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A Failure of implicit regularization in pruning: Proof of Theorem 1

In this section, we prove the negative result showing that running gradient descent trained with
implicit regularization results in dense networks that are not compatible with greedy pruning.

For scale reasons, and to simplify the exposition, we will assume that ∥U⋆∥2 = 1 through the
remainder of this proof. The gradient flow update rule can be written as,

dU

dt
= −∇L(U) = −(UUT − U⋆U

T
⋆ )U (20)

where U = U(t) is the weight matrix at time t. Define the column vector r(t) = UTU⋆ ∈ Rk

capturing the correlation/alignment between the weights on the neurons of Ut with the ground truth
U⋆, the signal component. Wherever convenient, we will drop the time argument in r(t) and simply
refer to it as r.

We will show that given that gradient flow is run starting from a small initialization, at convergence,
the column norms ∥Uei∥2’s approximately distribute themselves proportional to the alignment of the
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corresponding column of U with U⋆ initially at t = 0. Namely,

lim
t→∞

∥U(t)ei∥2 ∝ |⟨r(0), ei⟩| (21)

Given a random initialization where the entries of U(0) are i.i.d., |⟨r(0), ei⟩| for each i are
independent. Moreover, when U(0) follows a Gaussian distribution, we expect no single coordinate
|⟨r(0), ei⟩| = |⟨(U(0))TU⋆, ei⟩| to be much larger than the others, a statement which we formally
prove in Lemma 21. Combining this with eq. (21) results in a proof of Theorem 1.

The rest of this section is devoted to proving a formal version of eq. (21), which we state below.

Lemma 10. Suppose the initialization scale parameter α ≤ cη2/k3d log(kd) for a sufficiently small
absolute constant c > 0. With probability≥ 1−O( 1k ) over the initialization, for each column i ∈ [k],

(1− 5η)
|⟨r(0), ei⟩|
∥r(0)∥2

≤ lim
t→∞

∥U(t)ei∥2 ≤
|⟨r(0), ei⟩|
∥r(0)∥2

(1 + 4
√
η) (22)

As a counterpart to the signal component r(t), the noise component is E(t) = (I − U⋆U
T
⋆ )U . At

a high level, the proof of Lemma 10 will be to establish that with a small initialization, the noise
component satisfies E ≈ 0 approximately, while the signal component ∥r(t)∥2 grows exponentially
fast to 1 with t, and d⟨r(t),ei⟩

dt ≈ ⟨r(t), ei⟩ until ∥r(t)∥2 gets sufficiently close to 1. This will imply
that ⟨r(t), ei⟩ ≈ ⟨r(0), ei⟩et until then, and by extension,

⟨r(t), ei⟩
⟨r(t), ej⟩

≈ ⟨r(0), ei⟩
⟨r(0), ej⟩

. (23)

Since the noise component E ≈ 0, ∥Uei∥2 ≈ |⟨r(t), ei⟩|, plugging which into eq. (23) results in the
ratio form of Lemma 10. By the gradient flow equation eq. (20), it is a short calculation to see that r
and E evolve per the following differential equations,

dr

dt
= r(1− ∥r∥22)− ETEr. (24)

dE

dt
= −EUTU. (25)

In the sequel, we will show that as a function of t, ETEr decays linearly. The resulting differential
equation dr

dt ≈ r(1− ∥r∥22) shows linear convergence of r until the point when ∥r∥2 approaches 1.
We place these intuitions formally by discussing a formal proof of Lemma 10.

A.1 Proof outline of Lemma 10

Firstly, as a function of the scale parameter α, we bound the energy of the signal and noise
components at initialization in Lemma 11. In Lemma 12 we first establish that ∥E(t)∥2 does not
increase with time. In Lemma 14, we establish an upper bound on the signal norm ∥r(t)∥2 as
a function of time. This shows that the signal energy cannot grow to be 1 too rapidly, which is
necessary to show that the error term ETEr has sufficient time to decay to 0. In Lemma 15 we show
that the signal norm ∥r(t)∥22 does not fall below a threshold of 3/4 after t grows to be sufficiently
large. This is essential in proving Lemma 16 which shows that the norm of the error term ∥ETEr∥2
in eq. (24) begins decaying after ∥r(t)∥22 becomes larger than 1/2. Finally, in Lemmas 17 and 18
we use these results to prove a refined bound on the rate at which ∥r(t)∥2 → 1. These results are
collectively used in Lemmas 19 and 20 to prove the upper and lower bounds on |⟨r(t), ei⟩| ≈ ∥Uei∥2.

A.2 Understanding gradient flow: Proof of Lemma 10

In this section we prove Lemma 10 formally. First we establish bounds on the scale of parameters at
initialization.
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Lemma 11. With probability ≥ 1−O( 1k ), at initialization,

∥E(0)∥2F , ∥r(0)∥22 ≤ 2α2kd (26)

∥r(0)∥22 ≥ ·
[
kα2

10
, 10kα2

]
(27)

∀i ∈ [k], |⟨r(0), ei⟩| ≥
α

k2
(28)

Proof. Recall that ⟨r, ei⟩ for each i ∈ [k] is distributed ∼ N (0, α2). By Gaussian anti-concentration
[51] and union bounding, P

(
mini∈[k] |⟨r(0), ei⟩| ≥ α

k2

)
≳ 1

k simultaneously for all i ∈ [k]. On
the other hand, since every entry of U(0) is iid distributed ∼ N (0, α2), by tail bounds for χ2-
distributed random variables [52, Lemma 1], ∥E(0)∥2F ≤ ∥U(0)∥2F ≤ 2α2kd with probability
≥ 1− exp(−kd) ≥ 1−O( 1k ). The same bound applies for ∥r(0)∥22 since it is also upper bounded
by ∥U(0)∥2F . Finally, the upper and lower bounds on ∥r(0)∥2 follows by noting that ∥r(0)∥22 =∑k

i=1⟨U⋆, Uei⟩2, which concentrates around kα2. The result directly follows by concentration of
χ2-random variables.

As a corollary of Lemma 11 when the intialization parameter satisfies the upper bound in Lemma 10,
∥E(0)∥F and ∥r(0)∥2 are upper bounded by small constants. We will use this fact several times in
proving Lemma 10. Next we establish that the error ∥E∥F does not grow with time.

Lemma 12. At any time t ≥ 0, ∥E(t)∥F ≤ ∥E(0)∥F .

Proof. The proof follows by showing that the time derivative of ∥E(t)∥2F is non-positive. Indeed,

d∥E∥2F
dt

= 2

〈
E,

dE

dt

〉
= −2Tr(ETEUTU) = −2∥UET ∥2F ≤ 0. (29)

Starting from a small initialization, this means that the error matrix E remains small over the course
of gradient flow. In for any coordinate i ∈ [k], by eq. (24), the differential equation governing
⟨r, ei⟩ = ⟨r(t), ei⟩ is,

⟨r, ei⟩
dt

= ⟨r, ei⟩(1− ∥r∥22)− eTi E
TEr. (30)

By Lemma 12 we expect the error term ETEr to be small (not necessarily decaying) in comparison
with the first term as long as ∥r(t)∥2 is smaller than an absolute constant. In this regime, the
differential form is easy to control since we expect ⟨r, ei⟩ to grow linearly and across the different
coordinates i ∈ [k], we expect its value to be proportional to that at initialization, ⟨r(0), ei⟩.
However, when ∥r∥2 eventually approaches 1, the relative contribution of the signal term ⟨r, ei⟩(1−
∥r∥22) and the error term ETEr become important. This is the main technical challenge in proving
Lemma 10. We will show that even as t→∞, the error term cannot change ⟨r, ei⟩ by more than a
constant factor. For a sufficiently large constant C > 0, define,

T0 ≜ −1

2

log(∥r(0)∥22)− 1

1− ∥E(0)∥2F
. (31)

As we will later show, T0 controls the amount of time it takes the signal norm ∥r(t)∥2 to grow to
an absolute constant. Firstly, we show that when the initialization scale α is sufficiently small, T0 is
approximately − log ∥r(0)∥2.

Lemma 13. When the initialization scale α ≤ c/k3d log(kd) for a sufficiently small absolute
constant c > 0,

− log(∥r(0)∥2) +
1

2
≤ T0 ≤ − log(∥r(0)∥2) +

3

2
. (32)
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Proof. This follows from the fact that,

T0 = − log(∥r(0)∥2)−
∥E(0)∥2F

1− ∥E(0)∥2F
log(∥r(0)∥2) +

1

2(1− ∥E(0)∥2F )
(33)

The lower bound on T0 follows readily, noting that ∥r(0)∥2, ∥E(0)∥F < 1 from the initialization
bounds in Lemma 11 when α ≤ c/k3d log(kd). For the upper bound on the other hand, note that the
last term of eq. (33) is upper bounded by,

1

2(1− ∥E(0)∥2F )
≤ 1 (34)

And the middle term of eq. (33) is upper bounded by,

− ∥E(0)∥2F
1− ∥E(0)∥2F

log(∥r(0)∥2) ≤
∥E(0)∥2F

1− ∥E(0)∥2F
1

∥r(0)∥2

(i)

≤ 2α2kd

(1− 2α2kd)

10√
kα
≤ 1

2
, (35)

where the last inequality assumes that α ≤ c35/
√
kd for a small constant c35 > 0, and inequality (i)

uses the bounds on ∥E(0)∥F and ∥r(0)∥2 proved in Lemma 11. Combining eqs. (34) and (35) with
eq. (33) results in the proof of Lemma 13.

The next result we establish is an upper bound on the signal norm ∥r(t)∥2. The proof follows by
upper bounding the rate of change of ∥r(t)∥2 and integrating the resulting bound.
Lemma 14. At any time t ≥ 0, the signal norm is upper bounded by,

∥r(t)∥22 ≤
e2(t−T0)+1+η)

1 + e2(t−T0)+1+η)
≤ 1. (36)

Proof. From the differential equation governing r we can infer that,

d∥r∥22
dt

= 2∥r∥22(1− ∥r∥22)− 2∥Er∥22 ≤ 2∥r∥22(1− ∥r∥22) (37)

By a theorem of [53] on differential inequalities, the trajectory of ∥r(t)∥22 as a function of t starting
from some reference point ∥r(0)∥22 is pointwise lower bounded by the trajectory of ∥r(t)∥22 obtained
when the inequality is set to be an equality. In particular, by integrating the differential equation this
results in the lower bound,

log
∥r(t)∥22

1− ∥r(t)∥22
− log

∥r(0)∥22
1− ∥r(0)∥22

≤ 2t (38)

Observe that − log
∥r(0)∥2

2

1−∥r(0)∥2
2
≥ − log ∥r(0)∥22 − η ≥ 2T0 − 1− η where the first inequality uses the

upper bound on ∥r(0)∥22 ≤ η when α ≤ c/k3d log(kd) and the second by Lemma 13. Therefore by
rearranging the terms we have,

∥r(t)∥22 ≤
e2t−2T0+1+η

1 + e2t−2T0+1+η
. (39)

As it turns out, the error term ETEr(t) in eq. (24) can be shown to decrease linearly once ∥r(t)∥22
hits the critical threshold of 1/2. In the next lemma we show that the signal norm ∥r(t)∥22 never
drops below the threshold of 3/4 for all t ≥ T0 + 2. Thus, after a sufficiently large amount of time,
we expect the differential equation for r to behave as dr

dt ≈ r(1− ∥r∥22).
Lemma 15. For t ≥ T0,

∥r(t)∥22 ≥
1− ∥E(0)∥2F

1 + e−2(1−∥E(0)∥2
F )(t−T0)+1

(40)

As an implication, for any t ≥ T0 + 2, under the small initialization α ≤ c/k3d log(kd), ∥r(t)∥22 ≥
3/4.
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Proof. From the differential equation governing r, we may infer that,

d∥r∥22
dt

= 2

〈
r,
dr

dt

〉
= 2∥r∥22(1− ∥r∥22)− 2∥Er∥22. (41)

Note that ∥Er∥2 ≤ ∥E∥F ∥r∥2 ≤ ∥E(0)∥F ∥r∥2 and therefore,

2∥r∥22(1− ∥E(0)∥2F − ∥r∥22) ≤
d∥r∥22
dt

(42)

Rearranging and integrating both sides,

2(1− ∥E(0)∥2F )t ≤ log

(
∥r(t)∥22

1− ∥E(0)∥2F − ∥r(t)∥22

)
− log

(
∥r(0)∥22

1− ∥E(0)∥2F − ∥r(0)∥22

)
(43)

≤ log

(
∥r(t)∥22

1− ∥E(0)∥2F − ∥r(t)∥22

)
+ 2(1− ∥E(0)∥2F )T0 + 1 (44)

where the last inequality uses the choice of the initialization scale α ≤ cη2/k3d log(kd), and the
bounds on ∥E(0)∥2F , ∥r(0)∥22 in Lemma 11. Therefore,

(1− ∥E(0)∥2F − ∥r(t)∥22)e2(1−∥E(0)∥2
F )(t−T0)−1 ≤ ∥r(t)∥22 (45)

=⇒ 1− ∥E(0)∥2F
1 + e−2(1−∥E(0)∥2

F )(t−T0)+1
≤ ∥r(t)∥22 (46)

Having established that ∥r(t)∥22 does not decay below the threshold of 3/4 beyond time T0 +
2, we establish that this condition is sufficient for the error term ETEr to begin decaying to 0.
Below we instead bound ∥Er∥F , and a bound on ∥ETEr∥F is obtained by upper bounding it as
∥E(t)∥F ∥Er(t)∥F ≤ ∥E(0)∥F ∥Er∥F by Lemma 12.
Lemma 16. At any time t ≥ 0, the error term,

∥Er(t)∥2 ≤
∥Er(0)∥2et

1 + e2(1−∥E(0)∥2
F )(t−T0)−1

(47)

Proof. By explicit computation,

dEr

dt
= −EUTUr + Er(1− ∥r∥22)− EETEr (48)

= −E(ETE + rrT )r + Er(1− ∥r∥22)− EETEr (49)

= −2E(ETE)r + Er(1− 2∥r∥22) (50)

By taking an inner product with Er, we get that,

d∥Er∥22
dt

= −4∥(ETE)r∥22 + 2∥Er∥22(1− 2∥r∥22). (51)

Using the lower bound on ∥r∥22 in Lemma 15,

d∥Er∥22
dt

≤ 2∥Er∥22
(
1− 2(1− ∥E(0)∥2F )

1 + e−2(1−∥E(0)∥2
F )(t−T0)+1

)
(52)

Rearranging and integrating both sides from time 0 to t using the fact that
∫

dx
1+e−x = log(1 + ex),

log ∥Er(t)∥22 − log ∥Er(0)∥22 ≤ 2
(
t− log

(
1 + e2(1−∥E(0)∥2

F )(t−T0)−1
))

(53)

=⇒ ∥Er(t)∥2 ≤
∥Er(0)∥2et

1 + e2(1−∥E(0)∥2
F )(t−T0)−1

, (54)

where the last inequality follows by exponentiating both sides and rearranging.
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Using the fact that ∥Er∥F rapidly decays to 0 after time T0, we can in fact establish a more refined
lower bound on the rate at which ∥r(t)∥2 approaches 1. The decay of the error term is not captured in
the prior lower bound on ∥r(t)∥2 in Lemma 15. The error decay established in Lemma 16 is essential
to proving such a result, especially as ∥r(t)∥2 approaches 1. In this regime, the error term ∥Er∥22 in
eq. (41) becomes comparable with the leading order term ∥r∥22(1− ∥r∥22).
Lemma 17. At any time t ≤ 3T0/2, for some absolute constant C55 > 0,

∥r(t)∥22 ≥
e2t

∥r(0)∥−2
2 + e2t − 1

− C55
∥E(0)∥2FT0

∥r(0)∥2
. (55)

Proof. From Lemma 16, note that,

∥Er(t)∥22 ≤
∥E(0)∥2F ∥r(0)∥22e2t(

1 + e2(1−∥E(0)∥2
F )(t−T0)−1

)2 (56)

≲
∥Er(0)∥2F e2t(
1 + e2(t−T0)

)2 , (57)

where the last inequality uses the fact that when t ≤ 4T0, (1− ∥E(0)∥2F )(t− T0) ≥ t− T0 − 4 (see
the analysis in eqs. (33) and (35)). This inequality also uses Lemma 13 to bound ∥r(0)∥22. From
Lemma 16, therefore, denoting x = ∥r∥22, for some absolute constant C57 > 0,

dx

dt
= 2x(1− x)− C57

e2t∥Er(0)∥2F(
1 + e2(t−T0)

)2 (58)

=⇒ e−2t dx

dt
= 2e−2tx− 2e−2tx2 − C57

∥Er(0)∥2F(
1 + e2(t−T0)

)2 (59)

=⇒ d

dt

{
e−2tx

}
= −2e−2tx2 − C57

∥Er(0)∥2F(
1 + e2(t−T0)

)2 (60)

=⇒ dy

dt
= −2y2e2t − C57

∥Er(0)∥2F(
1 + e2(t−T0)

)2 , (61)

where y = e−2tx. Define a new variable ỹ(t) with ỹ(0) = y(0) and satisfying the following
differential equation corresponding to just the first term on the RHS of eq. (61),

1

ỹ2
dỹ

dt
= −2e2t ⇐⇒ ỹ(t) =

1

1/y(0) + e2t − 1
(62)

On the other hand, since dy
dt ≤ −2y

2e2t, rearranging and integrating both sides, we get y(t) ≤
1/(y(0) + e2t − 1) = ỹ(t). Plugging this back into eq. (61),

dy

dt
≥ −2(ỹ)2e2t − C57

∥Er(0)∥2F(
1 + e2(t−T0)

)2 . (63)

However, by definition, dỹ
dt = −2(ỹ)2e2t and therefore, integrating both sides, for some absolute

constant C ′
57 > 0, we get,

y(t)− y(0) ≥ ỹ(t)− ỹ(0)− C ′
57∥Er(0)∥2FT0 (64)

Plugging in ỹ(t) and subsequently y(t) and x(t) results in the equations,

∥r(t)∥22 ≥
e2t

∥r(0)∥−2
2 + e2t − 1

− C ′
57∥Er(0)∥2FT0e

2t (65)

When t ≤ 3T0/2, by using the upper bound on T0 from Lemma 13, the second term on the RHS
itself is upper bounded by C ′′

57∥E(0)∥2FT0/∥r(0)∥2 for another absolute constant C ′′
57 > 0. This

completes the proof.
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While the refined convergence lemma in Lemma 17 applies for the case when t ≤ 3T0/2, we also
prove a lemma for the case when t ≥ 3T0/2.
Lemma 18. At any t ≥ 3T0/2,

e3t/4(1− ∥r(t)∥22) ≲ 1 + e11T0/4∥Er(0)∥22 + e3T0/4. (66)

Proof. Consider any time t ≥ 3T0/2 which is greater than T0 + 2 by the small initialization and
Lemma 11. By Lemma 15, ∥r∥22 ≥ 3/4. From eq. (41) and Lemma 16,

∀t ≥ T0,
d∥r∥22
dt

≥ 3

4
(1− ∥r∥22)− 2

∥Er(0)∥22e2t(
1 + e2(1−∥E(0)∥2

F )(t−T0)−1
)2 (67)

Multiplying both sides by e3t/4 and rearranging,

e3t/4
d(1− ∥r∥22)

dt
+

3

4
e3t/4(1− ∥r∥22) ≤ 2

∥Er(0)∥22e2te3t/4(
1 + e2(1−∥E(0)∥2

F )(t−T0)−1
)2 (68)

=⇒ d

dt

(
e3t/4(1− ∥r∥22)

)
≤ 2

∫
∥Er(0)∥22e2te3t/4(

1 + e2(1−∥E(0)∥2
F )(t−T0)−1

)2 dt. (69)

Integrating from T0 to t, we can upper bound eq. (69) as,

e3t/4(1− ∥r(t)∥22)− e3T0/4(1− ∥r(T0)∥22) ≲
∫ t

T0

∥Er(0)∥22e2te3t/4

e4(1−∥E(0)∥2
F )(t−T0)

dt, (70)

By the small initialization, ∥E(0)∥2F ≤ 1/8 and the denominator in the integral is lower bounded by
e7/2(t−T0). Therefore,

e3t/4(1− ∥r(t)∥22)− e3T0/4(1− ∥r(T0)∥22) ≲ e7T0/2

∫ t

T0

∥Er(0)∥22e−3t/4dt (71)

≲ e7T0/2∥Er(0)∥22e−3T0/4 (72)

= 2e11T0/4∥Er(0)∥22 (73)

Therefore,

e3t/4(1− ∥r(t)∥22) ≲ 1 + e11T0/4∥Er(0)∥22 + e3T0/4. (74)

Finally we are ready to prove the lower and upper bounds on the limiting value of column norms of
Ut as t→∞. Lemma 19 establishes the lower bound, while Lemma 20 establishes the upper bound.
Lemma 19. When the initialization parameter α ≤ c/k3d log(kd), then with probability ≥ 1 −
O(1/k) over the initialization, for any t ≥ 4T0,

∥U(t)ei∥2 ≥ (1− η)
|⟨r(0), ei⟩|
∥r(0)∥2

. (75)

Proof. From the differential equation governing r, eq. (24), for any coordinate i ∈ [k],

d⟨r, ei⟩2

dt
= 2⟨r, ei⟩2(1− ∥r∥22)− 2⟨r, ei⟩eiETEr (76)

≥ 2⟨r, ei⟩2(1− ∥r∥22)− 2|⟨r, ei⟩|∥E∥F ∥Er∥2 (77)

From Lemma 14 and Lemma 16, and since ∥E(t)∥F ≤ ∥E(0)∥F , at any time t ≥ 0,

d⟨r, ei⟩2

dt
≥ 2⟨r, ei⟩2

e2(t−T0)+1+η) + 1
− 2|⟨r, ei⟩|∥E(0)∥F ∥Er(0)∥F et

1 + e2(1−∥E(0)∥2
F )(t−T0)−1

=⇒ d|⟨r, ei⟩|
dt

− |⟨r, ei⟩|
e2(t−T0)+1+η + 1

≥ − ∥E(0)∥2F et

1 + e2(1−∥E(0)∥2
F )(t−T0)−1

(78)
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Define q(t) = e−2(t−T0)+1+η (which we abbreviate simply as q) and multiply both sides by
√
1 + q,√

1 + q
d|⟨r, ei⟩|

dt
− |⟨r, ei⟩|

q√
1 + q

≥ − 2∥E(0)∥2F et
√
1 + q

1 + e2(1−∥E(0)∥2
F )(t−T0)−1

(79)

Noting that d
dt

√
1 + q = − q√

1+q
, we get that,

=⇒ d

dt

(
|⟨r, ei⟩|

√
1 + q

)
≥ −2∥E(0)∥2F e−(t−T0)+T0−2 ·

√
1 + e2(t−T0+1)

1 + e2(1−∥E(0)∥2
F )(t−T0)−1

. (80)

We further lower bound the RHS for the case when t ≤ 4T0. Later we will give a different proof to
show that when t ≥ 4T0, |⟨r, ei⟩| does not change significantly then onward.

For t ≤ 4T0, (1− ∥E(0)∥2F )(t− T0) ≥ t− T0 − 4. This follows from the same analysis as eqs. (33)
and (35). In this regime, we therefore have that,

√
1 + e2(t−T0)+1+η

1 + e2(1−∥E(0)∥2
F )(t−T0)−1

≲
1√

1 + e2(t−T0)+1+η
(81)

On the other hand,

e−(t−T0)+T0−2 ≲ eT0

√
1 + e−2(t−T0)+1+η (82)

Multiplying eqs. (81) and (82) results in the lower bound,

d

dt

(
|⟨r, ei⟩|

√
1 + q

)
≳ −∥E(0)∥2F eT0 (83)

Integrating both sides from t = 0 to 4T0, and since T0 ≥ 1 by the small initialization bound,

|⟨r(4T0), ei| ≥ |⟨r(0), ei⟩|

√
1 + e2T0−1−η

1 + e−4T0
− c84∥E(0)∥2FT0e

T0

√
1 + e−4T0

(84)

where c84 > 0 is an absolute constant. Since eT0 ≥ − log(∥r(0)∥2)+1/2 from Lemma 13, and since
∥r(0)∥22 ≤ η by the small initialization, the term multiplying |⟨r(0), ei⟩| on the RHS is upper bounded

by
√

1+e2T0−1−η

1+e−T0
≥ (1− 2η)eT0−1/2−η/2 ≥ (1− 3η)eT0−1/2. On the other hand, noting again by

Lemma 13 that T0 ≤ − log(∥r(0)∥2) + 3/2, and since ∥r(0)∥22 ≳ kα2 and ∥E(0)∥2F ≲ α2kd and
furthermore |⟨r(0), ei⟩| ≥ α/k2 from Lemma 11, as long as α ≤ cη/k3d log(kd) for a sufficiently
small constant c > 0,

|⟨r(0), ei⟩| ≥
c84∥E(0)∥2FT0

η
√
1 + e−4T0

. (85)

And by implication, eq. (84) gives,

|⟨r(4T0), ei| ≥ (1− 4η)|⟨r(0), ei⟩|eT0−1/2, (86)

where the last inequality follows from the lower bound on T0 in Lemma 13.

Finally we show that, from time 4T0 onward, ⟨r(t), ei⟩ does not change much. From eq. (78),

d|⟨r, ei⟩|
dt

≥ − ∥E(0)∥2F et

1 + e2(1−∥E(0)∥2
F )(t−T0)−1

≳ − ∥E(0)∥2F et

e(9/5)(t−T0)
. (87)

where the last inequality uses the fact that ∥E(0)∥2F ≤ 1/10 by Lemma 11 and the upper bound on
the initialization scale α ≤ cη2/k3d log(kd). Integrating both sides from 4T0 to t,

|⟨r(t), ei⟩| − |⟨r(4T0), ei⟩| ≳ −∥E(0)∥2F e9T0/5

∫ ∞

4T0

e−4t/5dt (88)

≳ −∥E(0)∥2F e−7T0/5 (89)
(i)

≳ −|⟨r(0), ei⟩|e−7T0/5 (90)
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where (i) follows from eq. (85). Finally, combining with eq. (86),

|⟨r(t), ei⟩| ≥ (1− 4η)|⟨r(0), ei⟩|
(
eT0−1/2 − c91e

−7T0/5
)

(91)

for some absolute constant c91 > 0. By noting that T0 ≥ − log ∥r(0)∥2 + 1/2 from Lemma 13 and
the fact that ∥r(0)∥2 ≲ α2k, by choosing α ≤ c′91/η

√
k for some absolute constant c′91 > 0 results

in the inequality,

∀t ≥ T0, |⟨r(t), ei⟩| ≥ (1− 5η)|⟨r(0), ei⟩|eT0−1/2 ≥ (1− 5η)
|⟨r(0), ei⟩|
∥r(0)∥2

. (92)

Since ∥Uei∥2 ≥ |⟨r(t), ei⟩|, this completes the proof.

Lemma 20. Suppose α ≤ cη2/ηk3d log(kd) for a sufficiently small absolute constant c > 0. Then
with probability ≥ 1−O(1/k) over the initialization, for any t ≥ 3T0/2,

∥U(t)ei∥2 ≤ (1 + 4
√
η)
|⟨r(0), ei⟩|
∥r(0)∥2

. (93)

Proof. Following the proof of the lower bound in Lemma 19, from the differential equation governing
r, for any coordinate i ∈ [k],

d⟨r, ei⟩2

dt
= 2⟨r, ei⟩2(1− ∥r∥22)− 2⟨r, ei⟩eiETEr (94)

≤ 2⟨r, ei⟩2(1− ∥r∥22) + 2|⟨r, ei⟩|∥E∥F ∥Er∥2 (95)

=⇒ d|⟨r, ei⟩|
dt

≤ |⟨r, ei⟩|(1− ∥r∥22) +
∥E(0)∥F ∥Er(0)∥2et

1 + e2(1−∥E(0)∥2
F )(t−T0)−1

(96)

where in the last inequality, we bound ∥E∥F ≤ ∥E(0)∥F and apply Lemma 16 to upper bound the
error term ∥Er(t)∥2. Akin to Lemma 19, we carry out the analysis of |⟨r(t), ei⟩| in two parts, we
first analyze its growth from time 0 to 3T0/2. From time 3T0/2 to t we show that |⟨r(t), ei⟩| does
not change significantly.

In particular, at any time t ≤ 3T0/2, since (1− ∥E(0)∥2F )(t− T0) ≥ t− T0 − 4 (see the analysis in
eqs. (33) and (35)), for some absolute constant C97,

d|⟨r, ei⟩|
dt

≤ |⟨r, ei⟩|(1− ∥r∥22) + C97
∥E(0)∥F ∥Er(0)∥2et

1 + e2(t−T0)
(97)

≤ |⟨r, ei⟩|(1− ∥r∥22) + C97∥E(0)∥2F ∥r(0)∥2eT0 , (98)

where the last inequality uses the fact that et/(1 + e2(t−T0)) is maximized at t = T0. Plugging in the
lower bound on ∥r∥22 in Lemma 17,

d|⟨r, ei⟩|
dt

≤ |⟨r, ei⟩|
(

∥r(0)∥−2
2 − 1

∥r(0)∥−2
2 + e2t − 1

+ C55
∥E(0)∥2FT0

∥r(0)∥2

)
+ C97∥E(0)∥2F ∥r(0)∥2eT0

≤ |⟨r, ei⟩|
(

p

p+ e2t

)
+ C99∥E(0)∥2FT0. (99)

where C99 > 0 is a sufficiently large absolute constant, and p = ∥r(0)∥−2
2 − 1. Multiplying both

sides by y =
√
pe−2t + 1 and noting that dy

dt = −
(

p
p+e2t

)
y, we get,

d

dt
(y|⟨r, ei⟩|) = C99∥E(0)∥2FT0. (100)

Integrating both sides from 0 to 3T0/2,

|⟨r(3T0/2), ei⟩|
√

pe−3T0 + 1− |⟨r(0), ei⟩|
√
1 + p = C ′

99∥E(0)∥2FT 2
0 (101)

=⇒ |⟨r(3T0/2), ei⟩| ≤ C ′
99∥E(0)∥2FT 2

0 +
|⟨r(0), ei⟩|
∥r(0)∥2

(102)
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By Lemma 11, at initialization, ∥r(0)∥22 ≲ α
√
k and |⟨r(0), ei⟩| ≥ α/k2. Therefore, by the small

initialization condition, C ′
99∥E(0)∥2FT 2

0 ≤ η|⟨r(0), ei⟩|/∥r(0)∥2 and,

|⟨r(3T0/2), ei⟩| ≤ (1 + η)
|⟨r(0), ei⟩|
∥r(0)∥2

. (103)

Next we show that from 3T0/2 to t, |⟨r(t), ei⟩| does not change significantly. By the same analysis
as eq. (96),

d|⟨r, ei⟩|
dt

≤ |⟨r, ei⟩|(1− ∥r∥22) +
2∥E(0)∥2F et

1 + e2(1−∥E(0)∥2
F )(t−T0)−1

(104)

Plugging in the upper bound on 1− ∥r(t)∥22 from Lemma 18 and simplifying,

d|⟨r, ei⟩|
dt

≲ |⟨r, ei⟩|e−3t/4
(
e3T0/4 + e11T0/4∥Er(0)∥22

)
+

2∥E(0)∥2F et

e2(1−∥E(0)∥2
F ∥r(0)∥2)(t−T0)

, (105)

(i)

≤ |⟨r, ei⟩|e−3t/4
(
e3T0/4 + e11T0/4∥Er(0)∥22

)
+

2∥E(0)∥2F ∥r(0)∥2et

e7/4(t−T0)
(106)

= |⟨r, ei⟩|e−3t/4
(
e3T0/4 + e11T0/4∥Er(0)∥22

)
+ 2∥E(0)∥2F ∥r(0)∥2e−3t/4e7T0/4,

(107)

=
(
|⟨r, ei⟩|

(
1 + e2T0∥Er(0)∥22

)
+ 2∥E(0)∥2F ∥r(0)∥2eT0

)
e−3(t−T0)/4, (108)

where (i) invokes the fact that ∥E(0)∥2F ≤ 1/8 from Lemma 11, by the bound on the initialization
scale α ≤ cη/k3d log(kd). Simplifying the terms in eq. (108),

e2T0∥Er(0)∥22 ≤ e2T0∥E(0)∥22∥r(0)∥22
(i)

≲ ∥E(0)∥22 ≤ 1, (109)

where (i) is by Lemma 13 and the last equation follows from the scaling of α and Lemma 11.
Likewise, ∥E(0)∥2F ∥r(0)∥2eT0 ≲ ∥E(0)∥2F , and plugging this and eq. (109) into eq. (108),

d|⟨r, ei⟩|
dt

≲
(
|⟨r, ei⟩|+ 2∥E(0)∥2F

)
e−3(t−T0)/4 (110)

Integrating both sides,

log
|⟨r(t), ei⟩|+ 2∥E(0)∥2F

|⟨r(3T0/2), ei⟩|+ 2∥E(0)∥2F
≲
∫ ∞

3T0/2

e−3(t−T0)/4dt ≲ e−3T0/8. (111)

Therefore, for some absolute constant C112 > 0,

|⟨r(t), ei⟩| ≤
(
|⟨r(3T0/2), ei⟩|+ 2∥E(0)∥2F

)
(1 + C112e

−3T0/8) (112)
(i)

≤
(
|⟨r(3T0/2), ei⟩|+ 2∥E(0)∥2F

)
(1 +

√
η) (113)

=⇒ ∥U(t)ei∥2
(ii)

≤ ∥E(0)∥F +
(
|⟨r(3T0/2), ei⟩|+ 2∥E(0)∥2F

)
(1 +

√
η), (114)

where (i) lower bounds T0 using Lemma 13 and uses the fact that at initialization ∥r(0)∥2 ≳ α
√
k

and therefore when α ≤ cη4/3 for a sufficiently small constant c > 0, C112e
−3T0/8 ≤ √η. On

the other hand, (ii) uses triangle inequality to bound ∥U(t)ei∥2 ≤ |⟨r(t), ei⟩| + ∥E(t)ei∥2 ≤
|⟨r(t), ei⟩|+ ∥E(t)∥F ≤ |⟨r(t), ei⟩|+ ∥E(0)∥F by Lemma 12. Using the bound on |⟨r(3T0/2), ei⟩|
in eq. (103),

∥U(t)ei∥2 ≤ ∥E(0)∥F +

(
|⟨r(0), ei⟩|
∥r(0)∥2

+ 2∥E(0)∥2F
)
(1 +

√
η) (115)

≤ |⟨r(0), ei⟩|
∥r(0)∥2

(1 + 4
√
η). (116)

The last inequality uses the fact that at initialization, |⟨r(0), ei⟩| ≥ α/k2 and ∥r(0)∥2 ≲ α
√
k. There-

fore, |⟨r(0), ei⟩|/∥r(0)∥2 ≥ 1/k5/2 and ∥E(0)∥F ≤ α
√
kd. Therefore, by the small initialization

condition on α, ∥E(0)∥F , ∥E(0)∥2F ≤ η|⟨r(0), ei⟩|/∥r(0)∥2.
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Combining the statements of Lemma 19 and Lemma 20 shows that, with probability ≥ 1−O(1/k)
over the initialization, at any time t ≥ 4T0,

|⟨r(0), ei⟩|
∥r(0)∥2

(1− 5η) ≤ ∥U(t)ei∥2 ≤
|⟨r(0), ei⟩|
∥r(0)∥2

(1 + 4
√
η). (117)

This completes the proof of Lemma 10.

A.3 Behavior at initialization: many columns are “active”

Lemma 10 establishes the limiting behavior of gradient flow as a function of the initialization,
specifically that the norm of a column grows to a value proportional to the alignment of the column
with U⋆ at initialization, |⟨r(0), ei⟩|. In this section, we show that at initialization, ⟨r(0), ei⟩ is
significant for many i ∈ [d] compared to the maximum among them.

At time t = 0, each coordinate of r(0) is distributed as the inner product of a Gaussian vector
∼ N (0, α2I) with a fixed vector U⋆. By Gaussian concentration, we therefore expect each coordinate
of r(0) to concentrate around α, and no one coordinate of r(0) to be significantly larger than the
others. The next lemma makes this claim precise.
Lemma 21. Many columns are “active" at initialization For any η > 0, let Smax(η) denote the set{
i ∈ [k] : |⟨r(0),ei⟩|

maxj∈[k] |⟨r(0),ej⟩|
≥ 1−√η

}
. For any η ≤ 1− 1

log(k) ,

P

(
|Smax(η)| ≤

kη

2
√
2(1− η) log(k)

)
≤

c118
√

log(k)

kη
. (118)

for a sufficiently small absolute constant c118 > 0. In other words, with high probability, Ω̃(kη) of
the column indices i ∈ [k] are significantly correlated with U⋆ compared to the maximum among all
columns.

Proof. By rotation invariance of Gaussians and since ∥U⋆∥2 = 1, for each i, ⟨r(0), ei⟩
i.i.d.∼ N (0, α2).

By Gaussian anti-concentration, for each i ∈ [k], from [51, Proposition 2.1.2], for t > 0,

P (|⟨r(0), ei⟩| ≥ tα) ≥
(
1

t
− 1

t3

)
· 1√

2π
e−t2/2 ≜ p(t). (119)

Therefore roughly we expect kp(t) of the columns i ∈ [k] to satisfy the condition {|⟨r(0), ei⟩| ≥ tα}.
In particular, by the independence across i, the number of successes follows a binomial distribution
with number of trials k and probability of success p(t). Denote S(t) = {i ∈ [k] : |⟨r(0), ei⟩| ≥ tα}.
By binomial concentration [51],

P

(
|S(t)| ≤ kp(t)

2

)
≤ e−

kp(t)
4 . (120)

On the other hand, for i.i.d standard normal random variables, X1, · · · , Xk ∼ N (0, 1), the supremum
satisfies the following concentration inequality

P

(
max
1≤i≤k

Xi ≥
√

2 log(k) + η

)
≤ e−η2/2 (121)

Therefore,

P

(
max
i∈[k]
|⟨r(0), ei⟩| ≤ α

√
2 log(k) + α

√
2η log(k)

)
≥ 1− k−η. (122)

For each t > 0, define,

Smax(t) =

{
i ∈ [k] :

|⟨r(0), ei⟩|
maxi∈[k] |⟨r(0), ei⟩|

≥ t√
2 log(k)(1 +

√
η)

}
, (123)

and combining eqs. (119), (120) and (122) results in the inequality,

P

(
|Smax(t)| ≤

kp(t)

2

)
≤ e−

kp(t)
4 + k−1/8 ≤ 4

kp(t)
+ k−η. (124)
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With the choice of t =
√
2(1− η) log(k) and for any η ≤ 1 − 1

log(k) , we obtain that p(t) ≥
k−(1−η)/4

√
(1− η) log(k). Plugging into eq. (124) and using the results in the bound,

P

(
|Smax(

√
2(1− η) log(k))| ≤ kη

4
√

(1− η) log(k)

)
≤

1 + 16
√
2(1− η) log(k)

kη
(125)

Using the definition of Smax(
√

2(1− η) log(k)) and the fact that
√
1−η

1+
√
η ≥ 1 −√η completes the

proof.

A.4 Putting it all together: Proof of Theorem 1

Below we state and prove a stronger version of Theorem 1 which follows by combining Lemmas 10
and 21.
Theorem 22. Consider the population loss defined in (2), for the case that r = 1 and k ≫ 1.
Moreover, assume that the entries of the initial model U0 are i.i.d. samples from N (0, α2), where
α ≤ η2/k3d log(kd). Then, for any constant η ∈ (0, 1), the iterates generated by gradient descent
converge to a model Ugd where Ω̃(kη) columns of which are active and satisfy,

∥Ugdei∥2
maxj∈[k] ∥Ugdej∥2

≥ 1− C4
√
η, (126)

with probability ≥ 1− poly(1/d, 1/kη), where C4 > 0 is a sufficiently large constant.

In particular, if for some i,

|⟨r(0), ei⟩|
maxj∈[k] |⟨r(0), ej⟩|

≥ 1−√η (127)

Then, by Lemma 10,

lim
t→∞

∥U(t)ei∥2
maxj∈[k] ∥U(t)ej∥2

≥ 1− C128
√
η. (128)

where C128 > 0 is a sufficiently large constant. Invoking Lemma 21 completes the proof of
Theorem 22.

B Population analysis of the regularized loss: Proof of Theorem 3

In this section, we study the second-order stationary points of loss fpop(U) = Lpop(U) + λRβ(U)
((9)) which is the regularized loss in the population (infinite sample) setting. The main result we
prove in this section is about approximate second-order stationary points of the regularized loss
fpop(U). When λ and β are chosen appropriately, we show that such points (i) are “pruning friendly”
in that greedily pruning the columns of U based on their L2 norm results in a solution Uprune having
exactly r columns, and (ii) the resulting solution Uprune satisfies ∥UpruneU

T
prune∥2F ≤ c(σ⋆

r )
2 where

c > 0 is a small constant, and serves essentially as a “spectral initialization” in the sense of [23] for
the subsequent fine-tuning phase.

The proof of Theorem 3 relies on two main observations: (i) showing that at approximate second-
order stationary points UUT ≈ U⋆U

T
⋆ , where the error is small when λ is small, (ii) the regularizer

ensures that the columns of U that are not too small in ℓ2-norm are all approximately orthogonal to
one another, in that the angle between pairs of vectors is ≈ 90◦. Since the columns are orthogonal,
the rank of U equals the number of non-zero columns. However, U is close to a rank r matrix since
UUT ≈ U⋆U

T
⋆ . This will imply that U also has approximately r non-zero columns. Moreover,

pruning away the columns of U at the correct threshold will result in a model having exactly r
columns remaining, while at the same time not affecting the population loss significantly.

The intuition behind UUT ≈ U⋆U
T
⋆ at second order stationary points is straightforward - prior work

[36] characterizes the behavior of such points for matrix sensing in the absence of any regularization,
showing that UUT = U⋆U

T
⋆ at second-order stationary points, and establishing a strict saddle

condition for the population loss Lpop. In the presence of regularization, as long as λ is small, we do
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not expect the behavior to change significantly. As we will discuss in more detail in Appendix D,
the regularizerRβ satisfies gradient and Hessian-Lipschitzness as long as β is not too small. This
will suffice in showing that the locations of first and second order stationary points do not change
significantly when λ is small.

As introduced earlier in eq. (11), the main result we prove in this section is that the “bounded” (in
operator norm) (ϵ, γ)-approximate second-order stationary points of fpop returned by the optimization
oracle O, in Algorithm 1 satisfies the following condition,

∀i, j : ∥Uei∥2, ∥Uej∥2 ≥ 2
√
β,

⟨Uei, Uej⟩
∥Uei∥2∥Uej∥2

≈ 0.

In other words, all the large columns of U have their pairwise angle approximately 90◦. By pruning
away the columns of U that have an ℓ2 norm less than 2

√
β, the remaining columns of U , i.e., which

are a superset of the columns of Uprune, are now approximately at 90◦ angles to one another. But
since UUT ≈ U⋆U

T
⋆ , we know that there can be at most r significant columns of U . Therefore, after

pruning the resulting model has at most r columns.

Note that the above discussion does not absolve the risk of over-pruning the model. If the pruning
threshold is not chosen carefully, it might be possible to end up with a model having fewer than r
columns. Such a model cannot generalize to a vanishing error even in the population setting. As we
will show, it is possible to establish that error of the pruned model, ∥UpruneU

T
prune − U⋆U

T
⋆ ∥F is also

small, which comes to the rescue. We can show that it is at most 1
2 (σ

⋆
r )

2. On the other hand if Uprune

indeed had fewer than r columns, the approximation error must be at least (σ⋆
r )

2. This shows that the
greedy pruning strategy we employ is not too aggressive.

B.1 Proof outline of Theorem 3

In Lemma 23 we begin with a lower bound on the gradient norm of the reulgarized loss. The lower
bound that at exact stationary points, every pair of columns i, j ∈ [d] will either have ∥Uei∥2 =
∥Uej∥2, or will be orthogonal to each other. Next we use this calculation to show that at approximate
second order stationary points of the regularized loss, every pair of columns which are not too small in
ℓ2 norm are approximately orthogonal to each other. Next, in Lemma 27 we show that at approximate
second order stationary points of the loss, we also expect ∥UUT − U⋆U

T
⋆ ∥F to be small when λ is

small. In Lemmas 29 and 30 we show that first-order stationary points are U are aligned with the
correct subspace induced by the columns of U⋆. Finally, we combine these results in Theorem 32 to
show bounds on the generalization loss of the pruned solution as a function of the problem parameters.
By instantiating the problem parameters properly, we prove Theorem 3 in Appendix B.2.

Note that the gradient and Hessian of Rβ(U) is calculated in Appendix E.3 and are in terms of
diagonal matrices D(U) and G(U) defined in eqs. (330) and (331).

Lemma 23 (A lower bound on the gradient norm). Consider any loss function L of the form f(UUT )
where f : Rd×d → R is a differentiable function. For any candidate matrix U ∈ Rd×k,

∥∇(L+ λRβ)(U)∥2F ≥ λ2 max
i ̸=j∈[k]

(D(U)ii −D(U)jj)
2 ⟨Uei, Uej⟩2

∥Uei∥22 + ∥Uej∥22
(129)

Proof. Note that ∥∇(L + λRβ)(U)∥2F ≥ ⟨Z,∇(L + λRβ)(U)⟩2 for any candidate
Z ∈ Rd×k : ∥Z∥F ≤ 1. The rest of this proof will be dedicated to finding such a Z.

Note from Lemma 41 that ⟨L(U), Z⟩ = ⟨(∇f)(UUT ), UZT +ZUT ⟩. Suppose the perturbation Z is
chosen as UW where W is a skew-symmetric matrix. Then, UZT +ZUT = U(W +WT )UT = 0.
Therefore,

⟨∇L(U), Z⟩ = 0 (130)

On the other hand, from Lemma 43,

⟨∇Rβ(U), Z⟩ = Tr(D(U)UTZ) = Tr(D(U)UTUW ). (131)
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where D(U) is defined in eq. (330). Define (i, j) as an arbitrary pair of distinct indices in [k]. Suppose
W = eie

T
j − eje

T
i . Then,

⟨∇Rβ(U), Z⟩2 = (eTi (D(U)UTU − UTUD(U))ej)
2 (132)

= (D(U)ii −D(U)jj)
2⟨Uei, Uej⟩2. (133)

Dividing throughout by ∥Z∥2F = ∥UW∥2F = ∥Uei∥2F + ∥Uej∥2F and noting that i ̸= j are arbitrary
completes the proof.

Remark 24. The interpretation of the lower bound on the gradient norm in Lemma 23 is best
understood by looking at its behavior at first-order stationary points, where the gradient is 0. At
a first-order stationary point, for any i, j ∈ [k] such that i ̸= j, either D(U)ii = D(U)jj or
Uei ⊥ Uej . The former condition is true iff ∥Uei∥2 = ∥Uej∥2.

Next we prove a result which establishes near-orthogonality of the columns of U at approximate
second-order stationary points.
Lemma 25. Consider any loss L(U) of the form f(UUT ) where f : Rd×d → R is doubly differen-
tiable. Consider any ϵ-approximate first-order stationary point of L+ λRβ , denoted U . Consider
any i ̸= j ∈ [k] and define Cij =

⟨Uei,Uej⟩√
∥Uei∥2

2+∥Uej∥2
2

. Then, if

1. min{∥Uei∥2, ∥Uej∥2} ≤ 2
√
β, then, |Cij | ≤ 2

√
β.

2. In the complement case, defining ∥Z∥F =
√
∥Uei∥22 + ∥Uej∥22, if,

|Cij | ≥ 5

√
ϵ+ γmin{∥Uei∥2, ∥Uei∥2}

λ
·min{∥Uei∥2, ∥Uej∥2}. (134)

then the Hessian of the regularized loss at U has a large negative eigenvalue,

λmin(∇2(L+ λRβ)(U)) < −γ. (135)

In summary, at second order stationary points the columns are approximately orthogonal in the sense
that |Cij | is small.

Proof. Note that, regardless of whether U is approximately stationary or not, for any i ̸= j ∈ [k], if
min{∥Uei∥2, ∥Uej∥2} ≤ 2

√
β, then,

|⟨Uei, Uej⟩√
∥Uei∥22 + ∥Uej∥22

≤ ∥Uei∥2∥Uej∥2
maxi∈{1,2} ∥Uei∥22

= min
i∈{1,2}

∥Uei∥2 ≤ 2
√

β. (136)

This proves the first part of the theorem. Henceforth, we will assume that min{∥Uei∥2, ∥Uej∥2} ≥
2
√
β. This condition will turn out to lower bound the Frobenius norm of a matrix Z which we will

require later for the proof of the second part.

The approximate first-order stationarity of U implies that

∥∇(L+ λRβ)(U)∥F ≤ ϵ. (137)

As in the proof of Lemma 23, the proof strategy is to construct explicit directions (matrices) capturing
the directions of negative curvature of the regularized loss. From Lemma 23, the approximate
first-order stationarity of U implies,

|⟨Uei, Uej⟩|√
∥Uei∥22 + ∥Uej∥22

≤ ϵ

λ
· 1

|∆|
. (138)

where ∆ = D(U)ii −D(U)jj . Consider any tuple i ̸= j ∈ [k]. Without loss of generality we will
work with i = 1, j = 2.

Consider a perturbation Z ∈ Rd×k which takes the form Z = UW where W is a skew-symmetric
matrix which satisfies the “support condition”,

∀i′ ≥ 3, Wei′ = 0, eTi′W = 0 (139)
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In general, when ∆ is small in absolute value, by the support condition eq. (139) of W , one
would expect WD(U) ≈ D(U)W in case ∆ is small. In particular, defining the diagonal matrix
L = diag

(
∆
2 ,−

∆
2 , 0, · · ·

)
, we have that,

WD(U)−D(U)W = WL− LW. (140)

From the gradient and Hessian computations in Lemma 43,

vec(Z)T [∇2Rβ(U)]vec(Z)

= Tr(D(U) · ZTZ)−
k∑

i=1

G(U)ii⟨Zei, Uei⟩2 (141)

= Tr(WD(U)ZTU)−
k∑

i=1

G(U)ii⟨Zei, Uei⟩2 (142)

= ⟨∇Rβ(U),WZT ⟩+ Tr((WL− LW ) · ZTU)−
k∑

i=1

G(U)ii⟨Zei, Uei⟩2 (143)

where the last equation uses the gradient computation in Lemma 43 and the fact that W and D(U)
approximately commute per eq. (140). Likewise, analyzing the second order behavior of L using the
Hessian computations in Lemma 41 results in the following set of equations,

vec(Z)T [∇2L(U)]vec(Z) (144)

= vec(UZT + ZUT )[(∇2f)(UUT )]vec(UZT + ZUT ) + 2⟨(∇f)(UUT ), ZZT ⟩ (145)
(i)
= 2⟨(∇f)(UUT ), ZZT ⟩ (146)

= ⟨(∇f)(UUT ), UWZT + ZWTUT ⟩ (147)

= ⟨∇L(U),WZT ⟩, (148)

where (i) uses the fact that UZT + ZUT = U(WT +W )UT = 0 and the last equation uses the
uses the gradient computations in Lemma 41.

Summing up eqs. (143) and (148), we get,

vec(Z)T [∇2(L+ λRβ)(U)]vec(Z)

(i)
= ⟨∇(L+ λRβ)(U),WZT ⟩+ λTr((WL− LW ) · ZTU)− λ

k∑
i=1

G(U)ii⟨Zei, Uei⟩2 (149)

Noting that U is an ϵ-approximate stationary point of L+ λRβ , by Cauchy–Bunyakovsky–Schwarz
inequality,

vec(Z)T [∇2(L+ λRβ)(U)]vec(Z)

≤ ϵ∥WZT ∥F + λTr((WL− LW ) · ZTU)− λ

k∑
i=1

G(U)ii⟨Zei, Uei⟩2 (150)

Now we are ready to choose W . Suppose W is chosen as (e1eT2 − e2e
T
1 ). With this choice of W , we

have that,

∥Z∥F = ∥UW∥F =
√
∥Ue1∥22 + ∥Ue2∥22 (151)

Likewise,

∥WZT ∥F = ∥WWTUT ∥F (152)

= ∥U(e1e
T
1 + e2e

T
2 )∥F (153)

=
√
∥Ue1∥22 + ∥Ue2∥22 = ∥Z∥F . (154)
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Simplifying eq. (150), the last term can be evaluated to,
k∑

i=1

G(U)ii⟨Zei, Uei⟩2 = (G(U)11 +G(U)22)⟨Ue1, Ue2⟩2. (155)

With this choice of parameters, eq. (150) simplifies to,

vec(Z)T [∇2(L+ λRβ)(U)]vec(Z) (156)

≤ ϵ∥Z∥F + λTr((WL− LW ) · ZTU)− λ(G(U)11 +G(U)22)⟨Ue1, Ue2⟩2 (157)

Next we prove a lemma upper bounding the middle term in eq. (150).

Lemma 26. The error term λTr((WL− LW ) · ZTU) can be upper bounded by,

Tr((WL− LW ) · ZTU) ≤ 40∆2 max
i∈{1,2}

∥Uei∥22 min
i∈{1,2}

∥Uei∥2. (158)

The proof is deferred to Appendix B.2. Combining eq. (157) with Lemma 26,

vec(Z)T [∇2(L+ λRβ)(U)]vec(Z) ≤ ϵ∥Z∥F + 40λ∆2∥Z∥2F min
i∈{1,2}

∥Uei∥2

− λ(G(U)11 +G(U)22)⟨Ue1, Ue2⟩2 (159)

Therefore, considering any approximate stationary point U that satisfies,

λ(G(U)11 +G(U)22)
⟨Ue1, Ue2⟩2

∥Z∥2F
≥ ϵ

∥Z∥F
+ 40λ∆2 min

i∈{1,2}
∥Uei∥2 + γ (C1)

the Hessian ∇2(L+ λRβ)(U) has an eigenvalue which is at most −γ. Note by a similar analysis as
eq. (227),

G(U)11 +G(U)22 ≥ max
i∈{1,2}

G(U)ii ≥ max
i∈{1,2}

∥Uei∥22 + 4β

(∥Uei∥22 + β)5/2
(160)

≥ max
i∈{1,2}

1

3∥Uei∥32 + 12β3/2
(161)

≥ max
i∈{1,2}

1

5∥Uei∥32
. (162)

where the second-to-last inequality uses the fact that mini∈{1,2} ∥Uei∥2 ≥ 2
√
β. Therefore, a

sufficient condition to guarantee eq. (C1) is,

max
i∈{1,2}

λ

5∥Uei∥32
· ⟨Ue1, Ue2⟩2

∥Z∥2F
≥ ϵ

∥Z∥F
+ 40λ∆2 min

i∈{1,2}
∥Uei∥2 + γ. (163)

From eq. (138), we have that,

⟨Ue1, Ue2⟩2

∥Z∥2F
≤ ϵ2

λ2∆2
(164)

When ∆ is large, the columns are nearly orthogonal by eq. (164). When ∆ is small, the barrier to
setting up a negative eigenvalue of the Hessian of L+ λRβ is small by eq. (163). In particular, under
the “small-∆” condition,

∆ ≤ ϵ

4λ1/2 ·mini∈{1,2} ∥Uei∥2
(165)

∇2(L+ λRβ)(U) has a negative eigenvalue taking value at most −γ under the sufficient condition,

max
i∈{1,2}

λ

5∥Uei∥32
· ⟨Ue1, Ue2⟩2

∥Z∥2F
≥ ϵ

∥Z∥F
+ 40λ∆2 min

i∈{1,2}
∥Uei∥2 + γ (166)

⇐= max
i∈{1,2}

λ

5∥Uei∥32
· ⟨Ue1, Ue2⟩2

∥Z∥2F
≥ ϵ

∥Z∥F
+

40ϵmini∈{1,2} ∥Uei∥2
16mini∈{1,2} ∥Uei∥22

+ γ (167)

⇐= ⟨Ue1, Ue2⟩2

∥Z∥2F
≥

18ϵ ·mini∈{1,2} ∥Uei∥22
λ

+
5γ

λ
· min
i∈{1,2}

∥Uei∥32 (168)
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From eq. (138), under the large-∆ condition, we have that,

⟨Ue1, Ue2⟩2

∥Z∥2F
≤ ϵ2

λ2

16λ

ϵ
· min
i∈{1,2}

∥Uei∥22 ≤
16ϵ

λ
· min
i∈{1,2}

∥Uei∥22. (169)

This completes the proof.

Lemma 25 establishes the role of the regularizer - in making the large columns of U nearly orthogonal
at approximate second order stationary points. Next we show that at second order stationary points,
UUT ≈ U⋆U

T
⋆ .
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Lemma 27. Consider an ϵ-approximate first-order stationary point of L + λRβ , U . If ∥UUT −
U⋆U

T
⋆ ∥F ≥ 8max

{
ϵ2/3k1/6, λ

√
2k
β

}
, then the Hessian of L + λRβ at U has a large negative

eigenvalue,

λmin[∇2(L+ λRβ)(U)]vec(Z) ≤ − 1√
2k
∥UUT − U⋆U

T
⋆ ∥F . (170)

In other words, at an (ϵ, γ)-approximate second order stationary point of L+ λRβ , U ,

∥UUT − U⋆U
T
⋆ ∥F ≲ max

{
ϵ2/3k1/6, λ

√
2k

β
, γ
√
k

}
(171)

Proof. In the rest of this proof we expand U⋆ to a Rd×k matrix by appending with 0 columns. This
allows us to define R⋆ ∈ argminR:RRT=RTR=I ∥U − U⋆R∥2F , breaking ties arbitrarily. Define
Z = U − U⋆R⋆. With this choice of Z, we invoke 3 results from [36] (Lemmas 7, 40 and 41),

∥ZZT ∥2F ≤ 2∥UUT − U⋆U
T
⋆ ∥2F . (172)

And,

∥ZUT ∥2F ≤
1

2
√
2− 1

∥UUT − U⋆U
T
⋆ ∥2F . (173)

And finally a bound on the Hessian,

vec(Z)T [∇2(L+ λRβ)(U)]vec(Z) ≤ 2∥ZZT ∥2F − 6∥UUT − U⋆U
T
⋆ ∥2F + 4⟨∇(L+ λRβ)(U), Z⟩

+ λ
[
vec(Z)T [∇2Rβ(U)]vec(Z)− 4λ⟨∇Rβ(U), Z⟩

]
.

(174)

Plugging eq. (172) into eq. (174), and using the fact that U is an ϵ-approximate first order stationary
point,

vec(Z)T [∇2(L+ λRβ)(U)]vec(Z) ≤ −2∥UUT − U⋆U
T
⋆ ∥2F + 4ϵ∥Z∥F

+ λ
[
vec(Z)T [∇2Rβ(U)]vec(Z)− 4⟨∇Rβ(U), Z⟩

]
.

(175)

In the next lemma we upper bound the last term.

Lemma 28. The contribution from the regularizer in the last term of eq. (175) can be bounded by,

vec(Z)T [∇2Rβ(U)]vec(Z)− 4⟨Rβ(U), vec(Z)⟩ ≤ 8

√
2k

β
∥UUT − U⋆U

T
⋆ ∥F . (176)

The proof of this result is deferred to Appendix B.2

Finally, combining Lemma 28 with eq. (175),

vec(Z)T [∇2(L+ λRβ)(U)]vec(Z) ≤ −2∥UUT − U⋆U
T
⋆ ∥2F + 4ϵ∥Z∥F

+ 8λ

√
2k

β
∥UUT − U⋆U

T
⋆ ∥F (177)

Yet again using the inequality ∥Z∥4F ≤ k∥ZZT ∥2F ≤ 2k∥UUT −U⋆U
T
⋆ ∥2F , this results in the bound,

vec(Z)T [∇2(L+ λRβ)(U)]vec(Z) ≤ −2∥UUT − U⋆U
T
⋆ ∥2F + 8ϵk1/4∥UUT − U⋆U

T
⋆ ∥

1/2
F

+ 8λ

√
2k

β
∥UUT − U⋆U

T
⋆ ∥F (178)
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If ∥UUT − U⋆U
T
⋆ ∥F ≥ 8max

{
ϵ2/3k1/6, λ

√
2k
β

}
, the RHS is upper bounded by −∥UUT −

U⋆U
T
⋆ ∥2F . Finally, noting that ∥Z∥4F ≤ k∥ZZT ∥2F ≤ 2k∥UUT − U⋆U

T
⋆ ∥2F , we have that,

λmin[∇2(L+ λRβ)(U)] ≤ vec(Z)T [∇2(L+ λRβ)(U)]vec(Z)

∥Z∥2F
(179)

≤ − 1√
2k
∥UUT − U⋆U

T
⋆ ∥F (180)

Let Vr denote the matrix with columns as the non-zero eigenvectors of U⋆U
T
⋆ . In the next lemma,

we show that for any stationary point U , all of its columns are almost entirely contained in the span
of Vr, in that the angle between Uei and its projection onto V ⊥

r is almost 90◦. In other words, the
columns of U approximately lie in the correct subspace.

Lemma 29. Consider an ϵ-approximate first order stationary point of L + λRβ , U , satisfying
∥U∥op ≤ 3. Let Vr denote the matrix with columns as the non-zero eigenvectors of U⋆U

T
⋆ . Then,

assuming β < 1,

∥V ⊥
r (V ⊥

r )TU∥F ≤ 3ϵ/λ. (181)

Proof. By eq. (189) for Z = V ⊥
r (V ⊥

r )TU , by the approximate stationarity of U ,

2⟨UUT − U⋆U
T
⋆ , UZT + ZUT ⟩+ λTr(UD(U)ZT ) ≤ ϵ∥Z∥F (182)

The LHS is lower bounded by,

4Tr(UUTV ⊥
r (V ⊥

r )TUUT ) + λTr(UD(U)UTV ⊥
r (V ⊥

r )T ) (183)

= 4∥V ⊥
r (V ⊥

r )TUUT ∥2F + λ

k∑
i=1

(D(U))ii∥V ⊥
r (V ⊥

r )TUei∥22 (184)

(i)

≥ λ

3

k∑
i=1

∥V ⊥
r (V ⊥

r )TUei∥22 (185)

=
λ

3
∥Z∥2F . (186)

where (i) uses the fact that since ∥U∥op ≤ 3 and β < 1, (D(U))ii =
2β+∥Uei∥2

2

(∥Uei∥2
2+β)3/2

≥ 2β+9
(9+β)3/2

≥
1/3. Combining with eq. (182) completes the proof.

Lemma 30. Consider an ϵ-approximate first order stationary point U of L + λRβ . Let Vr be as
defined in Lemma 29. Let S denote the set of columns i ∈ [k] such that ∥Uei∥2 ≥ 2

√
β. Then, for

any i ∈ S,

∥V ⊥
r (V ⊥

r )TUei∥2
∥Uei∥2

≤ 2ϵ

λβ1/4
. (187)

Note that the LHS is the cosine of the angle between Uei and its projection onto V ⊥
r , (or the sine of

the angle between Uei and its projection onto Vr). Likewise, for the remaining columns,∑
i∈[k]\S

∥V ⊥
r (V ⊥

r )TUei∥22 ≤
2ϵ2
√
β

λ2
. (188)

Proof. At an ϵ-approximate first order stationary point the gradient is upper bounded in L2-norm by
ϵ. From the gradient and Hessian computations in Lemma 40 and Lemma 43,

2⟨UUT − U⋆U
T
⋆ , UZT + ZUT ⟩+ λTr(D(U)ZTU) ≤ ϵ∥Z∥F (189)
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Choosing Z = V ⊥
r (V ⊥

r )TU , and noting that U⋆ has rank r and is orthogonal to V ⊥
r , the LHS

simplifies as,

ϵ∥Z∥F ≥ 4Tr(UUTV ⊥
r (V ⊥

r )TUUT ) + λTr(UD(U)UTV ⊥
r (V ⊥

r )T ) (190)

≥ λ

k∑
i=1

D(U)ii∥V ⊥
r (V ⊥

r )TUei∥22 (191)

≥ λ
∑
i∈S

∥V ⊥
r (V ⊥

r )TUei∥22
∥Uei∥2

, (192)

where the last inequality uses the fact that for any column i such that ∥Uei∥2 ≥ 2
√
β, since we have

that D(U)ii ≥ 1
∥Uei∥2

by Lemma 44. Putting everything together, we get that,

λ
∑
i∈S

∥Uei∥2 ·
∥V ⊥

r (V ⊥
r )TUei∥22
∥Uei∥22

≤ ϵ∥Z∥F (193)

Since ∥Uei∥2 ≥ 2
√
β, rearranging the terms around and finally upper bounding ∥Z∥F using

Lemma 29 completes the proof of eq. (187). To prove eq. (188), notice from eq. (191) that,

ϵ∥Z∥F ≥ λ
∑

i∈[k]\S

D(U)ii∥(V ⊥
r )(V ⊥

r )TUei∥22 (194)

≥ λ

2
√
β

∑
i∈[k]\S

∥(V ⊥
r )(V ⊥

r )TUei∥22 (195)

which uses the fact that when ∥Uei∥2 ≤ 2
√
β, then D(U)ii =

∥Uei∥2
2+2β

(∥Uei∥2
2+β)3/2

≥ 1
2β1/2 . Rearranging

and substituting the bound on ∥Z∥F from Lemma 29 completes the proof of eq. (188).

Lemma 31. Consider any ϵ-approximate first-order stationary point of L + λRβ , U , and let Vr

be as defined in Lemma 29. Under the assumption that ϵ ≤ λ/2, for any column i ∈ [k] such that
∥VrV

T
r Uei∥2 ≤ ∥V ⊥

r (V ⊥
r )TUei∥2, ∥Uei∥2 ≤ 2

√
β.

Proof. Consider any i such that ∥VrV
T
r Uei∥2 ≤ ∥V ⊥

r (V ⊥
r )TUei∥2. Therefore, from eq. (189),

choosing Z = V ⊥
r (V ⊥

r )TUeie
T
i ,

ϵ∥V ⊥
r (V ⊥

r )TUei∥2
≥ 4Tr(UUTV ⊥

r (V ⊥
r )TUeie

T
i U

T ) + λTr(UD(U)eie
T
i U

TV ⊥
r (V ⊥

r )T )

= 4∥UTV ⊥
r (V ⊥

r )TUei∥22 + 4Tr(eTi U
TVrV

T
r UUTV ⊥

r (V ⊥
r )TUei) + λ(D(U))ii∥V ⊥

r (V ⊥
r )TUei∥22

≥ 4∥UTV ⊥
r (V ⊥

r )TUei∥22 − 4∥UTVrV
T
r Uei∥2∥UTV ⊥

r (V ⊥
r )TUei∥2 + λ(D(U))ii∥V ⊥

r (V ⊥
r )TUei∥22

≥ λ(D(U))ii∥V ⊥
r (V ⊥

r )TUei∥2, (196)

where the last inequality uses the assumption that ∥VrV
T
r Uei∥2 ≤ ∥V ⊥

r (V ⊥
r )TUei∥2. Finally,

observe the following bound on (D(U))ii computed using Lemma 44: for any column i such that
∥Uei∥2 ≥ 2

√
β,

(D(U))ii ≥
1

∥Uei∥2
=

1√
∥V ⊥

r (V ⊥
r )TUei∥22 + ∥VrV T

r Uei∥22
≥ 1

2∥V ⊥
r (V ⊥

r )TUei∥2
. (197)

Plugging this into eq. (196), we get the inequality,

ϵ∥V ⊥
r (V ⊥

r )TUei∥2 ≥
λ

2
∥V ⊥

r (V ⊥
r )TUei∥2. (198)

When ϵ ≤ λ
2 , the only solution to inequality eq. (196) is ∥V ⊥

r (V ⊥
r )TUei∥2 = 0. By the condition

∥Vr(Vr)
TUei∥2 ≤ ∥V ⊥

r (V ⊥
r )TUei∥2, this implies that ∥Uei∥2 = 0. This contradicts the initial

assumption that ∥Uei∥2 ≥ 2
√
β, thus concluding the proof of the second part of Lemma 31.

33



Theorem 32. Consider any (ϵ, γ)-approximate second-order stationary point of L+ λRβ denoted
U . Suppose ∥U∥op ≤ 3. Construct Uprune by following the pruning condition,

∥Uei∥2 ≤ 2
√

β =⇒ Upruneei ← 0 (199)

Suppose ϵ ≤ cλβ1/4/r and ϵ+ γ ≤ cλ/r2 for a sufficiently small constant c > 0. Then,

1. Uprune has at most r non-zero columns.

2. Furthermore,

∥UpruneU
T
prune − U⋆U

T
⋆ ∥F ≲ γ

√
k + λ

√
k

β
+ ϵ2/3k1/6 + rβ +

2ϵ2
√
β

λ2
. (200)

Proof. Recall that the columns of U having L2 norm at most 2
√
β are set to 0 in Uprune. Since U is

an (ϵ, γ)-approximate second-order stationary point, the eigenvalues of the Hessian of L+ λRβ at
the point U are all at least −γ.

In Lemma 25, by violation of the condition eq. (134), for every pair of column indices i ̸= j ∈ S
where S = {i ∈ [k] : ∥Uei∥2 > 2

√
β},

|Cij | =
|⟨Uei, Uej⟩|
∥Zij∥2

≲

√
ϵ+ 3γ

λ
min{∥Uei∥2, ∥Uej∥2}. (201)

where we use the assumption that the spectral norm ∥U∥op ≤ 3, and therefore ∥Uei∥2 ≤ 3 for all
i ∈ [k]. Note that ∥Zij∥2 =

√
∥Uei∥22 + ∥Uej∥22 ≤

√
2max {∥Uei∥2, ∥Uej∥2}, and therefore,

|⟨Uei, Uej⟩| ≲
√

ϵ+ γ

λ
∥Uei∥2∥Uej∥2 (202)

In other words, for each i ̸= j ∈ S,

| cos θij | ≲
√

ϵ+ γ

λ
=⇒

∣∣∣θij − π

2

∣∣∣ ≲√ϵ+ γ

λ
(203)

Where θij is the angle between Uei and Uej and the implication follows by assuming that ϵ, γ ≤ cλ
for a sufficiently small c > 0.

At any ϵ-approximate first order stationary point U , by Lemma 30, for any i such that ∥Uei∥2 ≥ 2
√
β

the angle between Uei and its projection onto Vr is intuitively small. By eq. (203) we expect
Uei and Uej to have an angle close to 90◦ between them. Therefore, we expect the projections
of Uei and Uej onto Vr to also have an angle close to 90◦ between them. Specifically, given
vectors v1, v2, v3 and v4 such that |∠v1, v2| ≤ ε1, |∠v2, v3 − 90◦| ≤ ε2 and |∠v3, v4| ≤ ε3, then
|∠v1, v4 − 90◦| ≤ ε1 + ε2 + ε3. This means that for any columns Uei and Uej such that ∥Uei∥2
and ∥Uej∥2 ≥ 2

√
β, ∣∣∣θproj

ij −
π

2

∣∣∣ ≲√ϵ+ γ

λ
+

ϵ

λβ1/4
≤ c1

r
(204)

for some small absolute constant 0 ≤ c1 ≤ 1/3 and where θproj
ij is the angle between VrV

T
r Uei and

VrV
T
r Uej . This assumes that ϵ ≤ cλβ1/4/r and ϵ + γ ≤ cλ/r2 for a sufficiently small constant

c > 0. Since sin(x) ≤ x for x > 0, this means that,

∀i ̸= j ∈ S,
|⟨VrV

T
r Uei, VrV

T
r Uej⟩|

∥VrV T
r Uei∥2∥VrV T

r Uej∥2
≤ c1

r
. (205)

eq. (205) implies that the projections of the large columns of U onto Vr are approximately at 90◦

to each other. However, intuitively, since Vr is an r dimensional space, this means that at most r
of these projections can be large in norm. In fact it turns out that since the columns are sufficiently
orthogonal to one another, exactly r columns have a non-zero projection onto Vr.

Lemma 33. At most r columns of U can have a non-zero projection onto Vr.
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The proof of this result is deferred to Appendix B.2.

What is the implication of Lemma 33? At most r columns of U (and therefore Uprune) have non-
zero projections onto Vr. Any of remaining columns of U , say i, therefore satisfies the condition
0 = ∥VrV

T
r Uei∥2 ≤ ∥V ⊥

r (V ⊥
r )TUei∥2. By implication of Lemma 31, the remaining columns of U

have L2 norm at most 2
√
β assuming that ϵ ≤ λ/2. Thus these columns are pruned away in Uprune.

Overall, this implies that at most r columns of Uprune are non-zero.

For the analysis of ∥UpruneU
T
prune − U⋆U

T
⋆ ∥F , note that, the columns of U with L2 norm smaller than

2
√
β are set to 0 in Uprune. This implies that,

∥UpruneU
T
prune − U⋆U

T
⋆ ∥F − ∥UUT − U⋆U

T
⋆ ∥F

≤ ∥UpruneU
T
prune − UUT ∥F (206)

≤

∥∥∥∥∥∥
∑
i∈[k]

Uei(Uei)
T I(∥Uei∥2 ≤ 2

√
β)

∥∥∥∥∥∥
F

(207)

≤
∑
i∈[k]

∥∥∥Uei(Uei)
T I(∥Uei∥2 ≤ 2

√
β)
∥∥∥
F

(208)

≤
∑
i∈[k]

∥Uei∥22I(∥Uei∥2 ≤ 2
√
β; ∥VrV

T
r Uei∥2 > 0) +

∑
i∈[k]

∥VrV
T
r Uei∥22I(∥Uei∥2 ≤ 2

√
β)

(209)
(i)

≤ rβ +
∑
i∈[k]

∥VrV
T
r Uei∥22I(∥Uei∥2 ≤ 2

√
β) (210)

(ii)

≤ rβ +
2ϵ2
√
β

λ2
(211)

where (i) uses the fact that there are at most r columns of U having non-zero projections onto Vr,
and (ii) follows from eq. (188) of Lemma 30. Combining this inequality with the guarantee on
∥UUT − U⋆U

T
⋆ ∥F in Lemma 27 completes the proof.

B.2 Proof of Theorem 3

Proof. From Theorem 32, we have that,

∥UpruneU
T
prune − U⋆U

T
⋆ ∥F ≲ γ

√
k + λ

√
k

β
+ ϵ2/3k1/6 + rβ +

2ϵ2
√
β

λ2
. (212)

Recall that the optimization and smoothing parameters are chosen as,

β = cβ
(σ⋆

r )
2

r
(213)

λ = cλ
(σ⋆

r )
3

√
kr

(214)

γ ≤ cγ
(σ⋆

r )
3

√
kr5/2

(215)

ϵ ≤ cϵ
(σ⋆

r )
7/2

√
kr5/2

. (216)

For sufficiently small absolute constants cβ , cλ, cγ , cϵ > 0. Under these choices, it is easily verified
from eq. (212) that the conditions,

ϵ ≤ c
λβ1/4

r
; ϵ+ γ ≤ cλ

r2
. (217)

which are conditions required by Theorem 32. The bound in eq. (212) results in,

∥UpruneU
T
prune − U⋆U

T
⋆ ∥F ≤

1

2
(σ⋆

r )
2. (218)
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Note also that Uprune has at most r non-zero columns. However, by eq. (218), this means that Uprune
has exactly r columns, since if it had r − 1 non-zero columns or fewer, the error of the best solution
must be at least (σ⋆

r )
2.

B.3 Missing proofs in Appendix B

B.3.1 Proof of Lemma 26

Proof. By definition of W and L, Tr((WL− LW ) · ZTU), can be simplified to

Tr((WL− LW ) · ZTU) = ∆Tr((e2eT2 − e1e
T
1 )U

TU) (219)

= ∆(∥Ue2∥22 − ∥Ue1∥22) (220)

Note that D(U)11 −D(U)22 = ∆ and |∆| ≤ ϵ
λ , so one can expect ∥Ue1∥2 and ∥Ue2∥2 to be close

to each other. We bound |∥Ue1∥22−∥Ue2∥22| in two ways depending on the relative values of ∥Ue1∥2
and ∥Ue2∥2.

Case 1: Column norms are similar. maxi∈{1,2} ∥Uei∥2 ≤ 2mini∈{1,2} ∥Uei∥2.

By definition of ∆,

|∆| =
∣∣∣∣ ∥Ue1∥22 + 2β

(∥Ue1∥22 + β)3/2
− ∥Ue2∥22 + 2β

(∥Ue2∥22 + β)3/2

∣∣∣∣ (221)

=

∣∣∣∣∣
∫ ∥Ue1∥2

2

∥Ue2∥2
2

3/2 · x+ 4β

(x+ β)5/2
dx

∣∣∣∣∣ (222)

≥ min
i∈{1,2}

3/2∥Uei∥22 + 4β

(∥Uei∥22 + β)5/2
|∥Ue1∥22 − ∥Ue2∥22|. (223)

Furthermore, note that for any i ∈ {1, 2},

(∥Uei∥22 + β)5/2

3
2∥Uei∥22 + 4β

≤
(
3

2
∥Uei∥22 + 4β

)3/2

(224)

(i)

≤
√
2

(
3

2
∥Uei∥22

)3/2

+
√
2 (4β)

3/2 (225)

≤ 3∥Uei∥32 + 12β3/2 (226)

≤ 5∥Uei∥32 (227)

where (i) uses the convexity of (·)3/2 for positive arguments and applies Jensen’s inequality, and
the last inequality uses the fact that ∥Ue1∥2, ∥Ue2∥2 ≥ 2

√
β. Overall, combining eq. (220) with

eq. (223) and eq. (227) results in the bound,

Tr((WL− LW ) · ZTU) ≤ 5∆2 max
i∈{1,2}

∥Uei∥32 (228)

≤ 40∆2 min
i∈{1,2}

∥Uei∥32 (229)

where the last inequality uses the assumption that maxi∈{1,2} ∥Uei∥2 ≤ 2mini∈{1,2} ∥Uei∥2.

Case 2: Column norms are separated. maxi∈{1,2} ∥Uei∥2 ≥ 2mini∈{1,2} ∥Uei∥2.
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WLOG suppose ∥Ue1∥2 ≥ ∥Ue2∥2 which implies that D(U)22 ≥ D(U)11. The above assumption
implies that ∥Ue1∥2 ≥ 2∥Ue2∥2. Then,

D(U)11 =
∥Ue1∥22 + 2β

(∥Ue1∥22 + β)3/2
(230)

(i)

≤ 4∥Ue2∥22 + 2β

(4∥Ue2∥22 + β)3/2
(231)

(ii)

≤ 4

33/2
∥Ue2∥22 + 2β

(∥Ue2∥22 + β)3/2
(232)

≤ 4

5
D(U)22 (233)

where (i) uses the fact that x+2β
(x+β)3/2

is a decreasing function in x and (ii) uses the fact that
min{∥Ue1∥2, ∥Ue2∥2} ≥ 2

√
β, and therefore, 4∥Ue2∥22 + β ≥ 3(∥Ue2∥22 + β). Therefore,

|D(U)11 −D(U)22| ≥
1

5
D(U)22 =

1

5

∥Ue2∥22 + 2β

(∥Ue2∥22 + β)3/2
(234)

(i)

≥ 1

5

∥Ue2∥22√
2∥Ue2∥32 +

√
2β3/2

(235)

(ii)

≥ 1

10

1

∥Ue2∥2
(236)

≥ 1

10

1

∥Ue2∥2∥Ue1∥22
|∥Ue1∥22 − ∥Ue2∥22| (237)

where (i) uses the convexity of (·)3/2 for positive arguments and an application of Jensen’s inequality,
while (ii) uses the fact that min{∥Ue1∥2, ∥Ue2∥2} ≥ 2

√
β. Since |D(U)11 −D(U)22| ≤ |∆|, this

results in an upper bound on |∥Ue1∥22 − ∥Ue2∥22|. Combining this with eq. (220) results in,

Tr((WL− LW ) · ZTU) ≤ 10∆2 min
i∈{1,2}

∥Uei∥2 max
i∈{1,2}

∥Uei∥22. (238)

Combining eqs. (229) and (238) completes the proof of the lemma.

B.3.2 Proof of Lemma 28

Proof. By definition,

vec(Z)T [∇2Rβ(U)]vec(Z)− 4⟨Rβ(U), vec(Z)⟩ (239)

≤ Tr(D(U)ZTZ)−
k∑

i=1

(G(U))ii⟨Uei, Zei⟩2 − 4Tr(D(U)UTZ) (240)

≤ Tr(D(U)ZTZ)− 4Tr(D(U)UTZ) (241)

≤ 2√
β
∥Z∥2F + 4∥D(U)∥F ∥UTZ∥F (242)

(i)

≤ 2√
β
∥Z∥2F + 5

√
k

β
∥UUT − U⋆U

T
⋆ ∥F (243)

≤ 8

√
2k

β
∥UUT − U⋆U

T
⋆ ∥F (244)

where (i) follows from the fact that for any i ∈ [k], |(D(U))ii| ≤ maxx≥0
x+2β

(x+β)3/2
= 2√

β
, (ii)

uses eq. (173) and the fact that ∥Z∥4F = ∥ZT ∥4F ≤ rank(ZT )∥ZZT ∥2F ≤ 2k∥UUT − U⋆U
T
⋆ ∥2F by

eq. (172).
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B.3.3 Proof of Lemma 33

Proof. Let Smax denote the set of r column indices i ∈ [k] such that ∥VrV
T
r Uei∥2 are maximum and

non-zero. If fewer than r columns of U have non-zero projections onto Vr (i.e. fewer than r candidates
for Smax exist), then all the remaining columns of U must have zero projections onto Vr and we are
done. Therefore, henceforth, we will assume that |Smax| = r. Let Vmax = span({VrV

T
r Uei : i ∈

Smax}), a subspace contained in Vr.

Define M as the matrix M =
[

VrV
T
r Uei

∥VrV T
r Uei∥2

: i ∈ Smax

]
. Let V be the set of non-zero eigenvectors

of MMT . Note that the matrix MTM ∈ R|Smax|×|Smax| has 1’s on the diagonals, and has its off-
diagonal entries upper bounded in absolute value by c1/r by eq. (205). Therefore, by the Gersgorin
circle theorem, all eigenvalues of MTM and consequently all non-zero eigenvalues of MMT lie
in the range [1 − c1, 1 + c1]. This means that M ∈ Rd×r is full rank, and its columns are linearly
independent.

This implies that span(V ) = span(Vr) and by the orthogonality condition, V V T = VrV
T
r . There-

fore,

∥VrV
T
r Uei∥2 = ∥V V TUei∥2 (245)

≤ 1

λmin(M)
∥MTUei∥2 (246)

=
1

λmin(M)

√√√√ ∑
j∈Smax

⟨VrV T
r Uej , VrV T

r Uei⟩2
∥VrV T

r Uej∥22
(247)

(i)

≤ 1

λmin(M)

√√√√ ∑
j∈Smax

c21
r2
∥VrV T

r Uei∥22, (248)

where (i) follows from eq. (204). Consequently by eq. (248), we have,

∥VrV
T
r Uei∥2 ≤

c1
1− c1

∥VrV
T
r Uei∥2. (249)

For c1 ≤ 1/3 this means that ∥VrV
T
r Uei∥2 = 0 for every i ∈ [k] \ Smax. This proves the claim.
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C Finite sample guarantees: Proof of Theorem 4

In this section, we provide guarantees on the approximate second order stationary points of the
regularized loss femp (eq. (14)) when the dataset is finite in size, and satisfies the RIP condition. We
provide a formal proof of Theorem 4.

For completeness, in the finite sample setting, the empirical loss is defined as,

Lemp(U) =
1

n

n∑
i=1

(⟨UUT − U⋆U
T
⋆ , Ai⟩+ εi)

2 (250)

where εi
i.i.d.∼ N (0, σ2) is the measurement noise. Without loss of generality we assume that the

measurement matrices {Ai}ni=1 are symmetric, since the empirical loss Lemp is unchanged by the

symmetrization Ai → Ai+AT
i

2 . Note that the loss can be expanded as,

∥UUT − U⋆U
T
⋆ ∥2H + 2

〈
1

n

n∑
i=1

εiAi, UUT − U⋆U
T
⋆

〉
+

1

n

n∑
i=1

ε2i (251)

where ⟨X,Y ⟩H = 1
m

∑m
i=1⟨X,Ai⟩⟨Y,Ai⟩ and ∥X∥2H = ⟨X,X⟩H.

We will assume that the measurement matrices {Ai}ni=1 satisfy the RIP condition. At a high level
this condition guarantees that ⟨·, ·⟩H ≈ ⟨·, ·⟩ when the arguments are low rank matrices.

Definition 34 (RIP condition). A set of linear measurement matrices A1, . . . , Am in Rd×d satisfies
the (k, δ)-restricted isometry property (RIP) if for any d× d matrix X with rank at most k,

(1− δ)∥X∥2F ≤
1

m

m∑
i=1

⟨Ai, X⟩2 ≤ (1 + δ)∥X∥2F (252)

The crucial property we use in this section is that the RIP condition on the measurements guarantees
that ⟨X,Y ⟩H ≈ ⟨X,Y ⟩. when X and Y are low rank matrices.

Lemma 35. Let {Ai}mi=1 be a family of matrices in Rd×d that satisfy (k, δ) RIP. Then for any pair of
matrices X,Y ∈ Rd×d with rank at most k, we have:

|⟨X,Y ⟩H − ⟨X,Y ⟩| ≤ δ∥X∥F ∥Y ∥F (253)

Lemma 36. Let {Ai}ni=1 be a set of matrices which satisfy the (2k, δ)-RIP for some δ ≤ 1/10. Let

εi
i.i.d.∼ N (0, σ2). Consider any η ∈ (0, 1). Then,

P

∥∥∥∥∥ 1n
n∑
i

Aiϵi

∥∥∥∥∥
op

≥ 4σ

√
d log(d/η)

n

 ≤ η. (254)

Proof. Note that {Ai}ni=1 satisfies the (2k, δ)-RIP for δ ≤ 1/10. That is, for any rank ≤ 2k matrix
X ,

9

10
∥X∥2F ≤

1

n

n∑
i=1

⟨Ai, X⟩2 ≤
11

10
∥X∥2F . (255)

Choosing X = vuT for any pair of vectors u, v, we get,

∀u, v ∈ Rd,
1

n

n∑
i=1

(uTAiv)
2 ≤ 11

10
∥u∥22∥v∥22. (256)

This implies that for each i ∈ [k], ∥Ai∥op ≤
√
2n. Furthermore, plugging in v = e1, · · · , ed and

summing,

1

n

n∑
i=1

∥AT
i u∥22 ≤

11

10
d∥u∥22 (257)
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This implies that
∥∥ 1
n

∑n
i=1 AiA

T
i

∥∥
op = λmax

(
1
n

∑n
i=1 AiA

T
i

)
≤ 2d. Hence, we obtain,∥∥∥∥∥

n∑
i=1

E
(
(ϵiAi)(ϵiAi)

T
)∥∥∥∥∥

op

≤ σ2

∥∥∥∥∥
n∑

i=1

AiA
T
i

∥∥∥∥∥
op

≤ 2σ2dn. (258)

By applying the matrix Bernstein inequality [54, 55], for any t > 0,

P

(∥∥∥∥∥ 1n
n∑

i=1

Aiϵi

∥∥∥∥∥
2

≥ t

)
≤ d · exp

(
−3t2n2

12dnσ2 + 2σ
√
2nnt

)
= d · exp

(
−3t2n

12dσ2 + 4σ
√
nt

)
.

Choosing t = 3σ
√

d log(d/η)
n , the RHS is upper bounded by η. This completes the proof.

By virtue of this result, we expect that for all U , with probability ≥ 1 − η, the loss L in eq. (251)
is ≈ ∥UUT − U⋆U

T
⋆ ∥2F (up to additive constants) when n is large. Indeed, by an application of

Holder’s inequality, Tr(AB) ≤ ∥A∥op∥B∥∗ ≤ ∥A∥op
√

rank(B)∥B∥F and,∣∣∣∣∣Lemp(U)− ∥UUT − U⋆U
T
⋆ ∥2H −

1

n

n∑
i=1

ε2i

∣∣∣∣∣ ≲ σ

√
kd log(d/η)

n
∥UUT − U⋆U

T
⋆ ∥F . (259)

Likewise,∣∣⟨∇Lemp(U), Z⟩ − ⟨∇∥UUT − U⋆U
T
⋆ ∥2H, Z⟩

∣∣ ≲ σ

√
kd log(d/η)

n
∥UZT + ZUT ∥F (260)

And finally,∣∣vec(Z)T [∇2Lemp(U)]vec(Z)− vec(Z)T [∇2∥UUT − U⋆U
T
⋆ ∥2H]vec(Z)

∣∣ ≲ σ

√
kd log(d/η)

n
∥ZZT ∥F

(261)

where the hidden constants in each of these inequalities are at most 16.

In the sequel, we condition on the event that eqs. (259) to (261) hold, which occurs with probability
≥ 1− η.

Lemmas 23 and 25: The conclusion of these lemmas can still be applied since the finite sample
loss function eq. (250) is still of the form f(UUT ) for a doubly differentiable f .

Lemma 27: This lemma is slightly modified in the finite sample setting. The new result is provided
below.
Lemma 37 (Modified Lemma 27). At an (ϵ, γ)-approximate second order stationary point of
L+ λRβ ,

∥UUT − U⋆U
T
⋆ ∥F ≲ max

{
ϵ2/3k1/6, λ

√
k

β
+ σ

√
kd log(d/η)

n
,
√
kγ

}
. (262)

Proof. From [36, Lemma 7] and eq. (261) as in Lemma 27, for the choice Z = U − U⋆R⋆, with
R⋆ ∈ argminR:RRT=RTR=I ∥U − U⋆R∥2F , we have the following bound,

vec(Z)T [∇2Lemp(U)]vec(Z) ≤ 2∥ZZT ∥2H − 6∥UUT − U⋆U
T
⋆ ∥2H + 4⟨∇Lemp(U), Z⟩

+ λ
[
vec(Z)T [∇2Rβ(U)]vec(Z)− 4λ⟨∇Rβ(U), Z⟩

]
+ 16σ

√
kd log(kd/η)

n
∥ZZT ∥F (263)

Plugging eq. (172) into eq. (263) and using Lemma 28 and the fact that ∥∇Lemp(U)∥F ≤ ϵ,

vec(Z)T [∇2Lemp(U)]vec(Z) ≤ 2∥ZZT ∥2H − 6∥UUT − U⋆U
T
⋆ ∥2H + 4ϵ∥Z∥F

+

(
8λ

√
2k

β
+ 32σ

√
kd log(d/η)

n

)
∥UUT − U⋆U

T
⋆ ∥F . (264)
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By the RIP condition on the measurements, ∥ZZT ∥2H ≤ (1 + δ)∥ZZT ∥2F and likewise, ∥UUT −
U⋆U

T
⋆ ∥2H ≥ (1− δ)∥UUT − U⋆U

T
⋆ ∥2F . Therefore, assuming δ ≤ 1/10 and simplifying as done in

eqs. (177) and (178), we get,

vec(Z)T [∇2Lemp(U)]vec(Z) ≤ −∥UUT − U⋆U
T
⋆ ∥2F + 8ϵk1/4∥UUT − U⋆U

T
⋆ ∥

1/2
F

+

(
8λ

√
2k

β
+ 32σ

√
kd log(d/η)

n

)
∥UUT − U⋆U

T
⋆ ∥F .

The rest of the analysis resembles the calculations from eq. (178) to eq. (180).

Lemmas 29 to 31: These lemmas are slightly changed in the finite sample setting. The new results
essentially replace ϵ by a slightly larger value ν defined below,

ν = ϵ+ δ∥UUT − U⋆U
T
⋆ ∥F + σ

√
kd log(d/η)

n
. (265)

Lemma 38. Consider an ϵ-approximate first order stationary point U satisfying ∥U∥op ≤ 3. Let Vr

denote the top-r eigenspace of U⋆U
T
⋆ . Then, we have that,

∥V ⊥
r (V ⊥

r )TU∥3F ≲ νk. (266)

Let S = {i ∈ [k] : ∥Uei∥2 ≥ 2
√
β} be the set of large norm columns of U . For any column i ∈ S,

∥V ⊥
r (V ⊥

r )TUei∥2
∥Uei∥2

≤ 2ν

λβ1/4
. (267)

In contrast, for the remaining columns,∑
i∈[k]\S

∥V ⊥
r (V ⊥

r )TUei∥22 ≤
2ν2
√
β

λ2
. (268)

Lastly, for any column i ∈ [k] such that ∥VrV
T
r Uei∥2 ≤ ∥V ⊥

r (V ⊥
r )TUei∥2, assuming ν ≤ λ/2,

∥Uei∥2 ≤ 2
√

β. (269)

Proof. From eq. (260) and the gradient computations in Lemma 42 and Lemma 43, with Z =
V ⊥
r (V ⊥

r )TU , approximate first-order stationarity of U implies that,

⟨UUT − U⋆U
T
⋆ , UZT + ZUT ⟩H + λTr(D(U)ZTU)− σ

√
kd log(d/η)

n
∥UZT + ZUT ∥F ≤ ϵ∥Z∥F

(270)
In the infinite sample analyses (Lemmas 29 and 30) the first term on the LHS is non-negative
for this choice of Z. In the finite sample case, we instead lower bound as follows. Noting that
Z = V ⊥

r (V ⊥
r )TU is rank k − r, this means that UZT + ZUT is a symmetric matrix of rank

≤ 2(k − r) ≤ 2k by the subadditivity of the rank of matrices. Likewise, UUT − U⋆U
T
⋆ is of rank

≤ k + r ≤ 2k. Therefore, by Assumption 1,

⟨UUT − U⋆U
T
⋆ , UZT + ZUT ⟩H (271)

≥ ⟨UUT − U⋆U
T
⋆ , UZT + ZUT ⟩ − δ∥UUT − U⋆U

T
⋆ ∥F ∥UZT + ZUT ∥F (272)

≥ ⟨UUT − U⋆U
T
⋆ , UZT + ZUT ⟩ − 6δ∥Z∥F ∥UUT − U⋆U

T
⋆ ∥F (273)

where the last inequality uses the assumption that ∥U∥op ≤ 3 which results in the bound,

∥ZUT + UZT ∥F ≤ 2∥U∥op∥Z∥F ≤ 6∥Z∥F . (274)
Therefore, in the finite sample case, instead of eq. (182) (and likewise, eq. (189)) we have,

⟨UUT − U⋆U
T
⋆ , UZT + ZUT ⟩+ λTr(D(U)ZTU) (275)

≲

(
ϵ+ δ∥UUT − U⋆U

T
⋆ ∥F + σ

√
kd log(d/η)

n

)
∥Z∥F (276)

= ν∥Z∥F . (277)
The proof of Lemma 38 follows directly by replacing ϵ by ν everywhere in the remainder of the
proofs of Lemmas 29 to 31.
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Finally, we extend Theorem 32 to the finite sample setting and in combination with the choice of
parameters present the main result in the finite sample setting, a restatement of Theorem 4.
Theorem 39 (Main result in the finite sample setting). Suppose the parameters ϵ, γ, λ and β are cho-
sen as in the population setting (Theorem 3) and consider the solution Uprune returned by Algorithm 1.
Suppose,

n ≥ cn
σ2kd log(d/η)

(ϵ⋆)2
= Θ

(
σ2k2r5d log(d/η)

(σ⋆
r )

4

)
; δ ≤ cδ

(σ⋆
r )

3/2

√
kr5/2

. (278)

for appropriate absolute constants cn, cδ > 0. Then, with probability ≥ 1− η,

1. Uprune has exactly r non-zero columns.

2. Furthermore,

∥UpruneU
T
prune − U⋆U

T
⋆ ∥F ≤

1

2
(σ⋆

r )
2. (279)

In other words, Algorithm 1 results in a solution Uprune having exactly r non-zero columns, and also
serving as a spectral initialization.

Proof. Up until eq. (203), the proof is unchanged. Plugging in the new upper bound on the cosine of
the angle between V ⊥

r (V ⊥
r )TUei and Uei in eq. (267) in Lemma 38, we get,∣∣∣θproj

ij −
π

2

∣∣∣ ≲√ϵ+ γ

λ
+

ν

λβ1/4
. (280)

Assume for a sufficiently small constant c2 > 0, ϵ+ γ ≤ c2λ/r
2. Then the first term on the RHS is

upper bounded by c1
2r for a sufficiently small c1 ≤ 1/3. Recall the definition,

ν = ϵ+ 2δ∥UUT − U⋆U
T
⋆ ∥F + σ

√
kd log(d/η)

n
. (281)

And furthermore, by Lemma 37,

∥UUT − U⋆U
T
⋆ ∥F ≲ max

{
ϵ2/3k1/6, λ

√
k

β
+ σ

√
kd log(d/η)

n
,
√
kγ

}
(282)

Observe that if everywhere ν was replaced by ϵ (or even a constant factor approximation to it), the
proof of Theorem 32 essentially carries over unchanged. Let ϵ⋆ = cϵ

(σ⋆
r )

7/2

√
kr5/2

be the choice of ϵ in the
population setting. This is the “target” value of ϵ in the empirical setting and we show that as long as
δ is sufficiently small (O(1/

√
k)) and n is sufficiently large (Ω̃(dk2)) ν is at most 3ϵ⋆.

In particular, with the same choice of parameters (ϵ, γ, β and λ) as in the population setting, suppose
that,

n ≥ cn
σ2kd log(d/η)

(ϵ⋆)2
= Θ

(
σ2k2r5d log(d/η)

(σ⋆
r )

4

)
; δ ≤ cδ

(σ⋆
r )

3/2

√
kr5/2

. (283)

Note that by choice of the parameters β, λ, γ, ϵ, observe that,

2δ∥UUT − Y⋆U
T
⋆ ∥F ≲ 2δmax

{
ϵ2/3k1/6, λ

√
k

β
,
√
kγ

}
≤ ϵ⋆. (284)

Therefore, combining eqs. (283) and (284) with the definition of ν in eq. (281), we have that
ν ∈ [ϵ⋆, 3ϵ⋆]. With this choice, since ϵ = ϵ⋆ and ν are within constant multiples of each other, the
rest of the proof of Theorem 32 in the population setting carries over. Subsequently plugging in the
choice of λ ,β, ϵ and γ results in the following two statements:

1. Uprune has at most r non-zero columns.

2. ∥UpruneUprune − U⋆U
T
⋆ ∥F ≤

(σ⋆
r )

2

2 .
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However under these two results, Uprune must have exactly r non-zero columns; if it had strictly fewer
than r non-zero columns, then it is impossible to satisfy ∥UpruneUprune − U⋆U

T
⋆ ∥F < (σ⋆

r )
2. This

completes the proof of the theorem.

D Efficiently finding approximate second order stationary points

In this section we discuss efficiently finding second order stationary points of the loss L+ λRβ . We
establish smoothness conditions on L andRβ and show that running gradient descent with sufficiently
bounded perturbations satisfies the property that all iterates are bounded in that ∥Ut∥2 ≤ 3, as long
as the algorithm is initialized within this ball.

Perturbed gradient descent: We consider a first order method having the following update rule:
for all t ≥ 0,

Ut+1 ← Ut − α(∇(L+ λRβ)(Ut) + Pt) (285)

where Pt is a perturbation term, which for example could be the stochastic noise present in SGD.
Over the course of running the update rule eq. (18), we show that the iterates ∥Ut∥2 remains bounded
under mild conditions.

D.1 Proof of Theorem 7

In this section we prove Theorem 7. Below we first show gradient Lipschitzness on the domain
{U : ∥U∥op ≤ 3}. Observe that,

∥∇Lpop(U)−∇Lpop(V )∥F (286)

= ∥(UUT − U⋆U
T
⋆ )U − (V V T − U⋆U

T
⋆ )V ∥F (287)

= ∥UUT (U − V ) + (U(U − V )T + (U − V )V T )V − U⋆U
T
⋆ (U − V )∥F (288)

(i)

≤ ∥U∥2op∥U − V ∥F + ∥U∥op∥U − V ∥F ∥V ∥op + ∥U − V ∥F ∥V ∥2op + ∥U⋆U
T
⋆ ∥op∥U − V ∥F

(289)
≲ ∥U − V ∥F , (290)

where (i) repeatedly uses the bound ∥AB∥F ≤ ∥A∥op∥B∥F and the last inequality follows from the
fact that ∥U∥op ≤ 3 and ∥U⋆∥op = 1. On the other hand, by the gradient computations in Lemma 43,

∥∇2Rβ(U)∥op ≤ sup
Z:∥Z∥F≤1

vec(Z)[∇2Rβ(U)]vec(Z) (291)

≤ sup
Z:∥Z∥F≤1

⟨D(U), ZTZ⟩ (292)

= sup
Z:

∑k
i=1 ∥Zei∥2

2≤1

k∑
i=1

D(U)ii∥Zei∥22 (293)

= max
i∈[k]

D(U)ii ≤
2√
β
. (294)

where the last inequality uses the fact that x+2β
(x+β)3/2

≤ 2√
β

. This implies that,

∥∇Rβ(U)−∇Rβ(V )∥op ≤
2√
β
∥U − V ∥F . (295)

Combining eqs. (290) and (294), by triangle inequality,

∥∇fpop(U)−∇fpop(V )∥F ≲ ∥U − V ∥F (296)

where the assumption λ/
√
β ≤ 1 is invoked.
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Next we prove Hessian Lipschitzness of fpop. By [56, Theorem 3], the Hessian of Lpop satisfies the
condition,

∥∇2Lpop(U)−∇2Lpop(V )∥op ≲ ∥U − V ∥F . (297)

Although the analysis in [56] is provided for the exactly specified case (k = r), it carries over
unchanged to the overparameterized case as well. On the other hand, for any Z,ZU ∈ Rd×k such
that ∥Z∥F , ∥ZU∥F ≤ 1, the rate of change of the Hessian at U evaluated along the direction Z,

lim
t→0

vec(Z)T
[
∇2Rβ(U)−∇2Rβ(U + tZU )

t

]
vec(Z) (298)

= lim
t→0

⟨D(U)−D(U + tZU ), Z
TZ⟩

t
(299)

+

∑k
i=1 G(U + tZU )ii⟨Zei, (U + tZU )ei⟩2 −G(U)ii⟨Zei, Uei⟩2

t
. (300)

The first term of the RHS of eq. (300) can be bounded as,

lim
t→0

⟨D(U)−D(U + tZU ), Z
TZ⟩

t
= −

k∑
i=1

∥Uei∥22 + 4β

(∥Uei∥22 + β)5/2
⟨Uei, ZUei⟩ · ∥Zei∥22 (301)

(i)

≤ max
i∈[k]

∣∣∣∣ ∥Uei∥22 + 4β

(∥Uei∥22 + β)5/2
⟨Uei, ZUei⟩

∣∣∣∣ k∑
i=1

∥Zei∥22 (302)

(ii)

≤ max
i∈[k]

∥Uei∥22 + 4β

(∥Uei∥22 + β)5/2
∥Uei∥2 (303)

≲
1

β
, (304)

where (i) follows by Holder inequality, and (ii) uses the fact that ∥Z∥F , ∥ZU∥F ≤ 1. The last
inequality uses the fact that minx≥0

√
x(x+4β)

(x+β)5/2
≲ 1

β .

On the other hand, by the chain rule, the second term on the RHS of eq. (300) can be computed in
two parts, the first being,

lim
t→0

(G(U + tZU )ii −G(U)ii) ⟨Zei, Uei⟩2

t
= −

k∑
i=1

3(∥Uei∥22 + 6β)

(∥Uei∥22 + β)7/2
⟨Uei, ZUei⟩⟨Zei, Uei⟩2

≤
k∑

i=1

H(U)ii∥Uei∥2⟨Zei, Uei⟩2 (305)

which uses the fact that ∥ZU∥F ≤ 1 H(U)ii =
3(∥Uei∥2

2+6β)∥Uei∥2

(∥Uei∥2
2+β)7/2

. Note that for any c ≥ 0,
the optimization problem which takes the form maxv:∥v∥2

2≤c⟨v, Uei⟩ is maximized when v ∝ Uei.
Therefore, fixing the solution to the remaining coordinates and optimizing over Z for a single i, one
may substitute Zei = xi · Uei/∥Uei∥2 for some xi ∈ R and bound eq. (305) as,

lim
t→0

(G(U + tZU )ii −G(U)ii) ⟨Zei, Uei⟩2

t
≤ max∑k

i=1 x2
i≤1

k∑
i=1

H(U)iix
2
i ∥Uei∥32 (306)

= max
i∈[k]

H(U)ii∥Uei∥32 (307)

≲
1

β
, (308)
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where the last inequality uses the fact that minx≥0
3
√
x3(x+6β)

(x+β)7/2
≲ 1

β . The second part of the second
term on the RHS of eq. (300) is,

lim
t→0

k∑
i=1

G(U)ii
(
⟨Zei, (U + tZU )ei⟩2 − ⟨Zei, Uei⟩2

)
t

(309)

= 2

k∑
i=1

G(U)ii⟨Zei, Uei⟩⟨Zei, ZUei⟩ (310)

≲
k∑

i=1

G(U)ii∥Uei∥F ⟨Zei, ZUei⟩ (311)

≲
k∑

i=1

G(U)ii∥Uei∥F ∥Zei∥2∥ZUei∥2 (312)

≤

√√√√ k∑
i=1

(G(U)ii)2∥Uei∥2F ∥Zei∥22 (313)

≤ max
i∈[k]

G(U)ii∥Uei∥F (314)

≲
1

β
(315)

where in (i) we use the fact that xi = ⟨Zei, ZUei⟩ satisfies |
∑

i xi| = |⟨Z,ZU ⟩| ≤ ∥Z∥F ∥ZU∥F ≤
1. The last inequality uses the fact that maxx≥0

√
x(x+4β)

(x+β)5/2
≲ 1/β. Combining eqs. (304), (308)

and (315) in eq. (300) results in the bound,

max
Z,ZU :∥Z∥F ,∥ZU∥F≤1

lim
t→0

vec(Z)T [∇2Rβ(U)−Rβ(U + tZU )]vec(Z)

t
≲

1

β
(316)

By choosing ZU = (U − V )/∥U − V ∥F , this implies that,

max
Z:∥Z∥F≤1

vec(Z)T [∇2Rβ(U)−∇2Rβ(V )]vec(Z) ≲
1

β
∥U − V ∥F . (317)

This implies that,

∥∇2Rβ(U)−∇2Rβ(V )∥op ≲
1

β
∥U − V ∥F . (318)

Combining with eq. (297) by triangle inequality and noting the assumption that λ ≤ β results in the
equation,

∥∇2fpop(U)− fpop(V )∥op ≲ ∥U − V ∥F . (319)

This completes the proof.

D.2 Proof of Theorem 8

In this section we prove Theorem 8 formally. By the gradient computations in Lemmas 40 and 43
and triangle inequality,

∥Ut+1∥op ≤ ∥(I − αUtU
T
t )Ut∥op + α∥U⋆U

T
⋆ Ut∥op + αλ∥D(Ut)∥op∥Ut∥op + α (320)

≤ ∥(I − αUtU
T
t )Ut∥op + α∥U⋆U

T
⋆ Ut∥op + α

λ√
β
∥Ut∥op + α (321)

where the last inequality follows from the fact that D(Ut) is a diagonal matrix with largest entry upper
bounded by 2/

√
β. Note that ∥(I − αUtU

T
t )Ut∥op = maxi σi(1− ασ2

i ) where {σi}ki=1 denotes the
singular values of Ut. For x ∈ [0, 1/2α], x(1− αx2) is an increasing function. Therefore, assuming
∥Ut∥op ∈ [0, 1/2α],

∥(I − αUtU
T
t )Ut∥op ≤ ∥Ut∥op(1− α∥Ut∥2op). (322)
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Combining everything together,

∥Ut+1∥op ≤ ∥Ut∥op(1− α∥Ut∥2op) + α∥Ut∥op + α
λ√
β
∥Ut∥op + α (323)

≤ ∥Ut∥op(1− α∥Ut∥2op) + 2α∥Ut∥op + α (324)

where the last inequality assumes λ/
√
β ≤ 1. Depending on whether ∥Ut∥op ≥ 2 or ∥Ut∥op ≤ 2,

and recalling that α ≤ 1/8, we may derive two bounds from the above,

0 ≤ ∥Ut∥op ≤ 2 =⇒ ∥Ut+1∥op ≤ ∥Ut∥op(1 + 2α) + α (325)
2 ≤ ∥Ut∥op ≤ 4 =⇒ ∥Ut+1∥op ≤ ∥Ut∥op(1− α) (326)

Suppose the initial iterate satisfied ∥U0∥op ≤ 2, and let t0 be any iteration where ∥Ut0∥op ≤ 2, but
∥Ut0+1∥op ≥ 2. Then by eq. (325), ∥Ut0+1∥op ≤ 3. However, in the subsequent iterations, ∥Ut∥op
must decrease until it is no larger than 2, by virtue of eq. (326). This implies the statement of the
theorem.

E Gradient and Hessian computations

E.1 Population mean square error

Lemma 40. Consider the function Lpop(U) = ∥UUT − U⋆U
T
⋆ ∥2F . Then,

1. The gradient of L satisfies ⟨∇Lpop(U), Z⟩ = 2⟨(UUT − U⋆U
T
⋆ ), UZT + ZUT ⟩.

2. For any Z ∈ Rd×k,

vec(Z)T [∇2Lpop(U)]vec(Z) = 4⟨Z, (UUT − U⋆U
T
⋆ )Z⟩+ 2∥UZT + ZUT ∥2F . (327)

Proof. The first part is proved in [57, eq. (59)]. The second part is proved shortly after in [57, eq.
(61)].

Lemma 41. Consider the function L(U) = f(UUT ) : Rd×k → R for some doubly differentiable
function f : Rd×d → R. Then,

1. For any Z ∈ Rd×k, ⟨∇L(U), Z⟩ = ⟨(∇f)(UUT ), UZT + ZUT ⟩.

2. For any Z ∈ Rd×d,

vec(Z)T [∇2L(U)]vec(Z)

= vec(UZT + ZUT )T [(∇2f)(UUT )]vec(UZT + ZUT ) + 2⟨(∇f)(UUT ), ZZT ⟩
(328)

Proof. This result is straightforward to prove by direct computation.

E.2 Empirical mean square error

Lemma 42. Consider the loss f(U) = ∥UUT −U⋆U⋆∥2H where ∥ · ∥H is defined in eq. (251). Then,

1. The gradient of f satisfies, ⟨∇f(U), Z⟩ = 2⟨UUT − U⋆U
T
⋆ , UZT + ZUT ⟩H.

2. For any Z ∈ Rd×d,

vec(Z)T [∇2f(U)]vec(Z) = 4⟨UUT − U⋆U
T
⋆ , ZZT ⟩H + 2∥UZT + ZUT ∥2H. (329)

Proof. These results are proved in [36, eq. (18)].
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E.3 RegularizationRβ

Lemma 43. Consider the functionRβ : Rd×m → R defined asRβ(U) =
∑m

i=1 L
β
2 (Uei). Define,

D(U) = diag
({

(∥Uei∥22 + 2β)

(∥Uei∥22 + β)3/2
: i ∈ [m]

})
, and, (330)

G(U) = diag
({

(∥Uei∥22 + 4β)

(∥Uei∥22 + β)5/2
: i ∈ [m]

})
. (331)

For any Z ∈ Rd×m,

1. The gradient ofRβ is,∇Rβ(U) = UD(U).

2. The Hessian ofRβ satisfies,

vec(Z)T [∇2Rβ(U)]vec(Z) = ⟨D(U), ZTZ⟩ −
m∑
i=1

G(U)ii⟨Uei, Zei⟩2 (332)

Proof. Note that the gradient of ℓβ2 (v) as a function of v is,

∇Lβ
2 (v) =

2v√
∥v∥22 + β

− 1

2

∥v∥22
(∥v∥22 + β)3/2

· (2v) = (∥v∥22 + 2β)v

(∥v∥22 + β)3/2
. (333)

Therefore,

⟨Z,∇Rβ(U)⟩ =
d∑

i=1

(∥Uei∥22 + 2β)

(∥Uei∥22 + β)3/2
⟨Uei, Zei⟩ (334)

=

d∑
i=1

(∥Uei∥22 + 2β)

(∥Uei∥22 + β)3/2
Tr
(
Zeie

T
i U

T
)

(335)

= Tr
(
D(U) · UTZ

)
, (336)

where D(U) = diag
({

(∥Uei∥2
2+2β)

(∥Uei∥2
2+β)3/2

: i ∈ [m]
})

is as defined in eq. (330).

On the other hand, the Hessian of ℓβ2 (v) as a function of v is,

∇2ℓβ2 (v) =
(∥v∥22 + 2β)

(∥v∥22 + β)3/2
I − 3(∥v∥22 + 2β)

(∥v∥22 + β)5/2
vvT +

2

(∥v∥22 + β)3/2
vvT (337)

=
(∥v∥22 + 2β)

(∥v∥22 + β)3/2
I − ∥v∥22 + 4β

(∥v∥22 + β)5/2
vvT . (338)

The Hessian ofRβ is block diagonal with the ith block equal to ∇2ℓβ2 (Uei). Therefore,

vec(Z)T [∇2Rβ(U)]vec(Z) =

m∑
i=1

(∥Uei∥22 + 2β)

(∥Uei∥22 + β)3/2
∥Zei∥22 −

∥Uei∥22 + 4β

(∥Uei∥22 + β)5/2
⟨Uei, Zei⟩2

(339)

=

m∑
i=1

D(U)ii∥Zei∥22 −G(U)ii⟨Uei, Zei⟩2 (340)

= Tr(D(U) · ZZT )−
m∑
i=1

G(U)ii⟨Uei, Zei⟩2 (341)

Finally we introduce a lemma bounding the entries of D(U) and G(U).
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Lemma 44. Suppose for some i ∈ [k], ∥Uei∥2 ≥ 2
√
β. Then the corresponding diagonal entries of

D(U) and G(U) satisfy,

(D(U))ii ≥
1

∥Uei∥2
(342)

(G(U))ii ≥
1

∥Uei∥32
. (343)

On the other hand, for any U such that ∥U∥op ≤ 3,

(D(U))ii ≤
∥Uei∥22 + 2β

(∥Uei∥22 + β)3/2
(344)

Proof. The proof for eq. (342) follows by observing that D(U)ii =
∥Uei∥2

2+2x

(∥Uei∥2
2+x)3/2

where x = β.
Differentiating we observe that the derivative of function in x is,

2(∥Uei∥22 + x)− 3/2(∥Uei∥22 + 2x)

(∥Uei∥22 + x)5/2
=

1
2∥Uei∥22 − x

(∥Uei∥22 + x)5/2
(345)

which is increasing as long as x ≤ 1
2∥Uei∥22. Note that when ∥Uei∥2 ≥ 2

√
β =⇒ x = β ≤

1
4∥Uei∥22, the function is increasing in x and therefore the minimum is achieved with β = 0. This
results in the lower bound,

(D(U))ii ≥
1

∥Uei∥2
. (346)

Likeiwse, G(U) =
∥Uei∥2

2+4x

(∥Uei∥2
2+x)5/2

where x = β, and differentiating in x, we get,

4(∥Uei∥22 + x)− 5/2(∥Uei∥22 + 2x)

(∥Uei∥22 + x)5/2
=

3
2∥Uei∥22 − x

(∥Uei∥22 + x)5/2
(347)

which is increasing as long as x ≤ 3
2∥Uei∥22. Yet again, the function is in the increasing regime in

x = β under the constraint 2
√
β ≤ ∥Uei∥2; the minimum is achieved at β = 0, which results in

eq. (343).

F Implications for shallow neural networks with quadratic activation
functions

The extension of results from the matrix sensing model to the training of quadratic neural networks
was previously carried out in [19, Section 5] and originally in [21], which we explain in more detail
below. Indeed, when the measurement matrices are of the form Ai = xix

T
i for some vector xi ∈ Rd,

the functional representation of the output can be written as ⟨Ai, UUT ⟩ =
∑k

i=1 σ(⟨xi, Uei⟩), where
σ(·) = (·)2 takes the form of a 1-hidden layer shallow network with quadratic activations, with
the output layer frozen as all 1’s. The columns of U correspond to the weight vectors associated
with individual neurons of the network. Likewise, sparsity in the column domain corresponds
to learning networks with only a few non-zero neurons. In this section we provide a high level
sketch of how results for matrix sensing can be extended for the training of neural networks with
quadratic activations. We avoid going through the formal details for the sake of simplicity and ease
of exposition.

Why can the results proved for matrix sensing not directly be applied here? It turns out that when
the xi are i.i.d. Gaussian vectors, even if n→∞, rank 1 measurements do not satisfy the restricted
isometry property. In particular, 1

n

∑n
i=1⟨Ai, X⟩2 ̸≈ ∥X∥2F . However, these measurements satisfy a

different form of low rank approximation, as established in [19, Lemma 5.1] and as we informally
state below. In particular, when xi ∼ N (0, I) are Gaussian, for any matrix X ∈ Rd×d,

1

n

n∑
i=1

⟨Ai, X⟩2 ≈ 2∥X∥2F + (Tr(X))2 (348)
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where the approximation becomes exact as n→∞. In particular, with the choice of X = UUT −
U⋆U

T
⋆ , the mean squared error of the learner training a quadratic neural network takes the form,

LNN(U) =
1

n

n∑
i=1

(
⟨Ai, UUT ⟩ − ⟨Ai, U⋆U

T
⋆ ⟩
)2 ≈ 2∥UUT − U⋆U

T
⋆ ∥2F +

(
∥U∥2F − ∥U⋆∥2F

)2
Notice that the RHS is, up to scaling factors, the mean squared error for matrix sensing, with an
additional loss (∥U∥2F −∥U⋆∥2F )2 added to it. This loss can easily be estimated since it only relies on
estimating a scalar, ∥U⋆∥2F , which is approximated by 1

n

∑n
i=1 yi =

1
n

∑n
i=1⟨xix

T
i , U⋆U

T
⋆ ⟩+ εi ≈

∥U⋆∥2F . In the sequel, we assume that ∥U⋆∥F was known exactly and consider the loss,

fNN(U) = LNN(U)−
(
∥U∥2F − ∥U⋆∥2F

)2
+Rβ(U) (349)

which subtracts the “correction term” (∥U∥2F − ∥U⋆∥2F )2 from the mean squared error LNN(U) and
also adds back the group Lasso regularizer on U . Overall fNN(U) approximately equals 2∥UUT −
U⋆U

T
⋆ ∥2F +Rβ(U) and therefore, running perturbed gradient descent on this loss and reusing the

analysis for matrix sensing shows that the algorithm eventually converges to a solution UUT ≈ U⋆U
T
⋆

and such that U has approximately r columns.
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