu supported on Ŷ ′ :=
{L,L+∆, . . . , U −∆, U) by applying “unbiased randomized rounding” URRŶ′ to the output of
M, i.e.,Mu(y) := URRŶ′(M(y)).

For any ŷ ∈ [L,U ] such that ŷ1 ≤ ŷ ≤ ŷ2 for ŷ1, ŷ2 being consecutive elements of Ŷ ′, URRŶ′(y)

returns ŷ′ drawn as ŷ1 with probability ŷ2−ŷ
ŷ2−ŷ1

and ŷ2 with probability ŷ−ŷ1

ŷ2−ŷ1
. Observe that

E[URRŶ′(ŷ)] = ŷ and |URRŶ′(ŷ)− ŷ| ≤ ∆ with probability 1.
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Thus, we have that E[Mu(y)] = E[URRŶ′(M(y))] = E[M(y)] = y, and hence Mu is also
unbiased. Moreover,

G(Mu;P ) = E
y∼P

ŷ′∼Mu(y)

[g(ŷ′, y)] = E
y∼P

ŷ∼M(y)
ŷ′∼URRŶ′ (ŷ)

[g(ŷ′, y)]

≤ E
y∼P

ŷ∼M(y)
ŷ′∼URRŶ′ (ŷ)

[g(ŷ, y) +K|ŷ′ − ŷ|] = G(M;P ) +K∆,

where the last line follows from K-Lipschitzness of g. SinceM∆ is the optimal unbiased randomizer
with output labels Ŷ ′, we have that G(M∆;P) ≤ G(Mu;P) ≤ G(M;P) +K∆.

F DP Mechanisms Definitions

In this section, we recall the definition of various DP notions that we use throughout the paper.
Definition 16 (Global Sensitivity). Let f be a function taking as input a dataset and returning as
output a vector in Rd. Then, the global sensitivity ∆(f) of f is defined as the maximum, over all
pairs (X,X ′) of adjacent datasets, of ||f(X)− f(X ′)||1.

The (discrete) Laplace distribution with scale parameter b > 0 is denoted by DLap(b). Its probability
mass function is given by p(y) ∝ exp(−|y|/b) for any y ∈ Z.
Definition 17 (Discrete Laplace Mechanism). Let f be a function taking as input a dataset X and
returning as output a vector in Zd. The discrete Laplace mechanism applied to f on input X returns
f(X) + (Y1, . . . , Yd) where each Yi is sampled i.i.d. from DLap(∆(f)/ε). The output of the
mechanism is ε-DP.

Next, recall that the (continuous) Laplace distribution Lap(b) with scale parameter b > 0 has
probability density function given by h(y) ∝ exp(−|y|/b) for any y ∈ R.
Definition 18 (Continuous Laplace Mechanism, [DMNS06]). Let f be a function taking as input a
dataset X and returning as output a vector in Rd. The continuous Laplace mechanism applied to f
on input X returns f(X) + (Y1, . . . , Yd) where each Yi is sampled i.i.d. from Lap(∆(f)/ε). The
output of the mechanism is ε-DP.

We next define the discrete and continuous versions of the staircase mechanism [GV14].
Definition 19 (Discrete Staircase Distribution). Fix ∆ ≥ 2. The discrete staircase distribution is
parameterized by an integer 1 ≤ r ≤ ∆ and has probability mass function given by:

pr(i) =


a(r) for 0 ≤ i < r,

e−εa(r) for r ≤ i < ∆

e−kεpr(i− k∆) for k∆ ≤ i < (k + 1)∆ and k ∈ N
pr(−i) for i < 0,

(3)

where
a(r) =:=

1− b

2r + 2b(∆− r)− (1− b)
.

Let f be a function taking as input a dataset X and returning as output a scalar in Z. The discrete
staircase mechanism applied to f on input X returns f(X)+Y where Y is sampled from the discrete
staircase distribution given in (3).
Definition 20 (Continuous Staircase Distribution). The continuous staircase distribution is parame-
terized by γ ∈ (0, 1) and has probability density function given by:

hγ(x) =


a(γ) for x ∈ [0, γ∆)

e−εa(γ) for x ∈ [γ∆,∆)

e−kεhγ(x− k∆) for x ∈ [k∆, (k + 1)∆) and k ∈ N
hγ(−x) for x < 0,

(4)
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where

a(γ) =:=
1− e−ε

2∆(γ + e−ε(1− γ)
.

Let f be a function taking as input a dataset X and returning as output a scalar in R. The continuous
staircase mechanism applied to f on input X returns f(X) + Y where Y is sampled from the
continuous staircase distribution given in (4).
Definition 21 (Randomized Response, [War65]). Let ε ≥ 0, and q be a positive integer. The
randomized response mechanism with parameters ε and q (denoted by RRε,q) takes as input y ∈
{1, . . . , q} and returns ŷ ∼ Ŷ , where the random variable Ŷ is distributed as:

Pr[ŷ = ŷ] =

{
eε

eε+q−1 for ŷ = y
1

eε+q−1 otherwise.
(5)

The output of RRε,q is ε-DP.

Definition 22 (Randomized Response on Bins, [GKK+23]). Let ε > 0, for map Φ : Y → Ŷ ,
RR-on-BinsΦε is defined as the mechanism that on input y samples ŷ ∼ Ŷ , where the random variable
Ŷ is distributed as

Pr[Ŷ = ŷ] =

{
eε

eε+|Ŷ|−1
if ŷ = Φ(y)

1
eε+|Ŷ|−1

otherwise.

Definition 23 (Debiased Randomized Response). For ε > 0, the ε-debiased randomized response
(ε-dbRR) operates by performing randomized response on (Φ(y))y∈Y , where

Φ(y) =
(
(eε + |Y| − 1)y −

∑
y′∈Y y′

)
/(eε − 1),

namely, the mechanism on input y samples ŷ ∼ Ŷ , where the random variable Ŷ is distributed as

Pr[Ŷ = ŷ] =

{
eε

eε+|Y|−1 if ŷ = Φ(y)
1

eε+|Y|−1 otherwise.

Finally, we prove Proposition 7, restated below for convenience.

Proposition 7. If Ŷ contains just the smallest and largest values among the outputs of ε-dbRR, the
LP in ComputeOptUnbiasedRandε(P, Ŷ) is feasible.

Proof. Let y0 = min(Y) and y1 = max(Y). The smallest and largest values among the outputs of
ε-dbRR are given as

ŷ0 =
(
(eε + |Y| − 1) · y0 −

∑
y∈Y y

)
/(eε − 1),

ŷ1 =
(
(eε + |Y| − 1) · y1 −

∑
y∈Y y

)
/(eε − 1).

Consider the mechanismM such that for any input y ∈ Y it holds that

M(y) =

{
ŷ0 w.p. ŷ1−y

ŷ1−ŷ0
,

ŷ1 w.p. y−ŷ0

ŷ1−ŷ0
.

NoteM is unbiased, namely E[M(y)] = y for all y ∈ Y . We show

maxy Pr[M(y) = ŷ0]

miny Pr[M(y) = ŷ0]
=

Pr[M(y0) = ŷ0]

Pr[M(y1) = ŷ0]

=
(eε + |Y| − 1) · y1 −

∑
y∈Y y − (eε − 1)y0

(eε + |Y| − 1) · y1 −
∑

y∈Y y − (eε − 1)y1

=

∑
y ̸=y0

(y1 − y) + eε(y1 − y0)∑
y ̸=y0

(y1 − y) + (y1 − y0)
≤ eε,

where the last step follows because
∑

y ̸=y0
(y1 − y) ≥ 0 and for a, b, c > 0 it holds that (a+ b)/(a+

c) ≤ b/c. Similarly, it holds that maxy Pr[M(y) = ŷ1]/miny Pr[M(y) = ŷ1] ≤ eε.
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G Additional Details of Experiments

All our experiments were performed using NVidia P100 GPUs.

G.1 Hyperparameter Details

Criteo Sponsored Search Conversion. We use a neural network that takes as input concatenation
of floating point features, as well as categorical features using an embedding table of dimension
four for each. The neural network had two hidden layers of dimensions 64 and 32 respectively. The
training was performed on a random 80% of the dataset using RMSProp algorithm using the squared
loss objective, with learning rate of 10−4, ℓ2-regularization of 10−4, batch size of 1, 024 for 50
epochs. The remaining 20% of the dataset was used to report the test loss.

This architecture choice was chosen by performing a hyperparameter search over various choices,
and this choice seemed to give the best results for all the randomizers considered.

US Census. We use a neural network that takes as input concatenation of floating point features,
as well as categorical features using an embedding table of dimension eight for each. The neural
network had two hidden layers of dimensions 128 and 64 respectively. The training was performed
on a random 80% of the dataset using RMSProp algorithm using the squared loss objective, with
ℓ2-regularization of 10−4, batch size of 8, 192. A varying learning rate in {10−2, 10−3, 10−4} and a
varying number of epochs in {50, 200} were used, and the best test loss was reported for training
with each randomizer. The remaining 20% of the dataset was used to report the test loss.

G.2 Early Stopping

In training on the AppAds dataset, we found that the training would often be unstable, with the
training loss blowing up after several steps, especially for smaller values of ε, which corresponded to
faster blow up. We used early stopping, keeping track of intermediate states, to select the best model
that minimizes the training loss, and used this to report the test loss.

G.3 Complexity of Computing the Mechanisms

Even though the wall clock time for computing the optimal unbiased randomizer using an LP solver
is significantly larger than that of computing the optimal RR-on-Bins randomizer (for which there
is a highly efficient dynamic programming algorithm [GKK+23]), this is still orders of magnitude
smaller than that of ML model training. We note that while the noisy label loss decreases as ∆ in
Algorithm 2 is made smaller, this causes the computational cost of solving the LP to increase. This
trade-off is demonstrated in the following table, which shows the running time of the LP for the
unbiased randomizer, the noisy label loss and the final test loss, for different mesh sizes (parameter n
in Algorithm 2) for ε = 1 on the US Census dataset we study (prediction of number of weeks worked
in {1, . . . , 52}).

Mechanism Mesh size
Computing mechanism
wall-clock time (secs) Noisy label loss Test loss

RR-on-Bins n/a 0.154 79.71 172.44
Opt. Unbiased 52 2.38 1288.21 134.44
Opt. Unbiased 416 17.1 1275.22 134.43
Opt. Unbiased 1664 161 1274.71 134.43

The test loss is quite similar for various mesh sizes, even though the noisy label loss does improve
slightly with finer discretization. This suggests that the unbiasedness was key to the improvements
over RR-on-Bins and the discretization of the output set does not hurt performance as much.

The computation time increases considerably when the number of input labels is large, e.g., in the
Criteo Search Sponsored Conversion Logs dataset, where there were 401 input labels {0, . . . , 400}.
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