
Supplementary material

This section contains supplementary material to support the main paper text. The contents include:

A. Videos illustrating our approach.
B. Discussion about the sim-to-real gap in Ego4D related to experiments in Sec. 4.4.
C. Data collection and annotation details.

C.1. Additional walkthrough collection details to supplement Sec. 4 (simulators).
C.2. Data annotation, processing details and analysis for both datasets in Sec. 4 (video datasets).

D. Implementation and training details.
D.1. Architecture and training details for all models in Sec. 4 (baselines).
D.2. Architecture and training details for PLACESCNN and VSLNET in Sec. 4.2 and Sec. 4.3.

E. Supplementary experiments and analysis.
E.1. Experiments with extra pretraining data (Ego4D videos vs. simulator walkthroughs).
E.2. Experiments with pose embeddings and ground truth pose inputs for fair comparisons with
EPC on both tasks.
E.3. EgoEnv integrated into other approaches besides VSLNET in Table 1.
E.4. Alternate local state task formulations compared to ours in Sec. 3.1.
E.5. Details about rare instances during pretraining following discussion in Sec. 3.2.
E.6. Experiments on task-specific pre-training in simulation following the discussion in Sec. 3.3.

F. Ablations experiments and additional visualizations.
F.1. Results with error-bars corresponding to aggregate numbers in Sec. 4.
F.2. Ablation experiments on model hyperparameters for our approach in Sec. 3.2 including loss
weighting factor, memory size and window size.
F.3. Additional attention visualization results to supplement Fig. 5.
F.4. Additional details about entropy and instance difficulty from Sec. 4.2.

A Videos illustrating our approach

We include our supplementary video on our project page https://vision.cs.utexas.edu/
projects/ego-env/. The video illustrates the local state prediction task (Sec. 3.2), downstream
video tasks (Sec. 3.3) and our main results.

In the first part of the video, we demonstrate the local state prediction task from Sec. 3.2 of the main
paper. The video shows the first-person view of the camera-wearer (left panel). The right panel
shows the top-down view of the environment with the agent trajectory (blue gradient) and nearby
objects (colored squares). Note that models only see the egocentric view — the top-down map is
for illustration only. Given a simulated video walkthrough and a query time-stamp, the model must
predict the direction and rough distance of each object near it. Correct, missing and false positive
predictions are shown for each direction (left panel). Correct predictions on the top-down map are
highlighted in cyan.

In the second part of the video, we show examples of the two downstream video tasks from Sec. 3.3
of the main paper, on MP3D, HouseTours and Ego4D. In the ROOMPRED examples, the model
must predict which room the camera-wearer is in from a short clip. As mentioned in Sec. 4.2, the
clips show quick motions and often contain ambiguous views making it hard to predict room labels
directly using traditional scene recognition methods. For example, the “staircase” is not visible as the
person descends it (Ego4D, bottom right video). In the NLQ examples, the model must predict the
moment in time that answers a particular environment-centric query. The video examples show how
this requires reasoning about the camera-wearer’s surroundings. For example, in the HouseTours
clip (“when did I visit the sink in the bathroom?”) the sink is only seen briefly in the video but the
response requires the window of time that the camera-wearer was physically near it (within arms
reach) regardless of visibility. In the Ego4D clip (“Did I leave the drawer open”), the model must
know where the drawer is relative to the camera-wearer and link their actions to this physical location
in order to respond.
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Figure 1: Snapshot of the Ego4D NLQ leaderboard. Leaderboard can be found on the challenge page. Note
that both GroundNLQ [38] and asl_nlq [74] are concurrent works that were added to the leaderboard after the
submission of this paper.

B Sim-to-real gap in Ego4D

As mentioned in Sec. 4.4 of the main paper, our model is affected by the type and diversity of
pretraining data — videos of simulated agents walking around a house — limiting its generalization
to unconstrained real-world video. Similarly, our approach is limited by simulator functionality —
HM3D scenes support a small set of objects, which may not overlap with real-world environments,
and Habitat does not support fine-grained object-interactions (e.g., chopping vegetables). As a result,
we find that our approach works well on videos that are consistent with pretraining (i.e., indoor
home scenarios; videos with lots of walking and less object interaction) but contributes less on
out-of-distribution scenes and activities (e.g., golfing, outdoor cooking). The full list of scenarios is
in Table 1.

Our results on the benchmark challenge (test set) in Table 2 corroborate this result. Note that our
method was the top-ranked approach at the time of submission. Since then, other unpublished
methods have been submitted to the leaderboard. We expect that future advancements in simulator
capabilities (e.g., human motion models for agents, fine grained object interaction simulation) will
help address this class of limitations. Fig. 1 shows a snapshot of the leaderboard as of 10/23/23.

Indoor Visiting exhibition, On a screen (phone/laptop), Listening to music, Household management - caring
for kids, Talking on the phone, Watching tv, Talking to colleagues, Electronics (hobbyist circuitry
board kind, not electrical repair), Practicing a musical instrument, Eating, Cooking, Making coffee,
Playing board games, Working at desk, Working out at home, Reading books, Playing games / video
games, Hosting a party

Navigation Roller skating, Bus, Walking on street, Indoor Navigation (walking), Walking the dog / pet, Car -
commuting, road trip, Grocery shopping

Table 1: List of scenarios aligned with training environments.

C Data collection and annotation details.

We present data collection and annotation details for simulated walkthroughs, and our two downstream
tasks (ROOMPRED and NLQ) for all three datasets (MP3D, HouseTours, Ego4D).

C.1 Walkthrough generation details

As mentioned in Sec. 4 (simulators) of the main paper, we generate simulated walkthroughs in
HM3D [64] scenes to train our models. Given an environment, we first cluster all navigable points
using KMeans, selecting between 4-64 clusters depending on the environment size. With each cluster
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Figure 2: Walkthrough examples in HM3D. The blue gradient represents the trajectory from start (white) to
end (blue). Black and white regions represent obstacles and free space respectively.

SCENES ROOMPRED NLQ
HM3D [64] 800 / 100 / – – –
Matterport3D [6] 57 / 6 / 21 1337 / 173 / 536 8380 / 837 / 3452
HouseTours [7] 570 / 135 / 181 4512 / 1107 / 1593 2009 / 462 / 706
Ego4D [26] 998 / 328 / 333 3604 / 1596 / 1434 11291 / 3874 /4004

Table 2: Dataset train / val / test splits. Splits based on scenes and instances per downstream task are shown.
HM3D is used only for pretraining (Sec. 3.2).

centroid as a starting location, we sample 8-16 nearest goal locations, shuffle them (to allow re-
visitation), and make an agent visit the goals in sequence. We use a shortest-path planning agent that
uses the underlying navigation graph to reach goals in the fewest number of steps. We collect a dataset
of ~15k episodes, each of 512 steps, of our agents visiting such goal sequences for experiments in
Sec. 3.2. Fig. 2 shows a random sample of walkthroughs.

Note that the walkthroughs are generated in environments where objects are not moved, however a
large part of real-world environments are in fact static. This includes static scene elements like doors,
windows, counter tops, staircases, and most objects that are typically not moved like refrigerators,
beds, couches, TV sets. Encoding these objects and scene elements can thus still provide value for
human-centric environment understanding, even when some objects may have moved around.

C.2 Data collection and annotation details

As mentioned in Sec. 4 (simulators) of the main paper, we collect labels for each video dataset. For
Matterport3D, we directly use the ground truth information available through the simulator to extract
labels. For HouseTours and Ego4D, we crowd-source annotations where required. We describe the
data collection process and present data statistics for each dataset and task. The resulting dataset
splits can be seen in Table 2.

C.2.1 Annotation requirements

ROOMPRED For this task, room labels are required at each time-step of the video. The 9 room
categories used in Matterport3D are in Table 3 (left). These categories are pre-defined in the simulator.
The 21 room categories used in HouseTours and Ego4D are in Table 3 (right). These categories were
generated manually from a combination of Matterport3D room categories and a relevant subset of
Places365 categories corresponding to indoor scenes.

NLQ For this task, natural language queries and corresponding moment boundaries (start and end
times) are required. For HouseTours, we define 7 query templates where o refers to objects and r
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Matterport3D
hallway bathroom bedroom
office kitchen living room
lounge dining room family room

HouseTours / Ego4D
attic balcony basement bathroom bedroom
closet corridor/hallway dining room driveway front door/entrance
garage/shed gym kitchen lawn/yard/garden living room
office/home office porch recreation room (billiards room/play room)
staircase storage/laundry/utility room swimming pool

Table 3: Room taxonomies for Matterport3D, HouseTours and Ego4D

Template Example Description
see o Where did I first see the remote control? Objects must be visible for the moment du-

ration
see o in r When did I see the mirror in the bathroom? Object must be physically inside the room
see o1 then o2 Where did I see a table then a chair? Objects can either be seen together or in

quick succession
visit r1 then r2 When did I walk from the living room to

the kitchen?
Start = when the person begins to leave;
End = they are fully inside the kitchen.

visit o/r When did I last visit the couch?; When did
I last visit the bedroom?

Visit = physically near an object (within
arms reach) or physically inside a room

visit o1 then o2 When did I visit the lamp then the couch? Same as see o1 then o2, but using the “visit”
criteria above

visit o in r When did I visit the mirror in the bathroom? Same as see o1 in o2, but using the “visit”
criteria above

Table 4: Query templates and examples for the NLQ task on MP3D and HouseTours.

refers to rooms: “see o”, “see o in r”, “see o1 then o2”, “visit r1 then r2”, “visit o/r”, “visit o1 then
o2”, “visit o in r”. Each template captures a type of question that requires a different mechanism
of reasoning. “see” queries require reasoning about what is immediately visible; “visit” queries
require an understanding of where the camera-wearer is in the environment and what objects are
nearby (within arms reach); “see/visit o1 then o2” and “see/visit o in r” require both spatial and
temporal reasoning. Natural language queries follow from these templates. For example, for the
“visit r1 then r2” template, a natural language query may be “When did I first walk from the kitchen
to the bathroom?”. The list of query templates, examples and descriptions can be seen in Table 4.
The task definition follows prior work [26] but is adapted for the datasets used, and contains more
environment-centric queries. For Ego4D, we use the existing NLQ benchmark task annotations.

Our video in Sec. A shows examples of both tasks to complement the image examples from Fig. 4
of the main paper. The video highlights the stark contrast between prediction in static images
(third-person photos) which contains well-framed images that are easy to recognize, and egocentric
video which is much more challenging. In this setting, video is tied to quick ego-motion as the
camera-wearer moves around the environment and objects are seen only briefly (or not at all) in
non-canonical viewpoints.

C.2.2 Matterport3D annotations

For ROOMPRED, navigable location are mapped to room categories using information from the
simulator. We map agent positions for each video frame to these categories. For NLQ we use room
labels and extracted object positions to generate queries from the 7 templates above. We define objects
as “seen” if they occupy at least 5% of the pixels in a given frame. We define objects as “visited”
if the agent is < 1.0m from the object, regardless of its visibility, following embodied navigation
protocol (ObjectNav [2]). Rooms are “visited” using the position → room category mapping above.
We generate queries for each template by tracking objects and rooms that are seen and visited over
time. If there are multiple visitations to an object or room, we ensure unique responses to queries by
adapting them to consider only the first (or last) visit.

Fig. 3 shows annotation statistics for both tasks on Matterport3D. Trajectories are fixed length (512
steps) with 7 room transitions on average. Both visits and moments are short, making it difficult to
localize the response to the natural language query, and providing little extra context to recognize
rooms. See our video in Sec. A for examples.
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Figure 3: Annotation statistics for Matterport3D. Top panel: ROOMPRED data distribution. (left) distribution
of room categories; (center) length of each room visit relative to the full video; (right) number of room transitions
in each video. Bottom panel: EPISODIC MEMORY RETRIEVAL data distribution. (left) distribution of query
types; (center) length of each annotated moment relative to the full video; (right) distribution of start and end
times of annotated moments.

C.2.3 HouseTours annotations

We crowd-source annotations for real-world videos from HouseTours. For ROOMPRED, we ask
annotators to watch a video and mark the start and end time of each “visit” to a room. They must
then label each visit with one of the 21 room categories (from Table 3, right). An illustration of the
annotation interface is shown in Fig. 6.

For NLQ, we ask annotators to identify an interesting moment (e.g., where a person sees a salient
object, moves from one room to another, visits an important object) which serves as the answer to
a query. The moment is specified by a start and end time, while the query is specified as natural
language text generated following one of the 7 template classes from Table 4. An illustration of the
annotation interface is shown in Fig. 7.

Fig. 4 shows annotation statistics for both tasks on HouseTours. In general, trajectories are relatively
shorter than Matterport3D, though they involve a similar number of room transitions (6 on average).
They share similar challenges with short moments. See our video in Sec. A for examples.

C.2.4 Ego4D annotations

Following the same procedure as HouseTours, we crowd-source room visit labels on Ego4D videos
(see Fig. 5). Ego4D videos are much longer (30 mins on average). As a consequence, visits are
naturally a much smaller fraction of the overall video and the number of room transitions are much
higher (16 on average). The distribution of room categories is similar to HouseTours. Annotation
statistics for NLQ can be found in Section F.4 of the supplementary material of the Ego4D paper [26].
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Figure 4: Annotation statistics for HouseTours. Top panel: ROOMPRED data distribution. (left) distribution
of room categories; (center) length of each room visit relative to the full video; (right) number of room transitions
in each video. Bottom panel: EPISODIC MEMORY RETRIEVAL data distribution. (left) distribution of query
types; (center) length of each annotated moment relative to the full video; (right) distribution of start and end
times of annotated moments.
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Figure 5: Annotation statistics for Ego4D. ROOMPRED data distribution. (left) distribution of room categories;
(center) length of each room visit relative to the full video; (right) number of room transitions in each video.
We do not collect annotations for NLQ on Ego4D. We use annotations from the official Ego4D benchmark
challenge (Section F.4. in the Ego4D paper [26]).
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Figure 6: Annotation interface for collecting ROOMPRED labels. Annotators must densely segment room
visits (start and end times) and associate a class label to each of them.

Figure 7: Annotation interface for collecting NLQ labels. Annotators must identify an interesting moment in
time (start and end time) and associate a query template, a natural language query and object/room labels that fill
the query template slots.
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chair table picture cabinet
cushion sofa bed chest_of_drawers
plant sink toilet stool
towel tv_monitor shower bathtub
counter fireplace shelving seating
furniture appliances clothes

Table 5: HM3D object taxonomy

D Implementation and training details

We present architecture and training details for all approaches.

D.1 Architecture and training details (pretraining)

We present additional details for our model in Sec. 3 of the main paper, as well as the baselines in
Sec. 4 (baselines). The full list of hyperparameters are in Table 6.

Pose embedder P , environment encoder E and decoder D. We build on the transformer [83]
architecture for our model. The inputs f ∈ R2048 are features from an ImageNet-pretrained ResNet-
50 . These are encoded into 128-dimension vectors using a visual encoder (2-layer MLP).

First, 128-D pose embeddings are generated following Eqn. 3. These pose embeddings are concate-
nated with the visual embedding, and then transformed back to a 128-dimension vector using Mp.
Sin-cosine position embeddings are added to this input following [83] resulting in the transformer
input {x1, ..., xN} in Eqn. 4. Note that a separate visual encoder generates input features for the
encoder E and the pose embedder P .

The encoder E performs multi-headed self-attention using these inputs, with 2 layers, 8 heads and
hidden dimension 128. The decoder D is a 2-layer transformer with hidden dimension 128 which
attends to the outputs of E to generate the output representation. We predict relative directions for 23
object classes in HM3D (see Table 5). We use the transformer implementation from PyTorch [59].

Our architecture is similar to prior embodied navigation approaches [65, 20] but does not require
pose (and instead uses pose embeddings), includes the environment decoder that queries the memory
based on pose embeddings and visual content, and is trained using our proposed learning objective in
Sec. 3.2. See Table 6 (left).

EPC architecture details. EPC [65] is a transformer encoder-decoder model that masks out frames
from physical locations and predicts the features of these masked zones given a query pose. We
generate graphs to train this baseline following their approach.

Specifically, for every video frame {f1, ..., fT }, we compute the geometric viewpoint overlap with
every other frame. The viewpoint overlap ψ(fi, fj) is calculated by projecting pixels from the frames
to 3D point-clouds using camera intrinsics, agent pose and depth measurements, and measuring the
percentage of shared points across frames. We use ψ(fi, fj) as our distance metric to cluster all
frames in video into zones using hierarchical agglomerative clustering. We set the distance threshold
to 0.8 as larger values result in too few zones.

We sample 4 unseen zones per instance in a batch of which one is “positive” and three are “negatives”
for contrastive learning. We collect negatives from all instances in a batch during training. The
network is trained using noise-contrastive estimation following [65]. See Table 6 (center).

EgoTopo architecture details. EgoTopo [57] is an approach to translate egocentric video frames into
a topological graph, where each node contains a list of clips that correspond to a physical location,
and edges correspond to rough spatial layout.

For MP3D and HouseTours, ee directly use available pose information to determine whether two
frames belong to the same zone or not (i.e., we do not train a retrieval network to approximate this).
This amounts to a clustering of the trajectory based on pose (position and heading) and represents an
enhanced version of EgoTopo that benefits from pose data. We use affinity propagation to cluster
frames into nodes. To compute edges, we calculate the distance between the centroid of each node and
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Transformer architecture

Input dim 2048
Hidden size 128
Pose emb dim 128
Walkthrough length 512
Memory size (K) 64
# attention heads 8
# encoder layers 2
# decoder layers 2

EPC parameters

# Unseen zones 4
Clustering threshold 0.8

EgoTopo parameters

Affinity prop damping 0.5-0.9
GCN hidden dim 128
# GCN layers 2

Optimization parameters

Max epochs 2500
Learning rate 1e-4
Weight decay 2e-5
Batch size 512

Table 6: Architecture and training hyperparameters for pretraining (Sec. 3.2)

assign an edge if this distance is < 3.0m to be consistent with Eqn. 2. For Ego4D, pose information
is not available. We fall back to clustering visual frames based on ImageNet pre-trained ResNet-50
frame features.

Node features are calculated as the average of features assigned to that node. We use a 2-layer graph
convolutional neural network (GCN) to aggregate features across nodes, and then average them to
form a single video encoding following [57]. See Table 6 (center).

MAE architecture details. We use all frames from our generated walkthroughs to train an MAE
VIT-large model with 16× 16 patch size. We use the authors existing code and train a model for 200
epochs.

ObjFeat architecture details. We train a QueryInst instance segmentation model [21] with a R-
50-FPN backbone, using a dataset sampled from the 100 HM3D scenes with ground-truth semantic
object annotations. We use the implementation in the MMDetection package.

Training details. As mentioned in Sec. 4 (experiment setup) of the main paper, we train our models
for 2500 epochs using the Adam optimizer with learning rate 1e − 4. We sample K = 64 frames
to construct our memory. At training, we sample frames from the video but randomly offset frame
indices to train robust models. During inference, we uniformly sample frames. We select the model
with the lowest validation loss to evaluate downstream. See Table 6 (right) for all optimization
hyperparameters.

D.2 Architecture and training details (downstream)

We present additional details for the approaches in Sec. 3.3 of the main paper. The full list of
hyperparameters are in Table 7.

Room prediction models. As mentioned in Sec. 4.2 of the main paper, for our PLACESCNN baseline
model, we build a classifier on top of features from the wide ResNet-18 model from [97]. We use
the authors existing code and their provided pretrained models to initialize the model. The classifier
head is a 2-layer MLP with hidden dimension 512. The backbone is frozen and only the classifier
is fine-tuned. N = 8 frames around the target frame are used to provide additional context. The
features are max-pooled before classification.

For our models, we use the target frame as the query to produce a single environment-feature, which
is then concatenated with all N = 8 frames and aggregated following Eqn. 8. This new, enhanced
input is fed into the baseline model as described above.

We train all models for 80 epochs with learning rate 1e− 4 using the Adam optimizer. The full list of
hyperparameters are in Table 7 (left)

Episodic memory retrieval models. As mentioned in Sec. 4.3 of the main paper, we build on
the VSLNet model from [94]. We use an existing implementation based on the authors original
code. Visual inputs are encoded as N = 128 clip features, created by adaptive average pooling of
SlowFast-R50 clip features. Note that for MP3D we use ResNet-50 features as the walkthroughs
contain discrete agent steps, rather than smooth video frames.
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ROOMPRED

# input frames 8
Hidden size 512
# layers 2

Optimization parameters

Max epochs 80
Learning rate 1e-4
Weight decay 2e-5
Batch size 512

NLQ

# Input clips 128
Hidden size 128
Highlight lambda 5.0
Extend boundary % 0.1
# heads 8
# layers 4
Dropout rate 0.2

Optimization parameters

Max epochs 200
Learning rate 1e-4
Weight decay 1e-2
Batch size 64

Table 7: Architecture and training hyperparameters for ROOMPRED and NLQ (Sec. 3.3)

For our models, we select the center frame of each of the N = 128 inputs and use them as query
frames to produce N = 128 environment features. Each pair of input feature and environment feature
is aggregated following Eqn. 8, and then input to the VSLNet model described above. Note that we
perform this aggregation after the video affine and feature encoding layers in VSLNet.

We train all models for 200 epochs with a learning rate of 1e− 4 using the Adam optimizer. The full
list of hyperparameters are in Table 7 (right).

For Ego4D experiments, we use the hyperparameters described in the respective benchmark whitepa-
pers [26, 49, 53] and only aggregate precomputed environment features as described above.

E Supplementary experiments and analysis.

E.1 Experiments with extra pretraining data (Ego4D videos vs. simulator walkthroughs)

In Sec. 4 (baselines), all approaches have access to the same set of simulator-generated walkthrough
videos for pre-training for apples-to-apples comparisons. In this section, we test the effect of directly
performing self-supervised pretraining on Ego4D videos instead. In Table 8 we compare our MAE
baseline trained on walkthrough videos with the same architecture trained on Ego4D frames [92]
using the author provided pretrained model.

RANK1@M → @0.3 @0.5 AVG
MAE (WALKTHROUGH) 5.65 3.02 4.34
MAE (EGO4D) 5.65 3.27 4.47
EGOENV 6.04 3.51 4.77

Table 8: NLQ results for Ego4D with MAE trained on Ego4D.

E.2 Additional experiments with pose embeddings and ground-truth pose

As noted in Sec. 3.2.1 ground truth pose may be utilized directly by our model, however it is not
easily available in real-world egocentric video, which makes our use of inferred pose embeddings a
strength.

E.2.1 Importance of pose embeddings

As noted in Sec. 3.2.1 of the main paper, we train pose embeddings to help relate observations by their
visual content as well as relative orientation of capture. We measure the effect of pose embeddings
on our local state prediction task. Our models see improvements in predicting objects in each of
the cardinal directions (26.1 vs. 24.9 mAP) as well as improved object distance prediction (59% vs
58%). This improvement is small for predicting objects in the forward view (+0.7 mAP) where scene

10



0 1 2 3 4 5 6
easy  hard (×103 instances)

45

50

55

60

65

70

ac
cu

ra
cy

 (%
)

MP3D

0 3 6 9 12 15 18
easy  hard (×103 instances)

58
60
62
64
66
68
70
72

ac
cu

ra
cy

 (%
)

HouseTours
PlacesCNN [97]
PlacesCNN + pose
EgoEnv
EgoEnv + pose
EPC [65]
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RANK1@M → @0.3 @0.5 AVG @0.3 @0.5 AVG
VSLNET [94] 33.69 22.83 28.26 42.94 27.68 35.31
VSLNET + POSE 34.68 23.70 29.19 43.22 25.56 34.39
EPC [65] 36.85 27.64 32.24 43.22 27.82 35.52
EGOENV 38.18 26.85 32.52 51.98 34.18 43.08
EGOENV + POSE 38.51 27.30 32.91 46.47 30.08 38.28

Figure 8: Task performance using ground-truth pose. ROOMPRED (top) and NLQ (bottom). Our approach
(w/ and w/o pose) outperforms baselines. Noisy pose in HouseTours degrades performance. Ego4D videos do
not have associated pose.

information is directly visible, but large for other views that need to be inferred: mAP improvements
of +2.2 (right), +0.9 (behind) and +1.0 (left).

E.2.2 Importance of ground truth pose

In this section, we explore using pose estimates obtained directly from the simulator or using off-the-
shelf structure for motion methods. Note that the existing method EPC in Fig. 6 and Table 1 already
uses this ground-truth pose information, which other models (including ours) do not have access to.

Extracting pose information. For HouseTours videos, we run COLMAP [73], a structure from
motion framework to compute camera-pose information associated with each frame of the video. For
this, we first extract frames from each video at 2fps. Then we run COLMAP using a precomputed
vocabulary tree file (flickr100K_words32K). The resulting trajectories are inherently noisy due to
the approximate nature of the SfM pipeline and the absence of true camera parameters for such
in-the-wild video. We post-process them by removing erroneous pose values (ones that cause jumps
in pose atypical to smooth motion).

Overall, COLMAP successfully localizes ~32 hours of video from 886 houses out of the original 119
hours available in [7]. Some examples of video trajectories are shown in Fig. 9. Comparing these to
the simulated trajectories in Fig. 2, we see smoother trajectories overall, but with unrealistic jumps in
localizations and loop-closure failures. Note that we visualize only the trajectory, not obstacles in the
environment, as we do not have access to occupancy maps for the real-world videos.

Note that these videos are tours of indoor spaces with the intention of visually covering a large area.
As a result, the camera-wearer moves slowly and smoothly to show parts of the house. Despite this,
only a fraction of trajectories can be localized highlighting the difficulty of estimating pose from
monocular video. In contrast, the same procedure fails to localize the camera-wearer in Ego4D videos
due to rapid head motions and motion blur. On MP3D, pose is available directly from the simulator.

Performance with ground-truth pose. In Fig. 8, we investigate the role of pose information for
ROOMPRED (top) and NLQ (bottom), by directly embedding ground-truth pose as part of the input
to the baseline and our model. We find that our model can benefit from pose on MP3D, but falls
short on HouseTours, due to noise in extracted pose (compared to simulator-provided pose in MP3D).
However, our approach (with and without pose) outperforms EPC, which explicitly leverages pose
both at train and test time.
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Figure 9: Camera-pose for HouseTours from COLMAP. The blue gradient represents the trajectory from
start (white) to end (blue).

Ego4D [26]
RANK1@M → @0.3 @0.5 AVG
VSLNET [94] 5.45 3.12 4.29
+ EGOENV 6.04 3.51 4.77
EGOVLP [49] 10.53 5.96 8.25
+ EGOENV 10.51 6.71 8.61
RELER [53] 10.79 6.74 8.77
+ EGOENV 11.10 6.56 8.83
RELER* 13.68 8.23 10.96
+ EGOENV 14.40 8.54 11.47
NAQ [63] 24.12 15.04 19.58
+ EGOENV 25.37 15.33 20.35

Table 9: EgoEnv features with alternate models. Results on the Ego4D NLQ validation set. RELER*
combines EgoVLP [49] features with the model from [53].

E.3 EgoEnv integrated into other baseline approaches.

In Table 1 in the main paper, we report results on Ego4D using a single architecture and feature
combination (VSLNet [94] with SlowFast [22] features). In Table 9 we show results with EgoEnv
features integrated into other architectures. Our features consistently improve performance across all
architectures, highlighting the complementary environment-level information encoded through our
approach.

E.4 Alternate pretraining task formulations.

In Sec. 3.2.2 in the main paper, we introduced our local state prediction task that is used to pretrain
our video encoders on simulated walkthrough videos. We investigate alternate pretraining objectives
to validate our task choice. We compare against the following:

• CARDINALOBJ is a variant of our local state tasks where we predict only the object categories in
each cardinal direction, but not the distances.

• POSEEMBED predicts the relative pose (discretized position and orientation) between every pair
of observations in a walkthrough video. This is a sub-component of our full model (Sec. 3.2.1).

• PANOFEAT directly predicts the image features in each cardinal direction, inspired by prior work
on panorama completion [41, 76, 44].
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Figure 10: Illustration of easy vs. hard instances for all datasets. Top panel: Distribution of entropy scores
for ROOMPRED instances. Ego4D instances are skewed towards hard instances due to the egocentric viewpoint
and rapid camera and scene motion. Bottom panel: Following Sec. 4.2, we sort instances as by their entropy
score S. We show samples from the top and bottom 10% instances.

• PANOCONTRAST uses noise contrastive estimation (NCE) to train a model to predict image
features in each cardinal direction. For positives, we use the true image feature in the corresponding
direction direction. For negatives, we use image features from the other 3 cardinal directions, as
well as trajectory images from different scenes.

Each of these objectives explicitly encodes a combination of semantic and geometric information.
For example, PANOFEAT and PANOCONTRAST encodes primarily semantic information as they
require reconstruction of image features. POSEEMBED encodes primarily geometric information to
predict the relative pose between observation pairs. CARDINALOBJ encodes semantics from object
categories and weak geometric information from their relative orientations. Table 10 highlights the
performance of these variants on both downstream tasks. Our approach that requires predicting both
object labels, orientations as well as rough distances offers a balance of both cues during pretraining,
translating to strong downstream performance.
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ROOMPRED
MP3D HT

POSEEMBED 38.73 59.72
CARDINALOBJ 49.04 61.32
PANOFEAT 48.19 62.78
PANOCONTRAST 47.28 62.97
OURS 50.40 62.68

NLQ
MP3D HT

POSEEMBED 28.46 38.56
CARDINALOBJ 29.32 39.34
PANOFEAT 31.34 38.06
PANOCONTRAST 33.22 38.56
OURS 32.51 43.08

Table 10: Alternate pretraining tasks. Our local state prediction task offers a good balance of semantic and
geometric cues that lead to features with strong downstream performance. For ROOMPRED (left) we report
accuracy (%). For NLQ (right) we report mean Rank1@(0.3, 0.5).
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Figure 11: Percentage of training instances that involve “rare” objects. The x-axis sets a threshold for what
is considered rare. For example, 5% of training instances involve anticipating completely unseen object instances
(k < 1).

E.5 Memory vs. anticipation during pretraining

As mentioned in Sec. 3.2 of the main paper, our pretraining task involves elements of both aggregating
information about relevant views spread across the walkthrough, as well as anticipating objects that
are rarely (or never seen). We quantify this statement in Fig. 11 where we show the percentage of
training instances where objects are rarely seen, for different definitions of rarity. For example, 23%
of training instances involve predicting objects that appear in only k < 4 frames. 5% of training
instances involve anticipating completely unseen object instances (k < 1).

E.6 Task-specific pre-training in simulation

As mentioned in Sec. 3.3 of the main paper, our goal is to train task-agnostic representations using
videos from simulated agents. The end result is a single model that can generate features for multiple
tasks (in our experiments, ROOMPRED and NLQ). This is different from traditional sim-to-real
approaches where a new dataset needs to be collected for every downstream task, and a separate
model has to be trained on it. Such a dataset needs to be well balanced and carefully designed to
match the downstream task. Moreover, as tasks are added, new datasets per task need to be created
which may be impractical, especially when they require data beyond the simulator’s capability (e.g.,
simulating human motion, hand-object interaction).

To investigate further, for the ROOMPRED task, we generate a dataset in simulation that maps
trajectory frames to room labels2. The room categories are estimated directly from the simulator by
matching each frame to the nearest navigable point in an annotated room region. We train a ResNet18
model to predict the room category (a six-way classification) and then use features from this model
following baselines in Sec. 4 (baselines). The new baseline benefits from representations learned for
the same task — room prediction — and on the same volume of simulated training data.

On MP3D this performs better than the PlacesCNN baseline (43.3 vs. 42.4%) but is weaker than
our model (50.4%). On HouseTours, it performs worse than PlacesCNN (57.9 vs. 58.2%) and
our approach (62.7%). The low performance may be attributed to the small label space (only

2We use trajectories from Gibson [91] scenes as HM3D region annotations are not provided.
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six categories), resulting in features that are not discriminative for the large-scale, diverse data
downstream. More generally, the task-specific approach is more susceptible to failures due to the sim-
to-real gap, which manifests as a lower performance on real-world video frames from HouseTours.

F Ablations experiments and additional visualizations.

We present ablation experiments for various model design choices and additional experiments to
supplement the discussion in Sec. 4.5 in the main paper.

F.1 ROOMPRED results with error bars

In Fig. 6 of the main paper, we report results over three runs, by aggregating predictions across all
three runs, and then sorting them by difficulty (Sec. 4.2). In Table 11, we show results with standard
error averaged over the three runs to highlight the variance across approaches. Environment-centric
approaches (EPC, TRF, EGOENV) perform better than other baselines, despite higher variance in
accuracy. Our approach is consistently the best amongst these.

MP3D HouseTours Ego4D
PLACESCNN 42.39 ± 0.15 58.24 ± 0.02 49.50 ± 0.20
FRAMEFEAT 42.04 ± 0.08 58.70 ± 0.10 49.34 ± 0.12
OBJFEAT 43.72 ± 0.06 59.02 ± 0.12 48.74 ± 0.11
MAE 42.79 ± 0.25 58.30 ± 0.08 48.87 ± 0.08
EGOTOPO 41.19 ± 0.57 58.05 ± 0.15 49.42 ± 0.05
EPC 42.48 ± 1.12 61.02 ± 0.20 –
TRF (SCRATCH) 43.27 ± 0.40 62.12 ± 0.14 49.65 ± 0.64
EGOENV 50.40 ± 1.29 62.68 ± 0.19 51.07 ± 0.65

Table 11: ROOMPRED results with error bars across three training runs.

F.2 Ablation studies.

We perform ablation experiments for several model design choices listed in Sec. 4 (experiment setup)
of the main paper. All ablation experiments are performed on on validation data splits of MP3D and
HouseTours.

Window size W . The window size controls the density of sampled frames for building our environ-
ment memory. Larger windows imply temporally separated frame inputs. Our results are in Fig. 12
(left column). We find that W = 64 is sufficient for localizing the room category for ROOMPRED,
while a W = 256 is best for NLQ which requires reasoning over longer horizons.

Memory size K. The memory size controls the number of frames sampled from a window of size W
for building our environment memory. Our results in Fig. 12 (middle column) show the sensitivity of
our model to this parameter. On both tasks and datasets, we see only marginal improvements with
higher memory sizes, though K = 64 results in the best performance.

Loss weight term λ. λ controls the weighting between the object and distance prediction term in
the local state prediction loss in Sec. 3.2.2. Our results in Fig. 12 (right column) show that λ = 0.1
results in the best balance between the two semantic and geometric terms.

F.3 Additional attention visualizations

We present additional examples visualizing the learned attention values in our transformer decoder
model in Fig. 13 to supplement Fig. 5 of the main paper. Our model learns to attend to diverse views
that are not simply based on temporal adjacency or visual overlap — they capture the surroundings
of the camera-wearer.

F.4 Easy vs. Hard instances in the ROOMPRED task

As mentioned in Sec. 4.2 of the main paper, we sort instances for evaluation by difficulty based on the
prediction entropy of a pre-trained scene classifier model. In Fig. 10 (top), we show the distribution
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Figure 12: Ablation experiments on ROOMPRED (top) and NLQ (bottom). We ablate model hyperparame-
ters: window size W (left), memory size K (middle) and loss weight term λ (right). See text for analysis.

Query frame poseVideo trajectory Top attended views
Figure 13: Visualized attention weights. Following Fig. 5, the query frame (top left) and top-3 attended views
(colored boxes), their positions along the trajectory (colored circles), and their associated attention scores are
shown.

of this entropy score across all three datasets. In general, Ego4D contains the hardest instances due
to characteristic egocentric motion patterns, while HouseTours contains easier examples where the
camera-wearer tends to dwell in one particular location to showcase it. We show examples of easy vs.
hard instances in Fig. 10 (bottom). Note that the figure only shows the center frame of the clip that is
used to predict the room label to highlight the difference between easy and hard frames. Our results
in Fig. 6 highlight the advantage of our approach on these hard instances where environment-level
reasoning is essential. See our video in Sec. A for more context.
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