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Abstract

The rapid scaling of language models is motivating research using low-bitwidth
quantization. In this work, we propose a novel binarization technique for Trans-
formers applied to machine translation (BMT), the first of its kind. We identify and
address the problem of inflated dot-product variance when using one-bit weights
and activations. Specifically, BMT leverages additional LayerNorms and residual
connections to improve binarization quality. Experiments on the WMT dataset
show that a one-bit weight-only Transformer can achieve the same quality as a float
one, while being 16× smaller in size. One-bit activations incur varying degrees of
quality drop, but mitigated by the proposed architectural changes. We further con-
duct a scaling law study using production-scale translation datasets, which shows
that one-bit weight Transformers scale and generalize well in both in-domain and
out-of-domain settings3.

1 Introduction

Neural language models are scaling, with the parameter count of recent models, such as the GPT
family, roughly increased by 10× per year [29]. A scaling law study by Kaplan et al. [21] suggests that
the continuous increase in model parameters is strongly correlated with performance improvement.
This trend has been validated by recent successes in large-scale models, such as the 540-billion
parameter Pathways Language Model (PaLM), which achieves breakthrough performance on language
understanding and generation [11]. The 540-billion parameter Minerva [25] also exceeded the national
average on the National Math Exam in Poland in 2021, where language models were previously far
from human-level. Similarly, in the field of neural machine translation (MT), the scaling law holds, as
reported by Ghorbani et al. [16], with the translation quality improving as the model size increases.

The aggressive scaling trend resulted in unprecedented challenges in model serving. In particular:

The inference cost grows exponentially. The size and computational complexity of language models
are increasing rapidly, with roughly a 10× increase in model size and a 100× increase in operation

∗Equal contribution.
†Work done while at Google.
3Source code is available in the init2winit library: https://github.com/google/init2winit/blob/

master/init2winit/model_lib/xformer_translate_binary.py
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count per year [18]. However, the energy efficiency of hardware used to run these models is not
keeping pace. Specifically, the energy required for FP32 operations has improved by only 2.5× over
the past 11 years (2007-2018), from 45nm to 7nm process nodes. Over the same period, DRAM
access energy has only improved by 6.3× [20]. The ever-growing gap between model size inflation
and inefficiency in hardware energy utility is causing inference energy to grow exponentially, which
is becoming a major cost of running language models in datacenters.

The inter-chip communication overhead becomes non-negligible. Data parallelism alone is no
longer sufficient for models at such a large scale since one matrix multiplication cannot fit on a single
accelerator chip. Each weight tensor in PaLM [11], for example, is partitioned across 3072 TPUv4
chips in a pod. This leads to a huge overhead on transferring the weights and intermediate activations
across the datacenter networks.

Latency-critical applications can now hardly benefit from parameter caching. Loading model
parameters from DRAM to on-chip accelerator memory often takes a lot of time during inference.
In the past, parameter caching was an effective optimization for latency because it reused model
weights and avoided off-chip memory transfers. However, evaluations on edge TPUs reported that
this method works best for models with fewer than 30 million parameters [36]. For larger models,
parameter caching even becomes harmful. Benefits from compiler optimizations are diminishing,
and the serving latency becomes almost proportional to the model parameter count. In our case, the
smallest translation model has about 50 million parameters. Improving latency thus boils down to
increasing memory bandwidth alone.

Quantization can significantly reduce inference cost. Binarization is an extreme case where both the
weights and activations of a matrix multiplication (matmul) are quantized to a single bit. Compared
to the Brain floating-point format (bfloat16) [1] 4, binarization reduces the weight size by 16×, thus
significantly lowering the memory and communication overhead. Moreover, a binarized matmul can
be carried out by XNOR operations followed by a population count, which is estimated to be 256×
more energy-efficient than the bfloat16 counterpart [39].

Prior work shows that BERT can be binarized for pretraining [5, 33, 28]; however, it is important to
note that the BERT and MT models, which both use Transformer as their core [37], are very different.
One key difference is the architecture: while an MT model has both an encoder and a decoder, BERT
only has an encoder. This difference can impact the quality of encoder quantization because every
cross attention layer in the decoder requires outputs from the encoder. Another difference is that
MT model inference produces a sequence of text, while BERT performs a single text classification.
This is critical because each word in the output translation sequence affects the generation of the
next word. The sampling distribution of a word is therefore crucial and should be preserved after
binarization, but for BERT, only the peak of the logits needs to be preserved. Due to these differences,
directly applying BERT binarization techniques to MT can easily result in a lower quality model.

In this work, we investigate binarized Transformer for neural machine translation, which, to our
knowledge, is the first study on this topic. Each Transformer block contains an attention layer and
a feed-forward network (FFN). We binarize the weights and activations separately so we can study
how each one affects the quality of the model. We found that binarizing weights did not significantly
affect accuracy, but that traditional methods for binarizing activations led to poor performance due to
activation magnitude explosion. Then, we propose a new method for activation binarization that uses
a simple scaling factor and additional residual connections.

To understand the scaling behavior of the proposed 1-bit Transformer in practice, we further evaluate
it on our in-house production-scale translation dataset that contains three billion sentence pairs. We
for the first time demonstrate that the 1-bit weight Transformer scales and generalizes similarly well
as the float one, even on the out-of-domain data. We also analyze sentences sampled from both
models’ outputs and find that the 1-bit Transformer generates a similar translation quality as its float
counterpart. Binarization can therefore be a potential candidate for future MT model serving.

2 Related Work

The success of Transformer has spurred an active body of work to quantize it to lower precision. In
this section, we review a subset of these efforts that inspired our approach.

4In the remaining paper, “float” refers to bfloat16.

2



Transformer quantization. Much of the prior effort focused on 8-bit Transformer. Bhandare et al.
[8] reported a less than 0.5 BLEU drop on the WMT14 En-De translation task with 8 bits. Prato et al.
[32] showed an 8-bit Transformer preserved the translation quality. For non-generative tasks, Zafrir
et al. [38] quantized BERT to 8-bit with marginal quality loss. When pushed down to 4 bits, though
Prato et al. [32] reported an 8 BLEU degradation for MT, Aji and Heafield [2] reported almost no
BLEU loss by using a logarithmic quantization scheme.

The exploration on 1-bit Transformers centered around BERT. Usually binarization is directly applied
and the focus is on improving the training recipe. Bai et al. [5] initiated the attempt by splitting a
ternary BERT into a binary one, then fine-tuning. It achieved 41% average accuracy on the GLUE
benchmarks. Qin et al. [33] proposed to distill each intermediate layer outputs from a floating-point
model. Recently, Liu et al. [28] proposed to incrementally quantize the model, e.g., from 32-bit to
4-bit to 2-bit, finally to 1-bit, and it improved the GLUE accuracy to 73.5%.

Binarized vision models. Courbariaux et al. [12] pioneered the investigation on binarized deep
neural nets. Recently, PokeBNN [39] established a pareto SOTA on the ImageNet recognition task.
We inherit the binarization functions and training recipes from PokeBNN.

Generalizability. Hooker et al. [19] show that compressed models do not generalize well on out-
of-domain (OOD) data. We are particularly interested in evaluating BMT under OOD settings and
analyze its generalizability.

3 Algorithm and Model Architecture

In this section, we introduce the methodology of binarizing a Transformer-based MT model. We first
define the binarization equations, then show that directly applying the equations to Transformer will
produce an inferior model quality because of the dot-product variance inflation. A scaling factor is
then proposed as a solution to this problem, and we discuss using LayerNorm [4] to replace fixed
scaling factors. Finally, we combine and present the architectural changes that are necessary to
improve the binarized model quality.

3.1 Binarization Equations

We follow the approach defined in PokeBNN [39] and AQT [24], which includes an important
hyperparameter “B”. The function of casting floating-point values into binary values is

clip (x, xmin, xmax) := min (xmax,max (xmin, x))

xb :=
(
floor

(
clip

( x

B
,−1 + ϵ, 1− ϵ

))
+ 0.5

)
×B

where x is the input tensor, ϵ is a small floating-point number that prevents overflow when taking the
floor, and B is the binarization bound. In the backward propagation, the floor function is ignored, i.e.,
∂ floor(x)

∂x := 1, known as the straight-through estimator [12]. The gradient of the entire binarization
function is then ∂xb

x = 1x∈[−B,B], otherwise zero. The bound B therefore serves as a hyperparameter
that controls the range of the input values that will have non-zero gradients. Note that B also serves
as a scaling factor for the outputs since the binarization function maps x →

{
−B

2 ,+
B
2

}
. The bound

B can also generalize to a vector, depending on the granularity of binarization. The finest granularity,
however, is one bound value for each dot product, i.e., per contraction dimension, so that the binarized
matrix multiplication can be accelerated.

For a dense layer in Transformer of the form A ·W , where AN×dmodel is the input activations and
W dmodel×dk is the model weights, we instead compute a binarized matmul Ab ·Wb. Throughout the
experiments we apply binarization bound BW and BA for weights and activations, respectively.

BW = max(abs(W ), axis = dmodel), BA = max(abs(A), axis = dmodel)

where axis is the dimension along which max is taken. Using one axis means the bound is per
channel and per example [24]. Both BN×1

A and B1×dk

W are vectors that contain maximum absolute
values along the contraction dimension. Note that the weight binarization bound BW is static in
inference though it is updated in every training iteration. The activation bound BA is dynamic.
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3.2 Variance Inflation in Binarization

We start by applying the binarization function to feed-forward networks (FFNs), leaving other
modules as float. We observe that directly binarizing the weights preserves the model quality,
but binarizing the input activations causes the training to not converge in the context of machine
translation. To understand the reason of this behavior, we analyze the variance of the dot product
magnitude with and without binarization. Our analysis reveals that binarizing both weights and
activations will statistically inflate the magnitude, leading to abnormal signal propagation within the
neural network [10]. We present the details of this analysis as follows.

Let each weight of a dense layer be randomly initialized and sampled from a zero-mean normal
distribution, w ∼ N (0, σ2

w). Assume each input activation is independent of the weights and
identically distributed as a ∼ N (0, σ2

a). After applying the binarization function, both wb and ab
are still centered at zero and have an equal probability of being either −B

2 or +B
2 , namely, they

follow the probability mass function defined as Pr (xb) =

{
1
2 xb = −B

2
1
2 xb = +B

2

. Hence the variance of a

binarized multiplication is

Var (ab · wb) = E
[
a2b
]
· E

[
w2

b

]
− E2 [ab] · E2 [wb] =

∑
ab

a2b ·Pr (ab) ·
∑
wb

w2
b ·Pr (wb)− 0 =

B4

16

The variance of a binarized dot product is then Var (Ab ·Wb) =
∑D−1

n=0 Varn (ab · wb) =
B4

16 ·D,
where D is the dimensionality of the dot product, i.e., the hidden projection dimension in an FFN,
and n is the index of each entry in the vector.

Following the same analysis, the variance of a floating-point dot-product is Var (A ·W ) = σ2
a ·σ2

w ·D.
Note that the commonly used Xavier initializer [17] equalizes the variance of the activations across
layers. σ2

w will therefore be initialized as 1
D , so Var (A ·W ) = σ2

a, which is usually at the scale of 1.

Meanwhile, the common binarization bound is B ∈ [1, 3] [12, 39, 7]. Our Transformer FFN employs
a hidden projection dimension D = 4096 throughout the experiments. Therefore, Var (Ab ·Wb) ≫
Var (A ·W ). Binarization heavily inflates the dot product variance by at least 256×, which will be
reflected in the magnitude of the dense layer outputs. Also note that Var (Ab ·Wb) ∝ D, indicating
that Transformer with a larger width will potentially suffer more from the convergence issue.

3.3 A Scaling Factor as the Solution

Figure 1: BMT Multi-Head Atten-
tion — Differences from the origi-
nal Transformer are highlighted (in
yellow). All linear projections and
einsums can be binarized.

Inspired by the scaling factor
√
dk in the scaled dot-product

attention Attention (Q,K, V ) = softmax
(

QKT

√
dk

)
V in the

original Transformer [37], we propose a scaling factor for each
binarized dense layer, i.e.,

Dense (Ab) =
Ab ·Wb

s

The scaling factor s is a hyperparameter that suppresses dot-
product variance inflation, while in the attention layer

√
dk

prevents the dot products from entering small-gradient regions
of the softmax function. According to the analysis in Sec-
tion 3.2, its value is estimated to be s ∝

√
D in order to cancel

the multiplicative effect from D on the variance.

To verify how the magnitude of the scaling factor affects the
training loss, we sweep s in Section 5. In practice, s ≥ 64 can
make the training converge.

3.4 Replacement of Scaling Factor with LayerNorm

While the scaling factor s enables the binarization of FFNs, it
requires hyperparameter tuning, which can be challenging for
billion-parameter translation models. To address this deficiency, we propose using layer normalization
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(LayerNorm) [4] as a drop-in replacement for the scaling factor, which has the form of LN (x) =
x−E[x]√
Var(x)+ϵ

· γ + β, where γ and β are learnable parameters. Besides the fact that γ can incorporate

the scaling factor s, LayerNorm also has the following advantages.

The scaling factor is now dynamic and adaptive during training. The binarization function employs
a dynamic bound B, so Var (Ab ·Wb) varies. The learnable parameter γ in LayerNorm can better
capture the changes in the dot product variance and hence properly normalize it.

LayerNorm also redistributes the input activations. It enables the binarization of a tensor with all
positive values. A directly binarized FFN is FFN (A) = max (0, AbW1b + b1)b W2b + b2, where
W1, b1 and W2, b2 are the weights and biases for the first and second dense layer, respectively. One
may note that the activations max (0, AbW1b + b1) are all positive. The binarization function will
then map the entire tensor to a constant +B

2 , which undermines the model training. With the help
LayerNorm, however, the activations are redistributed and more balanced in terms of the number
of positive and negative values. This enables the normal {−1,+1} (bipolar) binarization of the
second dense layer. Qin et al. [33], Liu et al. [28] used {0, 1} binarization instead in binarized BERT
to overcome the issue of constant positive values. It yields a ternary matrix multiplication since
A ∈ {0, 1}N×D and W ∈ {−1,+1}D×K , which incurs nontrivial additional overhead if computed
on binary hardware accelerator. The complete proposed 1-bit FFN has the structure of

FFN (A) = LN (LN (max (0, AbW1b + b1))b ·W2b + b2)

When proceeding to the attention binarization, we add a LayerNorm to the output of each linear
projection layer for the same reasons. We verified in Section 5 that a dynamic and adaptive scaling
factor in LayerNorm indeed outperformed a fixed one.

3.5 Residual Connection in Attention Layers

In attention layers, we also add a shortcut connection to the output linear projection layer. Combined
with the additional LayerNorm, the output projection then becomes Out (A) = LN (A ·W ) +A. In
BNNs, gradients of a binarized layer are approximated due to the straight-through estimator. This
will eventually lead the optimization into a different direction as we stack more binarized layers. Liu
et al. [26] proposed adding additional residual connections in BNNs, which became a useful method
for partially addressing this issue. We therefore adopt it in our model. Note that this modification is
unnecessary for QKV (query, key, value) linear projections. The shortcut around the entire attention
layer in the original Transform serves the same purpose. We will also demonstrate the effectiveness
of the shortcut connection in the ablation study in Section 5.

The complete modified attention architecture is shown in Figure 1, where we highlight the differences
from the original one. The extra layer normalization and shortcut connection are both elementwise.
Their overhead is small, especially comparing to the benefits of binarization.

4 Experiments

In this section, we empirically evaluate our proposed binarized Transformer on MT tasks at difference
scales. To investigate the impact of binarizing different layers, we first train a standard 6-layer
encoder-decoder (6L6L) Transformer on the WMT2017 De-En translation dataset [9] and evaluate
it on the WMT2014 De-En dataset. We then choose the 1-bit weight model variant and study its
practical scaling law on in-house translation datasets. We also compare the translation qualities of
both 1-bit and float models. Throughout the experiments, the embedding table and the prediction
head layer are not binarized.

4.1 WMT Results

We binarize five different matmuls in a Transformer. In an attention layer there are (1) QKV linear
projections; (2) activation-activation matmul between queries and keys (QK Einsum); (3) activation-
activation matmul between attention scores and values (Score-V Einsum); (4) output linear projection.
In an FFN there are two dense layers of the same type. To study their individual impact, we binarize
their weights and activations separately. In our experiments we use the following training details.
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Model. We use a 6L6L Transformer as the base model. Embedding dimension is 1024. Each
multi-head attention layer has 16 heads, with a dimension of 1024 for QKV if combining all the
heads. The hidden projection dimension in FFNs is 4096. Dropout layers has a dropout rate of 0.1.

Scheduler. We adopt a three-stage training scheme, where the learning rate (LR) of each stage
decreases from base to zero following a cosine decay. A quantization event starts at the beginning of
each stage. We first train the model in float. In the second stage, all weights will be binarized. In the
last stage, both weights and activations will be binarized.

Table 1: BMT results on the WMT dataset. Training uses WMT2017 De-En and evaluation uses
WMT2014 De-En. Binarized activations or weights are labeled by checkmarks. Unlabeled tensors
remains bfloat16. 1-bit weights models have 25MB of weight storage size while the float one has
399MB, ∼ 16× compression. As a comparison, the baseline model (last row) directly applies
XNOR-Net style [34] binarization used in previous works [33, 28], sign function followed by a
normalization. BLEU evaluation employs a beam size of 4.

ATTENTION 1-BIT FFN 1-BIT METRICS

AQKV WQKV AOUT WOUT QK SCORE-V AFFN WFFN VAL LOSS BLEU
FLOAT 1.39 26.35
BMT-1 ✓ ✓ ✓ 1.38 25.93
BMT-2 ✓ ✓ 1.40 25.44
BMT-3 ✓ ✓ ✓ ✓ 1.51 24.11
BMT-4 ✓ ✓ ✓ ✓ ✓ 1.72 21.55
BMT-5 ✓ ✓ ✓ ✓ ✓ 1.60 21.06
BMT-6 ✓ ✓ ✓ ✓ ✓ ✓ 1.89 17.87
BMT-7 ✓ ✓ ✓ ✓ 1.76 18.27
BMT-8 ✓ ✓ ✓ ✓ ✓ 2.81 9.42

BASE [33, 28] ✓ ✓ 8.07 0.21

Training. We apply knowledge distillation (KD) during training. KD replaces the ground truth label
in the cross-entropy loss function with the softmaxed logits from the teacher model, so it is optional
for users. Adam optimizer [22] is used with β1 = 0.9 and β2 = 0.98. No weight decay is applied.
Batch size is 1024. Base learning rate is 0.001. The first LR cycle has 50000 steps, others have 88339
steps. We train the model with a 4×8 TPU topology.

Observations. The evaluation results on WMT2014 De-En translation dataset is shown in Table 1.
We mainly rely on the validation loss for comparing the model quality since BLEU score has a higher
variation [16]. From the table we have the following key observations.

Weight-only binarization preserves the model loss. The float 6L6L Transformer baseline has a
1.39 validation loss. In contrast, binarizing all dense layer weights (in both attention layers and
FFNs) produces an even lower loss (1.38, BMT-1), though the BLEU score slightly drops by about
0.4. Both metrics indicate that the 1-bit weight model has a similar translation quality to the float
baseline. Binarization has the potential to compress the model storage size by 16× while preserving
the quality.

FFN binarization produces promising results. Binarizing the entire FFN, i.e., both activations and
weights, while leaving other layers float, again yields a similar validation loss (1.4, BMT-2) compared
with the float baseline. With our proposed BMT, it is the first time on machine translation tasks that
binarizing FFN activations can preserve the loss. This intriguing 1-bit FFN variant can be potentially
useful for large language models. Combing with 1-bit all dense layer weights further downgrades
the loss to 1.51 (BMT-3) and a 2.2 lower BLEU score in contrast to the float model. Overall, FFN
binarization demonstrates a promising potential.

Attention activations are the key bottleneck to high binary model quality. On top of the 1-bit
weights and 1-bit FFN activation model variant, further binarizing input activations in all dense
layers in the attention layer (BMT-6; this includes keys, queries, values and input activations to the
output projection dense layer) leads to a 1.89 loss. This is by far the largest drop in model quality.
Binarizing each individual activation tensor therein leads to at least 0.3 degradation in loss (BMT-4
and 5). In addition, binarizing the two activation-activation matmuls (query-key einsum operation and
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(a) {pe, pd} : {0.18, 0.31}Float, {0.16, 0.28}Binary. In-
domain evaluation.

(b) {pe, pd} : {0.13, 0.25}Float, {0.13, 0.25}Binary.
Out-of-domain evaluation.

Figure 2: Scaling law study on both in-domain and out-of-domain data — On in-domain data, scaling
law fits achieve R2 values of 99.5 and 99.7 on float and binary models respectively. On out-of-domain
data (Wikipedia), R2 values are 99.6 and 99.8 respectively. Scaling law fit on all the evaluation
datasets, along with slopes (pe and pd) is presented in Figure 7 and Figure 8 (Appendix A).

attention score-value einsum operation) are particularly challenging. The 1-bit weights model with
both activation-activation matmuls binarized additionally produces only 9.4 BLEU score (BMT-8).
Attention layer activations are the current bottleneck to a fully binarized translation model.

4.2 Scaling Law Study

Though Section 4.1 shows promising results, an unanswered question is whether the performance
degrades when binarized Transformers are scaled up. Neural language model loss is known to follow
a power law as its model size scales up [21], known as the “scaling law”. It is widely adopted for
predicting the performance of models at scale. Prior work shows 8-bit and 4-bit language models
are subject to a certain scaling law, but this has not yet been established for models with 3-bits
or lower [13]. We therefore conduct a scaling law study on both float and the proposed binarized
models on our in-house translation dataset and compare their difference. Similar to Ghorbani
et al. [16], we train a set of translation models and fit the losses using the following equation:

L(Ne, Nd) = α
(

N̄e

Ne

)pe
(

N̄d

Nd

)pd

+ L∞, where L is the per token loss, Ne, Nd are the number of
encoder and decoder parameters respectively. L∞ is the irreducible loss that the model attains if it has
infinite capacity. N̄e (N̄d) is the number of parameters in the baseline 6L6L Transformer, which act as
normalization constants for numerical stability in the curve fitting process. For tractability purposes,
we examine scaling laws for only weight-binarized models. Weight-only model compression can also
be leveraged for linear improvements in latency [36] and 16× improvements in memory consumption
(compared to blfoat16).

Dataset. To investigate the scaling behavior of the binary models in a capacity limited regime, i.e.,
performance is not bound by training data, we use our large in-house parallel corpora for English to
German (En → De) direction. The training set contains 3 billion web-crawled sentence pairs. We are
also particularly interested in evaluating BMT with the out-of-domain (OOD) setting and assessing
its generalizability, as previous research in the image domain demonstrated that compressed models
(weight pruned or quantized) have a much larger quality drop on OOD data than their uncompressed
counterparts, i.e., model compression amplifies brittleness [19]. As such, to have a robust evaluation
of BMT, we use eleven evaluation sets, one of which is in-domain (ID) and is similarly distributed
as the training set, and the rest are OOD. For ID, we sample 2000 training examples and remove
them from the training data. The ten OOD evaluation sets are divided into four categories (i) Web
Domain (ii) News Domain (iii) Wikipedia (iv) Patents. Furthermore, they are either “source-original”
or “target-original”. The source-original datasets have a natural source side (English) while the target
side (German) is human or machine translated. The target-original datasets have the natural target
side (German), then back translated into source English sentences. We do this differentiation to
investigate the impact of binarization on “style” of sentences since natural language exhibits rich
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diversity as opposed to simple and literal (translationese) sentences [14] (More details are provided
in Appendex A.1).

Models & Training. We train two sets of Transformers, namely, encoder-scaling and decoder-scaling
models. The encoder-scaling models have a fixed depth of 6 layers in the decoder while scaling
up the encoder depth in sizes of {6, 8, 10, 12, 14, 18, 22, 26, 30, 36, 42, 48} layers, for a total of 12
models. Same for the decoder-scaling ones, whereby the decoder depth is scaled up in similar ways.
Due to the sufficiency in training data, we did not use label smoothing during training. The binary
models are trained without KD. (Appendix A.2 has more details on hyper-parameters and training).

Observations. Figure 2 compares the scaling curves of the binary and float models on both ID and
OOD datasets, more in Appendix A.3. Figure 3 compares their training vs. In-domain test loss. We
make the following observations:

Binary models demonstrated similar scaling behaviors as their float counterpart for both
encoder and decoder scaling. The exponent of the fitted power law for binary models in Figure
2a (pe = 0.16, pd = 0.28) is only slightly below float ones (pe = 0.18, pd = 0.31), indicating the
binary model loss improves fast as the parameter count increases. This trend also holds for OOD
Wikipedia dataset in Figure 2b. Binary models generalize just as well on OOD data as float models
(scaling law fits on all the OOD evaluation datasets is in Appendix A.3). We also note a gap between
binary and float model losses, a phenomenon not observed from WMT experiments. We hypothesize
that this is because the in-house production-scale datasets are more challenging.

Figure 3: Training vs. ID Test loss. We observe
similar linear relationship between training and
test losses of all evaluation datasets.

For the same training loss, binary and float
models achieve the same generalization per-
formance. As shown in Figure 3, binary and
float model losses align well on a straight line,
and almost overlap in the 0.95 ∼ 1.0 region.
There are no measurable differences detected
in the inductive biases of the two model classes.
Also, binary models require fewer parameter bits
to achieve a certain performance level. For ex-
ample, a 6L42L binary Transformer with 195M
parameters (195M bits) has a 4.3× smaller size
than a 6L8L float one with 52M parameters
(832M bits) while having the same loss. Such
memory savings are especially advantageous
when the models are deployed in a resource-
constrained environments [36].

4.3 Generation Quality

We examine the MT model generation quality in Figure 4 using two decoding strategies: a) Beam
Search Decoding; b) Minimum Bayes Risk (MBR) decoding [23].

Beam search. Sample quality from Beam search decoding is evaluated with standard de-tokenized
BLEU scores [30] using sacreBLEU library [31]5.

MBR. Freitag et al. [15] show that beam search decoding selects samples with high probability rather
than high quality, especially for large models, as measured by human evaluations. They propose
MBR-based decoding strategy defined as hMBR = argmax

h∈H

1
|Hmodel|

∑
y∈Hmodel

u(h, y), where hMBR is

the decoding from the model given source sentence x, Hmodel is the set of hypotheses sampled from
the model p(.|x) and u is a utility function that evaluates quality of a hypothesis h against reference
y. Freitag et al. [15] demonstrate effectiveness of the BLEURT model [35] for the utility function.
BLEURT is a regression model that relies on the concatenation of hypothesis h and reference y
and generates a scalar score between [0,1], measuring the hypothesis quality irrespective of the
sentence structure, length or word overlap with the reference. In the same way, we use MBR decoding
with BLEURT as the utility function to decode a sequence given the source sentence. To measure
the sample quality, BLEURT(h, r) is calculated between the decoded hypothesis (hMBR) and the
reference (r) for a given source sentence (x), then averaged across the evaluation set.

5Beam size=4, length penalty=0.6. case.mixed + numrefs.1 + smooth.exp + tok.13a
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(a) Beam Search - BLEU (b) MBR-BLEURT

Figure 4: Comparison on translation qualities between binarized and float models for encoder-scaling.
(a) Beam Search Decoding: BLEU scores on In-Domain Test set (b) MBR Decoding: BLEURT
scores on In-Domain Test set

Observations. Figure 4a shows BLEU scores of encoder-scaling models (i.e., decoder depth=6,
varying encoder depth). Figure 4b plots BLEURT scores for encoder-scaling models, where the
baseline is float models using MBR decoding with 16 samples. We observe the following:

Binary models can achieve the same BLEU score as float models with a smaller size. Figure 4a
shows that the BLEU score of binary models will consistently improve as the model size increases.
Although binary models are 2-3 BLEU worse than float ones at the same model depth, the 30L6L
binary model achieves the same BLEU as the 8L6L float model, while being 6.7× smaller in size.

Increasing the sample size can match the generation quality of binary models with float models.
In Figure 4b, a larger sample size consistently produces a higher generation quality for the binary
models. At 4× the sample size, i.e., 64 samples, the binary model quality approximately matches
float models. Besides, the BLEURT score of binary models also improves as the model size increases.

5 Ablation Study
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Scaling factor ablation. We binarize the FFN only and sweep the scaling factor s as a power of two
from 1 (equivalent to no scaling factor applied) to 4096. We plot the final training and validation
losses in Figure 5a. The model losses drop steeply when increasing s to 64. Models with s ≤ 8
produce almost random translation quality. Large scaling factors indeed address the convergence
issue. The loss begins saturated at s = 64 and is only slightly worse than the float baseline (1.39).
This exactly matches our expectation that s ∝

√
D. When s > 64, the model loss keeps improving

slightly. We hypothesize that this is because the bound B is dynamic. Even a small variation on B
will change the theoretical optimal s by a large margin since Var (Ab ·Wb) ∝ B4.
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BMT attention layer ablation. We only binarize the attention output projection linear layer. We train
the model for 88339 steps, with binarization events started at step 50000. We plot the loss curves from
step 40000 in Figure 5b. Applying a fixed scaling factor achieves an almost 0.2 loss improvement.
This is consistent with previous observations where a scaling factor helps with convergence. The
LayerNorm, as a drop-in replacement for the scaling factor, not only makes the model converge to a
better loss, but also recovers the loss much faster after binarization. This is expected because γ in the
LayerNorm is learnable and can better adapt to the dynamic bound B as analyzed in Section 3.4. The
loss almost saturates after binarization. Adding a shortcut around the output projection removes the
information bottleneck. It helps the model converge to approximately the same quality as the float
baseline.

6 Conclusion

The proposed method enables binarization for machine translation. The simple yet effective scaling
factor is the key. Binary Transformers have a similar scaling behavior of translation quality as float
models. Binarization can thus be a potential candidate for future model serving.

Unanswered questions: How to better binarize attention einsums? Which is better for scaling up a
binary Transformer, depth or width? What will be a good mixed-precision scheme?
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[6] Loïc Barrault, Ondřej Bojar, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Yvette
Graham, Barry Haddow, Matthias Huck, Philipp Koehn, Shervin Malmasi, Christof Monz,
Mathias Müller, Santanu Pal, Matt Post, and Marcos Zampieri. Findings of the 2019 conference
on machine translation (WMT19). In Proceedings of the Fourth Conference on Machine
Translation (Volume 2: Shared Task Papers, Day 1). Association for Computational Linguistics,
2019. URL https://aclanthology.org/W19-5301.

10

https://aclanthology.org/2021.wmt-1.1
https://aclanthology.org/W19-5301


[7] Joseph Bethge, Christian Bartz, Haojin Yang, Ying Chen, and Christoph Meinel. Meliusnet: An
improved network architecture for binary neural networks. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages 1439–1448, 2021.

[8] Aishwarya Bhandare, Vamsi Sripathi, Deepthi Karkada, Vivek Menon, Sun Choi, Kushal Datta,
and Vikram Saletore. Efficient 8-bit quantization of transformer neural machine language
translation model. arXiv preprint arXiv:1906.00532, 2019.
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A Scaling Law Study Details

A.1 Dataset

A concise view of evaluation datasets used for scaling laws (Section 4.2) is shown in Table. The ten
OOD evaluation datsets span four categories (i) Web Domain (ii) News Domain (iii) Wikipedia (iv)
Patents. They are either “source-original” or “target-original”. There are two source-original and one
target-original dataset in Web Domain, one source-original each in Wikipedia and Patents domain. We
use publicly available WMT newstest2019 [6] and WMT newstest2021 [3] for News Domain. Within
this domain, we have five datasets: source-original, target-original, source-original-paraphrased [14]
and source-original-high-quality [14] from WMT newstest2019 [6], and wmt-reference-C from WMT
newstest2021 [3].

Dataset Name Domain Type Source

Train Subset Web mixed In-house
Patents Patents mixed In-house

Web domain 1 Web source-original In-house
Web domain 2 Web source-original In-house
Web domain 3 Web target-original In-house

Wikipedia Wikipedia source-original In-house
wmt-high-quality News source-original WMT newstest2019 [14]

wmt-refC News source-original WMT newstest2021 Ref-C [3]
wmt-paraphrased News source-original WMT newstest2019 [14]

wmt-src-orig News source-original WMT newstest2019 [6]
wmt-tgt-orig News target-original WMT newstest2019 [6]

Table 2: Evaluation datasets used in Section 4.2.

A.2 Model & Training Details

All the models in Section 4.2 have an embedding dimension of 512, a hidden projection dimension of
2048, and 8 attention heads. The embedding parameters are shared on the source and the target side.
The same embedding matrix (transposed) is also used for the linear readout (softmax) parameters
on the decoder side. All models are trained with Adam optimizer [22] and use cosine learning rate
schedule. Due to the sufficiency in training data, we did not use label smoothing during training.
In our experiments, enabling label smoothing resulted in poor development set performance across
all the models. Training and Learning rate profiles of one model (6 encoder, 8 decoder layers)
are shown in Figure 6. Float models are trained for 5 epochs, and binary models are trained for 9
epochs in two stages: float stage and a binarization stage. An independent but identical learning
rate schedules are used (with warmup) in both the stages of the binary model training. We note
that a significant amount of training (i.e. loss reduction) for binary models happens in the final 10
steps when the learning rate is extremely small. Raw values of last 15 steps of learning rates are
[5.0e-7, 3.1e-7, 1.6e-7, 6.4e-7, 1.0e-8, {2.5e-15}x10]. We also tune binary models with a constant
learning rate of values in {1e-8, 1e-11, 1e-15} for the last epoch (overriding the original schedule),
however we observe degradation in the quality (loss plateaus). This phenomenon of significant
learning in the final stages of binary models’ training at extremely small learning rates is also
observed by Liu et al. [27], Zhang et al. [39]. We leave further investigation of this behavior to future
work.

A.3 Scaling Law Fit

Scaling law fit on all ten OOD evaluation datasets is shown in Figure 7. The slopes pe and pd are
shown in Figure 8 and Table 3.

B Generation Quality

Generation quality for decoder-scaling models is shown in Figure 9. We observe similar behavior as
seen for encoder-scaling models in Section 4.3. BLEU scores for binary models are 2-3 BLEU points
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(a) Loss (b) Learning Rate

Figure 6: Test loss and learning rate profiles of a 6L8L float and binary model as the training
progresses.

Dataset Float models Binary models

pe pd pe pd

Train Subset 0.18 0.31 0.16 0.28
Patents 0.20 0.30 0.19 0.32

Web Domain 1 0.14 0.25 0.14 0.27
Web Domain 2 0.19 0.37 0.16 0.30
Web Domain 3 0.12 0.18 0.14 0.23

Wikipedia 0.13 0.25 0.12 0.25
wmt-high-quality 0.20 0.31 0.18 0.30

wmt-refC 0.24 0.34 0.17 0.27
wmt-paraphrased 0.14 0.36 0.12 0.31

wmt-src-orig 0.22 0.37 0.23 0.36
wmt-tgt-orig 0.15 0.22 0.12 0.20

Table 3: Tabular representation of the same data (pe & pd) as shown in Figure 8.

worse than the respective float models at the same model depth. MBR-BLEURT based decoding
quality increases consistently by increasing the sample size.

B.1 Translation Samples

We generate several En-De translation samples as follows from both float and binary 6L10L encoder-
decoder models. Inputs are taken from the WMT2017 dataset.

Example 1

• Source: The notice for the Nottingham East Labour meeting on Friday stated that "we want
the meetings to be inclusive and productive."

• Reference: In der Mitteilung für das East Labour in Nottingham Treffen am Freitag heißt
es: "Wir wollen, dass die Treffen integrativ und produktiv sind".

• Float output: In der Mitteilung für das Nottingham East Labour-Treffen am Freitag heißt
es: "Wir wollen, dass die Treffen inklusive und produktiv sind."

• Binary output: Die Bekanntmachung für das Nottingham East Labour-Treffen am Freitag
erklärte: "Wir wollen, dass die Sitzungen inklusive und produktiv sind."

Example 2

• Source: The Government of Wales Act 2017 gave the Welsh assembly the power to change
its name.
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• Reference: Mit dem Government of Wales Act 2017 erhielt das walisische Parlament die
Möglichkeit, seinen Namen zu ändern.

• Float output: Der Government of Wales Act 2017 gab der walisischen Versammlung die
Befugnis, ihren Namen zu ändern.

• Binary output: Das Government of Wales Act 2017 gab der walisischen Versammlung die
Befugnis, ihren Namen zu ändern.

Example 3

• Source: Residents were seen returning to their destroyed homes, picking through water-
logged belongings, trying to salvage anything they could find.

• Reference: Anwohner wurden dabei beobachtet, wie sie in ihre zerstörten Häuser zurück-
kehrten, völlig durchnässte persönliche Gegenstände mitnahmen und versuchten zu retten,
was zu retten ist.

• Float output: Die Bewohner wurden gesehen, wie sie in ihre zerstörten Häuser zurück-
kehrten, durch verstopfte Habseligkeiten pflückten und versuchten, alles zu retten, was sie
finden konnten.

• Binary output: Die Bewohner wurden gesehen, wie sie in ihre zerstörten Häuser zurück-
kehrten, indem sie mit Wasser gefüllte Gegenstände pflückten und versuchten, alles zu
retten, was sie finden konnten.
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Figure 7: Scaling law studies on evaluation datasets defined in Section 4.2
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Figure 8: Encoder and Decoder scaling slopes (i.e. pe & pd) as per the scaling law defined in Section
4.2. Raw values are shown in Table 3.

(a) Beam Search BLEU (b) MBR-BLEURT

Figure 9: Comparison on translation qualities between binarized and bfloat16 models for decoder-
scaling.
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