
A Supplementary Material: Learning to Separate in Branch-and-Cut

Contents

A.1 MILP and Branch-and-Cut Background . 16

A.2 Configuration Space Restriction: Proofs and Discussions 17

A.2.1 Preliminary definitions . 17

A.2.2 Proof of Proposition 1 . 19

A.2.3 Proof of Proposition 2 . 21

A.2.4 ERM assumption discussion and relaxation to predictors with training error 22

A.3 Configuration Space Restriction: Algorithm . 24

A.3.1 Algorithm . 24

A.3.2 Algorithm discussions: filtering and subspace size 25

A.4 Configuration Update Restriction . 26

A.4.1 Forward training algorithm . 26

A.4.2 Trade-off discussion for different k’s . 26

A.5 Neural UCB Algorithm . 27

A.5.1 Training algorithm . 27

A.5.2 Input features . 27

A.6 Experiment Setups . 29

A.6.1 Proposed method details . 29

A.6.2 Parameters . 29

A.6.3 SCIP interface. 29

A.6.4 Training and evaluation details . 30

A.6.5 MILP benchmarks . 32

A.7 Ablation Details . 34

A.7.1 Implementation details of ablation methods 34

A.7.2 Additional ablation results and analysis 35

A.8 Detailed Experiment Results . 37

A.8.1 Interquartile mean (IQM) and mean statistics 37

A.8.2 Result contextualization . 38

A.8.3 Interpretation analysis: L2Sep recovers effective separators from literature 39

A.8.4 The immediate and multi-step effect of separator configuration in the B&C
process . 42

A.8.5 Alternative objective: relative gap improvement 43

A.9 Limitation. 44

A.10 Negative Social Impact. 44

15

A.1 MILP and Branch-and-Cut Background

Mixed Integer Linear Programming (MILP). A MILP can be written as

x
⇤ = argmin{c|x : Ax b, xj 2 Z 8j 2 I} (5)

where x 2 Rn is a set of n decision variables, A 2 Rm⇥n and b 2 Rm formulate a set of m

constraints, and c 2 Rn formulates the linear objective function. I ✓ {1, ..., n} defines the variables
that are required to be integral. x⇤ 2 Rn denotes the optimal solution to the MILP with an optimal
objective value z

⇤.

Branch-and-Cut. State-of-the-art MILP solvers perform branch-and-cut (B&C) to solve MILPs,
where a branch-and-bound (B&B) procedure is used to recursively partition the search space into a
tree. Within each node of the B&B tree, linear programming (LP) relaxations of Eq. 5 are solved to
obtain lower bounds to the MILP. Specifically, a LP relaxation of Eq. (5) can be written as

x
⇤
LP = argmin{c|x : Ax b, x 2 Rn} (6)

where x
⇤
LP 2 Rn denotes the optimal solution to the LP with an optimal objective value z

⇤
LP such

that z⇤LP z
⇤.

Cutting Plane Separation. Each node of the B&B tree uses cutting plane algorithms to tighten the
LP relaxation. When x

⇤
LP in Eq. (6) does not satisfy (x⇤

LP)j 2 Z 8j 2 I , it is not a feasible solution
to the original MILP. The cutting plane methods aim to find valid linear inequalities ⌫|x ! (cuts)
that separate x

⇤
LP from the convex hull of all feasible solutions of the MILP. Namely, a cut satisfies

⌫
|
x
⇤
LP > !, and ⌫

|
x ! for each feasible solution x to the MILP. Adding cuts into the LP tightens

the relaxation, leading to a better lower bound to the MILP.

Cutting plane separation happens in rounds, where each separation round k consists of the following
steps (1) solving the current LP relaxation, (2) if separation conditions are satisfied, calling different
separators to generate a set of cuts and add them to the cutpool Ck, (3) select a subset of cuts Pk ✓ Ck
and update the LP with the selected cuts.

Typical MILP solvers, such as SCIP [8] and Gurobi [24], maintain a set of separators such as
Gomory [3] and Flow cover [22] to generate cuts. Each separator in SCIP has a priority and a
frequency attribute, and once invoked, generates a set of cuts that are added to the cutpool Ck. The
frequency decides the depth level of the B&B tree node in which the separator is invoked (typically the
root node and all other nodes with depth divisible by some constant d). The priority decides the order
of the separators to be invoked; in each separation round, separators are invoked with a descending
priority order until a predefined maximal number of cuts maxcuts are generated. Separators with
low priority may not be invoked during a separation round. By default, the priorities and frequency
attributes in SCIP are a set of predefined values that remain unchanged for all MILP instances.

Benefits of the CutPool Ck. MILP solvers do not directly add all cuts generated by the separators to
the MILP, as adding a large number of cuts increases the MILP size and slows down the solver. Instead,
a cutpool Ck is used as an intermediate buffer to hold a diverse set of cuts generated by a variety of
separators. The cutting plane selector can then compare the cuts in the cutpool and select the most
effective ones for the current stage of the MILP solve. Thus, well-designed separator configurations
can not only expedite cutting plane generation by deactivating time consuming separators, but can
also yield a superior quality cutpool Ck that may in turn enhance the performance of cutting plane
selection Pk that leads to a further reduction the MILP solve time.

Cutpool has an additional advantage of storing previously generated cuts for future separation rounds
and branch-and-cut tree nodes, thereby saving time by reducing the number of calls to expensive
separators [1]. As a consequence, configuring separators at a separation round can have both an
immediate and long-term impact on the branch-and-bound process due to the presence of the cutpool.

16

A.2 Configuration Space Restriction: Proofs and Discussions

A.2.1 Preliminary definitions

Table 5: Definition table for key terms used in the paper, including the true and empirical performance
of instance-aware predictor and instance-agnostic configuration, and the optimal and empirical risk
minimizing (ERM) predictor and configuration on both the original space and the restricted subspace.
The relative time improvement � is defined in Eq. (1) of the main paper. We consider a single
configuration update per MILP instance, as in Sec 5.1 of the main paper. The unrestricted space is
denoted as O = {0, 1}M .

Instance-aware predictor Instance-agnostic configuration

True

X

Perf.
Measure �(f) = E

x2X
[�(f(x), x)] �̄(s) = E

x2X
[�(s, x)]

Optimal
Action

(unobserved)

function f
⇤
O ! {0, 1}M s.t.

f
⇤
O(x) = argmax

s2{0,1}M

�(s, x) 8x 2 X
config. s⇤O 2 {0, 1}M
s.t. s⇤O = argmax

s2{0,1}M

�̄(s)

Optimal
Subspace-

restricted

Action
(unobserved)

function f
⇤
A ! A ✓ {0, 1}M s.t.

f
⇤
A(x) = argmax

s2A
�(s, x) 8x 2 X

config. s⇤A 2 A ✓ {0, 1}M
s.t. s⇤A = argmax

s2A
�̄(s)

Empirical

K

Perf.
Measure �̂(f) = 1

K

KP
i=1

�(f(xi), xi)
ˆ̄
�(s) = 1

K

KP
i=1

�(s, xi)

ERM
Action

(observed)

predictor f̃ERM
O : X ! {0, 1}M s.t.

f̃
ERM
O (x) = argmax

s2{0,1}M

�(s, x) 8x 2 K.
config. s̃ERM

O 2 {0, 1}M

s.t. s̃ERM
O = argmax

s2{0,1}M

ˆ̄
�(s)

ERM
Subspace-

restricted

Action
(observed)

predictor f̃ERM
A : X ! A ✓ {0, 1}M s.t.

f̃
ERM
A (x) = argmax

s2A
�(s, x) 8x 2 K.

config. s̃ERM
A 2 A ✓ {0, 1}M

s.t. s̃ERM
A = argmax

s2A

ˆ̄
�(s)

True performance. Let X be a class of MILP instances. Let f : X ! {0, 1}M be a configuration
function. The true performance of f is defined as �(f) = E

x2X
[�(f(x), x)].

The optimal configuration function f
⇤
O ! {0, 1}M is f

⇤
O(x) = argmax

s2O
�(s, x) 8x 2 X ,

and the optimal subspace-restricted configuration function f
⇤
A ! A ✓ {0, 1}M is f

⇤
A(x) =

argmax
s2A

�(s, x) 8x 2 X .

During training, we do not have access to the optimal configuration function nor the time improvement
for all configurations and MILP instances in X . Instead, we are given a set of training instances K,
from which we can collect the time improvements for different configurations by calling the MILP
solver, to learn a configuration predictor. We define the predictor’s empirical performance on the
training instances as follows.

Empirical performance. Let f : X ! {0, 1}M be a configuration predictor. Let K =
{x1, ..., xK} be a set of training MILP instances. The empirical performance of f on K is

�̂(f) = 1
K

KP
i=1

�(f(xi), xi).

Given a subspace A ✓ {0, 1}M , an empirical risk minimization (ERM) configuration predictor
f̃
ERM
A : X ! A selects the best configuration within A for each instance in the training set K, i.e.
f̃
ERM
A (x) = argmax

s2A
�(s, x) 8x 2 K. That is, f̃ERM

A (x) coincides with f
⇤
A on K.

17

Figure 3: An illustration of the difference between the optimal instance-aware function f
⇤, which

maps each MILP instance to a (possibly different) configuration that maximizes the time improvement,
and the optimal instance-agnostic configuration s

⇤, which is a single configuration that achieves
the highest average time improvement across the instances.

Instance-agnostic performance. For each configuration s 2 {0, 1}M , We further denote the true
instance-agnostic performance of applying the same s to all MILP instances as �̄(s) = E

x2X
[�(s, x)],

and the corresponding empirical instance-agnostic performance as ˆ̄�t(s) = 1
K

KP
i=1

�(s, xi).

The optimal and ERM instance-agnostic configuration is defined as s⇤O = argmax
s2O

�̄t(s) and s̃ERM
O =

argmax
s2O

ˆ̄
�t(s), and the optimal and ERM instance-agnostic configuration on a restricted subspace

A ✓ {0, 1}M is similarly defined as s
⇤
A = argmax

s2A
�̄t(s) and s̃

ERM
A = argmax

s2A

ˆ̄
�t(s). Table 5

provides a list of all related concepts, and Fig. 3 illustrates the difference between the optimal
instance-aware function and the optimal instance-agnostic configuration.

18

A.2.2 Proof of Proposition 1

Proposition 1. Assume that a configuration predictor f̃A, when evaluated on the entire distribution
X , achieves perfect generalization (i.e., zero generalization gap) with probability 1 � ↵. With
probability ↵, the predictor makes mistakes and outputs a configuration s 2 A uniformly at random.
Then, the trainset performance v.s. generalization decomposition can be written as

�(f̃A) = (1� ↵)�̂(f̃A) + ↵
1

|A|
X

s2A

�̄(s) (7)

Proof. By definition, we have �(f̃A) = E
x2X

[�(f(x), x)]. From the assumption, we have

�(f̃A) =

(
�̂(f̃A) with probability ↵

1
A

P
s2A

E
x2X

[�(s, x)] = 1
A

P
s2A

�̄(s) with probability 1� ↵
(8)

Hence, from Eq. (2) of the main paper, we get

�(f̃A) = �̂(f̃A)�
⇣
�̂(f̃A)��(f̃A)

⌘

= �̂(f̃A)� (1� ↵) · 0� ↵ ·

�̂(f̃A)�

1

A

X

s2A

�̄(s)

!

= (1� ↵)�̂(f̃A) + ↵
1

A

X

s2A

�̄(s) ⌅

(9)

Assumption Discussion (Generalization error). The second average instance-agnostic perfor-
mance term is a result of the assumption that the predictor selects a configuration randomly when it
makes a mistake. In practice, the predictor’s performance could be worse. For example, the predictor
may select the configuration with the poorest instance-agnostic performance. In such a scenario, our
algorithm’s filtering strategy (See Alg. 1) that excludes configurations with an average performance
below a threshold ˆ̄

�(s) b remains highly beneficial: with this strategy, we can ensure that the
performance of all selected configurations, including the worst one, is above the threshold value of
b. Moreover, when deciding the size of the subspace A, we can track the performance of the worst
selected configuration in addition to the average performance across all selected configurations to
account for situations where the predictor’s mistakes lead to worst-case performance.

Assumption Discussions (Empirical instance-agnostic perf.). In Eq. (3) of the main paper, we
approximate the true instance-agnostic performance of each configuration �̄(s) by the empirical
counterpart ˆ̄�(s), under the assumption that different configuration s have similar generalization
behavior when we apply each configuration to all instances. We test the generalization of different
configurations by sampling a hold-out validation set V , and compare the performance of ˆ̄�(s) evaluated
on the training set Ksmall (denoted as ˆ̄�Ksmall(s)) and on the hold-out set V (denoted as ˆ̄�V(s)).

The scatter plots in Fig. 4 show the instance-agnostic performances for Maximum Cut and Independent
Set on a training set Ksmall of 100 instances and a hold-out set V of 100 instances. The plotted
configurations are selected from the initial configuration space S (see Alg. 1) by picking from each
bin in the histogram of the set {ˆ̄�Ksmall(s), s 2 S} to ensure a diverse range of instance-agnostic
performances among the chosen configurations. The darkness and size of each circle (configuration)
in the plot are proportional to the total number of configurations in the corresponding bin, divided by
the number of samples selected from that bin.

The strong linear trend y = x observed in each scatter plot, along with the perfect alignment of
configurations excluded by the filtering strategy in Alg. 1 (represented by circles in the bottom
left corner split by the black dotted lines) validate our approximation of the true instance-agnostic
performance with the empirical counterpart.

Notably, while we observe a strong linear trend in all the MILP classes we consider, there may still
be challenging MILP classes where this linear trend does not hold. In other words, there may exist

19

(a) Maximum Cut (b) Independent Set

Figure 4: Instance-agnostic performance of configuration samples on the training set ˆ̄�Ksmall(s) and
hold-out set ˆ̄�V(s) for Maximum Cut and Independent Set. The dashed orange line indicates the line
of equality (y = x). The darkness and size of each circle (configuration) in the plot are proportional
to the total number of configurations in the corresponding bin, divided by the number of samples
selected from that bin. The horizontal and vertical black dotted lines indicate our choice of filtering
threshold b in Alg. 1. Respectively, 38% and 58% of all configurations in the initial configuration
space S surpass the filtering threshold and are considered as candidates for the final subspace A.

certain MILP classes where configurations that perform well on a training set may fail to generalize
to the unseen test set. In such cases, we can modify our Alg. 1 to incorporate an additional holdout
set V , and filter configurations based on the performance on the hold out set ˆ̄�V(s) instead of on the
training set ˆ̄�Ksmall(s) (See Line 16 in Alg. 1: ˆ̄�(s) = ˆ̄

�
Ksmall(s) in our default algorithm, but can be

replaced by ˆ̄
�
V(s)). In this way, we can more accurately capture the generalization behavior of each

configuration, although this modification would increase the number of MILP solver calls required to
collect the validation performances, which our reduction to solely monitor training performances
ˆ̄
�
Ksmall(s) avoids.

20

A.2.3 Proof of Proposition 2

Proposition 2. (Submodularity of �̂(f̃ERM
A) and the greedy approximation algorithm). The

empirical performance of the ERM predictor �̂(f̃ERM
A) is a monotone increasing and submodular

function in A, and a greedy strategy where we include the configuration that achieves the greatest
marginal improvement argmaxs2{0,1}M\A �̂(f̃ERM

A[{s})� �̂(f̃ERM
A) at each iteration is a (1� 1/e)-

approximation algorithm for constructing the subspace A that optimizes �̂(f̃ERM
A).

Proof of monotonicity. By definition, we have �̂(f̃ERM
A) = 1

K

KP
i=1

�(f̃ERM
A (xi), xi) on a restricted

subspace A. According to the ERM rule, for each instance xi 2M we have �(f̃ERM
A (xi), xi) =

max
s2A

�(s, x). We note that �(f̃ERM
A (xi), xi) is a monotone increasing function in A for each xi, since

if B ✓ C, then �(f̃ERM
B (xi), xi) �(f̃ERM

C (xi), xi) due to the monotonicity of the max operator
on the set. Averaging across all instances, �̂(f̃ERM

A) is hence a monotone increasing function in A.

Intuition for submodularity. Adding a configuration s to a set of configurations A improves
�(f̃ERM

A[{s}(xi), xi) from �(f̃ERM
A (xi), xi) (positive marginal improvement) if s performs better than

all configurations in A on the MILP instance xi. Intuitively speaking, with a larger subspace A, it is
less likely for s to improve the performance, because there are more competing choices in A that
make it more difficult for s to perform the best. Hence, we get a smaller marginal improvement
when adding a configuration s to a larger set of configurations for each instance, therefore making
the empirical performance �̂(f̃ERM

A) averaged across all instances submodular in A. We provide a
rigorous proof of submodularity below.

Proof of submodularity. Let B ✓ C ✓ O = {0, 1}M and s 2 O \ C. We want to show

�̂(f̃ERM
B[{s})� �̂(f̃ERM

B) � �̂(f̃ERM
C[{s})� �̂(f̃ERM

C) (10)

We have

�̂(f̃ERM
B[{s})� �̂(f̃ERM

B) =
1

K

KX

i=1

[�(f̃ERM
B[{s}(xi), xi)� �(f̃ERM

B (xi), xi)] (11)

We can split the set M = {x1, ..., xN} into two nonoverlapping subsets M0 and M1 where

• 8x 2M0, some configuration s
0 2 B performs at least as good as s. That is, f̃ERM

B[{s}(x) =

argmax
s02B[{s}

�(s0, x) 2 B, and hence

�(f̃ERM
B[{s}(x), x) = �(f̃ERM

B (x), x) � �(s, x) (12)

• 8x 2 M1, the configuration s performs better than all configurations in B. That is,
f̃
ERM
B[{s}(x) = argmax

s02B[{s}
�(s0, x) = s, and hence

�(f̃ERM
B[{s}(x), x) = �(s, x) > �(f̃ERM

B (x), x) (13)

Then, from Eq. (11), we have

�̂(f̃ERM
B[{s})� �̂(f̃ERM

B) =
1

K

X

x2M1

[�(s, x)� �(f̃ERM
B (x), x)] (14)

Now consider

�̂(f̃ERM
C[{s})� �̂(f̃ERM

C) =
1

K

KX

i=1

[�(f̃ERM
C[{s}(xi), xi)� �(f̃ERM

C (xi), xi)] (15)

We have the following nonoverlapping cases

21

• 8x 2 M0, due to monotonicity of �̂(f̃ERM
A) in A and the fact that B ✓ C, we have,

extending from Eq. (12),

�(f̃ERM
C (x), x) � �(f̃ERM

B (x), x) � �(s, x) (16)

and hence some configuration s
0 2 C performs at least as good as s.

• 8x 2M1, we further split into two nonoverlapping cases:
(i) s performs better than all configurations in C. That is, f̃C[{s}(x) = s and

�(f̃ERM
C[{s}(x), x) = �(s, x) > �(f̃ERM

C (x), x) � �(f̃ERM
B (x), x) (17)

(ii) some configuration in C \B performs better than s. That is, f̃ERM
C[{s}(x) 2 C \B and

�(f̃ERM
C[{s}(x), x) = �(f̃ERM

C (x), x) � �(s, x) � �(f̃ERM
B (x), x) (18)

where the last inequality is from Eq. (13).
We let M1 = M11 [M12 where M11 and M12 corresponds to (i) and (ii).

We thus have

�̂(f̃ERM
C[{s})� �̂(f̃ERM

C) =
1

K

X

x2M11✓M1

[�(s, x)� �(f̃ERM
C (x), x)]

 1

K

X

x2M11✓M1

[�(s, x)� �(f̃ERM
B (x), x)]

 1

K

X

x2M1

[�(s, x)� �(f̃ERM
B (x), x)]

= �̂(f̃ERM
B[{s})� �̂(f̃ERM

B)

(19)

where the second inequality is due to the monotonicity of �(f̃ERM
A (x), x) in A for all x (see Eq. (17)),

the third inequality is due to nonnegativity of the additional terms in M1 \M11 (see Eq. (18)), and
the last equality is from Eq. (14).

The greedy approximation algorithm. Due to the monotone submodularity of the empirical
performance of the ERM predictor �̂(f̃ERM

A), the greedy strategy where we include the configuration
that achieves the greatest marginal improvement argmax

s2{0,1}M\A
�̂(f̃ERM

A[{s})��̂(f̃ERM
A) at each iteration

is a (1 � 1/e)-approximation algorithm for constructing the subspace A, as proven in previous
work [41]. ⌅

A.2.4 ERM assumption discussion and relaxation to predictors with training error

Assuming that the predictor f̃A is the ERM predictor f̃ERM
A that performs optimally on the training

set, we can construct a subspace A prior to learning the actual predictor f̃A by replacing the learned
predictor’s prediction with the ERM selection rule. This assumption is reasonable because during
training, we optimize the predictor with the empirical performance �̂(f̃A) as the objective, which
aligns with the objective of the ERM predictor (where ERM obtains the optimal solution). To account
for potential training errors, we can relax the ERM assumption with the following lemma, from which
we achieve a trade-off similar to Eq. (3) of the main paper, balancing the ERM performance and a
generalization term with a higher weight on the latter (see Eq. (24)). Our Alg. 1 hence still applies.

Lemma 3. Assume that a predictor f̃A, when trained on K, achieves optimal training performance
(i.e., ERM f̃

ERM
A) with probability 1 � �. With probability �, the predictor makes mistakes and

outputs a configuration s 2 A uniformly at random. Then, combining with the assumption in
Proposition 1 (See Appendix A.2.2), the trainset performance v.s. generalization decomposition can
be written as

�(f̃A) = (1� ↵)(1� �)�̂(f̃ERM
A) + (1� ↵)�

1

|A|
X

s2A

ˆ̄
�(s) + ↵

1

|A|
X

s2A

�̄(s) (20)

22

Proof. By definition, �̂(f̃A) =
1
K

KP
i=1

�(f(xi), xi). Following the similar proof structure as Proposi-

tion 1, we have

�̂(f̃A) =

8
<

:

�̂(f̃ERM
A) with probability �

1
A

P
s2A

1
K

KP
i=1

�(s, xi) =
1
A

P
s2A

ˆ̄
�(s) with probability 1� �

(21)

Hence, we get

�̂(f̃A) = (1� �)�̂(f̃ERM
A) + �

1

A

X

s2A

ˆ̄
�(s) (22)

Before we further proceed in the proof, we discuss an additional trade-off when constructing the
subspace A based on the empirical performance on the training set �̂(f̃A). While adding more
configurations to A may improve the empirical performance of the ERM predictor f̃ERM

A , some of
these configurations may have low instance-agnostic performance and only perform well on a small
subset of the training instances. Incorporating such configurations into A may lead to the selection
of poor configurations when training error occurs, resulting in a decrease in the performance on the
training set �̂(f̃A). Hence, to construct a subspace A that can result in the high empirical performance
of the imperfect predictor, we also need to balance the size and diversity of A (measured by the
empirical performance of the ERM predictor on A, the first term), and the average configuration
quality in A (measured by the average instance-agnostic empirical performance, the second term).

Now, combining with the proof of Proposition 1, we hence have

�(f̃A) = �̂(f̃A)�
⇣
�̂(f̃A)��(f̃A)

⌘

= (1� ↵)�̂(f̃A) + ↵
1

A

X

s2A

�̄(s)

= (1� ↵)

(1� �)�̂(f̃ERM

A) + �
1

A

X

s2A

ˆ̄
�(s)

!
+ ↵

1

A

X

s2A

�̄(s)

= (1� ↵)(1� �)�̂(f̃ERM
A) + (1� ↵)�

1

A

X

s2A

ˆ̄
�(s) + ↵

1

A

X

s2A

�̄(s) ⌅

(23)

Then, following Eq. (3) of the main paper, we replace �̄(s) (unobservable) by ˆ̄
�(s) and arrive at the

following objective to select the subspace A:

�(f̃A) = (1� ↵)(1� �)�̂(f̃ERM
A) + (↵+ � � ↵�)

1

|A|
X

s2A

ˆ̄
�(s)

= (1� �)�̂(f̃ERM
A) + �

1

|A|
X

s2A

ˆ̄
�(s) , where � = ↵+ � � ↵�.

(24)

Comparing the above with Eq. (3) where we assume the predictor performs ERM perfectly with no
training error, we arrive at the same trade-off between the empirical performance of the ERM predictor
f̃
ERM
A in the subspace A (which is monotone submodular in A), and the average instance-agnostic

performance of all configurations s 2 A, with a lower weight on the first term and a higher weight on
the second term due to training error (� � ↵). Hence, our algorithm that couples a greedy strategy
with the filtering criterion naturally applies to this relaxed scenario. The greedy strategy can still
select configuration based on the ERM predictor, as the training error from the new predictor is
absorbed in the second term. Due to the increase weight on the second term, we would increase
the threshold b, which we design as a hyperparameter in Alg. 1, to more aggressively filter out
configuration s with a low instance-agnostic performance given by ˆ̄

�(s) b. We leave it as future
work to analyze more complicated predictors f̃ 0

A that incorporate other smoothness assumptions and
to adapt the construction algorithm based on the performance of such predictors.

23

A.3 Configuration Space Restriction: Algorithm

A.3.1 Algorithm

The algorithm for our data-driven configuration space restriction in Sec. 5.1 is presented in Alg. 1.

Algorithm 1: Configuration_Space_Restriction
Input: MILP training set Ksmall, the unrestricted configuration space O = {0, 1}M , number of

initial configuration samples |S|, size of the restricted configuration space |A|,
instance-agnostic performance threshold b

Output: The restricted configuration space A

1 S large subset of O by sampling |S| configurations from O // See description below
2 // construct the relative time improvement table
3 T zeros(|S|, |Ksmall|)
4 for Configuration si in S do

5 for Instance xj in Ksmall do

6 // Solve instance xj with configuration si with the MILP solver
7 Tij �(si, xj)
8 end for

9 end for

10 // construct the restricted configuration space
11 A {}
12 for Choice i = 1: |A| do

13 // greedy based on marginal improvement in instance-aware perf. (see Table 5)
14 s argmax

s2S\A
�̂(f̃ERM

A[{s},X)� �̂(f̃ERM
A ,X)

15 // filtering based on instance-agnostic perf. of individual configuration (see Table 5)
16 if

ˆ̄
�(s) > b then

17 A A [{x}
18 else

19 S S \ {x}
20 end if

21 end for

On Line 1, we use the following two strategies to sample the large initial configuration subset S ✓ O:

1. Near Zero: we include all configurations that activate at most 3 separators, which results in
a subset S1 of size

P3
i=0

�M
i

�
=
P3

i=0

�17
i

�
= 834.

2. Near Best Random: we first sample 500 configurations uniformly at random from O and
find the configuration s̃

0 in the sample with the highest empirical instance-agnostic perfor-
mance ˆ̄

�(s) on the training set Ksmall (see Table 5). Then, we include (1) all configurations
that have at most 3 separator different from s̃

0, resulting in a subset S21 of size 834, and (2)
all configurations whose set of activated separators is a subset of the activated separators in
s̃
0, resulting in another subset S22 whose size depends on the number of activated separators

in s̃
0 and ranges from 63 to 1023 for all MILP classes considered in this paper.

Combining all samples from above, we obtain a large initial configuration subset S with |S| ⇡ 2000.

The Near Best Random strategy is designed to bootstrap high quality samples around the high
quality configuration s̃

0 obtained from random search. The subset S21 increases sample diversity by
perturbing s̃

0 within a Hamming distance of 3, and S22 is designed based on the intuition that it may
be possible to deactivate more separators from s̃

0, as some activated separators in s̃
0 may be useful

for certain MILP instances but not for the others. The Near Zero strategy is designed based on the
intuition that it may be beneficial to maintain a small set of activated separators, as it reduces the time
to invoke separator algorithms (although at the cost of reducing the quality of the generated cuts).

24

A.3.2 Algorithm discussions: filtering and subspace size

When employing our filtering strategy, a higher (more aggressive) threshold ˆ̄
�(s) b with larger b

leads to a higher average empirical instance-agnostic performance (second term 1
|A|
P

s2A �̂(s) in
Eq. (3) of the main paper), which measures generalizability of the instance-aware predictor, but it
also incurs a decrease in the empirical performance for the instance-aware ERM predictor (first term
�̂(f̃A) in Eq. (3)), which measures the training performance of the instance-aware predictor).

In Figure 5, we plot the behavior of these two terms across different threshold values of b (ignoring the
weight of ↵), using the Ksmall training set of Independent Set and Load Balancing. The size of the
subspace A is fixed at |A| = 15 for Independent Set and |A| = 25 for Load Balancing, which equals
the size of our chosen subspace in L2Sep that is constructed with filtering threshold b

ours = 0.4 for
Independent Set and b

ours = �0.1 for Load Balancing. The subspaces are constructed by our Alg. 1
that combines a greedy strategy with the filtering criterion.

(a) Independent Set |A| = 15 (b) Load Balancing |A| = 25

Figure 5: Training set performance (1st) and generalization (2nd) terms in Eq. (3) of the main paper
for subspaces constructed using Alg. 1 with varying thresholds b. The vertical dotted black lines
indicate our chosen threshold.

An effective approach for choosing the threshold, as supported by our theoretical analysis in Sec. 5.1
of the main paper, is to find a value b that yields a substantial improvement in the generalization term
(2nd), while simultaneously maintaining a high training set performance term (1st). Our selection of
b
ours = 0.4 for Independent Set and b

ours = �0.1 for Load Balancing satisfies this criterion.

In Figure 6, we further plot the two terms during the intermediate construction process of Alg. 1
where the subspace A is expanded by adding a configuration at each iteration. The plot shows the
behavior of the two terms through the construction process for a set of thresholds b (as specified in
the legend), when evaluated on the same Ksmall training dataset.

(a) Independent Set (b) Load Balancing

Figure 6: Training set performance (1st) and generalization (2nd) terms in Eq. (3) for intermediate
subspaces constructed using Alg.1 across a set of thresholds b. The vertical dotted black lines indicate
our chosen subspace size. The asterisks (*) in the legend indicate our choice of b.

Once again, our choice of the threshold b allows a notable improvement in the second generalization
term (2nd), while maintaining a high level of performance in the first training set performance term
(1st). This trend persists throughout each step of our iterative algorithm. We choose the size of the
subspace |A| (the termination criterion of our algorithm) when |A| is reasonably small, while both
terms stabilize and at values that offer a favorable trade-off between the two terms.

25

Figure 7: Forward training. (Left) The periodic update scheme where the configuration is updated at
different separation rounds (n1 = 1 and n2 = 4 in the illustration) and held constant between updates
(c.f. exhaustive update at each of the R = 6 rounds). (Right) The forward training algorithm that
sequentially learn the k networks {f̃m

✓T }km=1, whose output spaces are constrained to the subspace A,
for periodic configuration update. The MILP input to f̃

2
✓ is denoted as x̃ as it includes both the initial

MILP x and newly added cuts. Different shades of green represent different selected configurations.

A.4 Configuration Update Restriction

A.4.1 Forward training algorithm

Alg. 2 presents our forward training procedure that trains k predictor networks to perform k configu-
ration updates for each MILP instance. As illustrated in Fig.7, when training the j

th network, we
freeze the weights of the pre-trained networks {f̃m

✓T }j�1
m=1 and use them to update the configurations

at separation rounds {nm}j�1
m=1. Then, we learn the j

th network f̃
j
✓0 using neural UCB to update

the configuration at separation round nj , and we hold the configuration constant until the solver
terminates (at optimality or a fixed gap) to collect the terminal reward. We do not use intermediate
rewards as both the optimality gap and solve time vary at an intermediate round, making it difficult to
construct an integrated reward to compare different configurations.

Algorithm 2: Forward_Training
Input: MILP training set Klarge, number of configuration update steps k, configuration predictor

networks {f j
✓0}kj=1, separation rounds {nj}kj=1, training epochs T , number of MILP

instances P per epoch, number of samples to collect reward labels per epoch D, UCB
scaling factor �, configuration subspace A

Output: Trained regression networks {f j
✓T }kj=1

1 for Update j = 1: k do

2 Freeze the weight of {fm
✓T }j�1

m=1

3 f
j
✓T Neural_UCB (Klarge, f

j
✓0 , {fm

✓T }j�1
m=1, {nm}jm=1, T, P,D, �, A)

4 end for

A.4.2 Trade-off discussion for different k’s

Let ⇡⇤(R) and ⇡
⇤(k) be the optimal configuration policies when we perform R and k ⌧ R updates,

and let ⇡̃(R) and ⇡̃
(k) be the corresponding learned policies. Due to cascading errors over the long

horizon, the learning task for ⇡̃(R) is more challenging than for ⇡̃(k); on the other hand, the optimal
policy ⇡

⇤(k) performs worse than ⇡
⇤(R) due to the action space restriction. Hence, the frequency k

trades off approximation (for ⇡⇤(k) ⇡ ⇡
⇤(R)) and estimation (for ⇡̃(k) ⇡ ⇡

⇤(k)), with more frequent
updates (larger k) improves the approximation error while less frequent updates (smaller k) improves
the estimation error.

Recent theoretical work by Metelli et al. [38] investigates the impact of action persistence, namely
repeating an action for a fixed number of decision steps, for infinite horizon discounted MDPs. They
provide a theoretical bound on the approximation error in terms of the differences in the optimal
Q-value with and without action persistence (which corresponds to the Q-value of ⇡⇤(R) and ⇡

⇤(k)

in our setting). The resulting bound is a function of the discount factor, action hold length, and the
discrepancy between the transition kernel with and without action persistence. The approximation
error is agnostic to the specific learning algorithm, and hence the analysis can be adapted to our

26

setting by extending it to the finite horizon MPD scenario. They further use fitted Q-iteration to learn
the policies and establish a theoretical bound on the estimation error in terms of the differences in the
Q-value of the learned policies with and without action persistence. In contrast, our learned policies
⇡̃
(R) and ⇡̃

(k) are trained via the forward training algorithm. While it is not the focus of our paper,
we note a possible future research to extend their theoretical analysis of the estimation error to the
forward training algorithm, and compare the theoretical bounds on approximation and estimation to
analyze the trade-off associated with the configuration update frequency k.

A.5 Neural UCB Algorithm

A.5.1 Training algorithm

The Neural UCB algorithm [59] that we employ to train each configuration predictor network is
presented in Alg. 3.

Algorithm 3: Neural_UCB

Input: MILP training set Klarge, predictor network at the current separation round f̃
j
✓0 , trained

predictor networks at previous separation rounds {f̃m
✓T }j�1

m=1, current separation round nj ,
previous separation rounds {nm}j�1

m=1, training epochs T , number of MILP instances P
per epoch, number of samples to collect reward labels per epoch D, UCB scaling factor �,
UCB regularization parameter �, configuration subspace A

Output: Trained predictor network f̃
j
✓T

1 Initialize B
0 an empty training data buffer

2 Initialize Z0 �I|✓|⇥|✓|
3 for Epoch t = 1: T do

4 Initialize B
t B

t�1

5 for P iterations do

6 Sample instance x from Klarge

7 // sampling D configurations with UCB to balance exploration and exploitation
8 for Configuration s in A do

9 Compute Ut,s f̃
j
✓t�1(x, si) + �

q
r✓f̃

j
✓t�1(x, s)

|
Z

�1
t�1r✓f̃

j
✓t�1(x, s)

10 end for

11 Let S D samples without replacement ⇠ softmaxs2A(Ut,s)

12 Compute Zt Zt�1 +
P

s in S
r✓f̃

j
✓t�1(x, s)r✓f̃

j
✓t�1(x, s)

|

13 // Collect the reward label for each configuration
14 for Sample i = 1: D do

15 Regression Label ri Run the MILP solver for the instance x: use {f̃m
✓T }j�1

m=1 to
update configurations at separation rounds {nm}j�1

m=1, and update configuration to
si at separation round nj

16 end for

17 B
t B

t [{x, si, ri}H+1
i=1

18 end for

19 f̃
j
✓t Train f̃

j
✓t�1 with the updated buffer Bt

20 end for

A.5.2 Input features

Paulus et al. [42] design a comprehensive set of input features for variable and constraint nodes
(extended from Gasse et al. [18] for their cut selection task), resulting in V 2 Rn⇥17 and C 2 Rm⇥34,
where m and n are the number of constraints and variables in the MILP instance x. We note that
the constraint nodes include the initial constraints from the MILP x as well as the newly added
cuts. We adopt their input features and provide a detailed description of the features in Table 6 for
completeness of the paper. Meanwhile, we set the separator nodes (unique to our task) as S 2 RM⇥1,

27

where M is the number of separators in the MILP solver, and each separator node Sk has a single
dimensional binary feature indicating whether the separator is activated (1) or deactivated (0).

For edge weights, we similarly follow Paulus et al. [42] and Gasse et al. [18] to connect each
variable-constraint node pair if the variable appears in a constraint, and set the edge weight to be
the corresponding nonzero coefficient. Meanwhile, we connect all separator-variable and separator-
constraint node pairs with a weight of 1, which results in a complete pairwise message passing
between each separator-variable and separator-constraint pair in the Graph Convolution Network [33].
As we lack reliable prior knowledge of the weight for the separator-variable and separator-constraint
pair, we do not provide initial weight information and instead directly use the graph convolution
mechanism to automatically learn the similarity between each pair.

Table 6: Description of input features for variable and constraint nodes [42].

Node Type Feature Description

Vars

norm coef Objective coefficient, normalized by objective norm
type Type (binary, integer, impl. integer, continuous) one-hot
has lb Lower bound indicator
has ub Upper bound indicator
norm redcost Reduced cost, normalized by objective norm
solval Solution value
solfrac Solution value fractionality
sol_is_at_lb Solution value equals lower bound
sol_is_at_ub Solution value equals upper bound
norm_age LP age, normalized by total number of solved LPs
basestat Simplex basis status (lower, basic, upper, zero) one-hot

Cons,

Added

Cuts

is_cut Indicator to differentiate cut vs. constraint
type Separator type, one-hot
rank Rank of a row
norm_nnzrs Fraction of nonzero entries
bias Unshifted side normalized by row norm
row_is_at_lhs Row value equals left hand side
row_is_at_rhs Row value equals right hand side
dualsol Dual LP solution of a row, normalized by row and objective norm
basestat Basis status of a row in the LP solution, one-hot
norm_age Age of row, normalized by total number of solved LPs
norm_nlp_creation LPs since the row has been created, normalized
norm_intcols Fraction of integral columns in the row
is_integral Activity of the row is always integral in a feasible solution
is_removable Row is removable from the LP
is_in_lp Row is member of current LP
violation Violation score of a row
rel_violation Relative violation score of a row
obj_par Objective parallelism score of a row
exp_improv Expected improvement score of a row
supp_score Support score of a row
int_support Integral support score of a row
scip_score SCIP score of a row for cut selection

28

A.6 Experiment Setups

A.6.1 Proposed method details

Our main result tables (Table 1 and Table 3 of the main paper) present our complete method and two
sub-components. We provide details on the implementation of these three methods.

(1) Ours (L2Sep): for each MILP class, we first run Alg. 1 to obtain a configuration subspace A.
Then, we run Alg. 2 that uses forward training to learn k = 2 separate instance-aware configuration
predictors f̃

1
✓ and f̃

2
✓ to perform two configuration updates at separation rounds n1 and n2. The

output of the predictors is restricted to the subspace A. We train the predictors using the Neural
UCB Algorithm 3. A summary of our training pipeline is shown in Alg. 4. At inference time,
we have two selection strategies: we select the configuration with either the highest predicted
reward s

⇤
x,j = argmaxs2A f̃

j
✓T (x, s) or the highest UCB score s

⇤
x,j = argmaxs2A ucb(x, s) for

all predictors j, determined based on validation performance. In our experience, we observe that
selecting configurations based solely on the point estimate f̃

j
✓T (x, s) alone can sometimes be overly

deterministic, leading to a limited range of configurations being chosen for most instances. The UCB
score combines the reward point estimate f̃ j

✓T (x, s) with an uncertainty estimate (computed in Line 8
of Alg. 3, where the normalizing matrix Z is from the same epoch as the selected model), and it hence
increases the diversity of the prediction and improves the performance in most scenarios. Given the
selection strategy, for each instance x, we set the configuration to be s

⇤
x,1 at separation rounds n1

and s
⇤
x,2 at separation rounds n2. We hold the configuration fixed as s⇤x,1 between separation rounds

[n1, n2] and as s⇤x,2 from separation round n2 until the solving process terminates.

Algorithm 4: Learning_To_Separate (L2Sep)
Input: MILP training set Ksmall, the unrestricted configuration space O = {0, 1}M , number of

initial configuration samples |S|, size of the restricted configuration space |A|,
instance-agnostic performance threshold b, MILP training set Klarge, number of
configuration update steps k, configuration predictor networks {f j

✓0}kj=1, separation
rounds {nj}kj=1, training epochs T , number of MILP instances P per epoch, number of
samples to collect reward labels per epoch D, UCB scaling factor �, UCB regularization
parameter �

Output: Trained regression networks {f j
✓T }kj=1

1 A Configuration_Space_Restriction (Ksmall, O, |S|, |A|, b) // See Alg. 1
2 {f j

✓T }kj=1 Forward_Training (Klarge, k, {f j
✓0}kj=1, {nj}kj=1, T, P,D, �,�, A) // See Alg. 2

(2) Instance Agnostic Configuration: The first step of Alg. 1 is to sample a large subspace S with
|S| ⇡ 2000 due to computational infeasiblity to enumerate all {0, 1}M configurations (See Ap-
pendix A.3.1). For each configuration s 2 S, we compute its empirical instance-agnostic performance
ˆ̄
�(s) = 1

|Ksmall|
P

x2Ksmall

�(s, x) and choose the best (ERM) configuration s̃S = argmaxs2S
ˆ̄
�(s) as

the instance agnostic configuration. We apply the same s̃S to all instances in the given MILP class
to evaluate its performance. Notably, s̃S always appears in the final restricted subspace A, as it is
selected at the first iteration of Alg 1 when the marginal improvement of the instance-aware function
(Line 14) and the instance-agnostic performance (Line 16) coincide.

(3) Random Within Restricted Subspace: Given the subspace A constructed by Alg. 1, we choose
a configuration in the subspace A uniformly at random for each MILP instance.

A.6.2 Parameters

Table 7 and Table 8 present a list of parameters along with their experimental values used by our
L2Sep method in Alg. 4.

A.6.3 SCIP interface.

We use a custom version of the SCIP solver (v7.0.2) [8] provided by Paulus et al. [42] and a custom
version of the PySCIPOpt interface (v3.3.0) [37] to add a special separator invoked at the beginning

29

Table 7: A list of parameters and their values as used in the experiments for our data-driven subspace
restriction Alg. 1.

Tang Bin. Pack. Max. Cut Pack.

Number of initial config. samples |S| 1795 1795 2691
Size of restricted config. space |A| 30 20 15

Filtering threshold b 0.3 0.6 0.0

Ecole Comb. Auc Indep. Set Fac. Loc.

Number of initial config. samples |S| 1699 1699 1923
Size of restricted config. space |A| 25 15 20

Filtering threshold b 0.5 0.4 0.0

Real-world MIPLIB NNV Load Bal.

Number of initial config. samples |S| 2179 2691 1795
Size of restricted config. space |A| 20 20 25

Filtering threshold b -0.17 0.0 -0.1

Table 8: A list of parameters and their values as used in the experiments for our learning Alg. 2 and 3.

Parameter Value

Number of separators M 17
Number of configuration updates k 2
Configuration update round n1 0
Configuration update round n2 5 for Tang instances

8 for Ecole instances
10 for MIPLIB, NNV, Load Balancing

Training epoch T 70
Number of MILP instances per epoch P 6
Number of samples to collect reward

labels per epoch D
8

Number of solver runs to collect a reward
label for each config.-instance pair l 3

Reward clipping constant rmin -1.5
UCB scaling factor � 0.9375
UCB regularization parameter � 0.001

of each separation round to activate and deactivate M = 17 standard separators implemented in
SCIP, including aggregation, cgmip, clique, cmir, convexproj, disjunctive, eccuts, flowcover, gauage,

gomory, impliedbounds, intobj, mcf, oddcycle, rapidlearning, strongcg, zerohalf.2

A.6.4 Training and evaluation details

Architecture and training hyperparameters. Our network first embeds V 2 Rn⇥17, C 2 Rm⇥34,
and S 2 RM⇥1 (where n,m,M are the number of variables, constraints, and separators) into hidden
representations of dimension dhidden = 64 with a BatchNorm followed by two (Linear, ReLU)
blocks. Then, our Graph Convolution module [33] takes the hidden embeddings for message passing,
following the direction of (V!C!V, S!V!S, and S!C!S), with a final (LayerNorm, ReLU,
Linear) block that maintains the dimension dhidden. Then, the separator nodes S pass through a
TransformerConv attention module [48] with nheads = 4 heads and a dropout rate of 0.1. Lastly,
we perform a global mean pooling on each of the C, V, and S hidden embeddings to obtain three
embedding vectors, concatenate them into a single vector, and finally use a (Linear, ReLU, Linear)
block to map the vector into a scalar output. We train with Adam optimizer with a learning rate of
0.001 and a batch size of 64 for 70 epochs with a total of 180000 gradient steps. All hyperparameters
are selected on the validation set and frozen before evaluating on the test set. Table 9 and 10 provides
a list of hyperparameters.

2Detailed descriptions of the separators can be found in https://www.scipopt.org/doc-7.0.2/html/

group__SEPARATORS.php.

30

https://www.scipopt.org/doc-7.0.2/html/group__SEPARATORS.php
https://www.scipopt.org/doc-7.0.2/html/group__SEPARATORS.php

Table 9: Architecture hyperparameters.

Input dimension
n⇥ dn

m⇥ dn

s⇥ ds

V 2 Rn⇥17

C 2 Rm⇥34

S 2 RM⇥1

GCN Message
Passing Order

V!C!V,
S!V!S,
S!C!S

Output dimension 1 Attention
Num. Heads 4

Embedding
dimension dhidden

64 Attention
Dropout 0.1

Activation ReLU

Table 10: Training hyperpa-

rameters.

Optimizer Adam
Learning rate 0.001

Batch size 64
Num. of

Gradient Steps 180000

Data split, MILP solver termination criterion, and inference strategy. For all MILP classes
except MIPLIB, we collect a small training set Ksmall of 100 instances for configuration space
restriction, and a large training set Klarge of 800 instances for predictor network training. We hold
out a validation set and a test set of 100 instances each. For MIPLIB, our curated subset contains 443
instances in total. We split the instances into Ksmall with 30 instances, Klarge with 270 instances, a
validation set with 55 instances, and a test set with 88 instances.

For all MILP classes except MIPLIB and Load Balancing, we solve the instances until optimality.
For MIPLIB and Load Balancing, we solve all instances until it reaches a primal-dual gap of 10%.

For Packing and Bin Packing, our best inference selection strategy, chosen based on validation perfor-
mance, is to select the configuration with the highest predicted reward s

⇤
x,j = argmaxs2A f̃

j
✓ (x, s).

For all other MILP classes, the best inference selection strategy is to select the configuration with the
highest UCB score s

⇤
x,j = argmaxs2A ucb(x, s).

Training and evaluation. We collect data, train, validate and test all methods on a distributed
compute cluster using nodes equipped with 48 Intel AVX512 CPUs. A single Nvidia Volta V100
GPU is used to train all MILP classes except MIPLIB, as the massive number of variables and
constraints (up to 1.4 ⇥ 106) in certain MIPLIB instances poses memory challenges for the GPU
device (with 16GB memory). Our configuration subspace restriction Alg. 1 requires approximately
36 hours, while the training time for Alg. 2 is within 48 hours for all benchmarks including MIPLIB.
In certain cases, the baseline methods take excessively long solve time, making it computationally
expensive to evaluate those methods. During test evaluation, we terminate the solve if the solve
time exceeds three times the SCIP default (which can be up to 20 minutes), resulting in a time
improvement as low as�300%. This time limit is more relaxed than the reward clipping rmin = �1.5
during training (which corresponds to �150% time improvement and is applied to improve data
collection efficiency). Notably, the hard stop is not used for our complete learning method (L2Sep),
whose performance improvement from SCIP default remains consistently stable across instances.
Instead, it is primarily used for the random or prune baseline that exhibits very poor performance or
a significantly large standard deviation. Without the time limit, these baselines may exhibit worse
performance than those reported in Table 1 and 3 of the main paper.

31

A.6.5 MILP benchmarks

We perform extensive evaluation on the following MILP benchmarks of a variety of different sizes.

Standard: Tang et al. We consider three out of four MILP classes introduced in Tang et al. [51]:
Maximum Cut, Packing, and Binary Packing. We follow Paulus et al. [42] to only consider the large
size where the number of variables and constraints n,m 2 [50, 150], as Paulus et al. [42] observe
the small and medium size are too easy for the SCIP solver. We do not consider the Planning class
because the large size is still too small, as SCIP takes less than 0.01s on average to solve the instances.

We generate large size Tang instances with class specific parameters n = 60 variables, mresource = 60
constraints for Packing, n = 66 variables, mresource = 132 constraints for Binary Packing, and
nvertices = 54, nedges = 134 for Maximum Cut.

Standard: Ecole. We consider three out of four classes of instances from [43]: Combinatorial
Auction, Independent Set, and Capacitated Facility Location, where the number of variables and
constraints in the instances n,m 2 [100, 10000].

We generate Ecole instances with class specific parameters nitems = 100, nbids = 500 for Combina-
torial Auction, nnodes = 500 for Independent Set, nrows = 500, ncolumns = 1000 for Set Cover, and
ncustomers = 100, nfacilities = 100 for Capacitated Facility Location.

Table 11: Sampling parameter distributions for each In-
dependent Set and Combinatorial Auction instance.

Independent Set

graph_type edge_probability affinity
U({barabasi_albert,

erdos_renyi}) U([0.005, 0.01]) U({2, 3, 4, 5, 6})

Combinatorial Auction

value_deviation add_item_prob max_n_sub_bids
U([0.25, 0.75]) U([0.5, 0.75]) U({3, 4, 5, 6, 7})

additivity budget_factor resale_factor
U([�0.1, 0.4]) U([1.25, 1.75]) U([0.35, 0.65])

When we use the default parameters in
the Ecole library to generate the Com-
binatorial Auction and Independent Set
datasets3, we notice that the instance-
aware ERM (optimal) predictor some-
times only selects a small number of con-
figurations within each class, resulting
in similar performance as the instance-
agnostic configuration (single configura-
tion) due to selection homogeneity. De-
spite both resulting in significant relative
time improvements from SCIP default,
the default parameters cause the instances
within each of these two classes too sim-
ilar to one another, thereby limiting the
benefits of instance-aware configurations.
To enhance instance diversity, we adjust the parameters for both classes by sampling uniformly
at random from a broad distribution, as presented in Table 11, for each MILP instance. As many
large-scale real-world MILP problems exhibit significant dataset heterogeneity (for instance, see
MIPLIP below), we believe that our adjusted Ecole datasets better reflect realistic MILP scenarios.

We do not report results for Set Cover as we find an instance-agnostic configuration s
ERM that

deactivates all separators is able to achieve a relative time improvement of 88.6% (IQM: 88.4%, mean:
87.4%, standard deviation 6%) from SCIP default, whereas the default median solve time is 5.96s
(IQM 6.13s, mean: 6.45s, standard deviation 3.17s). Furthermore, on the small training set Ksmall,
we find that the instance-aware empirical performance of the ERM predictor f̃ERM differs by less
than 1% from the performance of sERM . We experiment with various parameters for the Set Cover
problem, such as the number of rows and columns, density of the constraint matrix, and maximum
objective coefficient, but observe similar outcomes. This implies that separators in the SCIP solver
do not provide significant benefits for the Set Cover class, and therefore, the instance-aware ERM
predictor aligns with the instance-agnostic configuration to deactivate all separators.

Large-scale: NN Verification. We consider the large-scale neural network verification instances
used in Paulus et al. [42], with a median size (n,m) of the number of variables and constraints at
(7142, 6531). This dataset formulates MILPs to verify whether a convolutional neural network is
robust to input perturbations on each image in the MNIST dataset. The MILP formulation of the

3
https://doc.ecole.ai/py/en/stable/reference/instances.html provides a list of adjustable

parameters for each Ecole MILP class.

32

https://doc.ecole.ai/py/en/stable/reference/instances.html

verification problem can be found in Gowal et al. [21]. We follow Paulus et al. [42] to exclude all
infeasible instances (often trivially solved at presolve) and instances that reach a 1-hour time-limit in
SCIP default mode. Due to differences in the learning tasks (separator configuration for the entire
solve v.s. cut selection at the root node), we further exclude instances that cannot be solved optimally
within 120 seconds, after which 74% of the instances used in Paulus et al. [42] remain.

Large-scale: MIPLIB. MIPLIB2017 collection [20] is a large-scale heterogeneous MILP bench-
mark dataset that contains a curated set of challenging real-world instances from various application
domains. It contains 1065 instances where the number of variables and constraints (n,m) varies
from 30 to 1, 429, 098. Previous work [52] finds it very challenging to learn over MIPLIB due to
dataset heterogeneity. A recent work [54] attempts to learn cutting plane selection over two subsets
of similar instances (with 20 and 40 instances each), curated via instance clustering from two starting
instances containing knapsack and set cover constraints.

We attempt to learn over a larger heterogeneity subset of the MIPLIB dataset to solve the separator
configuration task. We adopt a similar dataset pre-filtering procedure as in Turner et al. [52], where
we discard instances that are infeasible, solved after presolving, or the primal-dual gaps are larger
than 10% after 300 seconds of solve time. It is worth noting that our pre-filtering procedure preserves
the dataset heterogeneity, whereas Wang et al. [54] reduces the dataset to homogeneous subsets. We
obtain a subset of 443 instances, which is around 40% of the original MIPLIB dataset.

Large-scale: Load Balancing (ML4CO Challenge). We consider the server load balancing
dataset from Neurips 2021 ML4CO Challenge [19] 4, whose average number of variables and
constraints (n,m) is at (64304, 61000). This dataset is inspired by real-world applications in
distributed computing, where the goal is to allocate data workloads to the fewest number of servers
possible while ensuring that the allocation remains resilient to the failure of any worker. This is a
challenging dataset due to the large number of variables and constraints, along with the presence of
nonstandard robust apportionment constraints that separators in MILP solvers may not be specialized
for. No instances from the original load balancing dataset are pre-filtered, as we observe that the
primal-dual gaps for all instances remain within 10% after 300 seconds of solve time.

The ML4CO challenge releases two other datasets: Item Placement and Anonymous. We follow Wang
et al. [54] and exclude Item Placement since very few cutting planes are generated and used in the
dataset (with an average of less than five candidate cuts on each instance), thereby limiting the
influence of separators on the dataset. Additionally, we exclude Anonymous because the dataset is
restrictively small for effective learning (comprising only 98 train and 20 valid instances).

4More details on the dataset can be found at https://www.ecole.ai/2021/ml4co-competition/

33

https://www.ecole.ai/2021/ml4co-competition/

A.7 Ablation Details

A.7.1 Implementation details of ablation methods

Configuration space restriction (Sec. 5.1):

(1) No Restr.: We do not constraint the output space of the k = 2 instance-aware predictors, allowing
them to output any configuration in the unrestricted space {0, 1}M . Due to the vast number of actions,
it is infeasible to use the neural UCB Alg. 3 as the normalizing matrix Z becomes excessively large,
making it challenging to obtain meaningful confidence bounds as most actions remain unexplored.
Hence, we use the following ✏-greedy exploration strategy (similar to the ✏-greedy ablation below):
we first sample a subset of 50 configurations for training efficiency. Then, we iteratively select D
configurations from the subset to collect the reward labels: at each of the D iteration, with probability
✏ = 0.1 we select a configuration uniformly at random among the unselected ones in the subset, and
with probability 1 � ✏ we choose the configuration with the highest reward point estimate among
the unselected ones in the subset. At inference time, we sample a subset of 500 configurations for
each MILP instance, and select the configuration with the highest reward point estimate. All the
other settings remain the same as our complete method (L2Sep). This ablation is used to examine the
effectiveness of restricting configuration space in learning better configuration predictors.

(2) Greedy Restr.:
When we run Alg. 2 to obtain the configuration subspace A0, we select configurations solely with the
greedy strategy based on the highest marginal improvement, but we do not filter out configurations
with low instance-agnostic performance (equivalent, we set the filtering threshold b = �1). The rest
of the learning remains identical to our complete method (L2Sep), but with the predictor’s output
restricted to the greedy subspace A0. This ablation allows us to assess the effectiveness of the filtering
strategy in constructing a superior configuration subspace for learning predictors.

Configuration step restriction (Sec. 5.2):

(1) k = 1: We perform one configuration update for each MILP instance. We use the first config.
predictor f̃1

✓ from our complete method (L2Sep) to set configuration at separation round n1.

(2) k = 3: We fix the two configuration predictors f̃1
✓ and f̃

2
✓ from our complete method (L2Sep),

and follow Alg. 2 to train a third configuration predictor f̃3
✓ at separation round n3 (= 12 for Tang

instances and 20 for Ecole instances). The predictor f̃3
✓ is similarly restricted to the subspace A. At

test time, for each instance x, we follow our complete method to perform two configuration updates
using f̃

1
✓ and f̃

2
✓ until separation round n3. Then, we use f̃

3
✓ to update the configuration at separation

round n3 and hold it fixed until the solving process terminates.

Neural UCB Algorithm (Sec. 5.3):

(1) Supervise (⇥4): We exactly follow our complete method (L2Sep), except that we use offline
regression instead of online neural UCB to train the predictors. Offline regression first collects a
large training set of instance-configuration-reward tuples offline (by randomly sampling instance-
configuration pairs and using the MILP solver to obtain the reward labels). The network is then
trained on the fixed training set. In contrast, neural UCB gradually expands the training buffer by
collecting training data online, while using the current trained model to guide exploration (sampling
configurations with high uncertainty) and exploitation (sampling configurations with high predicted
reward). Model training is performed online on the continually updated dataset. Due to the difference
in online v.s. offline nature of the dataset generation and training scheme, one learning method
may require more gradient updates to converge than the other. To attempt at a fair comparison, we
collect ⇥4 more instance-configuration-reward tuples and train the offline network until convergence.
This ablation is used to examine the efficacy of online learning through neural contextual bandit in
improving the training efficiency of predictor networks.

(2) ✏-greedy: We exactly follow our complete method, except when training the predictors with the
Neural Contextual Bandit algorithm in Alg. 3, we use an ✏-greedy strategy to iteratively sample the D
configurations: at each of the D iteration, with probability ✏ = 0.1 we select a configuration uniformly
at random among the unselected ones in A, and with probability 1� ✏, we select the configuration
with the highest reward point estimation among the unselected ones in A. The ✏-greedy strategy does

34

not require confidence bound estimation and has been commonly used in deep reinforcement learning
(such as deep Q Learning [39]) when the action space is large. This ablation allows us to assess
the effectiveness of upper confidence bound (UCB) estimation for better a exploration-exploitation
trade-off in neural contextual bandit.

A.7.2 Additional ablation results and analysis

Ablation: Different configuration subspaces for different configuration update steps

Our complete method (L2Sep) in the main paper constructs the subspace A only once at the initial
update for computational efficiency benefits. We present the ablation where we construct a new
subspace A2 at the second update. Specifically, for each MILP instance x 2 Ksmall, we use the first
trained predictor f̃1

✓T to set the initial configuration at separation round n1 and hold the configuration
between separation rounds [n1, n2]. At the start of separation round n2, the MILP instance is updated
to x̃, which combines the original MILP x with the newly added cuts. For ease of explanation,
we let Ksmall,2 denote the updated training set of MILP instances where each instance x̃ starts at
separation round n2. We run Alg. 1 on Ksmall,2 to select a configuration subspace A2 based on the
time improvement when we set the configuration at separation round n2 and maintain it until the
solving process terminates. We use the same set of parameters (including filtering threshold b, size of
the subspace |A|, and size of the initial samples |S|) as when we construct A.

Table 12: Comparison of (1) the empirical perf.
of the instance-aware ERM predictor �̂(f̃ERM

A)
and �̂(f̃ERM

A,2), denoted as A: 1st and A2: 1st,
and (2) the average empirical instance-agnostic
perf. 1

|A|
P
s2A

ˆ̄
�(s) and 1

|A2|
P

s2A2

ˆ̄
�(s), denoted as

A: 2nd and A2: 2nd, on the reused subspace A

and the updated subspace A2.

A: 1st A: 2nd A2: 1st A2: 2nd

Bin. Pack. 63.1% 28.9% 68.9% 39.3%
Pack. 47.2% 5.8% 44.3% 8.2%

Indep. Set 76.1% 53.9% 77.9% 57.8%
Fac. Loc. 37.7% 7.3% 46.7% 13.1%

We first compare our choice of reusing the previ-
ous subspace A with the ablation method of up-
dating the subspace to A2 by evaluating the two
terms in Eq. (3) of the main paper that balances
training set performance and generalization: (1)
the empirical performance of the instance-aware
ERM predictors, �̂(f̃ERM

A,2) and �̂(f̃ERM
A2,2

),
which we denote as A: 1st and A2: 1st, and (2)
the average empirical instance-agnostic perfor-
mance, 1

|A|
P
s2A

ˆ̄
�(s) and 1

|A2|
P

s2A2

ˆ̄
�(s), which

we denote as A: 2nd and A2: 2nd, on the up-
dated training set Ksmall,2. The ERM predictors
f̃
ERM
A,2 and f̃

ERM
A2,2

set the configuration once
at separation round n2 by choosing optimally
within the subspace A and A2 for each instance
in the updated training set Ksmall,2.

Table 12 displays the relevant statistics on the
four ablations MILP classes. We observe an
overall decrease in both terms when we re-use the subspace A instead of using the updated subspace
A2, although the difference is relatively small. Notably, in the Packing class, the 1st term of the reused
subspace A is higher than that of the updated subspace A2. This is because the filtering criterion for
the updated subspace A2 excludes certain configurations that enhance the instance-aware performance
of the ERM predictor, but have low instance-agnostic performance. While these configurations pass
the filtering criterion during the initial update, they are subsequently filtered out when we construct
the updated space A2 with a slight sacrifice in instance-aware performance.

We further follow our reported method (L2Sep) to train a second configuration predictor f̃2,2
✓T using

neural UCB (Alg. 3) within the updated subspace A2. We denote the updated method as L2Sep+.
The performance results on the four ablation benchmarks are reported in Table 13.

We find that our reported model L2Sep (with a single configuration subspace A) exhibits similar
performance as the updated model L2Sep+ (with the subspace A for the first update and an updated
subspace A2 for the second update), albeit L2Sep+ performing slightly better. This observation
validates our decision to reuse the subspace A for the second configuration update, as it offers
computational efficiency advantages by reducing the number of MILP solver calls during training (by
avoiding a second invocation of Alg 1). We attribute this outcome to (i) the diversity of configurations
within the subspace A, and (ii) the presence of similar characteristics within a solve for the same
MILP instance. Combined, these factors allow the subspace A constructed during the initial update

35

Table 13: Performance (median, mean, interquartile mean, and standard deviation) of our method
where we use the same subspace A for both k = 2 updates (L2Sep) v.s. we update a new subspace
A2 for the second update (L2Sep+).

Bin. Pack. Pack.

Method Median Mean IQM STD Median Mean IQM STD

L2Sep 42.3% 33.0% 40.5% 34.2% 28.5% 17.7% 25.2% 39.3%

L2Sep+
(New A) 43.1% 34.1% 41.1% 34.9% 29.7% 19.6% 28.1% 38.5%

Indep. Set Fac. Loc.

Median Mean IQM STD Median Mean IQM STD

L2Sep 72.4% 60.1% 69.8% 27.8% 29.4% 18.2% 27.5% 39.6%

L2Sep+
(New A) 68.7% 61.8% 67.7% 25.1% 29.8% 23.0% 28.7% 32.1%

to effectively cover the high-performance configurations across various separation rounds.

We also observe that L2Sep+ with the updated subspace A2 demonstrates more significant
improvements in mean performance compared to other metrics. We believe this is also because the
instance-agnostic performance of a small number of configurations in the first subspace A may
degrade during the second update step, resulting in subpar performance on a few outlier instances that
negatively impact the mean (see a similar discussion in Appendix A.8.1). However, by reconstructing
the second subspace A2, we effectively eliminate those configurations through the second filtering
pass, thereby enhancing the robustness of subspace A2 to outlier instances. Hence, the choice to
update the second subspace involves a trade-off between computational efficiency and robustness on
the outlier instances, and ultimately, should be decided based on the characteristics of the specific
real-world application when deploying our method.

36

A.8 Detailed Experiment Results

A.8.1 Interquartile mean (IQM) and mean statistics

While we report the median and standard deviation in Table 1 and 3 of the main paper, we provide
the mean and interquartile mean (IQM) statistics in the following tables 14, 15 and 16. We observe
that the interquartile mean performance closely aligns with the median performance reported in
the main paper. Meanwhile, the mean improvements are lower than the interquartile mean for all
methods. Upon examining the performance of individual instances, we observe that the performance
degradation comes from a small number of outlier instances with negative time improvement; on
the majority of instances, our learning method is able to achieve significant improvement from SCIP
default. Addressing such outlier instances is left as a future work.

Table 14: Tang et al. The IQM and mean of the absolute solve time of SCIP default and relative time
improvement of different methods across the test set (higher the better, best are bold-faced).

Packing Bin. Packing Max. Cut

Method IQM Mean IQM Mean IQM Mean

Default Time (s) 9.13s 17.75s 0.096s 0.14s 1.77s 1.80s

Heuristic
Baselines

Default 0% 0% 0% 0% 0% 0%
Random -102.5% -117.9% -112.2% -122.4% -143.8% -131.4%

Prune 6.4% 1.1% 16.5% 17.0% 4.3% 12.3%

Ours
Heuristic
Variants

Inst. Agnostic
ERM Config. 17.9% 13.1% 34.9% 33.3% 70.2% 68.7%

Random within
Restr. Subspace 17.6% 12.2% 28.2% 25.0% 67.2% 66.6%

Ours
Learn L2Sep 25.2% 17.7% 40.5% 33.0% 71.8% 68.9%

Table 15: Ecole. The IQM and mean of the absolute solve time of SCIP default and relative time
improvement of different methods across the test set (higher the better, best are bold-faced).

Indep. Set Comb. Auction Fac. Location

Method IQM Mean IQM Mean IQM Mean

Default Time (s) 17.52s 67.18s 2.81s 4.18s 63.58s 77.90s

Heuristic
Baselines

Default 0% 0% 0% 0% 0% 0%
Random -101.5s -111.5% -132.0% -129.2% -125.3% -128.6%

Prune 14.5% 15.0% 12.2% 14.6% 24.2% 14.3%

Ours
Heuristic
Variants

Inst. Agnostic
ERM Config. 57.2% 51.5% 60.9% 56.8% 12.4% 10.9%

Random within
Restr. Subspace 50.0% 30.0% 59.2% 56.4% 17.8% 13.7%

Ours
Learn L2Sep 69.8% 60.1% 65.9% 62.2% 27.5% 18.2%

37

Table 16: Real-world MILPs. The IQM and mean of the absolute solve time of SCIP default
and relative time improvement of different methods across the test set (higher the better, best are
bold-faced).

NN Verif. MIPLIB Load Balancing

Method IQM Mean IQM Mean IQM Mean

Default Time (s) 33.48s 36.99s 16.32s 45.50s 32.47s 32.92s

Heuristic
Baselines

Default 0% 0% 0% 0% 0% 0%
Random -178.0% -154.6% -161.7% -150.1% -300.1% -229.6%

Prune 30.8% 24.4% 5.2% -30.5% -14.7% -71.1%

Ours
Heuristic
Variants

Inst. Agnostic
ERM Config. 30.2% 25.0% 3.4% -19.1% 11.2% 12.8%

Random within
Restr. Subspace 29.9% 26.1% -11.3% -31.4% 10.0% 8.4%

Ours
Learn L2Sep 34.8% 29.9% 11.9% -8.0% 21.1% 18.6%

A.8.2 Result contextualization

A previous work by Paulus et al. [42] evaluates their learning-based method for cutting plane selection
on the NN Verfication dataset. As shown in Table 3 of their paper, their best model achieves a median
solve time of 20.89s, whereas the default SCIP solver takes a median solve time of 23.65s, resulting
in a median relative speed up of 11.67%. While the comparison is far from perfect, our method
achieves a higher median relative time improvement of 37.5%. We note that it is reasonable for their
reported absolute solve time to be different from ours due to differences in computational machines.
We also perform a rough comparison to the MIPLIB results reported in Wang et al. [54], which, same
as Paulus et al. [42], learns to select cutting planes. In Table 1 of their paper, they report SCIP default
takes 256.58s and 164.61s on average to solve two small homogenous MIPLIB subsets, whereas
their cutting plane selection method improves the solve time to 248.66s and 162.96s, leading to a
3% and 1% improvement. Although not a perfect comparison, our L2Sep achieves a higher median
time improvement of 12.9% (and an interquartile mean time improvement of 11.9%) on our larger
heterogeneous subset (See Appendix A.6.5 for a detailed dataset description).

38

Figure 8: Bin Packing Interpretation. (Left / Heatmap) Each row is a separator, and each column
is a configuration in our restricted space. Green and yellow cells indicate activated and deactivated
separators by each configuration, respectively. (Middle / Histogram Left Column) The frequency of
each configuration selected by our learned model at the 1st and 2nd config. update on the original test
set with 66 bins. High frequency configurations are marked with red and orange squares, respectively.
The config. indices in the heatmap and the histograms align. (Right / Histogram Right Column) The
frequency of each configuration selected at the 2nd config. update (the 1st update has similar results)
when we gradually decrease the number of bins (bottom: 33 bins; top 16 bins). We observe the
prevalence of FlowCover and Clique decreased and increased, respectively.

A.8.3 Interpretation analysis: L2Sep recovers effective separators from literature

In Fig. 8, 9, 10, and 11, we provide visualizations of (1) the restricted configuration subspace A, as
shown in the heatmap plots, and (2) the frequency for each configuration to be selected by L2Sep on
the test set, as shown in the histogram plots, for all MILP classes that we study. As described in the
main paper, for Bin Packing, Independent Set, and MIPLIB, the visualization provides meaningful
interpretations that recover known facts from the mathematical programming literature.

Besides the known results, we also observe some intriguing unexpected scenarios from the visu-
alizations. For Independent Set, L2Sep deactivates all separators with a frequency of 20% at the
2nd configuration update, whereas all selected configurations at the 1st update activate a substantial
amount of separators. It is an interesting question to investigate why it is better to deactivate all
separators for a certain subset of Independent Set instances at later separation rounds.

For Maximum Cut, OddCycle [10, 29] and ZeroHalf [11] are known to be effective in the literature.
Interestingly, none of the selected configurations activate ZeroHalf for both configuration updates;
OddCycle is also completely deactivated for the 1st update, but is activated with a frequency of 14%
at the 2nd update. Meanwhile, we observe that Disjunctive, FlowCover, and Aggregation separators
are more frequently selected.

We hope that by providing the visualization results, L2Sep can serve as a driver of future works
on improved (theoretical) polyhedral understanding of different MILP classes, and potentially seed
investigations (empirical and theoretical) for nonstandard, newly-proposed problems (e.g. NN
Verification) where few analyses exists.

39

Figure 9: (Top) Independent Set. (Bottom) MIPLIB. The same set of figures as Fig. 8 (Left /
Heatmap) and (Middle / Histogram Left Column). See interpretations in the main paper.

(a) NN Verification.

(b) Load Balancing.

Figure 10: Other real-world MILP classes. The same set of figures as Fig. 8 (Left / Heatmap) and
(Middle / Histogram Left Column).

40

(a) Max. Cut

(b) Packing

(c) Combinatorial Auction

(d) Facility Location

Figure 11: Other Tang et al. and Ecole MILP classes. The same set of figures as Fig. 8 (Left /
Heatmap) and (Middle / Histogram Left Column).

41

Table 17: Alternative objective (relative gap improvement). Absolute gap of SCIP default under
the fixed time limit, and the mean (lower the better, best are bold-faced) and standard deviation of the
relative gap improvement of different methods with respect to SCIP default.

Methods Pack. Comb. Auc. Indep. Set NNV Load Balancing

Time Limit (s) 4.4s 1.4s 8.2s 16s 16s

Default Gap 9.1e-4
(9.3e-4)

0.060
(0.098)

0.057
(0.059)

0.50
(0.80)

0.32
(0.13)

Heuristic
Baselines

SCIP
Default 0% 0% 0% 0% 0%

Random -37.1%
(41.7%)

-27.3%
(69.1%)

-23.2%
(44.1%)

-40.3%
(72.8%)

-48.0%
(35.8%)

Ours
Heuristic
Variants

Inst. Agnostic
Configuration

11.9%
(38.4%)

52.4%
(45.3%)

23.5%
(34.5%)

33.6%
(72.1%)

14.0%
(18.9%)

Random within
Rest. Subspace

10.1%
(42.5%)

54.1%
(45.1%)

21.6%
(33.7%)

24.8%
(75.9%)

9.5%
(17.6%)

Ours
Learned L2Sep

15.4%

(40.0%)

68.8%

(38.2%)

29.6%

(34.7%)

36.0%

(68.2%)

34.2%

(27.5%)

Figure 12: Primal-dual bound curves (median and standard error) for L2Sep and SCIP default on
Independent Set and NN Verification. L2Sep can effectively tighten the dual bound faster.

A.8.4 The immediate and multi-step effect of separator configuration in the B&C process

Intelligently configuring separators have both immediate and multi-step effects in the B&C process:

Immediate: Some separators take a long time to run, but generate mostly low-quality cuts that are
ultimately never selected by the downstream cut selector. Deactivating those separators leads to an
immediate time improvement by reducing the time to generate the cut pool.

Multi-step: Improved separator configuration can tighten the dual bound faster through better-
selected cuts; it may also accelerate other B&C components such as branching (e.g. strong branching
requires solving many children LPs and hence may benefit from tighter dual bounds).

The Table 18 presents the total solve time and total separator execution time for our complete method
L2Sep and SCIP default on several MILP classes. We report the median and standard deviation
evaluated on 100 instances for each class. L2Sep significantly reduces the total separator execution
time. Upon closer examination, we find that L2Sep adeptly deactivates expensive yet ineffective
separators while activating effective ones.

In Fig. 12, we plot the primal-dual bound curves (median and standard error) of L2Sep and SCIP
default on Independent Set and NN Verification. The significantly faster dual bound convergence of
L2Sep demonstrates the multi-step effect of improved separator configurations. We further summarize
the synergistic interaction effects between separator selection and other B&C components (branching,
dual LP) in Table 19. Notably, even though our method does not modify branching, the branching
solve time is reduced.

42

Table 18: Immediate Effect of Separator Configuration. The median (lower the better) and
standard deviation (in parentheses) of the total solve time and total separator execution time for
L2Sep and SCIP default.

Total Solve Time

(L2Sep)

Total Separator

Execution Time

(L2Sep)

Total Solve Time

(SCIP Default)

Total Separator

Execution Time

(SCIP Default)

Comb. Auc. 0.65s

(2.36s)

0.02s

(0.054s)

3.01s
(4.60s)

1.39s
(1.14s)

Indep. Set 3.81s

(116.42s)

0.35s

(9.94s)

13.16s
(120.89s)

7.38s
(37.94)

NNV 20.75s

(18.56s)

0.16s

(0.13s)

34.76s
(25.05s)

6.58s
(8.05s)

Table 19: Multi-Step Effect of Separator Configuration. The median (lower the better) and
standard deviation (in parentheses) of strong branching time, pseudocost branching time, and dual LP
time for L2Sep and SCIP Default.

Comb. Auc. Indep. Set NNV

L2Sep SCIP Default L2Sep SCIP Default L2Sep SCIP Default

Strong

Branching Time

0.31s

(1.15s)

0.41s
(1.79s)

2.82s

(21.44s)

3.92s
(19.68s)

6.56s

(4.06s)

8.31s
(5.55s)

Pseudocost

Branching Time

0.35s

(1.46s)

0.45s
(2.17s)

3.01s

(22.29s)

4.6s
(21.67s)

8.18s

(4.81s)

9.69s
(6.13s)

Dual LP Time
0.08s

(0.58s)

0.18s
(0.83s)

0.3s

(73.95s)

1.14s
(55.51s)

3.67s

(6.52s)

5.07s
(5.81s)

A.8.5 Alternative objective: relative gap improvement

We analyzed an alternative objective of the relative gap improvement under a fixed time limit.
Let g0(x) and g⇡(x) be the primal-dual gaps of instance x using the SCIP default and another
configuration strategy ⇡(x) under a fixed time limit T . We define the relative gap improvement as
�g(⇡(x), x) := (g0(x) � g⇡(x))/(max{g0(x), g⇡(x)} + ✏). We choose the denominator to avoid
division by zero when the instance is solved to optimality.

As seen from Table 17, L2Sep achieves a 15%-68% relative gap improvement over SCIP default.
Specifically, the table presents the relative gap improvement (mean and standard deviation) of each
method over SCIP default, along with the fixed time limit for various MILP classes (mostly around
50% of medium SCIP default solve time), and the absolute gap of SCIP default at the time limit. In
Fig. 13, we further plot histograms of the gap distribution on the entire dataset for L2Sep and SCIP
default, where we observe that L2Sep effectively shifts the entire gap distribution to a lower range.
These results demonstrate the effectiveness of our method across different objectives, and its ability
to improve primal-dual gaps for instances that cannot be solved to optimality within the time limit.

Figure 13: Distributions of absolute primal-dual gaps of L2Sep and SCIP default on Load Balancing
and Combinatorial Auction. L2Sep is effective under an alternative objective (relative gap improve-
ment).

43

A.9 Limitation.

While SCIP default does not require training as it sets pre-defined priorities and frequencies of
separators (the same for all MILP instances), our learning method requires collecting data and fitting
models for each MILP class, which introduces a time overhead. However, such a limitation is inherent
in all learning for MILP methods [51, 42, 54, 18], as learning methods rely on training models to
generalize to unseen test instances. Following these previous works, we train separate models for
different MILP classes, although our L2Sep method exhibits a significant time improvement on the
heterogeneous MIPLIB dataset, which suggests the possibility of learning an aggregated model for
multiple MILP classes to potentially reduce training time. We leave this as a future work.

In the ablation Sec. 6.2 of the main paper, we observe that learning k = 3 configuration updates offers
limited improvement from our L2Sep method with k = 2 updates. While it is beneficial to achieve a
significant time improvement with a small number of updates as it simplifies the learning task and
reduces training time, the optimal policy for finer-grained control should theoretically yield better
performance (smaller approximation error to the optimal policy that allows updates at all separation
rounds). Potential future research would involve exploring the learning of more frequent configuration
updates, possibly by considering advanced reinforcement or imitation learning algorithms.

Another potential limitation of our learning method (as well as all baseline methods mentioned in the
main paper) is that the mean performance tends to be lower than the interquartile mean or median
due to the long solve time on a small set of outlier instances which skew the mean. A potential future
research direction would involve developing techniques to identify these outlier instances, on which
we use SCIP default instead of configuring with learning or heuristics methods.

A.10 Negative Social Impact.

Application of deep learning in discrete optimization may contribute to increased use of computation
for training the models, which would have energy consumption and carbon emissions implications.
The characterization and mitigation of these impacts remain an important area of study.

44

References

[1] Tobias Achterberg. Constraint integer programming. PhD thesis, 2007.

[2] Edoardo Amaldi, Stefano Coniglio, and Stefano Gualandi. Coordinated cutting plane generation
via multi-objective separation. Mathematical Programming, 143:87–110, 2014.

[3] Egon Balas, Sebastian Ceria, Gérard Cornuéjols, and N Natraj. Gomory cuts revisited. Opera-

tions Research Letters, 19(1):1–9, 1996.

[4] Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and
Ellen Vitercik. How much data is sufficient to learn high-performing algorithms? generalization
guarantees for data-driven algorithm design. In Proceedings of the 53rd Annual ACM SIGACT

Symposium on Theory of Computing, pages 919–932, 2021.

[5] Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. Generalization in portfolio-
based algorithm selection. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 12225–12232, 2021.

[6] Cynthia Barnhart, Ellis L Johnson, George L Nemhauser, Martin WP Savelsbergh, and Pamela H
Vance. Branch-and-price: Column generation for solving huge integer programs. Operations

research, 46(3):316–329, 1998.

[7] Timo Berthold, Matteo Francobaldi, and Gregor Hendel. Learning to use local cuts. arXiv

preprint arXiv:2206.11618, 2022.

[8] Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz,
Jasper van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, et al. The
scip optimization suite 8.0. arXiv preprint arXiv:2112.08872, 2021.

[9] Natashia Boland, Andreas Bley, Christopher Fricke, Gary Froyland, and Renata Sotirov. Clique-
based facets for the precedence constrained knapsack problem. Mathematical programming,
133:481–511, 2012.

[10] Endre Boros, Yves Crama, and Peter L. Hammer. Chvátal cuts and odd cycle inequalities in
quadratic 0–1 optimization. SIAM Journal on Discrete Mathematics, 5(2):163–177, 1992.

[11] Alberto Caprara and Matteo Fischetti. {0, 1/2}-chvátal-gomory cuts. Mathematical Program-

ming, 74:221–235, 1996.

[12] Steven Cheng, Christine W Chan, and Gordon H Huang. An integrated multi-criteria decision
analysis and inexact mixed integer linear programming approach for solid waste management.
Engineering Applications of Artificial Intelligence, 16(5-6):543–554, 2003.

[13] Antonia Chmiela, Elias Khalil, Ambros Gleixner, Andrea Lodi, and Sebastian Pokutta. Learning
to schedule heuristics in branch and bound. Advances in Neural Information Processing Systems,
34:24235–24246, 2021.

[14] Claudio Contardo, Andrea Lodi, and Andrea Tramontani. Cutting planes from the branch-
and-bound tree: Challenges and opportunities. INFORMS Journal on Computing, 35(1):2–4,
2023.

[15] Eray Demirel, Neslihan Demirel, and Hadi Gökçen. A mixed integer linear programming model
to optimize reverse logistics activities of end-of-life vehicles in turkey. Journal of Cleaner

Production, 112:2101–2113, 2016.

[16] Santanu S Dey and Marco Molinaro. Theoretical challenges towards cutting-plane selection.
Mathematical Programming, 170:237–266, 2018.

[17] Christodoulos A Floudas and Xiaoxia Lin. Mixed integer linear programming in process
scheduling: Modeling, algorithms, and applications. Annals of Operations Research, 139:
131–162, 2005.

45

[18] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. Advances in neural

information processing systems, 32, 2019.

[19] Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier
Chételat, Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M Kazachkov,
et al. The machine learning for combinatorial optimization competition (ml4co): Results and
insights. In NeurIPS 2021 Competitions and Demonstrations Track, pages 220–231. PMLR,
2022.

[20] Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe,
Timo Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib
2017: data-driven compilation of the 6th mixed-integer programming library. Mathematical

Programming Computation, 13(3):443–490, 2021.

[21] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan
Uesato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. On the effectiveness of interval
bound propagation for training verifiably robust models. arXiv preprint arXiv:1810.12715,
2018.

[22] Zonghao Gu, George L Nemhauser, and Martin WP Savelsbergh. Lifted flow cover inequalities
for mixed 0-1 integer programs. Mathematical Programming, 85:439–467, 1999.

[23] Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua
Bengio. Hybrid models for learning to branch. Advances in neural information processing

systems, 33:18087–18097, 2020.

[24] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.
gurobi.com.

[25] He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms.
Advances in neural information processing systems, 27, 2014.

[26] Gregor Hendel, Matthias Miltenberger, and Jakob Witzig. Adaptive algorithmic behavior for
solving mixed integer programs using bandit algorithms. In Operations Research Proceedings

2018: Selected Papers of the Annual International Conference of the German Operations

Research Society (GOR), Brussels, Belgium, September 12-14, 2018, pages 513–519. Springer,
2019.

[27] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle. Paramils: an automatic
algorithm configuration framework. Journal of Artificial Intelligence Research, 36:267–306,
2009.

[28] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In Learning and Intelligent Optimization: 5th International

Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers 5, pages 507–523.
Springer, 2011.

[29] Michael Jünger and Sven Mallach. Exact facetial odd-cycle separation for maximum cut and
binary quadratic optimization. INFORMS Journal on Computing, 33(4):1419–1430, 2021.

[30] Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to
branch in mixed integer programming. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 30, 2016.

[31] Elias B Khalil, Bistra Dilkina, George L Nemhauser, Shabbir Ahmed, and Yufen Shao. Learning
to run heuristics in tree search. In Ijcai, pages 659–666, 2017.

[32] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[33] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017.

46

https://www.gurobi.com
https://www.gurobi.com

[34] Markus Kruber, Marco E Lübbecke, and Axel Parmentier. Learning when to use a decomposi-
tion. In Integration of AI and OR Techniques in Constraint Programming: 14th International

Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceedings 14, pages 202–210.
Springer, 2017.

[35] Abdel Ghani Labassi, Didier Chételat, and Andrea Lodi. Learning to compare nodes in branch
and bound with graph neural networks. arXiv preprint arXiv:2210.16934, 2022.

[36] Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing.
Advances in Neural Information Processing Systems, 34:26198–26211, 2021.

[37] Stephen Maher, Matthias Miltenberger, João Pedro Pedroso, Daniel Rehfeldt, Robert Schwarz,
and Felipe Serrano. PySCIPOpt: Mathematical programming in python with the SCIP opti-
mization suite. In Mathematical Software – ICMS 2016, pages 301–307. Springer International
Publishing, 2016. doi: 10.1007/978-3-319-42432-3_37.

[38] Alberto Maria Metelli, Flavio Mazzolini, Lorenzo Bisi, Luca Sabbioni, and Marcello Restelli.
Control frequency adaptation via action persistence in batch reinforcement learning. In Interna-

tional Conference on Machine Learning, pages 6862–6873. PMLR, 2020.

[39] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[40] Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov,
Brendan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al.
Solving mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

[41] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations
for maximizing submodular set functions—i. Mathematical programming, 14:265–294, 1978.

[42] Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison.
Learning to cut by looking ahead: Cutting plane selection via imitation learning. In International

conference on machine learning, pages 17584–17600. PMLR, 2022.

[43] Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, and
Andrea Lodi. Ecole: A gym-like library for machine learning in combinatorial optimization
solvers. In Learning Meets Combinatorial Algorithms at NeurIPS2020, 2020. URL https:
//openreview.net/forum?id=IVc9hqgibyB.

[44] Ragheb Rahmaniani, Teodor Gabriel Crainic, Michel Gendreau, and Walter Rei. The benders
decomposition algorithm: A literature review. European Journal of Operational Research, 259
(3):801–817, 2017.

[45] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of

the thirteenth international conference on artificial intelligence and statistics, pages 661–668.
JMLR Workshop and Conference Proceedings, 2010.

[46] Lara Scavuzzo, Feng Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-Smith,
and Karen Aardal. Learning to branch with tree mdps. Advances in Neural Information

Processing Systems, 35:18514–18526, 2022.

[47] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to

algorithms. Cambridge university press, 2014.

[48] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked
label prediction: Unified message passing model for semi-supervised classification. In Proceed-

ings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages
1548–1554, 8 2021.

[49] Jialin Song, Ravi Lanka, Albert Zhao, Aadyot Bhatnagar, Yisong Yue, and Masahiro Ono.
Learning to search via retrospective imitation. arXiv preprint arXiv:1804.00846, 2018.

47

https://openreview.net/forum?id=IVc9hqgibyB
https://openreview.net/forum?id=IVc9hqgibyB

[50] Jialin Song, Yisong Yue, Bistra Dilkina, et al. A general large neighborhood search framework
for solving integer linear programs. Advances in Neural Information Processing Systems, 33:
20012–20023, 2020.

[51] Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer program-
ming: Learning to cut. In International conference on machine learning, pages 9367–9376.
PMLR, 2020.

[52] Mark Turner, Thorsten Koch, Felipe Serrano, and Michael Winkler. Adaptive cut selection in
mixed-integer linear programming. arXiv preprint arXiv:2202.10962, 2022.

[53] Mathieu Van Vyve. Fixed-charge transportation on a path: Linear programming formulations.
In International Conference on Integer Programming and Combinatorial Optimization, pages
417–429. Springer, 2011.

[54] Zhihai Wang, Xijun Li, Jie Wang, Yufei Kuang, Mingxuan Yuan, Jia Zeng, Yongdong Zhang,
and Feng Wu. Learning cut selection for mixed-integer linear programming via hierarchical
sequence model. In The Eleventh International Conference on Learning Representations, 2023.

[55] Franz Wesselmann and Uwe Stuhl. Implementing cutting plane management and selection
techniques. In Technical Report. University of Paderborn, 2012.

[56] Lin Xu, Holger Hoos, and Kevin Leyton-Brown. Hydra: Automatically configuring algorithms
for portfolio-based selection. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 24, pages 210–216, 2010.

[57] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Hydra-mip: Automated
algorithm configuration and selection for mixed integer programming. In RCRA workshop on

experimental evaluation of algorithms for solving problems with combinatorial explosion at the

international joint conference on artificial intelligence (IJCAI), pages 16–30, 2011.

[58] Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound
search trees to learn branching policies. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 35, pages 3931–3939, 2021.

[59] Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based
exploration. In International Conference on Machine Learning, pages 11492–11502. PMLR,
2020.

48

	Introduction
	Related Work
	MILP Background
	Problem Formulation
	Learning to Separate
	Configuration space restriction
	Configuration update restriction
	Neural UCB algorithm

	Experiments and Analysis
	Setup
	Standard MILP Benchmarks with Detailed Ablations
	Large-scale Real-world MILP Benchmarks
	Interpretation Analysis: L2Sep Recovers Effective Separators from Literature
	State-of-the-art MILP Solver Gurobi
	Additional Results

	Conclusion
	Supplementary Material: Learning to Separate in Branch-and-Cut
	MILP and Branch-and-Cut Background
	Configuration Space Restriction: Proofs and Discussions
	Preliminary definitions
	Proof of Proposition 1
	Proof of Proposition 2
	ERM assumption discussion and relaxation to predictors with training error

	Configuration Space Restriction: Algorithm
	Algorithm
	Algorithm discussions: filtering and subspace size

	Configuration Update Restriction
	Forward training algorithm
	Trade-off discussion for different k's

	Neural UCB Algorithm
	Training algorithm
	Input features

	Experiment Setups
	Proposed method details
	Parameters
	SCIP interface.
	Training and evaluation details
	MILP benchmarks

	Ablation Details
	Implementation details of ablation methods
	Additional ablation results and analysis

	Detailed Experiment Results
	Interquartile mean (IQM) and mean statistics
	Result contextualization
	Interpretation analysis: L2Sep recovers effective separators from literature
	The immediate and multi-step effect of separator configuration in the B&C process
	Alternative objective: relative gap improvement

	Limitation.
	Negative Social Impact.

