
Supplementary

A Properties of the Ess-InfoGAIL

In this section, we describe some favorable properties of the proposed Ess-InfoGAIL from the
perspective of information theoretic. For brevity, let (s,a), (s̃, ã) ∈ x indicate the expert state-action
pair and the generated state-action pair, respectively, and y, c ∈ z indicate the ground truth label and
the latent variable, respectively.

Firstly, by increasing I(y; s,a) and I(c; s̃, ã), both I(y; c) and I(s,a; s̃, ã) are increased as well.
To prove this, we introduce two conditional independence assumptions: i) given x, y and c are
independent, ii) given z, (s,a) and (s̃, ã) are independent. The multivariate mutual information
I(x; y; c) can be decomposed as

I(x; y; c) = I(y;x) + I(c;x)− I(y, c;x)

= I(y;x) + I(c;x)−H(y, c) +H(y, c|x)
= I(y; c)− I(y; c|x).

(10)

According to assumption i), the last two lines of Equation 10 can be transformed as

H(y, c) = I(y;x) + I(c;x) +H(y, c|x)− I(y; c), (11)

where, H(y, c) can be regarded as a constant. Let ∆ represent the amount of change for each term of
Equation 11, then we have

∆I(y;x) +∆I(c;x) +∆H(y,c|x) −∆I(y;c) = 0. (12)

By directly increasing I(y;x) and I(c;x) during training, the following two unequal relationships
will hold:

∆I(y;x) +∆I(c;x) ≥ −∆H(y,c|x) =⇒ ∆I(y;c) ≥ 0

∆I(y;x) +∆I(c;x) < −∆H(y,c|x) =⇒ ∆I(y;c) < 0
(13)

According to the property of mutual information, I(y; c) cannot be negative. While the second
inequality will result in a negative I(y; c), which violates the property. Thus, by increasing I(y; s,a)
and I(c; s̃, ã), I(y; c) is also increased. Similarly, by using the assumption ii), it can be proved that
I(s,a; s̃, ã) is finally increased as well.

Secondly, by optimizing the RIM objective, the mutual information I(ŷ; s,a) is maximized, and
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ψ(ŷ) +Qc
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(14)

where, p(c) is a learnable latent skill distribution that approximates the imbalanced ground truth label
distribution using Gumbel-Softmax reparameterization trick.

B Implementation Details

The main parameters for training Ess-InfoGAIL are listed in Table 4. We use multi-layer perceptrons
for our policy network, value network, discriminator and encoders, as shown in Fig. 7. The policy is
parameterized as a diagonal Gaussian distribution πθ(a|s, ϵ, c) ∼ N (µπθ (s, ϵ, c),Σπθ ) with a mean
µπθ (s, ϵ, c) output from the policy network, and a state independent covariance matrix Σπθ . The
value network is similar to the policy network, but with a single linear output unit. The discriminator
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and encoders share network parameters with separate output layers. All networks consist of fully-
connected layers with Tanh activations applied to the hidden layers, and are optimized using Adam
algorithm with specific initial learning rates. To optimize the policy, we use PPO algorithm with
advantages computed using GAE(λ), λ = 0.95.

To align the generated and expert data distributions, we use a latent skill variable sampled from a
Gumbel-Softmax distribution with temperature τ = 0.1. Further, to ensure more stable gradient
updates for the latent skill distribution and avoid issues with values that are too small or too large,
we use the logarithmic form of the latent skill distribution for gradient updates. To minimize
computational time, we restrict the update of the latent skill distribution to only the first iteration
of policy updates. Our experiments demonstrate that this approach does not result in significant
performance degradation. The weighting coefficients λ1 and λ2 are set to 1.0 and 4.0 respectively.
The weighting coefficient λ3 balances the supervised classification and the unsupervised clustering of
the encoders. At the beginning of training, we expect the encoder to focus more on the classification
loss. Therefore, the value of λ3 is initially set to 0. As training progresses, we gradually increase
λ3 to its maximum value of 1.0, as we want the encoder to utilize the intrinsic information in the
unlabeled data and improve the performance of the classification task.
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Figure 7: Network architectures used in Ess-InfoGAIL. All networks consist of fully-connected layers
with Tanh activations applied to the hidden layers. The discriminator and encoder share network
parameters with separate output layers.

Table 4: Parameters for training Ess-InfoGAIL.

Parameters Values
Optimizer Adam

Policy/Value learning rate 0.003
Discriminator learning rate 0.005

Encoder learning rate 0.01
Discount factor 0.99

Policy/Value minibatch size 1000
Discriminator/Encoder minibatch size 5000

Policy/Value update iterations 20
Discriminator/Encoder iterations 50

PPO clip threshold 0.2
Gumbel-Softmax temperature τ 0.1

Weighting coefficient λ1 1.0
Weighting coefficient λ2 4.0
Weighting coefficient λ3 3.0

GAE(λ) 0.95
TD(λ) 0.95

C More Experimental Results

The quantitative results from Table 1 in the main paper, along with their error bars (standard deviation),
are presented in Table 5 and Table 6. Similarly, Table 7 and Table 8 display the quantitative results
from Table 2 and Table 3 in the main paper, respectively, along with their corresponding error bars.
It can be observed that the error bars of Ess-InfoGAIL consistently remain at a relatively low level.
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As the number of behavior modes increases, the error bars slightly expand but still remain within an
acceptable range. To validate the quality of the trained policies, we record the normalized average
task reward during the training process, as depicted in Fig. 8. The normalized average task reward
is computed across multiple random seeds and averaged over all modes. It is important to note that
this reward solely serves as an evaluation metric and does not contribute to the training process. The
quantified data for the normalized average task reward is presented in Table 9. All the presented
outcomes showcase the advantages of our proposed Ess-InfoGAIL method.

Table 5: Behavior disentanglement quality measured by NMI (↑).

2D trajectory Reacher Pusher Walker-2D Humanoid
GAIL [8] 0.392± 0.087 0.153± 0.056 0.376± 0.082 0.439± 0.081 0.388± 0.067

InfoGAIL [13] 0.742± 0.045 0.301± 0.024 0.604± 0.050 0.657± 0.049 0.550± 0.045
ACGAIL [15] 0.783± 0.053 0.537± 0.029 0.754± 0.049 0.658± 0.065 0.544± 0.061

Elastic-InfoGAIL 0.773± 0.054 0.311± 0.029 0.650± 0.061 0.615± 0.068 0.503± 0.081
Ess-InfoGAIL\GS 0.892± 0.024 0.607± 0.033 0.857± 0.045 0.740± 0.069 0.638± 0.057

Ess-InfoGAIL\RIM 0.893± 0.031 0.575± 0.043 0.875± 0.030 0.715± 0.075 0.642± 0.064
Ess-InfoGAIL (Ours) 0.910± 0.035 0.662± 0.040 0.906± 0.037 0.755± 0.065 0.696± 0.050

Table 6: Behavior disentanglement quality measured by ENT (↓).
2D trajectory Reacher Pusher Walker-2D Humanoid

GAIL [8] 0.529± 0.051 1.055± 0.050 0.723± 0.092 0.406± 0.059 0.597± 0.078
InfoGAIL [13] 0.371± 0.050 1.113± 0.049 0.551± 0.060 0.284± 0.042 0.487± 0.066
ACGAIL [15] 0.324± 0.050 0.781± 0.047 0.409± 0.060 0.340± 0.082 0.478± 0.074

Elastic-InfoGAIL 0.330± 0.052 1.101± 0.051 0.537± 0.118 0.351± 0.080 0.498± 0.077
Ess-InfoGAIL\GS 0.157± 0.035 0.661± 0.056 0.194± 0.048 0.262± 0.066 0.360± 0.051

Ess-InfoGAIL\RIM 0.159± 0.050 0.725± 0.076 0.188± 0.052 0.274± 0.081 0.347± 0.056
Ess-InfoGAIL (Ours) 0.131± 0.055 0.587± 0.064 0.144± 0.055 0.237± 0.065 0.206± 0.059

Table 7: Degree of data imbalance.
InfoGAIL Ess-InfoGAIL

Metrics NMI ENT NMI ENT
20 0.328± 0.022 1.035± 0.028 0.704± 0.028 0.510± 0.087
40 0.317± 0.023 1.050± 0.033 0.693± 0.047 0.521± 0.057
60 0.313± 0.023 1.061± 0.032 0.687± 0.055 0.583± 0.068
80 0.306± 0.030 1.073± 0.042 0.681± 0.043 0.561± 0.065

100 0.301± 0.024 1.113± 0.049 0.662± 0.040 0.587± 0.064
200 0.291± 0.040 1.121± 0.062 0.625± 0.048 0.607± 0.067

Table 8: Learning more behavior modes.
InfoGAIL Ess-InfoGAIL

Metrics NMI ENT NMI ENT
2 0.329± 0.019 1.031± 0.029 0.711± 0.057 0.504± 0.054
4 0.319± 0.045 1.073± 0.062 0.703± 0.047 0.522± 0.077
6 0.301± 0.024 1.113± 0.049 0.662± 0.040 0.587± 0.064
8 0.308± 0.033 1.087± 0.051 0.651± 0.053 0.619± 0.089
10 0.303± 0.029 1.076± 0.062 0.617± 0.073 0.657± 0.080
12 0.298± 0.038 1.115± 0.061 0.613± 0.095 0.653± 0.078

Table 9: Normalized average task reward of each method (only for evaluation).
2D trajectory Reacher Pusher Walker-2D Humanoid

GAIL [8] 0.071± 0.019 0.189± 0.087 0.338± 0.029 0.459± 0.014 0.508± 0.033
InfoGAIL [13] 0.155± 0.028 0.223± 0.054 0.431± 0.043 0.552± 0.059 0.526± 0.127
ACGAIL [15] 0.540± 0.061 0.616± 0.131 0.790± 0.042 0.703± 0.040 0.614± 0.040

Elastic-InfoGAIL 0.189± 0.059 0.261± 0.079 0.483± 0.042 0.616± 0.039 0.544± 0.111
Ess-InfoGAIL\GS 0.845± 0.023 0.868± 0.050 0.867± 0.040 0.812± 0.050 0.817± 0.017

Ess-InfoGAIL\RIM 0.882± 0.036 0.826± 0.035 0.772± 0.061 0.770± 0.019 0.751± 0.065
Ess-InfoGAIL (Ours) 0.956± 0.040 0.933± 0.033 0.967± 0.022 0.911± 0.042 0.920± 0.036

D Impact of the Latent Shifting Variable

During the training process, the discrete latent skill variable c dominates the behavior category
representation through the semi-supervised learning, while the continuous latent shifting variable ϵ
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corresponds to other interpretable potential representations. We visualize the effects of adjusting ϵ
within the range of -1 to 1 in the 2D trajectory environment, as shown in Fig. 9. From a column-wise
perspective, (a) ∼ (d) correspond to 4 different behavior modes controlled by the latent skill variable
c. From a row-wise perspective, left to right correspond to continuous style variations within the
same behavior mode, controlled by the latent shifting variable ϵ. The representations associated with
the latent shifting variable ϵ may vary depending on the task.

(a) (b)

(d)(c)

Figure 8: Normalized average task reward of each method during training (only for evaluation). (a)
2D trajectory. (b) Pusher. (c) Walker-2D. (d) Humanoid.

-  Latent shifting variable  + 

Figure 9: Illustrations of modifying circle size by manipulating the latent shifting variable in the 2D
trajectory environment are presented. From a column-wise perspective, c1 ∼ c4 correspond to 4
different behavior modes controlled by the latent skill variable. From a row-wise perspective, left
to right correspond to continuous style variations within the same behavior mode, controlled by the
latent shifting variable ϵ.

16



E Ground Truth of the Data Imbalance

Here, we describe the setting of the normalized ground truth data imbalance in different environments.
For each imbalance group, we use 10 different random seeds and collect 50 episodes for each seed.

E.1 2D trajectory

Expert demonstrations in the 2D trajectory environment consist of 4 different behavior modes, with a
maximum data imbalance of 20.

• Degree of data imbalance 20: 0.05, 1.0, 1.0, 0.05

E.2 Reacher

Expert demonstrations in the Reacher environment include from 2 to 12 different behavior modes,
with a maximum data imbalance of 200.

2 behavior modes

• Degree of data imbalance 20: 0.05, 1.0

4 behavior modes

• Degree of data imbalance 40: 0.025, 0.05, 0.1, 1.0

6 behavior modes

• Degree of data imbalance 20: 0.05, 0.05, 0.1, 0.1, 1.0, 1.0
• Degree of data imbalance 40: 0.025, 0.025, 0.1, 0.1, 1.0, 1.0
• Degree of data imbalance 60: 0.017, 0.017, 0.1, 0.1, 1.0, 1.0
• Degree of data imbalance 80: 0.0125, 0.0125, 0.1, 0.1, 1.0, 1.0
• Degree of data imbalance 100: 0.01, 0.01, 0.1, 0.1, 1.0, 1.0
• Degree of data imbalance 200: 0.005, 0.005, 0.1, 0.1, 1.0, 1.0

8 behavior modes

• Degree of data imbalance 100: 0.01, 0.01, 0.1, 0.1, 0.1, 1.0, 1.0, 1.0

10 behavior modes

• Degree of data imbalance 100: 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 1.0, 1.0, 1.0, 1.0

12 behavior modes

• Degree of data imbalance 100: 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 1.0, 1.0, 1.0, 1.0

E.3 Pusher

Expert demonstrations in the Pusher environment consist of 6 different behavior modes, with a
maximum data imbalance of 100.

• Degree of data imbalance 100: 0.01, 0.01, 0.1, 0.1, 1.0, 1.0

E.4 Walker-2D and Humanoid

Expert demonstrations in Walker-2D and Humanoid environments consist of 3 different behavior
modes, with a maximum data imbalance of 100.

• Degree of data imbalance 100: 0.01, 0.1, 1.0
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